JP4670035B2 - ガスタービン燃焼器 - Google Patents

ガスタービン燃焼器 Download PDF

Info

Publication number
JP4670035B2
JP4670035B2 JP2004187355A JP2004187355A JP4670035B2 JP 4670035 B2 JP4670035 B2 JP 4670035B2 JP 2004187355 A JP2004187355 A JP 2004187355A JP 2004187355 A JP2004187355 A JP 2004187355A JP 4670035 B2 JP4670035 B2 JP 4670035B2
Authority
JP
Japan
Prior art keywords
air
fuel
mixture
combustor
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004187355A
Other languages
English (en)
Other versions
JP2006010193A (ja
Inventor
茂 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2004187355A priority Critical patent/JP4670035B2/ja
Publication of JP2006010193A publication Critical patent/JP2006010193A/ja
Application granted granted Critical
Publication of JP4670035B2 publication Critical patent/JP4670035B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高温燃焼ガス発生用燃焼器に関するもので、特に、ジェットエンジンや産業用ガスタービンの燃焼器(以下、ガスタービン燃焼器という)に関するもので、さらには、低負荷から定格負荷を含む高負荷にいたる広い作動範囲にわたって良好な燃焼・排出性能を可能にするガスタービン燃焼器に関する。
ガスタービンの燃焼器として燃焼領域が単一の燃焼器が、従来から広く使用されてきているが、負荷の増減、すなわち燃料流量の増減に対応して燃焼領域の燃料空気比が変化するために、燃料流量の少ない低負荷時には燃焼温度が相対的に低く、したがって、未燃焼成分の発生が多く、一方、燃料流量の多い高負荷時には燃焼温度が高く、したがって、NOxの排出が多いという欠点がある。そのため、高負荷時におけるNOx排出を抑制するために高負荷時に燃焼領域が燃料希薄になるように燃焼室の空気配分を設計すると、低負荷時には燃焼領域の燃料濃度が薄すぎて未燃焼成分の排出が急増しやすく、特に予混合燃焼では混合気の濃度が希薄側燃焼限界以下となって点火が不確実になるという問題がある。燃料流量の増減に合わせて燃焼領域に流入する空気流量を制御する機構、たとえば空気流量バルブの採用によって上記の問題は一部解決されるが、それだけでは広い負荷範囲にわたって希薄予混合燃焼の潜在的低NOx性能を十分引き出すことが難しい。そのため、燃焼領域が単一の燃焼器では、最近の厳しいNOx規制に適合するガスタービンは実現できない。
単一燃焼領域燃焼器に共通する上記の問題を回避するために、複数の燃焼領域(あるいはバーナ)を設け、負荷の増大に合わせて燃料を供給する燃焼領域の数、あるいはバーナの本数を増加させていく方法が実用になっている。この方式は燃料ステージングとよばれる。複数のバーナヘの燃料流量制御は、古くから確立された技術で、汎用制御機器が入手でき、低コストで信頼性も高い。
その代表的な従来例を図11に例示する。このガスタービン燃焼器3において、円筒形の燃焼器ケーシング52の内部に収納された円筒形の燃焼器ライナ51で形成される燃焼室53のドーム部53aに、始動時から最大負荷までの全作動条件で作動するパイロットバーナ11を備えたパイロット燃焼領域11aと複数のメインバーナ12を配列し、負荷の大小に応じて作動する本数を増減させるメイン燃焼領域12aとを備えている。パイロット、メインの両燃焼領域が並列的に並べられていることからパラレルステージングと呼ばれる。いずれの燃焼領域にも空気、あるいは空気と燃料との混合気が流入する。パイロットバーナ11は、始動時の点火を確実にし、低負荷時における未燃焼成分の排出を抑制し、且つメインバーナヘの燃料流量が急に絞られるガスタービンの負荷遮断時においてもメインバーナ12が失火しないようにするという役割を持っている。メイン燃焼領域12aにおいては、負荷の増加に対して新たなメインバーナに燃料が供給され、その流量はその設計流量まで増やされ、さらには次のメインバーナに燃料が供給されるというように運転される。メインバーナのうち非作動のものからは空気が流出し、この空気は隣接する作動中のメインバーナの火炎を冷却するため、それが過度の場合には未燃焼成分の発生が増大するという問題がある。この問題を回避するため、それぞれの燃焼領域、それぞれのメインバーナは、火移りが可能な範囲でできるだけ離して配置するとか、隔壁で隔てるといった設計が行われることが多い。上記の問題は、メインバーナの本数が多ければ燃焼器全体としての排出特性への影響は小さくなるものの、単一燃焼領域の場合の本質的問題から完全に免れることはできない。
上記のパラレルステージングと対照的な燃焼領域の配置として、燃焼室内に複数の燃焼領域を流れの方向(すなわち燃焼器の軸方向)に配列するアキシャル(軸方向という意味)ステージングがある。負荷の増大には、上流の燃焼領域からの既燃ガスが流れ込む下流側の燃焼領域に燃料、あるいは混合気を供給し、その流量を増加させることにより負荷の増大に対応する。下流で供給される燃料や燃料空気混合気は、上流の燃焼領域からの高温でしかも反応活性物質を多量に含んだ既燃ガス中に噴射されるために、通常は点火すらできないほど超希薄混合気でも反応させることができる。また、既燃ガス中の酸素濃度が空気よりもかなり低い場合にはNOxの生成も抑制される。このような特徴を活用することができれば、燃料が空気中に噴射される前記のパラレルステージングよりも優れたガスタービン燃焼器を実現できる可能性が高い。
図12は、アキシャルステージングの特徴を最大限利用するように設計された従来例の燃焼器を示す縦断面図である(特許文献1参照)。このガスタービン燃焼器4では、パイロットバーナ11はエンジン始動時から常に作動し、所定の負荷以上での運転時にはパイロット燃焼領域11aの下流のメイン燃焼領域において、パイロットバーナ11による既燃ガス塊13に向けて、燃焼室53内にぼぼ軸方向に配設されたメイン予混合気噴射管14からメイン予混合気15が噴射される。所定の負荷以下での運転時には、メイン予混合気噴射管14には燃料が供給されず、空気だけが噴出し、パイロット燃焼領域11aからの既燃ガスと混合する。負荷の増減はメイン予混合気噴射管14への燃料噴射量を増減することにより行うことができる。適切な設計を行えば、無負荷から定格までのほぼ全範囲を超低NOx排出で運転できることが実証されている。重要なことは、パイロットバーナは完全燃焼で作動し、メイン予混合気噴射管からの予混合気は単独では火炎を保持できないようにし、高温の既燃ガスと混合することによってはじめて反応あるいは燃焼するように設計することである。高温で反応活性物質を大量に含んだ既燃ガスと混合することによって、点火すらできないような極めて燃料希薄な混合気も適切な滞留時間を与えればぼぼ完全に反応させることができ、低負荷側でも燃焼効率を高く維持できる。もちろん、このメイン予混合気は希薄であるので、その燃焼によってNOxは増加しない。
また、アキシャルステージングの範疇に入る他のガスタービンとして、従来、燃料を燃焼器ライナの開口を通して燃焼器ライナ内に噴射する追い焚き燃料ノズルを備えた触媒方式ガスタービン燃焼器が提案されている(特許文献2参照)。この燃焼器は、燃料と空気とを混合して作った予混合気を予熱室で燃焼燃料ガスと混合して作成した予熱予混合気を触媒で燃焼させる触媒燃焼器であるが、圧縮空気の一部を触媒の下流側で内筒(焼器ライナ)内に導入する導入孔から燃料を内筒内に噴射して燃焼させる追い焚き燃料ノズルと、高負荷時にこの追い焚き燃料ノズルを作動させる燃料コントローラを備えている。触媒の耐熱温度よりも高い燃焼燃料ガス温度が必要なガスタービンを実現するための発明である。負荷の低い条件では、燃料は全量空気と予混合され、触媒に導入され、燃焼ガスを発生する。負荷の増大に合わせて予混合される燃料流量が増やされていくと触媒すぐ下流でのガス温度もそれに伴って上昇する。この温度が触媒の耐熱性や耐久性の観点から定められた所定温度に達した時点で、予混合される燃料流量は一定に保たれ、残りの燃料は追い焚き燃料ノズルから噴射される。この追い焚き燃料は、触媒からの高温既燃ガスと接触、混合して燃焼する。噴射された燃料は、導入孔からの空気とも多少は混ざるが、基本的に拡散火災を生じる。特に液体燃料では、噴射されてから蒸発が進むまでに時間が必要なことから燃料粒子が高温ガスと混ざり、蒸発し、燃焼する。既燃ガス中の酸素濃度は触媒での燃焼により消費された分だけ下がっており、そのため追い焚き燃料の燃焼によるNOxの生成は純高温空気中での燃焼に比べ抑制されるという。しかし、噴射される雰囲気が高温の既燃ガスであることに加え、燃料の直接噴射であるため燃料濃度が高い部分を排除することはできないので、NOx量をそれほど増加させずに追い焚きできる燃料割合はそれほど多くない。特許文献2においてもその上限を30%としている。これに対して、特許文献1の技術では、NOx排出増大なしにメイン混合気噴射器から全燃料量の50%〜80%を供給できることが実証されている。NOxの増大を許容したとしても、追い焚き燃料を過度に増やすとスモークや粒子状物質の排出増加となることから、受け入れられない。
上記のアキシャルステージングの第1の例では、予混合気噴射管はその一部が燃焼室内に挿入されている。そのため予混合器噴射管が加熱され、その内部を流れる空気も予熱される。このことは、燃料が液体燃料の場合には燃料噴霧の蒸発が促進され、より均質な混合気を形成できるので良好な燃焼・排出性能を発揮できるという点で都合がよい。一方、再生サイクルガスタービンのように空気温度が600℃近くにもなる燃焼器においては、空気による予混合管の内部からの冷却効果が減じ、予混合気噴射管の外表面が高温雰囲気に曝されることによる酸化の問題が懸念される。また、この予混合噴射管は燃焼器ライナに装着されているので、その点検の際には燃焼器ケーシングを開けて燃焼器ライナを取り出す必要がある。
一方、前記のような追い焚き燃料ノズル方式では、噴射された燃料と燃焼器ライナの空気孔から流入する空気との混合は、遅く、既燃ガス中に噴射された後も局所的には燃料過多の状態で燃焼する部分が必然的にできる。平均としての燃料空気比が大きいほど局所的な燃料過多な混合気塊ができやすいので、NOxの発生が増加し、条件によってはすすが発生することもある。さらに燃料が増えると、追い焚きノズルからの燃料噴流はそれ自体で拡散火炎を保持するようになり、NOxが急増するという問題がある。そのため、排出性能を犠牲にせずに追い焚きできる燃料流量の最大は定格負荷時の全燃料流量の10%程度であり、前記第1の従来技術による50〜80%程度に比べかなり狭い。加えて、燃料と空気とを燃焼室内の既燃ガス中に噴射するまえに混合しない追い焚き燃料ノズル方式では、既燃ガスとの混合にも時間がかかり、燃焼器出口における局所的な燃料過多は高温スポットの発生につながり、特に燃焼器出口が即タービン入ロとなっている環状燃焼器ではタービンノズル等のタービン部品の寿命が短くなるという問題がある。追い焚き燃料噴射位置からタービン入口までの距離を十分とればこの問題は緩和されるが、このような対策は軽量化が必須な航空エンジンでは許容されない。燃焼器ライナの長さ増は、それ自体の重量増加に止まらず、エンジンの回転軸、ケーシングなど関連する部分の長さ増による重量増となり、結局、燃料消費量の増大となる。さらに、製造コスト、部品価格上昇による保守コスト増となる。
特開2003−262336号公報(図1及び段落[0035]参照) 特開2003−3865号公報
より広い負荷範囲においてNOxや未燃焼成分(CO、炭化水素)やスモークの排出を低減することを目的として、燃焼室内において複数の燃焼領域を流れ方向に配列したアキシャルステージング方式のガスタービン燃焼器において、下流側の燃焼領域に供給される燃料の燃焼によるNOxの発生増大をより広い負荷範囲(あるいは燃料空気比範囲)にわたって抑制し、燃焼器出口ガス温度分布の一様性を改善し、燃焼器の短縮化を進める上で解決すべき課題がある。また、燃焼室内に突き出た混合気噴射管の耐久性の改善や点検性の向上をはかる上で解決すべき課題がある。
本発明の目的は、より広い負荷範囲にわたって有害成分、特にNOxの排出が少なく、燃焼安定性に優れ、しかも燃焼器出口ガス温度分布の一様性に優れ、長さの短い空間燃焼負荷の大きいガスタービン燃焼器を提供することである。
この発明は上記の課題を解決するためになされたもので、本発明によるガスタービン燃焼器は、燃焼器ライナで囲まれた燃焼室において上流の燃焼領域で生成され下流に向けて流れる既燃ガス流に燃料空気混合気が噴射されるガスタービン燃焼器において、燃焼器ケーシングの壁面に混合気噴射器が外側から取り付けられ、該混合気噴射器は燃料噴射器と空気旋回手段と混合気噴射管とで構成され、該混合気噴射管は先端が噴射開口となっており、該噴射開口は前記燃焼器ライナの壁面に配設されたライナ開口の近傍に位置し、前記空気旋回手段により前記混合気噴射管内に燃料空気混合気の旋回流を発生させ、燃料空気混合気は前記噴射開口から前記ライナ開口を通して、バーナによる前記燃焼領域よりも下流側において、前記燃焼領域からの既燃ガスの流れに交差するように噴射されることを特徴とする。
既燃ガスは高温で、しかも反応活性物質を多量に含んでいるので、非常に燃料希薄な混合気でも、既燃ガスと混合させ適当な時間を与えれば反応させることができる。また、燃料希薄であるかぎりNOx生成は少ないので、低NOx排出のもとに高い燃焼効率、すなわちCO、HCの少ない燃焼が可能になる。燃料空気混合気は、既燃ガスに対して交差するように噴射されるので、混合が容易に行われる。また、混合気噴射器には燃料が混合される空気に旋回をあたえる手段、すなわち空気旋回手段を備えているので、燃料と空気の混合を促進することができ、燃料だけを噴射する追い焚きノズルによるよりも広い燃料・空気比範囲で低NOxを維持できる。さらに、燃料空気混合気の噴流には旋回が与えられているので、既燃ガスとの混合が促進され、短時間、すなわち短距離で燃焼(上記の超希薄条件での炎を伴わない反応も含む)が完了することから、燃焼器出口ガス温度分布の一様性において優れる。噴射された燃料と空気との混合が早く、燃料希薄な状態にできるので、混合気噴射管からの混合気で自立する火炎が形成されることはなく、高温既燃ガスと接触あるいは混合して初めて反応あるいは燃焼するので、燃料だけを噴射する前述の追い焚きノズルよりNOxやすすの発生は少ない。混合気噴射器は、ケーシングの壁面の穴を通して外部から取り付けられており、その混合気噴射管は従来の予混合管と異なり、燃焼器ライナに固定されていないので、燃焼器ライナを取り出さずに取り外すことができ、容易に点検することができる。また、この混合気噴射管は、その先端も燃焼室内の既燃ガスに曝されないので耐久性がある。
また、本発明によるガスタービン燃焼器は、その空気旋回手段が混合気噴射管の内部あるいは周囲に配設された複数の旋回羽根で構成される空気旋回器であることを特徴とする。空気旋回器を、予混合管の内部あるいは周囲に配設した複数の旋回羽根で構成することによってコンパクトな混合気噴射器を実現できる。
また、本発明によるガスタービン燃焼器は、その空気旋回手段が混合気噴射管の側壁に配設された接線空気流入流路であることを特徴とする。混合気噴射管の側壁を肉厚とし、その側壁に接線空気流入通路を配設すれば、空気はこの通路から混合気噴射管内部に流入し、管内に旋回流れを生じさせることができる。この形態は、低コストで製造でき、強度も大きいという利点がある。
本発明によるガスタービン燃焼器において、接線空気流入流路を側壁に配設した円筒状のロータが前記混合気噴射管の内側に同軸に配設され、前記混合気噴射管の側壁には前記接線空気流入流路に対応した開口が配設され、前記開口の縁には前記接線空気流入流路内に延伸するベーンが配設され、前記ロータの回転により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする。あるいは、前記噴射管の内部には、前記接線空気流入流路内に延伸するベーンを周囲に配設したスライダが同軸に配設され、前記噴スライダの軸方向移動により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする。
上記のロータ、スライダいずれの形態においても、混合気噴射管に流入する空気の流量を調節することができ、混合気の燃料空気比をより適切に制御できる。燃料流量が少ない場合には、混合気の既燃ガスと混合した際より反応がおきやすいように空気流量を絞り、一方、燃料流量が多い場合には、混合気が既燃ガスと混合した際、過度に高温にならないように空気流量を増大させることが可能となり、いっそう広い燃料空気比範囲で低NOxと完全燃焼を維持できる。また、燃焼器出口温度の一様性を維持できる。
本発明によるガスタービン燃焼器において、前記混合気噴射管の先端の外周と前記燃焼器ライナ開口の縁との間には空気の流入する隙間が設けられていることを特徴とする。このようにすることによって、混合気噴射管の先端部においてはその外表面に沿って高速の空気が流れるようにでき、混合気噴射管内に火炎が形成されるのを防止することができる。また、燃焼器ライナ内の火炎や高温既燃ガスからの放射により混合気噴射管の先端部が加熱されることも防止できる。また、隙間を設けることによって、燃焼器ライナの熱伸びによるライナ開口の変位を吸収できる。通常、接触する部品は空気力や熱などに起因する相互の力学的干渉によって磨耗が起きるが、本発明による混合気噴射管はライナ開口の縁に接触していないので、長期間にわたって初期の形状を維持できる。
本発明によれば、燃焼器ライナで囲まれた燃焼室において上流の燃焼領域から下流に向けて流れる既燃ガス流に燃料空気混合気が噴射されるガスタービン燃焼器において、混合気噴射器を燃焼器ケーシングの壁面に外側から取り付けているので、容易に取り外すことができ、混合気噴射器の保守点検の時間、コスト削減になる。また、燃料噴射器と混合気噴射管との位置関係が一定に維持されるので、その性能が燃焼器ライナのケーシングヘの組み込み公差の影響をほとんど受けないという利点がある。また、燃焼器ライナと混合気噴射管の相対位置が組立や熱伸びによって変化しても、隙間の実効的開口面積はほぼ一定に保たれるという利点がある。混合気噴射管は、その先端も燃焼室内の既燃ガスに曝されないので長期間の使用に耐え、維持費が削減できる。
また、燃料空気混合気は既燃ガスに対して交差するように噴射されるだけでなく、その噴流には旋回が与えられているので、既燃ガスとの混合が促進され、短時間、すなわち短距離で燃焼(上記の超希薄条件での炎を伴わない反応も含む)が完了することから、燃焼器出口ガス温度分布の一様性に優れ、その結果、夕一ビン部品の寿命が延びるという効果がある。また、燃料は既燃ガス中に噴射されるまでに空気とよく混合するので、噴射燃料の燃焼によるNOxの生成が効果的に抑制され、結果的に広い負荷範囲で低NOxを実現できるという効果がある。
また、本発明によるガスタービン燃焼器は、その空気旋回手段が混合気噴射管の内部あるいは周囲に配設された複数の旋回羽根で構成される空気旋回器、あるいは混合気噴射管の側壁に配設された接線空気流入流路であるのでコンパクトである。そのため、燃焼器ライナと燃焼器ケーシングとの隙間が狭い場合にも適用できる。また、既存の燃焼器にも比較的少ない追加作業で適用でき、低コストで排出基準に適応する燃焼器を実現できる。
本発明による旋回空気流量調整が可能なロータあるいはスライダを用いた混合気噴射器によれば、混合気噴射管に流入する空気の流量を調節することができ、混合気の燃料空気比をより適切に制御できる。燃料流量が少ない場合には、混合気が既燃ガスと混合した際、より反応が起きやすいように空気流量を絞り、一方、燃料流量が多い場合には、混合気が既燃ガスと混合した際、過度に高温にならないように空気流量を増大させることが可能となり、いっそう広い燃料空気比範囲で低NOxと完全燃焼を維持でき、燃焼器出口温度の一様性を維持できる。
図1は、本発明によるガスタービン燃焼器の第1実施例を示す縦断面図である。図1に示すガスタービン燃焼器1においては、図11に示す従来のパラレルステージング方式のガスタービン燃焼器3、及び図12に示す従来のパラレルステージング方式のガスタービン燃焼器4と同等の機能を奏する構成要素及び部位には、同じ符号を付している。このガスタービン燃焼器は小型産業用ガスタービンに広く用いられている形態で、筒形の燃焼器ライナ51は筒形の燃焼器ケーシング52に収納され、燃焼室53のドーム部53aには燃料噴射器54と空気旋回器55からなるバーナ58が装着されている。燃料噴射器54からの燃料は燃焼室のドーム部53aにおいて空気旋回器55からの空気によって燃焼し、既燃ガスを発生する。便宜上、この燃焼領域を第1燃焼領域56と呼ぶことにする。この第1燃焼領域56よりも下流位置において、第1燃焼領域56からの既燃ガス中に燃料空気混合気を噴射するための混合気噴射器57が燃焼器ケーシング52の壁に取り付けられている。この例では、軸方向の異なる2断面にそれぞれ2本ずつ、対向して配置されている。混合気の噴射方向は、この例では既燃ガスの流れにほぼ垂直になっているが、上流側に傾斜させるのが好ましい場合もある。これらの混合気噴射器57は、燃焼器ケーシング52の外から取り外すことができる。混合気噴射管61の先端61eは燃焼器ライナ51のライナ開口51cに近接して位置し、この混合気噴射管開口出口から噴射される混合気は第1燃焼領域56で発生した既燃ガスの流れと混合し、混合気の濃度や混合後の温度などの条件によって反応あるいは燃焼する。噴射される予混合気の反応あるいは燃焼によるNOxの生成は、混合気が通常の温度条件での可燃限界よりも希薄であれば無視できる程であるので、燃焼器からのNOx排出量は、上流のバーナ58によるNOxの生成量によってほぼ決まる。したがって、バーナ58をNOx等有害成分の排出の少ない予混合方式とすれば、NOxの排出は大幅に減少する。
図2は、本発明によるガスタービン燃焼器の第2実施例を示す縦断面図である。図3は横断面図である。図2に示すガスタービン燃焼器2においては、図11に示す従来のパラレルステージング方式のガスタービン燃焼器3、及び図12に示す従来のパラレルステージング方式のガスタービン燃焼器4と同等の機能を奏する構成要素及び部位には、同じ符号を付している。このガスタービン燃焼器はジェットエンジン、すなわち航空用ガスタービンに広く用いられている形態で、内側燃焼器ライナ51aと外側燃焼器ライナ51bとで形成される環状燃焼室53が、筒形燃焼器ケーシング52内に収納されている。燃焼室53のドーム部53aには燃料噴射器54と空気旋回器55とで構成されるバーナ58が周方向に十数個配列されている。これらのバーナ58による燃焼はほぼドーム部53aで完結する。バーナ58は、NOx等有害成分の排出の少ない予混合方式でもよい。便宜上、この燃焼領域を第1燃焼領域56と呼ぶことにする。この第1燃焼領域56よりも下流位置に燃料空気混合気を噴射するための混合気噴射器57が燃焼器ケーシング52の壁面に取り付けられている。この例ではドームに配設されたバーナ58と同じ周方向位置に混合気噴射器57が配設されているが、図4の別の横断面図に示されているように、隣接するバーナとバーナの間に配設することもできる。また、第1実施例のように、下流方向に2列、あるいはそれ以上の列に配列することもできる。独立して燃料流量制御を行う燃焼領域の数を増やすほどより広い負荷範囲にわたって良好な排出性能を実現できる。
図5(a)は、図1に示した本発明の第1実施例及び、図2に示した第2実施例の燃焼器に取り付けられている混合気噴射器57の縦断面図の拡大図であり、図5(b)は同図(a)におけるA−A断面図である。混合気噴射管61は円筒状で、その側壁61aには接線空気流入通路61bが複数個(図の実施例では6個)周方向に配設され、この接線空気流入通路61bから混合気噴射管61の内部に流入する空気は円筒内壁面61cによって旋回流を形成する。この空気流中に中心軸上に配設された燃料噴射器62から燃料が噴射される。この燃料は旋回する空気と混合し、混合気噴射管出口61dから燃焼室内に、既燃ガス56aの流れに交差するように噴射される。燃料は気体のほか、液体燃料でもよく、液体燃料の場合には燃料噴射器として液体微粒化ノズルが使用される。混合気噴射管の先端61eの外周と燃焼器ライナ開口51cの縁との間には適当な隙間63が形成されており、空気がその隙間63から燃焼室内に流入する。この隙間63は熱伸びによる変位を吸収するのにも有効である。また、燃焼器ライナと混合気噴射管の相対位置が組立や熱伸びによって変化しても、隙間63の実効的開口面積はほぼ一定に保たれるという利点がある。この混合気噴射器57は燃焼器ケーシング52へ壁面に外部からボルトで固定されており、外部に抜き出すことができる。混合気噴射管61は先細の円管でもよい。燃料噴射器は空気噴射管に一体に取り付けられているので両者の位置関係は高い精度で一定に維持される。
図6(a)は、本発明の第3実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図で、図6(b)は同図(a)における混合気噴射管61のA−A断面図である。空気旋回手段として複数の旋回羽根72で構成される空気旋回器71を混合気噴射管61の内部に配設し、混合気噴射管61の側壁にあけられた開口61fから空気は流入し、前記空気旋回器71によって空気に旋回が与えられ、燃料は燃料噴射器62の先端から旋回空気流中に噴射される。空気旋回器71は燃料噴射器と一体になった複数の旋回羽根で構成されていてもよい。なお、この図では燃料噴射器は棒状の単純なものであるが、それ自体に旋回器を備えた気流微粒化ノズルを使用することもできる。
図7は、本発明の第4実施例のガスタービン燃焼器の混合気噴射57の周囲を示す縦断面図である。空気旋回手段として複数の旋回羽根72で構成される2個の空気旋回器71a、71bを混合気噴射管61の内部に配設している。このようにすると2個の同軸旋回流れ間のせん断が強まり燃料と空気の混合が一層促進される。また、これら2個の空気旋回器71a、71bの旋回方向を互いに逆にすれば、中心部において旋回は弱めあって、中心軸上の負圧の形成が抑制され、管内への逆流を排除できる効果がある。逆流は混合気噴射管内に火災を誘引し、焼損を生じるおそれがあるので排除することが望ましい。
図8は、本発明の第5実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図である。空気旋回手段として混合気噴射管の外周部に配設された複数の旋回羽根72で構成される空気旋回器71を備えている。この形態によれぱによれば空気旋回器71の断面面積を混合気噴管61の横断面積よりも十分大きくすることができ、空気旋回器71への流入空気量を増やせるという利点がある。
図9は、本発明の第6実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図である。接線空気流入流路81aを側壁に配設した円筒状のロータ81が、前記接線空気流入流路81a内に延伸するベーン82a及び開口61fを側壁に配設した混合気噴射管61の内側に同軸に配設され、前記ロータ81の回転により前記接線空気流入通81aの有効開口面積が変化するようになっている。前記ロータ81はその軸81cが、図には示してないが、サーボモータ、あるいはリンク機構つき空気シリンダー等により駆動される。ベーン及び開口側壁は、図示のものが最良であるが平面でも良い。
図10は、本発明の第7実施例のガスタービン燃焼器の混合気噴射器57の周囲を示す縦断面図である。混合気噴射管61の側壁61aには接線空気流入流路61bが周方向に配設され、混合気噴射管61の内部には、前記接線空気流入流路61b内に延伸するベーン82bを周囲に配設したスライダ83が同軸に配設され、前記スライダ83の軸方向移動により前記接線空気流入通路61bの有効開口面積を変化させるようになっている。スラーダの駆動は、図には示してないが空気シリンダー、油圧シリンダーにより駆動される。
本発明のガスタービン燃焼器は、広い燃料・空気比範囲にわたって有害成分の排出が少なく、燃焼安定性に優れ、且つ燃焼器出口ガス温度分布の一様性に優れ、しかもその機能を達成する混合気噴射器はコンパクトで燃焼器ケーシングに外側から容易に着脱でき、既存の燃焼器にも容易に適用できるので、低負荷から高負荷に至る広い作動範囲にわたってジェットエンジンや産業用ガスタービン燃焼器として、利用可能である。
本発明によるガスタービン燃焼器の第1実施例を示す縦断面図である。 本発明によるガスタービン燃焼器の第2実施例を示す縦断面図である。 図2のA−A断面図である。 本発明によるガスタービン燃焼器の第2実施例における別の混合気噴射管位置を示す横断面図である。 本発明によるガスタービン燃焼器の第2実施例及び第2実施例の混合気噴射器を示す拡大図で、(a)は縦断面図、(b)はそのB−B断面図である。 本発明によるガスタービン燃焼器の第3実施例を示す図で、(a)は混合気噴射器及びその周囲の縦断面図、(b)は混合気噴射管のC−C断面図である。 本発明によるガスタービン燃焼器の第4実施例における混合気噴射器及びその周囲を示す縦横断面図である。 本発明によるガスタービン燃焼器の第5実施例における混合気噴射器及びその周囲を示す縦横断面図である。 本発明によるガスタービン燃焼器の第6実施例における混合気噴射器及びその周囲を示す図で、(a)は縦横断面図、(b)はそのD−D断面図である。 本発明によるガスタービン燃焼器の第7実施例における混合気噴射器及びその周囲を示す図であり、(a)は縦横断面図、(b)はそのE−E断面図である。 従来のパイロットバーナとメインバーナとを備えたパラレスステージングの一例を示すガスタービン燃焼器を示す縦断面図である。 従来のアキシャルステージングガスタービン燃焼器の一例である、燃焼室内に伸びた予混合気噴射管を備えたガスタービン燃焼器を示し、(a)はその縦断面図、(b)はそのF−F矢視図である。
符号の説明
1,2,3,4,5 ガスタービン燃焼器
11 パイロットバーナ 11a パイロット燃焼領域
12 メインバーナ 12a メイン燃焼領域
13 既燃ガス塊 14 メイン予混合気噴射管
15 メイン予混合気
51 燃焼器ライナ 51a 内側燃焼器ライナ
51b 外側燃焼器ライナ 51c 燃焼器ライナ開口
52 燃焼器ケーシング 53 燃焼室、環状燃焼室
53a ドーム部 54 燃料噴射器
55 空気旋回器 56 第1燃焼領域
56a 既燃ガス 57 混合気噴射器
58 バーナ
61 混合気噴射管 61a 側壁
61b 接線空気流入通路 61c 円筒内壁面
61d 混合気噴射管出口 61e 混合気噴射管の先端
61f 開口 62 燃料噴射器
63 隙間
71、71a、71b 空気旋回器 72 旋回羽根
81 ロータ
81a 接線空気流入流路 81c ロータ軸
82a、82b ベーン 83 スライダ

Claims (6)

  1. 燃焼器ライナで囲まれた燃焼室において上流の燃焼領域で生成され下流に向けて流れる既燃ガス流に燃料空気混合気が噴射されるガスタービン燃焼器において、燃焼器ケーシングの壁面に混合気噴射器が外側から取り付けられ、該混合気噴射器は燃料噴射器と空気旋回手段と混合気噴射管とで構成され、該混合気噴射管は先端が噴射開口となっており、該噴射開口は前記燃焼器ライナの壁面に配設されたライナ開口の近傍に位置し、前記空気旋回手段により前記混合気噴射管内に燃料空気混合気の旋回流を発生させ、燃料空気混合気は前記噴射開口から前記ライナ開口を通して、バーナによる前記燃焼領域よりも下流側において、前記燃焼領域からの既燃ガスの流れに交差するように噴射されることを特徴とするガスタービン燃焼器。
  2. 前記空気旋回手段は、前記混合気噴射管の内部あるいは周囲に配設された複数の旋回羽根で構成された空気旋回器であることを特徴とする請求項1に記載のガスタービン燃焼器。
  3. 前記空気旋回手段は、前記混合気噴射管の側壁に配設された接線空気流入流路であることを特徴とする請求項1に記載のガスタービン燃焼器。
  4. 前記混合気噴射管の内側に、接線空気流入流路を側壁に配設した円筒状のロータが同軸に配設され、前記混合気噴射管の側壁には前記接線空気流入流路に対応した開口が配設され、前記開口の縁には前記接線空気流入流路内に延伸するべ一ンが配設され、前記ロータの回転により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする請求項1又は2に記載のガスタービン燃焼器。
  5. 前記混合気噴射管の内部には、前記接線空気流入流路内に延伸するべ一ンを周囲に配設したスライダが同軸に配設され、該スライダの軸方向移動により前記接線空気流入流路の有効開口面積を変化させるようにしたことを特徴とする請求項3に記載のガスタービン燃焼器。
  6. 前記混合気噴射管の先端の外周と前記燃焼器ライナ開口の縁との間には空気の流入する隙間が設けられていることを特徴とする請求項1〜5のいずれかに記載のガスタービン燃焼器。
JP2004187355A 2004-06-25 2004-06-25 ガスタービン燃焼器 Expired - Fee Related JP4670035B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004187355A JP4670035B2 (ja) 2004-06-25 2004-06-25 ガスタービン燃焼器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004187355A JP4670035B2 (ja) 2004-06-25 2004-06-25 ガスタービン燃焼器

Publications (2)

Publication Number Publication Date
JP2006010193A JP2006010193A (ja) 2006-01-12
JP4670035B2 true JP4670035B2 (ja) 2011-04-13

Family

ID=35777639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004187355A Expired - Fee Related JP4670035B2 (ja) 2004-06-25 2004-06-25 ガスタービン燃焼器

Country Status (1)

Country Link
JP (1) JP4670035B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718413A (zh) * 2012-10-01 2015-06-17 涡轮梅坎公司 具有可变空气供应的涡轮引擎燃烧组件

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8387390B2 (en) 2006-01-03 2013-03-05 General Electric Company Gas turbine combustor having counterflow injection mechanism
JP4894295B2 (ja) * 2006-02-28 2012-03-14 株式会社日立製作所 燃焼装置と燃焼装置の燃焼方法、及び燃焼装置の改造方法
JP2008185254A (ja) * 2007-01-30 2008-08-14 General Electric Co <Ge> 同軸燃料−空気通路を有する逆流噴射機構
JP4900479B2 (ja) * 2007-04-06 2012-03-21 株式会社日立製作所 ガスタービン発電設備及びその起動方法
FR2917487B1 (fr) * 2007-06-14 2009-10-02 Snecma Sa Chambre de combustion de turbomachine a circulation helicoidale de l'air
JP5086001B2 (ja) * 2007-08-23 2012-11-28 川崎重工業株式会社 ガスタービン燃焼装置
JP4937158B2 (ja) * 2008-02-20 2012-05-23 新潟原動機株式会社 ガスタービン燃焼器
JP4797079B2 (ja) * 2009-03-13 2011-10-19 川崎重工業株式会社 ガスタービン燃焼器
US20100242483A1 (en) * 2009-03-30 2010-09-30 United Technologies Corporation Combustor for gas turbine engine
US8082739B2 (en) * 2010-04-12 2011-12-27 General Electric Company Combustor exit temperature profile control via fuel staging and related method
DE102011016917A1 (de) * 2011-04-13 2012-10-18 Rolls-Royce Deutschland Ltd & Co Kg Gasturbinenbrennkammer mit einer Halterung einer Dichtung für ein Anbauteil
CH707282B1 (de) 2011-09-22 2015-12-15 Gen Electric Brenner und Verfahren zur Brennstoffzufuhr zu einem Brenner.
JP5241906B2 (ja) * 2011-11-18 2013-07-17 株式会社日立製作所 バーナ及びバーナの運転方法
US9151500B2 (en) * 2012-03-15 2015-10-06 General Electric Company System for supplying a fuel and a working fluid through a liner to a combustion chamber
US9200808B2 (en) * 2012-04-27 2015-12-01 General Electric Company System for supplying fuel to a late-lean fuel injector of a combustor
US9222673B2 (en) * 2012-10-09 2015-12-29 General Electric Company Fuel nozzle and method of assembling the same
US9310078B2 (en) * 2012-10-31 2016-04-12 General Electric Company Fuel injection assemblies in combustion turbine engines
US10139111B2 (en) 2014-03-28 2018-11-27 Siemens Energy, Inc. Dual outlet nozzle for a secondary fuel stage of a combustor of a gas turbine engine
EP2955445B1 (en) 2014-06-12 2019-11-27 Kawasaki Jukogyo Kabushiki Kaisha Multifuel gas turbine combustor
WO2016032436A1 (en) 2014-08-26 2016-03-03 Siemens Energy, Inc. Cooling system for fuel nozzles within combustor in a turbine engine
JP2016109309A (ja) * 2014-12-02 2016-06-20 川崎重工業株式会社 ガスタービン用燃焼器、及びガスタービン
KR102066943B1 (ko) 2014-12-09 2020-01-16 한화에어로스페이스 주식회사 연소기의 연료 노즐
US9797601B2 (en) * 2015-01-21 2017-10-24 United Technologies Corporation Bluff body fuel mixer
US11300052B2 (en) 2016-07-15 2022-04-12 Indian Institute Of Technology (Iit Madras) Method of holding flame with no combustion instability, low pollutant emissions, least pressure drop and flame temperature in a gas turbine combustor and a gas turbine combustor to perform the method
JP2019086245A (ja) 2017-11-08 2019-06-06 川崎重工業株式会社 バーナ装置
CN112483262B (zh) * 2020-10-27 2022-11-01 中国船舶重工集团公司第七0三研究所 一种同步控制燃料量和空气量的一体化装置及其控制方法
WO2023235078A1 (en) * 2022-06-01 2023-12-07 Siemens Energy Global GmbH & Co. KG Combustor having secondary fuel injector

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013808U (ja) * 1973-06-05 1975-02-13
JPH0452418A (ja) * 1990-06-21 1992-02-20 Hitachi Ltd 同軸型噴射器を装備した燃焼器
JPH05231645A (ja) * 1991-12-25 1993-09-07 Toyota Motor Corp ガスタービンエンジンの燃焼器
JPH05340508A (ja) * 1992-06-10 1993-12-21 Tokyo Gas Co Ltd 燃焼装置および燃焼方法
JPH0719482A (ja) * 1993-06-28 1995-01-20 Toshiba Corp ガスタービン燃焼器
JPH07248117A (ja) * 1994-03-10 1995-09-26 Hitachi Ltd ガスタービン予混合燃焼器の燃焼方法
JPH07332671A (ja) * 1994-06-10 1995-12-22 Sekiyu Sangyo Kasseika Center 予蒸発予混合燃焼器
JPH08247419A (ja) * 1995-02-20 1996-09-27 Abb Manag Ag 2段燃焼式燃焼室
US5996333A (en) * 1996-10-16 1999-12-07 Societe National D'etude Et De Construction De Moteurs D'aviation Oxidizer control device for a gas turbine engine
JP2000009319A (ja) * 1998-06-11 2000-01-14 Inst Fr Petrole 可変スロットガスタ―ビン燃焼チャンバ―
JP2000356315A (ja) * 1999-06-11 2000-12-26 Kawasaki Heavy Ind Ltd ガスタービンの燃焼器用バーナ装置
JP2002527708A (ja) * 1998-10-09 2002-08-27 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン燃焼器の燃料噴射組立体
JP2002528694A (ja) * 1998-10-09 2002-09-03 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン燃焼器の半径方向ドーム用燃料空気混合器

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5013808U (ja) * 1973-06-05 1975-02-13
JPH0452418A (ja) * 1990-06-21 1992-02-20 Hitachi Ltd 同軸型噴射器を装備した燃焼器
JPH05231645A (ja) * 1991-12-25 1993-09-07 Toyota Motor Corp ガスタービンエンジンの燃焼器
JPH05340508A (ja) * 1992-06-10 1993-12-21 Tokyo Gas Co Ltd 燃焼装置および燃焼方法
JPH0719482A (ja) * 1993-06-28 1995-01-20 Toshiba Corp ガスタービン燃焼器
JPH07248117A (ja) * 1994-03-10 1995-09-26 Hitachi Ltd ガスタービン予混合燃焼器の燃焼方法
JPH07332671A (ja) * 1994-06-10 1995-12-22 Sekiyu Sangyo Kasseika Center 予蒸発予混合燃焼器
JPH08247419A (ja) * 1995-02-20 1996-09-27 Abb Manag Ag 2段燃焼式燃焼室
US5996333A (en) * 1996-10-16 1999-12-07 Societe National D'etude Et De Construction De Moteurs D'aviation Oxidizer control device for a gas turbine engine
JP2000009319A (ja) * 1998-06-11 2000-01-14 Inst Fr Petrole 可変スロットガスタ―ビン燃焼チャンバ―
JP2002527708A (ja) * 1998-10-09 2002-08-27 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン燃焼器の燃料噴射組立体
JP2002528694A (ja) * 1998-10-09 2002-09-03 ゼネラル・エレクトリック・カンパニイ ガスタービンエンジン燃焼器の半径方向ドーム用燃料空気混合器
JP2000356315A (ja) * 1999-06-11 2000-12-26 Kawasaki Heavy Ind Ltd ガスタービンの燃焼器用バーナ装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104718413A (zh) * 2012-10-01 2015-06-17 涡轮梅坎公司 具有可变空气供应的涡轮引擎燃烧组件
JP2015531471A (ja) * 2012-10-01 2015-11-02 ターボメカTurbomeca 可変空気供給源を備えたタービンエンジン燃焼組立体
CN104718413B (zh) * 2012-10-01 2016-06-15 涡轮梅坎公司 具有可变空气供应的涡轮引擎燃烧组件

Also Published As

Publication number Publication date
JP2006010193A (ja) 2006-01-12

Similar Documents

Publication Publication Date Title
JP4670035B2 (ja) ガスタービン燃焼器
JP5364275B2 (ja) 燃焼システムにおけるNOxエミッションを低減するのを可能にするための方法及びシステム
JP2644745B2 (ja) ガスタービン用燃焼器
JP4134311B2 (ja) ガスタービン燃焼器
EP2481982B2 (en) Mixer assembly for a gas turbine engine
CA2137593C (en) Combustor arrangement
JP3958767B2 (ja) ガスタービン燃焼器およびその着火方法
JP2954480B2 (ja) ガスタービン燃焼器
US20140182294A1 (en) Gas turbine combustor
JP6196868B2 (ja) 燃料ノズルとその組立方法
JP2009052877A (ja) 半径方向の多段流路を備えたガスタービン予混合器及びガスタービンにおける空気とガスの混合方法
JP2005226847A (ja) 燃焼装置及び燃焼方法
EP1836443B1 (en) Rich catalytic injection
JPS637283B2 (ja)
JPH09287740A (ja) ガスタービン用燃焼器と用法
JPH02309124A (ja) 燃焼器及びその運転方法
CN110878947A (zh) 燃气轮机燃烧器
JP2005106305A (ja) 燃料燃焼用ノズルおよびガスタービン燃焼器の燃料供給方法
JP4400314B2 (ja) ガスタービン燃焼器及びガスタービン燃焼器の燃料供給方法
JP3990678B2 (ja) ガスタービン燃焼器
CA2599113C (en) Fuel injection valve, combustor using the fuel injection valve, and fuel injection method for the fuel injection valve
JPH0814565A (ja) ガスタービン燃焼器
CN102997281A (zh) 用于调节燃烧器中的工作流体的系统和方法
JP3873119B2 (ja) 円筒内旋回燃焼器
JPH0443220A (ja) ガスタービンの燃焼器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100104

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100930

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees