JP4662796B2 - 露光ヘッドの光量補正方法並びに露光装置 - Google Patents

露光ヘッドの光量補正方法並びに露光装置 Download PDF

Info

Publication number
JP4662796B2
JP4662796B2 JP2005062069A JP2005062069A JP4662796B2 JP 4662796 B2 JP4662796 B2 JP 4662796B2 JP 2005062069 A JP2005062069 A JP 2005062069A JP 2005062069 A JP2005062069 A JP 2005062069A JP 4662796 B2 JP4662796 B2 JP 4662796B2
Authority
JP
Japan
Prior art keywords
light
light emitting
emitting element
amount
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005062069A
Other languages
English (en)
Other versions
JP2006240214A (ja
Inventor
康宏 瀬戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2005062069A priority Critical patent/JP4662796B2/ja
Priority to US11/368,390 priority patent/US20060214597A1/en
Publication of JP2006240214A publication Critical patent/JP2006240214A/ja
Application granted granted Critical
Publication of JP4662796B2 publication Critical patent/JP4662796B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/435Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material
    • B41J2/447Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources
    • B41J2/45Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of radiation to a printing material or impression-transfer material using arrays of radiation sources using light-emitting diode [LED] or laser arrays
    • B41J2/451Special optical means therefor, e.g. lenses, mirrors, focusing means

Description

本発明は、複数の発光素子が1列に並設されてなるライン状発光素子アレイを備えた露光ヘッドの発光量を補正する方法に関するものである。
また本発明は、上述のような光量補正方法を実施する露光装置に関するものである。
従来、例えば特許文献1や特許文献2に示されるように、複数の発光素子が1列に並設されてなるライン状発光素子アレイからなる露光ヘッドを用いて、感光材料を露光する装置が公知となっている。この種の露光ヘッドにおいては、通常、ライン状発光素子アレイにレンズアレイが組み合わされ、該レンズアレイで集光した光を露光対象の感光材料に照射するようにしている。このレンズアレイは、ライン状発光素子アレイの発光素子から発せられた光を各々集光する複数の等倍結像レンズが、発光素子並び方向と略平行に並ぶ状態に集合されてなるものである。
そしてこのような露光ヘッドを用いる露光装置は、露光ヘッドから発せられた光が照射される位置に感光材料を保持し、この感光材料と露光ヘッドとを、ライン状発光素子アレイの発光素子並び方向(主走査方向)と略直交する副走査方向に相対移動させる副走査手段をさらに設けて構成されている。
ところで、上記ライン状発光素子アレイを構成する例えば有機EL発光素子等の発光素子においては、各素子間に発光特性の差が有ると、同じ発光指令信号が与えられても発光量が異なることになる。そうであると、上述のような露光装置において、主走査方向に互いに濃度やあるいは色相が等しい部分が存在する画像を露光する際、その部分に濃度段差や色相の段差が生じてしまう。そしてそのような段差は、副走査に伴って該副走査の方向に長く伸びて、いわゆる筋ムラとなって現れてしまう。
ライン状発光素子アレイから出射する光のアレイ長軸方向に亘る光量偏差を解消する方法として、従来、該アレイの各発光素子を共通の発光指令信号に基づいて一律点灯させ、そのとき各発光素子から出射した光の光量を測定して光量偏差特性を求め、ライン状発光素子アレイを実使用する際に、この偏差特性を解消するように各発光素子の発光量を補正する、という方法が知られている。
このような光量補正方法を実行する上では、ライン状発光素子アレイの発光素子を一律点灯させたときの各発光素子の発光量を正確に測定する必要があるが、これらの発光素子は非常に近接させて配置されているため、ある発光素子の発光量が、隣接素子の発光の影響を受けて不正確に測定されるという問題が起こり得る。図1は、ライン状発光素子アレイを構成する12個の発光素子から発せられた光を、前述のようなレンズアレイに通して集光した場合の、レンズ結像面におけるアレイ長手方向光量分布の一例を示すものである。ここに示すように、ある発光素子の発光中心まで隣接素子からの発光の裾部分が伸びていると、この発光中心で当該素子の発光量を正確に測定しようとしても、その測定値は隣接素子からの発光の影響を受けて、実際よりも高めの値を取ってしまう。このような傾向は、発光素子がより密に配置されて、それらの配置ピッチが、レンズが絞れる最小のビーム径に近付くほどに小さくなると、より顕著になる。
隣接素子からの光の影響を受けずに、各発光素子の発光量を正確に測定するための方法として、従来、特許文献3に開示されている方法が知られている。この光量測定方法は、主走査方向に並べられた多数の発光素子に対して、スリットで受光幅を制限した光量検出センサを対向させて主走査方向に移動させ、そのとき発光素子を少なくとも隣接素子が点灯しないように間引き点灯させ、光量検出センサの出力に基づいて各発光素子の発光量を算出する、というものである。そしてこの方法においては、検出光量と発光素子との対応を取るために、走査移動する光量検出センサからの出力のピークを検出し、そのピーク検出に基づいて各発光素子の中心位置を特定するようにしている。
特開平5−92622号公報 特開2000−13571号公報 特許第3374687号公報
しかし、前述のように各発光素子毎の発光量を測定し均一化する方法においては、使用するレンズアレイのレンズ直径と発光素子ピッチが近い値となっている場合に、レンズ配置ピッチ周期(レンズが密接配置されている場合はレンズ直径ピッチとなる)の光量偏差を有効に補正できなくなる。以下、この点について詳しく説明する。
前述したレンズアレイは、通常、屈折率分布型レンズ等の複数のレンズが一方向に並設されたレンズ列が複数、レンズ並び方向と直角な方向に並設されてなる。そして隣接するレンズ列どうしは、1つのレンズ列のレンズ間のスペースに別のレンズ列のレンズが入り込む状態に配置される。つまり全体で見ると、各レンズが千鳥配列した状態になっている。ライン状発光素子アレイから発せられた光をそのようなレンズアレイに通すと、通過した露光光の光量は、レンズアレイの長軸(レンズ列の並び方向中央位置をレンズ並び方向に延びる軸)に沿って、レンズ配置ピッチを周期として変動するようになる。
レンズアレイの長軸と整合する状態に、つまり各発光素子の光軸がこの長軸上に有る状態に配されたライン状発光素子アレイに関しては、該長軸の両側の互いに千鳥配列しているレンズによって光量変動が相殺されるため、露光量の変動はさほど深刻なものとはならないが、該長軸から離れて配置されたライン状発光素子アレイに関してはそのような相殺の効果が低くなるので、露光量の変動が深刻なものとなる。このようにして露光量が変動すると、やはり、それが前述の筋ムラを発生させる原因となる。
図2は、上述のようにして生じる、レンズアレイ長軸方向に亘る光量偏差の一例を示すものである。ここで各曲線毎に付した数値は、レンズアレイ長軸に対するライン状発光素子アレイのオフセット量を示している。すなわち、±0μmと示されているのが、レンズアレイ長軸と整合させてライン状発光素子アレイが配置された場合の光量偏差である。
また、上述のようにレンズが千鳥配列しているレンズアレイを用いる場合に限らず、ただ1つのレンズ列からなるレンズアレイを用いる場合でも、レンズアレイの長軸(この場合は、各レンズの光軸と交わってレンズ並び方向に延びる軸)から各発光素子の光軸がずれた状態にライン状発光素子アレイが配設される場合は、レンズアレイを通過した露光光の光量が、同様にレンズアレイの長軸に沿って、レンズ配置ピッチを周期として変動するようになる。
以下、上に説明したレンズアレイによる光量偏差を、図3、4および5を参照して詳しく説明する。図3は、レンズアレイによる光量偏差がほとんど無い場合に、ライン状発光素子アレイの発光素子を一律点灯させたときの検出光量分布例を示すものである。本例において、発光素子の並びピッチは0.1mmである。この場合、各発光素子についての光量検出信号波形は、素子中心でピーク値を取る。これに対して、例えば図4に示すような光量偏差特性の有るレンズアレイを用いる場合、ライン状発光素子アレイの発光素子を一律点灯させたときの検出光量分布は、レンズアレイの光量偏差特性を反映して図5に示すようなものとなる。なお本例において、レンズアレイのレンズ配置ピッチ周期の光量偏差の周期は0.3mmである。
図5から分かる通り、各発光素子についての光量検出信号波形はレンズアレイの光量偏差の影響を受けて、頂部で傾いたものとなることもある。すなわち、レンズアレイを通過した光量に傾斜が発生することになる。この発光素子内での光量傾斜は、発光素子の発光量をいかに調整しても形状を変えることはできないため、従来の光量補正方法では残留偏差として残り、露光画像上で筋ムラを発生させる原因となる。
以上、有機EL発光素子等の自己発光型の発光素子からなるアレイを用いた露光ヘッドにおける問題について説明したが、その種の発光素子アレイに限らず、液晶やPLZT等の調光素子と光源との組み合わせからなる素子のアレイを用いた露光ヘッドにおいても、同様の問題が発生し得る。なお本明細書においては、上述の調光素子と光源との組み合わせからなる素子も、露光光を発する素子という意味で「発光素子」と称することとする。
本発明は上記の事情に鑑みて、ライン状発光素子アレイとレンズアレイが組み合わされてなる露光ヘッドにおいて、露光光のアレイ長軸方向に亘る光量偏差に起因する画像濃度ムラを目立たなくすることができる、露光ヘッドの光量補正方法を提供することを目的とする。
さらに本発明は、上述のような光量補正方法を実施できる露光装置を提供することを目的とする。
本発明による露光ヘッドの光量補正方法は、
前述したように複数の発光素子が1列に並設されてなり、各発光素子の発光量が、露光画像を担持する画像信号に基づいて独自に制御されるライン状発光素子アレイ、および、前記発光素子から発せられた光を各々集光する複数の等倍結像レンズが、前記発光素子の並び方向と略平行に並ぶ状態に集合されてなり、前記光を露光対象の感光材料上に集光させるレンズアレイを備えた露光ヘッドにおいて、
前記レンズアレイから出射した光の、発光素子の並び方向に亘る光量偏差による画像濃度ムラの視認性を低下させるように各発光素子の発光量を補正する方法であって、
前記各発光素子の発光量を、レンズアレイのレンズ配置ピッチ周期の光量偏差が短周期化するように補正することを特徴とするものである。
なお、上述のように各発光素子の発光量を補正するためには、例えば、
前記ライン状発光素子アレイの各発光素子を、共通の発光指令信号に基づいて一律点灯させ、
そのとき前記レンズアレイから出射した光の光量を、発光素子の並びピッチ以下の測光ピッチでアレイ全長に亘って測定し、
これらの測定された光量を、2つの発光素子の間に有る境界位置毎に、発光素子の並びピッチと等しい区間について積分し、
各発光素子の光量補正係数を、少なくとも当該発光素子の両側に有る2つの前記境界位置について求められた積分光量に基づいて求め、
前記感光材料を露光する際に、前記画像信号に基づいて制御される発光素子の発光量を、当該発光素子についての前記光量補正係数に基づいて補正すればよい。
また、上記各発光素子についての光量補正係数を求める具体的な方法としては、
ライン状発光素子アレイにおけるn番目の発光素子と(n+1)番目の発光素子との前記境界位置をn/n+1とし、境界位置n/n+1における前記積分光量をL(n/n+1)としたとき、
全ての前記境界位置における積分光量の平均値L0を求め、
境界位置n/n+1についての光量補正係数をK(n/n+1)=1−L(n/n+1)/L0として求め、
n番目の発光素子についての前記光量補正係数Pnを、Qを係数として、
Pn=1−Q{−K(n−2/n−1)+K(n−1/n)+K(n/n+1)−K(n+1/n+2)}
として求める方法が挙げられる。
なお、本発明はレンズアレイに起因する発光素子内光量傾きによる光量偏差を軽減させるものであり、発光素子自体の発光量バラツキが大きい場合には、各発光素子の発光量を上述のように補正する前に、各発光素子の発光量を均一化させるための補正を実施することが望ましい。
一方、上述した露光ヘッドの光量補正方法を実施する本発明の露光装置は、
複数の発光素子が1列に並設されてなり、各発光素子の発光量が、露光画像を担持する画像信号に基づいて独自に制御されるライン状発光素子アレイ、および、前記発光素子から発せられた光を各々集光する複数の等倍結像レンズが、前記発光素子の並び方向と略平行に並ぶ状態に集合されてなり、前記光を露光対象の感光材料上に集光させるレンズアレイを備えた露光ヘッドと、
この露光ヘッドと前記感光材料とを、前記発光素子の並び方向と略直交する方向に相対移動させる副走査手段と、
前記ライン状発光素子アレイの各発光素子の発光量を、レンズアレイのレンズ配置ピッチ周期の光量偏差が短周期化するように補正する光量補正係数を記憶した記憶手段と、
前記感光材料を露光する際に、前記画像信号に基づいて制御される発光素子の発光量を、前記記憶手段から読み出した光量補正係数に基づいて補正する補正手段とを備えたことを特徴とするものである。
図16は、前述した筋ムラのような周期的濃度偏差に対する人間の視認特性を示すものである。この特性は観察距離が15cmの場合のもので、横軸は濃度偏差の空間周波数を、縦軸は視認限界の光学濃度差を示している。ここに示される通り、濃度偏差周波数が0.7c(サイクル)/mm辺りで濃度偏差視認性は最大(最も小さな濃度差まで視認できる)となり、そこから周波数が高くなるにつれて濃度偏差視認性はより低くなる。
ここで、前述したようにレンズアレイのレンズ配置ピッチを周期として生じる筋ムラの空間周波数は、レンズ直径が通常1mmに満たないこと等の要因から、一般には1c/mmより大である。図16において空間周波数が1c/mmより大の領域では、空間周波数が高くなるにつれて、つまり濃度偏差の周期が短くなるにつれて、濃度偏差視認性は次第に低下する。
この知見に鑑みて、本発明による露光ヘッドの光量補正方法は、レンズアレイに起因する発光素子内光量傾きによるレンズアレイのレンズ配置ピッチ周期の光量偏差が短周期化するように、各発光素子の発光量を補正しているので、露光画像上での筋ムラの視認性を低減することが可能となる。
以下、図面を参照して本発明の実施の形態を説明する。図6および図7はそれぞれ、本発明の一実施形態による有機EL露光装置5の一部破断正面形状、一部破断側面形状を示すものであり、図8はそこに用いられたレンズアレイ7の平面形状を示すものである。
先ず、これらの図6〜8を参照して、有機EL露光装置5の基本構成について説明する。図示の通りこの露光装置5は、露光ヘッド1と、この露光ヘッド1から出射した露光光2の照射を受ける位置に保持したカラー感光材料3を、図7の矢印Y方向に定速で搬送する、例えばニップローラ等からなる副走査手段4とを備えている。
上記露光ヘッド1は、有機ELパネル6と、該有機ELパネル6から出射した露光光2を受ける位置に配されて、この露光光2による像をカラー感光材料3の上に等倍で結像させる屈折率分布型レンズアレイ7と、このレンズアレイ7および有機ELパネル6を保持する保持手段8(図7では省略)とを備えている。
等倍レンズアレイである屈折率分布型レンズアレイ7は、その平面図である図8にも詳しく示される通り、露光光2を集光する微小な屈折率分布型レンズ7aを副走査方向Yと直交する主走査方向(矢印X方向)に多数並設してなるレンズ列が、合計2列配設されてなるものである。この屈折率分布型レンズアレイ7においては、屈折率分布型レンズ7aが千鳥配列されている。つまり、一方のレンズ列を構成する複数の屈折率分布型レンズ7aは、他方のレンズ列を構成する複数の屈折率分布型レンズ7aの間に位置するように配されている。
本実施形態の露光装置5は、一例としてフルカラーポジ型銀塩写真感光材料であるカラー感光材料3にカラー画像を露光するもので、露光ヘッド1を構成する有機ELパネル6は、副走査方向Yに並べて配設された赤色ライン状発光素子アレイ6R、緑色ライン状発光素子アレイ6Gおよび青色ライン状発光素子アレイ6Bを備えている。これらのライン状発光素子アレイ6R、6Gおよび6Bはそれぞれ、主走査方向Xに多数の赤色有機EL発光素子、緑色有機EL発光素子および青色有機EL発光素子が並設されてなるものである。
なお図6および図7では、上記発光素子の1つを代表的に有機EL発光素子20として示してある。各有機EL発光素子20は、ガラス等からなる透明基板10の上に、透明陽極21、発光層を含む有機化合物層22、および金属陰極23が順次蒸着により積層されてなるものである。そして、上記発光層として各々赤色光、緑色光および青色光を発するものが適用されることにより、それぞれ赤色有機EL発光素子、緑色有機EL発光素子および青色有機EL発光素子が形成されている。
ライン状発光素子アレイ6R、6Gおよび6Bは、図6に示す駆動回路30によって駆動される。すなわち駆動回路30は、走査電極となる金属陰極23を所定の周期で順次ON状態に設定する陰極ドライバと、信号電極となる透明陽極21をフルカラー画像を示す画像データDに基づいてON状態に設定する陽極ドライバとを備えてなるものであり、ライン状発光素子アレイ6R、6Gおよび6Bをいわゆるパッシブマトリクス(passive matrix)線順次選択駆動方式により駆動する。この駆動回路30の動作は、上記画像データDを補正してデータD′として出力する制御部31によって制御される。なお、この画像データDの補正については、後に詳しく説明する。
各有機EL発光素子20を構成する要素は、例えばステンレス製の缶等からなる封止部材25内に配置されている。つまり、この封止部材25の縁部と透明基板10とが接着され、乾燥窒素ガスが充填された封止部材25内に有機EL発光素子20が封止されている。
上記構成の有機EL発光素子20において、金属陰極23と、それを横切るように延びる透明陽極21との間に電圧が印加されると、電圧が印加された両電極の交差部分毎に有機化合物層22に電流が流れ、そこに含まれる発光層が発光する。この発光光は透明陽極21および透明基板10を透過して、露光光2として素子外に出射する。
ここで透明陽極21は、400nm〜700nmの可視光の波長領域において、少なくとも50%以上、好ましくは70%以上の光透過率を有するものが好ましい。透明陽極21の材料としては、酸化錫、酸化錫インジウム(ITO)、酸化亜鉛インジウム等、透明電極材料として従来公知の化合物を適宜用いることができるが、その他、金や白金など仕事関数が大きい金属からなる薄膜を用いてもよい。また、ポリアニリン、ポリチオフェン、ポリピロールまたはこれらの誘導体などの有機化合物を用いることもできる。なお、沢田豊監修「透明導電膜の新展開」シーエムシー社刊(1999年)には、透明導電膜について詳細な記載があり、そこに示されているものを本発明に適用することも可能である。また透明陽極21は、真空蒸着法、スパッタリング法、イオンプレーティング法などによって透明基板10上に形成することができる。
一方、有機化合物層22は、発光層のみからなる単層構造であってもよいし、発光層の他に、ホール注入層、ホール輸送層、電子注入層、電子輸送層等のその他の層を適宜有する積層構造であってもよい。有機化合物層22および電極の具体的な層構成としては、陽極/ホール注入層/ホール輸送層/発光層/電子輸送層/陰極とする構成や、陽極/発光層/電子輸送層/陰極、陽極/ホール輸送層/発光層/電子輸送層/陰極とする構成等が挙げられる。また、発光層、ホール輸送層、ホール注入層、電子注入層は、それぞれ複数設けられてもよい。
金属陰極23は、仕事関数の低いLi、Kなどのアルカリ金属、Mg、Caなどのアルカリ土類金属、およびこれらの金属とAgやAlなどとの合金や混合物等の金属材料から形成されるのが好ましい。陰極における保存安定性と電子注入性とを両立させるために、上記材料で形成した電極を、仕事関数が大きく導電性の高いAg、Al、Auなどで更に被覆してもよい。なお、金属陰極23も透明陽極21と同様に、真空蒸着法、スパッタ法、イオンプレーティング法などの公知の方法で形成することができる。
以下、上記構成を有する露光装置5の作動について説明する。なおここでは、ライン状発光素子アレイ6R、6Gおよび6Bの主走査方向画素数、つまり透明陽極21の並設数をnとする。カラー感光材料3に画像露光する際、このカラー感光材料3は副走査手段4によって矢印Y方向に定速で搬送される。またこのカラー感光材料3の搬送と同期させて、前述した駆動回路30の陰極ドライバにより、3本の金属陰極23の中の1つが順次ON状態に選択される。
このようにして第1番目の金属陰極23、つまり赤色ライン状発光素子アレイ6Rを構成する金属陰極23が選択されている期間内に、駆動回路30の陽極ドライバは第1,2,3・・・nの各透明陽極21を、第1主走査ラインの第1,2,3・・・n番目の画素の赤色濃度を示す画像データDに対応した時間(該時間には補正がかけられるが、それについては後述する)、定電流源に接続する。それにより該透明陽極21と金属陰極23との間の有機化合物層22(図6参照)に、画像データに対応したパルス幅の電流が流れ、該有機化合物層22から赤色光が発せられる。
こうして赤色ライン状発光素子アレイ6Rから発せられた赤色光である露光光2は、レンズアレイ7によってカラー感光材料3上に集光され、それにより、カラー感光材料3上において第1主走査ラインを構成する第1,2,3・・・n番目の画素が赤色光で露光され、赤色に発色する。
次に第2番目の金属陰極23、つまり緑色ライン状発光素子アレイ6Gを構成する金属陰極23が選択されている期間内に、駆動回路30の陽極ドライバは第1,2,3・・・nの各透明陽極21を、第1主走査ラインの第1,2,3・・・n番目の画素の緑色濃度を示す画像データに対応した時間、定電流源に接続する。それにより該透明陽極21と金属陰極23との間の有機化合物層22に、画像データに対応したパルス幅の電流が流れ、該有機化合物層22から緑色光が発せられる。
こうして緑色ライン状発光素子アレイ6Gから発せられた緑色光である露光光2は、レンズアレイ7によってカラー感光材料3上に集光され、それにより、カラー感光材料3上において第1主走査ラインを構成する第1,2,3・・・n番目の画素が緑色光で露光され、緑色に発色する。なお、カラー感光材料3が前述のように定速搬送されているので、上記緑色光は、該カラー感光材料3の既に赤色光で露光されている部分の上に照射される。
次に第3番目の金属陰極23、つまり青色ライン状発光素子アレイ6Bを構成する金属陰極23が選択されている期間内に、駆動回路30の陽極ドライバは第1,2,3・・・nの各透明陽極21を、第1主走査ラインの第1,2,3・・・n番目の画素の青色濃度を示す画像データに対応した時間、定電流源に接続する。それにより該透明陽極21と金属陰極23との間の有機化合物層22に、画像データに対応したパルス幅の電流が流れ、該有機化合物層22から青色光が発せられる。
こうして青色ライン状発光素子アレイ6Bから発せられた青色光である露光光2は、レンズアレイ7によってカラー感光材料3上に集光され、それにより、カラー感光材料3上において第1主走査ラインを構成する第1,2,3・・・n番目の画素が青色光で露光され、青色に発色する。なお、カラー感光材料3が前述のように定速搬送されているので、上記青色光は、該カラー感光材料3の既に赤色光および緑色光で露光されている部分の上に照射される。以上の工程により、カラー感光材料3の上には、第1番目のフルカラーの主走査ラインが露光、記録される。
次いで金属陰極の線順次選択は第1番目の金属陰極23に戻り、該第1番目の金属陰極23、つまり赤色ライン状発光素子アレイ6Rを構成する金属陰極23が選択されている期間内に、駆動回路30の陽極ドライバは第1,2,3・・・nの各透明陽極21を、第2主走査ラインの第1,2,3・・・n番目の画素の赤色濃度を示す画像データに対応した時間、定電流源に接続する。それにより該透明陽極21と金属陰極23との間の有機化合物層22に、画像データに対応したパルス幅の電流が流れ、該有機化合物層22から赤色光が発せられる。
こうして赤色ライン状発光素子アレイ6Rから発せられた赤色光である露光光2は、レンズアレイ7によってカラー感光材料3上に集光され、それにより、カラー感光材料3上において第2主走査ラインを構成する第1,2,3・・・n番目の画素が赤色光で露光され、赤色に発色する。
以下は同様の操作が繰り返されて第2番目のフルカラーの主走査ラインが露光され、さらにそのようなカラー主走査ラインが副走査方向Yに次々と並べて露光され、カラー感光材料3上に多数の主走査ラインからなる2次元カラー画像が露光される。なお本実施形態では、上述した通り各色露光光がパルス幅変調されて、それらの発光量が画像データに対応して制御され、それによりカラーの階調画像が露光される。
次に、有機EL発光素子20の発光特性バラツキや、レンズアレイ7による光量偏差によって露光画像に生じる筋ムラを低減し、さらにその筋ムラの視認性を低下させる点について説明する。この露光装置は、以上説明した画像露光を行うのに先立って、光量補正のための測光処理にかけられる。図9および10はそれぞれ、この測光処理を行う手段の正面形状および平面形状を示すものである。図示の通りこの測光手段50は、画像露光時にカラー感光材料3が配される位置と同じ位置に配される受光器51と、この受光器51を保持してガイド52に装荷された移動手段53と、受光器51の受光面の一部のみが覗く状態に該受光面を覆う遮光部材54とを備えてなるものである。
上記移動手段53は、ガイド52に沿ってレンズアレイ7のレンズ7aの並び方向に間欠移動可能に形成されている。本例において、レンズ7aの直径は300μmである。また各ライン状発光素子アレイ6R、6Gおよび6Bの有機EL発光素子20の寸法は80×80μm、その主走査方向並びピッチ(以下、素子ピッチという)は100μmであり、それに対して移動手段53の間欠移動のピッチ(測光ピッチ)は上記素子ピッチの1/20の5μmである。また遮光部材54は、移動手段53の移動方向と直角な方向に延びる細長いスリット54aを有し、このスリット54の部分のみにおいて受光器51の受光面を露出させる。またこのスリット54aの幅すなわち測光開口長は、上記測光ピッチと同じ5μmとされている。
測光処理に際しては、先ず移動手段53がガイド52の一端側に配置される。そして例えば赤色ライン状発光素子アレイ6Rの全部の有機EL発光素子20が、共通の発光指令信号に基づいて一定の電流が供給されることにより、一律点灯される。次いで移動手段53が上述のように間欠移動し、停止する毎に受光器51により、レンズアレイ7から出射した光の光量が測定される。この受光器51が出力する光量測定信号は、図6に示した制御部31に入力される。
なお、上述のように受光器51を間欠移動させて測光する代わりに、図11に示すように、細長い受光素子61が有機EL発光素子20の並び方向に並設されてなる受光素子アレイ60を用いることもできる。その場合は受光素子61の幅が測光開口長となり、受光素子61の配置ピッチが測光ピッチとなる。
図6に示した制御部31は、受光器51から入力された光量測定信号を図示外の内部メモリに一旦記憶し、まず光量偏差を低減させる発光量補正を行うために、各有機EL発光素子20毎に、その素子ピッチと等しい区間について積分する。具体的に本実施形態では、1つの有機EL発光素子20について、その素子中心から主走査方向一方側に10点、他方側に10点の合計20個の測光点に関する測定光量を合計し、それに1/20を乗じた平均値(移動平均値)を当該有機EL発光素子20についての積分値とする。
なおこの場合、有機EL発光素子20の中心位置を正確に求める必要はなく、あくまでも上記20個の測定点が当該有機EL発光素子20の中心から左右に10点ずつ分布したものであることが確認できればよい。そのためには例えば、光量の極大値が測定された測定点Aと、その測定点の2つの隣接測定点のうち測定光量がより大である方の測定点Bとの間に発光素子中心が存在するとみなし、測定点Aから発光素子中心と反対側に10点(測定点Aを含む)および、測定点Bから発光素子中心と反対側に10点(測定点Bを含む)の合計20点に関する測定光量を移動平均値の算出に供すればよい。
仮に赤色ライン状発光素子アレイ6Rの全部の有機EL発光素子20に発光特性バラツキが無く、かつレンズアレイ7による光量偏差も無い場合、受光器51が出力する光量測定信号の分布は、前記図3のようになる。そして、そのときの上記移動平均値を結んだ線を平滑化すると、概略図12に示すようなものとなる。それに対して、有機EL発光素子20に発光特性バラツキが無く、かつレンズアレイ7が図4に示すような光量偏差特性を有する場合、受光器51が出力する光量測定信号の分布は前記図5のようになる。そして、そのときの上記移動平均値を結んだ線を平滑化すると、概略図13に示すようなものとなる。この図13に示される通り、レンズアレイ7から出射した光は、該レンズアレイ7のレンズ直径(本例ではこれがレンズ配置ピッチとなっている)を周期とする光量偏差を有する。
図13に示す特性は、主走査方向に亘る赤色ライン状発光素子アレイ6Rの発光特性とレンズアレイ7による光量偏差特性とを併せたものであり、制御部31はこの特性に基づいて、各有機EL発光素子20毎の光量補正係数Sを求める。ここで、赤色ライン状発光素子アレイ6Rのn番目の有機EL発光素子20に関する光量補正係数を、Snとして表す。この光量補正係数Snは、例えばある一定の定数を、上記特性における各有機EL発光素子20毎の値で除した値とされ、その光量補正係数Snは制御部31内のメモリに記憶される。
ここで、前述したように画像データDに基づいて画像露光を行うとき、制御部31が、赤色ライン状発光素子アレイ6Rのある有機EL発光素子20を発光させるための画像データDに、その有機EL発光素子20に関する上記光量補正係数Snを乗じて、補正データD′に変換したと仮定する。つまりその場合は、駆動回路30に補正データD′が入力され、各有機EL発光素子20はこの補正データD′に基づいて発光量が制御されることになる。
図14には一例として、上記画像データDが赤色ライン状発光素子アレイ6Rの全有機EL発光素子20を一律発光させるものである場合に、補正データD′に基づいて全有機EL発光素子20を発光させた場合の発光量分布特性を、12素子について示す。その場合に、前述した移動平均値の分布を求めると概略図15に示すようなものとなり、図12に示した分布に近付いていることが分かる。
以上、赤色ライン状発光素子アレイ6Rに関する発光量補正について説明したが、その他の緑色ライン状発光素子アレイ6Gおよび青色ライン状発光素子アレイ6Bに関しても、同様の光量補正係数Snを求める処理がなされる。そして画像露光時に、それらの光量補正係数Snに基づいて上記と同様の補正を行ったとすると、ライン状発光素子アレイ6Gおよび6Bにおいても、各有機EL発光素子20の発光量は、図13に示したような光量偏差特性を解消するように補償され、この光量偏差特性によって露光画像に生じる筋ムラが低減されることになる。
しかし、図15に示される通り、レンズアレイ7から出射した光の光量偏差は、上記補正を行わない場合より低減されるものの、依然として該レンズアレイ7のレンズ直径を周期とする光量偏差が僅かに残されている。図17は、この移動平均値の分布状態を拡大して、有機EL発光素子20の発光特性(破線部)と合わせて分かりやすく示すものであり、有機EL発光素子20の中心位置での積分値は均一化されているが、発光素子内での光量傾きにより、レンズ直径を周期とする光量偏差が残っていることが分かる。本実施形態においては、この小さな光量偏差による筋ムラも視認し難くするために、さらなる発光量補正を行う。以下、その補正について詳しく説明する。
ここではまず、赤色ライン状発光素子アレイ6Rに関して説明する。赤色ライン状発光素子アレイ6Rの全部の有機EL発光素子20は、共通の発光指令信号に基づいて電流が供給されることにより、一律点灯される。このとき、各有機EL発光素子20を一律点灯させるための発光指令信号には、前述の光量補正係数Snが乗じられる。これは、前述の画像データDを補正データD′に変換する処理に相当する。次いで図9および10に示した測光手段50により、レンズアレイ7から出射した光の光量が測定される。このときも移動手段53の間欠移動ピッチつまり測光ピッチは5μmとされ、受光器51が出力する光量測定信号は、図6に示した制御部31に入力される。
図6に示した制御部31は、受光器51から入力された光量測定信号を図示外の内部メモリに一旦記憶し、2つの有機EL発光素子20の間に有る境界位置毎に、その素子ピッチと等しい区間について積分する。具体的に本実施形態では、上述のような境界位置から主走査方向一方側に10点、他方側に10点の合計20個の測光点に関する測定光量を合計し、それに1/20を乗じた平均値(移動平均値)を当該境界位置についての積分値とする。
なおこの場合も、2つの有機EL発光素子20間の所定の境界位置を正確に求める必要はなく、あくまでも上記20個の測定点が当該境界位置から左右に10点ずつ分布したものであることが確認できればよい。
図6に示した制御部31はこの特性に基づいて、各有機EL発光素子20毎の光量補正係数を求める。このとき制御部31は、まず上記の境界位置についての光量補正係数Kを求める。ここでは、赤色ライン状発光素子アレイ6Rにおけるn番目の有機EL発光素子20と(n+1)番目の有機EL発光素子20との境界位置をn/n+1とし、境界位置n/n+1における前記移動平均値をL(n/n+1)としたとき、全ての境界位置における移動平均値の平均値L0を求め、境界位置n/n+1についての光量補正係数をK(n/n+1)=1−L(n/n+1)/L0として定義する。そして制御部31は、この境界位置についての光量補正係数Kに基づいて、n番目の発光素子についての光量補正係数Pnを、
Pn=1−Q{−K(n−2/n−1)+K(n−1/n)+K(n/n+1)−K(n+1/n+2)}
として求める。なおQは係数である。この光量補正係数Pnは、制御部31内のメモリに記憶される。
制御部31は、前述したように画像データDに基づいて画像露光を行うとき、赤色ライン状発光素子アレイ6Rのn番目の有機EL発光素子20を発光させるための画像データDに、その有機EL発光素子20に関する上記光量補正係数Pnを乗じて、補正データD″とする。そこで駆動回路30にはこの補正データD″が入力され、各有機EL発光素子20はこの補正データD″に基づいて発光量が制御される。
以上、赤色ライン状発光素子アレイ6Rに関する発光量補正について説明したが、その他の緑色ライン状発光素子アレイ6Gおよび青色ライン状発光素子アレイ6Bに関しても、同様の光量補正係数Pnを求める処理および、その光量補正係数Pnに基づく光量補正処理がなされる。それにより、画像露光時のライン状発光素子アレイ6R、6Gおよび6Bの各有機EL発光素子20の発光量は、発生する筋ムラの周期が補正前より短くなるように補正され、露光画像に発生する筋ムラが視認され難くなる。その理由は、先に図16を参照して説明した通りである。
また上記光量補正係数Pnを求める際、有機EL発光素子20を一律点灯させるための発光指令信号には、前述の光量補正係数Snが乗じられていたので、画像露光時のライン状発光素子アレイ6R、6Gおよび6Bの各有機EL発光素子20の発光量は、発生する筋ムラを低減するようにも補正される。
なお、上述のように筋ムラを低減する補正を行うことは必ずしも必要ではないが、そのような補正を行うことがより好ましいことは勿論である。また、その種の補正を行う場合、その補正方法は本実施形態で適用したもの、つまり光量補正係数Snによる補正方法に限られるものではなく、その他の手法による補正が適用されてもよい。
次に、上記光量補正係数Pnについてより詳しく説明する。図17に示したような光量偏差を解消するためには、図18に示すように、光量が大となっている境界位置例えば境界位置n/n+1の光量を下げることが必要であり、そのためには、n番目および(n+1)番目の有機EL発光素子20の発光量を低下させればよい。しかし、それら2つの有機EL発光素子20の発光量を低下させると、境界位置n−1/nと境界位置n+1/n+2の光量も低下してしまうので、(n−1)番目および(n+2)番目の有機EL発光素子20の発光量を増大させる必要が生じる。
そこで、境界位置n/n+1についての光量補正係数をK(n/n+1)=1−L(n/n+1)/L0とした場合、図19に分かりやすく示すように、光量補正係数K(n−2/n−1)およびK(n+1/n+2)には−(マイナス)の符号を与える一方、光量補正係数K(n−1/n)およびK(n/n+1)には+(プラス)の符号を与えて足し合わせ、それに重み付けの係数Qを付けたものを1から引いた値、すなわち
1−Q{−K(n−2/n−1)+K(n−1/n)+K(n/n+1)−K(n+1/n+2)}
をn番目の有機EL発光素子20についての光量補正係数Pnとすれば、上述の要求が満足されることになる。
なお、1つの境界位置に関する測定光量がその境界位置の両側の2つの有機EL発光素子20の発光量制御に反映されるから、上記重み付けの係数Qは0.5が標準的な値となる。ただし適正な重み付けの値は、有機EL発光素子20が発する光ビームの広がり形状に依存するので、使用する発光素子アレイおよびレンズアレイの特性に応じてQの値を調整することにより、補正効果を高めることができる。実験的には、このQの値は0.3〜0.7の範囲にあることが望ましい。
以上の光量補正を行うことにより、前述した移動平均値の分布は概略図20に示すようなものとなる。これを図15に示した移動平均値分布と比較すると、レンズ直径周期(300μm)の光量偏差がその1/2周期(150μm)の光量偏差に変換されていることが分かる。この光量偏差周期の変化を図16に示した濃度偏差周波数の変化として捕らえると、3.3c/mmから6.6c/mmへの変化となり、同図から明らかな通り、例えば観察距離15cmにおける視認限界濃度差が0.021から0.23に変わることになる。つまりこの光量補正を行うことにより、補正前と比較して、筋ムラの濃度が光学濃度で約10倍ほど高くなければ濃度ムラとして視認できないことになる。言い換えれば、光量偏差の視認性が約1/10に低減することになる。
次に、上記濃度偏差周波数の変化について詳しく説明する。図21は、上記露光装置において、ライン状発光素子アレイ6Rの全部の有機EL発光素子20を光量補正無し、有りの状態で一律発光させ、それらの各場合にレンズアレイ7を経た光を光検出器で検出し、その光検出信号を高速フーリエ変換した結果を示すものである。図中、破線、細実線、太実線がそれぞれ、光量補正無し、前記光量補正係数Snによる光量補正有り、光量補正係数Pnによる光量補正有り、の場合の結果を示している。
同図において高いエネルギーが集中している10c/mmの空間周波数成分は、100μmのピッチで並設されている有機EL発光素子20の繰り返しに起因する光量偏差成分、また3.3c/mmの空間周波数成分は300μmのピッチで並設されているレンズ7aの繰り返しに起因する光量偏差成分、そして6.6c/mmの空間周波数成分は上記レンズ7aの繰り返しに起因する光量偏差が光量補正係数Pnによる光量補正で短周期化された成分である。
ここに示される通り、レンズ7aの繰り返しに起因する光量偏差は、光量補正係数Snによる光量補正や、光量補正係数Pnによる光量補正を行うことにより、明らかに低減することが分かる。また、光量補正係数Snによる光量補正を行った場合と、光量補正係数Pnによる光量補正を行った場合とを比較すると、光量補正係数Snによる光量補正では十分に除去できない3.3c/mmの空間周波数成分の多くが、光量補正係数Pnによる光量補正を行うことにより、より短周期で視認され難い6.6c/mmの空間周波数成分に変換されていることが分かる。
次に図22は、上記露光装置において、ライン状発光素子アレイ6R、6Gおよび6Bを画像データに基づいて発光させてカラー感光材料3に階調画像を露光し、その画像を読み取った画像信号を高速フーリエ変換した結果を示すものである。図中、破線、細実線、太実線がそれぞれ、光量補正無し(前記画像データDで画像露光)、光量補正係数Snによる光量補正有り(前記画像データD′で画像露光)、光量補正係数Pnによる光量補正有り(前記画像データD″で画像露光)、の場合の結果を示している。
この場合も、光量補正係数Snによる光量補正では十分に除去できない3.3c/mmの空間周波数成分の多くが、光量補正係数Pnによる光量補正を行うことにより、より短周期で視認され難い6.6c/mmの空間周波数成分に変換されていることが明らかである。
なお、上述のような光量補正係数Pnを求める処理は、例えば露光装置を工場から出荷する前に行い、それを各有機EL発光素子20と対応を取って制御部31内の記憶手段に記憶させておき、露光装置を実使用する際にその光量補正係数Pnに基づいて画像データDを画像データD″に変換する補正を行えばよい。また、測光手段50等を露光装置に組み込んでおき、露光装置が実使用に供されるようになってからも、適宜の時間間隔で上記光量補正係数Pnを求める処理を行い、記憶されている光量補正係数Pnを逐次新しいものに変更して行くようにしてもよい。そのようにすれば、有機EL発光素子20の発光特性の経時変化にも対応して、より適正な光量補正を行うことが可能になる。
また上記画像データDは、前述した通り有機EL発光素子20の発光時間を制御するデータであるが、画像データDに基づいて有機EL発光素子20の駆動電圧や駆動電流を制御することによって有機EL発光素子20の発光量を制御することも可能であり、本発明はそのような場合に適用することもできる。また、そのような画像データDを補正データD″に補正してから駆動回路30に入力する代わりに、駆動回路30には画像データDをそのまま入力し、この駆動回路30において画像データDが示す有機EL発光素子20の発光時間、駆動電圧あるいは駆動電流等を光量補正係数Pnに基づいて補正するようにしてもよい。
なお、上記実施形態の露光装置は、有機EL発光素子からなるライン状発光素子アレイを用いてフルカラーポジ型銀塩写真感光材料であるカラー感光材料3に画像露光するものであるが、本発明の露光装置は、それ以外のカラー感光材料に画像露光するものとして形成することも可能である。またライン状発光素子アレイも、有機EL発光素子からなるものに限らず、その他の発光素子からなるライン状発光素子アレイを用いることも可能である。
ライン状発光素子アレイから発せられた光の、アレイ長手方向光量分布例を示すグラフ レンズアレイを経た光の、アレイ長軸方向に亘る光量偏差の一例を示すグラフ ライン状発光素子アレイを一律点灯させたときの検出光量分布例を示すグラフ レンズアレイの光量偏差特性の例を示すグラフ ライン状発光素子アレイを一律点灯させたときの検出光量分布例を示すグラフ 本発明の一実施形態による有機EL露光装置の一部破断正面図 上記有機EL露光装置の一部破断側面図 上記露光装置におけるライン状発光素子アレイの配置状態を示す部分平面図 上記露光装置において、露光ヘッドからの光を測定する測光手段の正面図 上記測光手段の平面図 測光手段の別の例を示す平面図 光量測定信号の移動平均値の分布例を示すグラフ 光量測定信号の移動平均値の別の分布例を示すグラフ 発光量を均一化する光量補正がなされて点灯されたライン状発光素子アレイの発光量分布特性を示すグラフ 発光量を均一化する光量補正がなされたときの光量測定信号の移動平均値の分布例を示すグラフ 人間の濃度偏差視認特性を示すグラフ 本発明で使用される光量補正係数の求め方を説明する図 本発明で使用される光量補正係数の求め方を説明する図 本発明で使用される光量補正係数の求め方を説明する図 本発明による光量補正がなされたときの光量測定信号の移動平均値の分布例を示すグラフ 本発明による光量補正がなされたときの光量測定信号を高速フーリエ変換した結果を示すグラフ 本発明による光量補正がなされて露光された画像の読取信号を高速フーリエ変換した結果を示すグラフ
符号の説明
1 露光ヘッド
2 露光光
3 カラー感光材料
4 副走査手段
6 有機ELパネル
6R 赤色ライン状発光素子アレイ
6G 緑色ライン状発光素子アレイ
6B 青色ライン状発光素子アレイ
7 屈折率分布型レンズアレイ
7a 屈折率分布型レンズ
20 有機EL発光素子
21 透明陽極
22 有機化合物層
23 金属陰極
30 駆動回路
31 制御部
50 測光手段
51 受光器
52 ガイド
53 移動手段
54 遮光部材
60 受光素子アレイ
61 受光素子

Claims (4)

  1. 複数の発光素子が1列に並設されてなり、各発光素子の発光量が、露光画像を担持する画像信号に基づいて独自に制御されるライン状発光素子アレイ、および、前記発光素子から発せられた光を各々集光する複数の等倍結像レンズが、前記発光素子の並び方向と略平行に並ぶ状態に集合されてなり、前記光を露光対象の感光材料上に集光させるレンズアレイを備えた露光ヘッドにおいて、
    前記レンズアレイから出射した光の、発光素子の並び方向に亘る光量偏差による画像濃度ムラの視認性を低下させるように各発光素子の発光量を補正する方法であって、
    前記ライン状発光素子アレイの各発光素子を、共通の発光指令信号に基づいて一律点灯させ、
    そのとき前記レンズアレイから出射した光の光量を、発光素子の並びピッチ以下の測光ピッチでアレイ全長に亘って測定し、
    これらの測定された光量を、2つの発光素子の間に有る境界位置毎に、発光素子の並びピッチと等しい区間について積分し、
    各発光素子の光量補正係数を、少なくとも当該発光素子の両側に有る2つの前記境界位置について求められた積分光量に基づいて求め、
    前記感光材料を露光する際に、前記画像信号に基づいて制御される発光素子の発光量を、当該発光素子についての前記光量補正係数に基づいて補正することにより、前記各発光素子の発光量を、レンズアレイのレンズ配置ピッチ周期の光量偏差が短周期化するように補正することを特徴とする露光ヘッドの光量補正方法。
  2. 前記ライン状発光素子アレイにおけるn番目の発光素子と(n+1)番目の発光素子との前記境界位置をn/n+1とし、境界位置n/n+1における前記積分光量をL(n/n+1)としたとき、
    全ての前記境界位置における積分光量の平均値L0を求め、
    境界位置n/n+1についての光量補正係数をK(n/n+1)=1−L(n/n+1)/L0として求め、
    n番目の発光素子についての前記光量補正係数Pnを、Qを係数として、
    Pn=1−Q{−K(n−2/n−1)+K(n−1/n)+K(n/n+1)−K(n+1/n+2)}
    として求めることを特徴とする請求項記載の露光ヘッドの光量補正方法。
  3. 前記各発光素子の発光量を、レンズアレイのレンズ配置ピッチ周期の光量偏差が短周期化するように補正する前に、
    各発光素子の発光量を均一化させるための補正を行うことを特徴とする請求項1または2記載の露光ヘッドの光量補正方法。
  4. 請求項1〜いずれか1項記載の露光ヘッドの光量補正方法を実施する露光装置であって、
    複数の発光素子が1列に並設されてなり、各発光素子の発光量が、露光画像を担持する画像信号に基づいて独自に制御されるライン状発光素子アレイ、および、前記発光素子から発せられた光を各々集光する複数の等倍結像レンズが、前記発光素子の並び方向と略平行に並ぶ状態に集合されてなり、前記光を露光対象の感光材料上に集光させるレンズアレイを備えた露光ヘッドと、
    この露光ヘッドと前記感光材料とを、前記発光素子の並び方向と略直交する方向に相対移動させる副走査手段と、
    前記ライン状発光素子アレイの各発光素子の発光量を、レンズアレイのレンズ配置ピッチ周期の光量偏差が短周期化するように補正する光量補正係数を記憶した記憶手段と、
    前記感光材料を露光する際に、前記画像信号に基づいて制御される発光素子の発光量を、前記記憶手段から読み出した光量補正係数に基づいて補正する補正手段とを備えたことを特徴とする露光装置。
JP2005062069A 2005-03-07 2005-03-07 露光ヘッドの光量補正方法並びに露光装置 Expired - Fee Related JP4662796B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005062069A JP4662796B2 (ja) 2005-03-07 2005-03-07 露光ヘッドの光量補正方法並びに露光装置
US11/368,390 US20060214597A1 (en) 2005-03-07 2006-03-07 Method of correcting amount of light emitted from an exposure head and exposure apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005062069A JP4662796B2 (ja) 2005-03-07 2005-03-07 露光ヘッドの光量補正方法並びに露光装置

Publications (2)

Publication Number Publication Date
JP2006240214A JP2006240214A (ja) 2006-09-14
JP4662796B2 true JP4662796B2 (ja) 2011-03-30

Family

ID=37034537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005062069A Expired - Fee Related JP4662796B2 (ja) 2005-03-07 2005-03-07 露光ヘッドの光量補正方法並びに露光装置

Country Status (2)

Country Link
US (1) US20060214597A1 (ja)
JP (1) JP4662796B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7760215B2 (en) * 2007-07-20 2010-07-20 Seiko Epson Corporation Line head and an image forming apparatus using the line head
JP2017128084A (ja) * 2016-01-22 2017-07-27 株式会社沖データ 露光装置、画像形成ユニットおよび画像形成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119862A (ja) * 1989-10-03 1991-05-22 Ricoh Co Ltd 固体走査型光ヘッド
JPH11227254A (ja) * 1998-02-19 1999-08-24 Oki Data Corp 印刷ヘッドの光量補正方法
JP2000225729A (ja) * 1999-02-05 2000-08-15 Minolta Co Ltd 固体走査型光書込み装置及びその光量補正方法、並びに光量測定装置
JP2001038950A (ja) * 1999-07-30 2001-02-13 Canon Inc Ledアレイチップ、ledアレイヘッド及び画像形成装置
JP2002356007A (ja) * 2001-03-26 2002-12-10 Fuji Xerox Co Ltd プリントヘッド及び露光量補正方法
JP2003251851A (ja) * 2002-03-01 2003-09-09 Kyocera Corp 画像形成装置
JP2004106206A (ja) * 2002-09-13 2004-04-08 Fuji Xerox Co Ltd 画像形成装置
JP2004148688A (ja) * 2002-10-30 2004-05-27 Kyocera Corp 光プリントヘッドの補正方法および光プリントヘッドならびに画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3057338B2 (ja) * 1991-09-30 2000-06-26 双葉電子工業株式会社 カラー記録装置
JPH11129541A (ja) * 1997-08-28 1999-05-18 Konica Corp 画像形成装置
FI109632B (fi) * 2000-11-06 2002-09-13 Nokia Corp Valkoinen valaisu
JP4532091B2 (ja) * 2003-09-29 2010-08-25 富士フイルム株式会社 画像記録装置およびその光量補正方法
JP2006038969A (ja) * 2004-07-23 2006-02-09 Fuji Photo Film Co Ltd 露光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03119862A (ja) * 1989-10-03 1991-05-22 Ricoh Co Ltd 固体走査型光ヘッド
JPH11227254A (ja) * 1998-02-19 1999-08-24 Oki Data Corp 印刷ヘッドの光量補正方法
JP2000225729A (ja) * 1999-02-05 2000-08-15 Minolta Co Ltd 固体走査型光書込み装置及びその光量補正方法、並びに光量測定装置
JP2001038950A (ja) * 1999-07-30 2001-02-13 Canon Inc Ledアレイチップ、ledアレイヘッド及び画像形成装置
JP2002356007A (ja) * 2001-03-26 2002-12-10 Fuji Xerox Co Ltd プリントヘッド及び露光量補正方法
JP2003251851A (ja) * 2002-03-01 2003-09-09 Kyocera Corp 画像形成装置
JP2004106206A (ja) * 2002-09-13 2004-04-08 Fuji Xerox Co Ltd 画像形成装置
JP2004148688A (ja) * 2002-10-30 2004-05-27 Kyocera Corp 光プリントヘッドの補正方法および光プリントヘッドならびに画像形成装置

Also Published As

Publication number Publication date
US20060214597A1 (en) 2006-09-28
JP2006240214A (ja) 2006-09-14

Similar Documents

Publication Publication Date Title
US9058769B2 (en) Method and system for compensating ageing effects in light emitting diode display devices
US7199769B2 (en) Exposure apparatus
JP4532091B2 (ja) 画像記録装置およびその光量補正方法
JP4662796B2 (ja) 露光ヘッドの光量補正方法並びに露光装置
JP2006218746A (ja) 露光ヘッドおよびその光量補正方法並びに露光装置
US11955072B2 (en) OLED-based display having pixel compensation and method
US7242419B2 (en) Light quantity adjustment device and method and exposure apparatus
JP4637650B2 (ja) 露光装置および露光装置における階調補正方法
JP4637689B2 (ja) 画像形成装置
JP4660389B2 (ja) 露光装置
JP2009236621A (ja) 防眩フィルムのぎらつき評価方法及びぎらつき評価装置
JP4694338B2 (ja) 露光装置
JP4637710B2 (ja) 露光装置
US6781617B2 (en) Exposure apparatus
WO2006004179A1 (ja) 露光ヘッドおよび露光装置
JP4637712B2 (ja) 露光装置
JP4694335B2 (ja) 露光装置
JP2005309068A (ja) 有機elパネルの駆動方法および装置
JP2019001118A (ja) 画像形成装置
JP2006289721A (ja) 光走査装置における光量偏差補正方法
US7394478B2 (en) Exposure system
WO2005123401A1 (ja) 露光ヘッドおよび露光装置
JP2006015673A (ja) 露光装置
JP2006001121A (ja) 露光ヘッドおよび露光装置
JP2006119606A (ja) 露光ヘッドおよび露光装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees