JP4662095B2 - Manufacturing method of optical waveguide device - Google Patents

Manufacturing method of optical waveguide device Download PDF

Info

Publication number
JP4662095B2
JP4662095B2 JP2001020691A JP2001020691A JP4662095B2 JP 4662095 B2 JP4662095 B2 JP 4662095B2 JP 2001020691 A JP2001020691 A JP 2001020691A JP 2001020691 A JP2001020691 A JP 2001020691A JP 4662095 B2 JP4662095 B2 JP 4662095B2
Authority
JP
Japan
Prior art keywords
optical waveguide
ion
ions
ion exchange
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001020691A
Other languages
Japanese (ja)
Other versions
JP2002228865A (en
Inventor
友弘 藤沢
知也 原田
智幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2001020691A priority Critical patent/JP4662095B2/en
Publication of JP2002228865A publication Critical patent/JP2002228865A/en
Application granted granted Critical
Publication of JP4662095B2 publication Critical patent/JP4662095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、イオン交換方法を用いた光導波路デバイスの製造方法に関し、更に詳しく述べると、ガラス基板表面にイオン透過制御膜を形成し、該イオン透過制御膜を通してイオン交換を行わせることにより、その材質と膜厚とに応じて屈折率の異なる領域を制御するようにした光導波路デバイスの製造方法に関するものである
【0002】
【従来の技術】
各種光デバイスの小型化、高性能化、集積化に伴って、同一基板上に様々な形状寸法の光導波路を共存させることが要求されている。例えば、AWG型光導波路デバイスを製造する場合には、同一基板上に、アレイ型導波路とスラブ型導波路といった導波路幅が極端に異なる導波路パターンを形成する必要がある。
【0003】
そのような場合、従来技術では、光導波路の形状が制御し易い利点を有することから、石英ガラス系基板を用いて火炎堆積法で光導波路領域を形成することが行われていた。しかし、火炎堆積法は、Si基板上に石英系ガラスを堆積することで光導波路を形成するもので、高温プロセス(1200〜1300℃程度)である。この方法は、作製工程中に高温に曝されるため内部応力等が異方的に作用し、光通信で重要となる偏波依存損失が大きく、製法が複雑でコスト高となる欠点がある。
【0004】
そこで近年、基板として多成分ガラスを用い、溶融塩中に浸漬してガラス基板中のイオンと溶融塩中のイオンを置き換えて光導波路(屈折率の異なる領域)を形成するイオン交換法が用いられている。この方法は、低温プロセス(200〜500℃程度)であり、製造が容易で安価にできる利点がある。
【0005】
【発明が解決しようとする課題】
しかし、イオン交換法では、光導波路となるマスク開口幅が極端に異なると、コア部分の屈折率分布やイオンの埋め込み深さが変化し、設計が非常に難しい。光導波路において、埋め込み深さが変化すると、その変化した部分で光の損失が生じる。
【0006】
光導波路領域の埋め込み深さを制御する方法として、マスク開口部分にイオン交換制御マスクを部分的(回折格子状パターンなど)に形成し、電界印加イオン交換を行うことで、イオン交換時の埋め込み深さを制御する方法が提案されている(例えば、特開平5−313032号公報参照)。しかし、マスク開口部にイオン交換制御マスクを部分的に形成してイオン交換を行うと、光導波路領域の埋め込み深さに微小なゆらぎが生じ、挿入損失(伝搬する光の損失)が大きくなる問題が生じる。
【0007】
本発明の目的は、イオン交換法でガラス基板中に屈折率の異なる領域を形成する際、マスク開口幅が異なる部分でも所望の屈折率分布や一定の埋め込み深さに制御できるイオン交換方法によって、幅が極端に異なる光導波路でも、ほぼ同じ埋め込み深さとなるようにイオン交換法で形成できる光導波路デバイスの製造方法を提供することである。
【0008】
【課題を解決するための手段】
本発明は、イオン交換法によりガラス基板中のイオンと溶融塩中のイオンを置き換えて屈折率の異なる領域を形成する方法において、ガラス基板表面にイオン透過制御膜を形成し、該イオン透過制御膜を通してイオン交換を行うことにより屈折率を部分的に制御可能としたイオン交換方法を用いる。イオン透過制御膜の形成方法は、膜厚制御が容易なことなどの理由から、通常、スパッタ法又は蒸着法が好ましい。
【0009】
イオン透過制御膜としては、例えばTi、Pt、Auから選ばれた1種以上の材料からなり、全膜厚が5nm以下である単層又は多層膜を用いることができる。その他、SiO2 又はAl2 3 からなり、膜厚が100nm以下のポーラスな膜であってもよい。
【0010】
これらのイオン透過制御膜は、その材質及び膜厚を調整することによってイオンを置換する領域(屈折率の異なる領域)の深さを制御することができる。成膜初期は、基板ガラスの表面張力によって膜は島状に成長する。特にアルミナ(Al2 3 )のような場合には、柱状に成長しポーラスな膜となる。本発明は、この現象を利用し、膜材料と膜厚によってイオン交換を制御しているのである。イオン交換を行うマスク開口形状が同じ場合には、イオン透過制御膜が薄くなるほど屈折率の異なる領域は深くなり、イオン透過制御膜が同じ膜厚でも、イオン交換を行うマスク開口幅が広くなるほど屈折率の異なる領域は深くなる。
【0011】
発明は、イオン交換法によりガラス基板中のイオンと溶融塩中のイオンを置き換えて屈折率の異なる光導波路領域を形成する方法を用い、幅の異なる光導波路領域が共存する光導波路デバイスを製造する方法である。本発明では、上記のようなイオン交換方法を用い、光導波路用パターンのマスク開口幅の大きさの異なる部分に形成するイオン透過制御膜の膜厚を開口幅に応じて変化させることにより、光導波路領域の埋め込み深さを開口幅に依存せずにほぼ一定に制御する。
【0012】
ガラス基板としては、Naイオンを含む多成分ガラスを用い、その1価のNaイオンの一部をAgイオンでイオン交換することで光導波路領域を形成するのが好ましい。
【0013】
【発明の実施の形態】
図1は本発明に係る光導波路デバイスの製造方法の一例を模式的に示すものである。図1のAでは、ガラス基板10上に、光導波路パターンに相当する開口を有するイオン透過防止マスク(膜厚tm )12及び開口部分に位置するイオン透過制御膜14を設けている。これらは例えば同じTi膜などでよい。イオン透過防止マスク12の膜厚tm は、イオン交換が行われないような十分な厚さ(例えばTi膜の場合には10nm程度もしくはそれ以上)とする。ここでは、幅が異なる3本の開口(開口幅:w1 <w2 <w3 )を形成するものとし、それぞれの開口部分のイオン透過制御膜の膜厚を、一例として、t1 =0<t2 <t3 というように変化させる。
【0014】
これを溶融塩中に浸漬してイオン交換を行うと、マスク部分はイオン交換が行われないが、開口部に相当するTi膜が無い部分及び薄いイオン透過制御膜14の部分ではイオンの拡散が生じ、ガラス基板中のイオンとの置き換えが生じる。開口幅の広い部分はイオン交換が行われ易いがイオン透過制御膜14で制御され、開口幅の最も狭い部分は最もイオン交換が行われ難いが完全な開口となっているのでイオン透過制御膜を有する場合よりもイオン交換が促進される。このように開口幅に応じてイオン透過制御膜の膜厚を調整することで、図1のBに示すように、イオン交換によって屈折率が異なるようになった領域(光導波路領域)16の深さを開口幅に関係なくほぼ一定(d)に制御することができ、そのような光導波路デバイスが得られる。
【0015】
本発明は、光導波路形成以外にも利用できることはいうまでもない。例えば、平板型のマイクロレンズアレイのように屈折率の異なる領域を規則的に多数配列形成する構造などにも利用できる。
【0016】
【実施例】
(実施例1)
アルカリイオンとしてNaイオンのみが含まれるアルミノボロシリケート系ガラス基板上に、イオン透過制御膜としてTi膜をガラス基板全面に成膜した。膜厚が0.5,1,3,5,6nmとなるようにスパッタ法により成膜し、それぞれ硝酸銀からなる溶融塩中で280℃、4時間イオン交換を行った。また比較のために、Ti膜無しのガラス基板についても、同様のイオン交換処理を行った。
【0017】
イオン交換処理した各ガラス基板について、屈折率変化ΔnとAgイオンの拡散深さを測定したところ表1に示す結果が得られた。この結果から、Ti膜厚を0〜5nmの範囲で調整することによって、イオン交換時の屈折率分布、拡散深さを部分的に制御可能なことが確認できた。またTi膜厚が5nmを超えると、イオンの拡散が極めて生じ難くなり、屈折率の変化が殆ど生じなくなることも確認できた。
【0018】
【表1】

Figure 0004662095
【0019】
(実施例2)
実施例1と同じアルカリイオンとしてNaイオンのみが含まれるアルミノボロシリケート系ガラス基板上に、イオン透過制御膜としてSiO2 膜をガラス基板全面に成膜した。膜厚が5,10,15,50,100,150nmとなるようにスパッタ法により成膜し、それぞれ硝酸銀からなる溶融塩中で280℃、4時間イオン交換を行った。また比較のために、SiO2 膜無しのガラス基板についても、同様のイオン交換処理を行った。
【0020】
イオン交換処理した各ガラス基板について、屈折率変化ΔnとAgイオンの拡散深さを測定したところ表2に示す結果が得られた。この結果から、SiO2 膜厚を0〜100nmの範囲で調整することによって、イオン交換時の屈折率分布、拡散深さを部分的に制御可能なことが確認できた。またSiO2 膜厚が100nmを超えると、イオンの拡散が極めて生じ難くなり、屈折率の変化が殆ど生じなくなることも確認できた。
【0021】
【表2】
Figure 0004662095
【0022】
(実施例3)
実施例1と同じアルカリイオンとしてNaイオンのみが含まれるアルミノボロシリケート系ガラス基板上に、光導波路パターンの開口を有するTiマスクを、開口幅2.1μmと2005.7μmの2種類形成した。また比較のために、開口幅2005.7μmについては開口部にイオン透過制御膜として1.2nm厚のTi膜を形成したものも用意した。これらの試料を、実施例1と同様に、それぞれ硝酸銀からなる溶融塩中で280℃、4時間イオン交換を行った。
【0023】
イオン交換処理した各ガラス基板について、屈折率変化ΔnとAgイオンの拡散深さを測定した。その結果を表3に示す。この結果から、マスク開口幅が異なるとイオン交換時の屈折率分布、拡散深さが変わるが、イオン透過制御膜の膜厚を調整することでイオン交換時の屈折率分布、拡散深さマスク開口幅に依存せずにほぼ一定に制御可能なことが確認できた。
【0024】
【表3】
Figure 0004662095
【0025】
【発明の効果】
本発明は上記のように、ガラス基板表面にイオン透過制御膜を形成し、該イオン透過制御膜を通してイオン交換を行うことにより屈折率を部分的に制御可能としたイオン交換方法を用いているから、ガラス基板中に形成する屈折率の異なる領域の深さを制御することができる。また、イオン交換法でガラス基板中に屈折率の異なる領域を形成する際、マスク開口幅の異なる部分でも所望の屈折率分布や一定の埋め込み深さに制御できる。
【0026】
この本発明方法を利用することによって、幅が極端に異なる光導波路でも、ほぼ同じ埋め込み深さとなるようにイオン交換法で形成できる光導波路デバイスが得られ、光伝搬の損失を低減できる。
【図面の簡単な説明】
【図1】本発明方法による光導波路の製造方法の一例を示す説明図。
【符号の説明】
10 ガラス基板
12 イオン交換防止マスク
14 イオン交換制御膜
16 光導波路[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a manufacturing method of the optical waveguide device using an ion exchange how, More particularly, the surface of the glass substrate to form an ion permeable control membrane, by causing the ion exchange through the ion permeable control membrane, The present invention relates to a method of manufacturing an optical waveguide device in which regions having different refractive indexes are controlled according to the material and film thickness .
[0002]
[Prior art]
As various optical devices are miniaturized, improved in performance, and integrated, it is required that optical waveguides having various shapes and dimensions be coexisted on the same substrate. For example, when manufacturing an AWG type optical waveguide device, it is necessary to form waveguide patterns having extremely different waveguide widths such as an array type waveguide and a slab type waveguide on the same substrate.
[0003]
In such a case, the prior art has an advantage that the shape of the optical waveguide is easy to control, and therefore, the optical waveguide region is formed by a flame deposition method using a quartz glass substrate. However, the flame deposition method forms an optical waveguide by depositing quartz glass on a Si substrate, and is a high-temperature process (about 1200 to 1300 ° C.). Since this method is exposed to a high temperature during the manufacturing process, internal stresses and the like act anisotropically, and the polarization dependent loss that is important in optical communication is large, and the manufacturing method is complicated and expensive.
[0004]
Therefore, in recent years, an ion exchange method has been used in which a multi-component glass is used as a substrate and an optical waveguide (region having a different refractive index) is formed by immersing in a molten salt to replace the ions in the glass substrate with the ions in the molten salt. ing. This method is a low-temperature process (about 200 to 500 ° C.), and has an advantage that it can be easily manufactured at low cost.
[0005]
[Problems to be solved by the invention]
However, in the ion exchange method, when the mask opening widths serving as optical waveguides are extremely different, the refractive index distribution of the core portion and the ion embedding depth change, which makes designing very difficult. When the embedding depth changes in the optical waveguide, light loss occurs at the changed portion.
[0006]
As a method of controlling the embedding depth of the optical waveguide region, an ion exchange control mask is partially formed (such as a diffraction grating pattern) at the mask opening, and ion exchange is performed by applying an electric field, so that the embedding depth during ion exchange is increased. A method for controlling the thickness has been proposed (see, for example, Japanese Patent Laid-Open No. 5-313032). However, when ion exchange is performed by partially forming an ion exchange control mask in the mask opening, a minute fluctuation occurs in the embedding depth of the optical waveguide region, and insertion loss (loss of propagating light) increases. Occurs.
[0007]
An object of the present invention, when forming the different regions of the refractive index in the glass substrate by ion exchange method, by ion exchange methods can be controlled to a desired refractive index distribution and a certain embedding depth in the portion where the mask opening width is different Another object of the present invention is to provide a method of manufacturing an optical waveguide device that can be formed by an ion exchange method so that optical waveguides having extremely different widths have substantially the same embedding depth.
[0008]
[Means for Solving the Problems]
The present invention relates to a method of forming regions having different refractive indexes by replacing ions in a glass substrate and ions in a molten salt by an ion exchange method, and forming an ion permeation control film on the surface of the glass substrate. Ru using an ion-exchange method and the refractive index partially controllable by ion exchange through. As a method for forming the ion permeation control film, a sputtering method or a vapor deposition method is usually preferable because the film thickness can be easily controlled.
[0009]
As the ion permeation control film, for example, a single layer or a multilayer film made of one or more materials selected from Ti, Pt, and Au and having a total film thickness of 5 nm or less can be used. In addition, it may be a porous film made of SiO 2 or Al 2 O 3 and having a film thickness of 100 nm or less.
[0010]
These ion permeation control films can control the depth of a region (region having a different refractive index) where ions are replaced by adjusting the material and film thickness. In the initial stage of film formation, the film grows in an island shape due to the surface tension of the substrate glass. In particular, in the case of alumina (Al 2 O 3 ), it grows in a columnar shape and becomes a porous film. The present invention utilizes this phenomenon to control ion exchange according to the membrane material and film thickness. When the mask opening shape for performing ion exchange is the same, the thinner the ion permeation control film, the deeper the region having a different refractive index. Regions with different rates become deeper.
[0011]
The present invention uses an ion exchange method to replace an ion in a glass substrate and an ion in a molten salt to form an optical waveguide region having a different refractive index, and manufactures an optical waveguide device in which optical waveguide regions having different widths coexist. It is a method to do. In the present invention, the ion exchange method as described above is used, and the film thickness of the ion permeation control film formed on the portion of the optical waveguide pattern where the mask opening width is different is changed according to the opening width. The embedding depth of the waveguide region is controlled to be substantially constant without depending on the opening width.
[0012]
As the glass substrate, it is preferable to use a multi-component glass containing Na ions, and form an optical waveguide region by ion exchange of a part of the monovalent Na ions with Ag ions.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 schematically shows an example of a method for manufacturing an optical waveguide device according to the present invention. In FIG. 1A, an ion permeation prevention mask (film thickness t m ) 12 having an opening corresponding to an optical waveguide pattern and an ion permeation control film 14 located at the opening are provided on a glass substrate 10. These may be the same Ti film, for example. The film thickness t m of the ion permeation prevention mask 12 is set to a sufficient thickness so that ion exchange is not performed (for example, about 10 nm or more in the case of a Ti film). Here, it is assumed that three openings having different widths (opening width: w 1 <w 2 <w 3 ) are formed, and the film thickness of the ion permeation control film in each opening portion is, for example, t 1 = 0. <T 2 <t 3
[0014]
When ion exchange is performed by immersing this in a molten salt, ion exchange is not performed in the mask portion, but diffusion of ions occurs in the portion where there is no Ti film corresponding to the opening and in the thin ion permeation control film 14 portion. And replacement with ions in the glass substrate occurs. Ion exchange is easy to be performed in a portion with a wide opening width, but is controlled by the ion permeation control film 14, and a portion with the narrowest opening width is the most difficult to perform ion exchange but is a complete opening. Ion exchange is promoted more than when it has. In this way, by adjusting the film thickness of the ion permeation control film according to the opening width, as shown in FIG. 1B, the depth of the region (optical waveguide region) 16 where the refractive index is changed by ion exchange. The height can be controlled to be substantially constant (d) regardless of the opening width, and such an optical waveguide device is obtained.
[0015]
It goes without saying that the present invention can be used for applications other than optical waveguide formation. For example, it can be used for a structure in which a large number of regions having different refractive indexes are regularly arranged, such as a flat-plate microlens array.
[0016]
【Example】
Example 1
A Ti film was formed on the entire surface of the glass substrate as an ion permeation control film on an aluminoborosilicate glass substrate containing only Na ions as alkali ions. Films were formed by sputtering so that the film thicknesses were 0.5, 1, 3, 5, and 6 nm, and ion exchange was performed at 280 ° C. for 4 hours in a molten salt made of silver nitrate. For comparison, the same ion exchange treatment was performed on a glass substrate without a Ti film.
[0017]
For each glass substrate subjected to ion exchange treatment, the refractive index change Δn and the diffusion depth of Ag ions were measured, and the results shown in Table 1 were obtained. From this result, it was confirmed that the refractive index distribution and the diffusion depth during ion exchange can be partially controlled by adjusting the Ti film thickness in the range of 0 to 5 nm. It was also confirmed that when the Ti film thickness exceeds 5 nm, ion diffusion is very difficult to occur, and the refractive index hardly changes.
[0018]
[Table 1]
Figure 0004662095
[0019]
(Example 2)
A SiO 2 film was formed on the entire surface of the glass substrate as an ion permeation control film on an aluminoborosilicate glass substrate containing only Na ions as alkali ions as in Example 1. Films were formed by sputtering so that the film thicknesses were 5, 10, 15, 50, 100, and 150 nm, and ion exchange was performed at 280 ° C. for 4 hours in a molten salt made of silver nitrate. For comparison, a similar ion exchange treatment was performed on a glass substrate without an SiO 2 film.
[0020]
For each glass substrate subjected to the ion exchange treatment, the refractive index change Δn and the diffusion depth of Ag ions were measured, and the results shown in Table 2 were obtained. From this result, it was confirmed that the refractive index distribution and the diffusion depth during ion exchange can be partially controlled by adjusting the SiO 2 film thickness in the range of 0 to 100 nm. It was also confirmed that when the SiO 2 film thickness exceeds 100 nm, ion diffusion becomes extremely difficult to occur and almost no change in refractive index occurs.
[0021]
[Table 2]
Figure 0004662095
[0022]
(Example 3)
On the aluminoborosilicate glass substrate containing only Na ions as the alkali ions same as in Example 1, two types of Ti masks having an opening of the optical waveguide pattern with an opening width of 2.1 μm and 2005.7 μm were formed. For comparison, an opening width of 2005.7 μm was prepared by forming a Ti film having a thickness of 1.2 nm as an ion permeation control film in the opening. In the same manner as in Example 1, these samples were subjected to ion exchange in a molten salt composed of silver nitrate at 280 ° C. for 4 hours.
[0023]
About each glass substrate which carried out the ion exchange process, refractive index change (DELTA) n and the diffusion depth of Ag ion were measured. The results are shown in Table 3. From this result, if the mask opening width is different, the refractive index distribution and diffusion depth during ion exchange change, but the refractive index distribution and diffusion depth mask opening during ion exchange can be adjusted by adjusting the film thickness of the ion permeation control film. It was confirmed that control was possible almost constant without depending on the width.
[0024]
[Table 3]
Figure 0004662095
[0025]
【The invention's effect】
As described above, the present invention uses the ion exchange method in which the refractive index can be partially controlled by forming an ion permeation control film on the surface of the glass substrate and performing ion exchange through the ion permeation control film . The depth of regions having different refractive indexes formed in the glass substrate can be controlled. In addition, when regions having different refractive indexes are formed in a glass substrate by the ion exchange method, it is possible to control a desired refractive index distribution and a constant embedding depth even in portions having different mask opening widths.
[0026]
By utilizing the method of the present invention, an optical waveguide device that can be formed by the ion exchange method so that the optical waveguides having extremely different widths can have substantially the same embedding depth can be obtained, and the loss of light propagation can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an example of a method of manufacturing an optical waveguide according to the method of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Glass substrate 12 Ion exchange prevention mask 14 Ion exchange control film | membrane 16 Optical waveguide

Claims (5)

ガラス基板、光導波路パターンに相当する開口を有するイオン透過防止マスクと、その開口部分に位置し全体がイオン透過領域となるイオン透過制御膜を形成し、イオン交換法により該イオン透過制御膜を通してガラス基板中のイオンと溶融塩中のイオンを置き換えて屈折率の異なる光導波路領域を形成する方法を用い、幅の異なる光導波路領域が共存する光導波路デバイスを製造する方法であって、
光導波路用パターンのマスク開口幅の大きさの異なる部分に形成するイオン透過制御膜の膜厚を、開口幅に応じて変化させることにより、光導波路領域の埋め込み深さを開口幅に依存せずにほぼ一定に制御することを特徴とする光導波路デバイスの製造方法。
An ion permeation preventive mask having an opening corresponding to an optical waveguide pattern and an ion permeation control film which is located in the opening part and serves as an ion permeation region are formed on a glass substrate , and the ion permeation control film is formed by an ion exchange method. A method of manufacturing an optical waveguide device in which optical waveguide regions having different widths coexist using a method of forming optical waveguide regions having different refractive indexes by replacing ions in a glass substrate and ions in a molten salt through
By changing the film thickness of the ion permeation control film formed on the portion of the optical waveguide pattern with different mask opening widths according to the opening width, the embedding depth of the optical waveguide region does not depend on the opening width. A method for manufacturing an optical waveguide device, characterized in that the optical waveguide device is controlled to be substantially constant.
イオン透過制御膜をスパッタ法又は蒸着法により形成する請求項1記載の光導波路デバイスの製造方法The method of manufacturing an optical waveguide device according to claim 1, wherein the ion permeation control film is formed by sputtering or vapor deposition. イオン透過制御膜が、Ti、Pt、Auから選ばれた1種以上の材料からなり、全膜厚が5nm以下である請求項2記載の光導波路デバイスの製造方法3. The method of manufacturing an optical waveguide device according to claim 2 , wherein the ion permeation control film is made of one or more materials selected from Ti, Pt, and Au, and has a total film thickness of 5 nm or less. イオン透過制御膜が、SiO2 又はAl2 3 からなり、膜厚が100nm以下のポーラスな膜である請求項2記載の光導波路デバイスの製造方法Ion permeable control membrane, made of SiO 2 or Al 2 O 3, the manufacturing method of the optical waveguide device having a thickness of claim 2 wherein the following porous film 100 nm. ガラス基板がNaイオンを含む多成分ガラスからなり、その1価のNaイオンの一部をAgイオンでイオン交換することで光導波路領域が形成される請求項3又は4記載の光導波路デバイスの製造方法。The optical waveguide device according to claim 3 or 4, wherein the glass substrate is made of multicomponent glass containing Na ions, and an optical waveguide region is formed by ion exchange of a part of the monovalent Na ions with Ag ions. Method.
JP2001020691A 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device Expired - Fee Related JP4662095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020691A JP4662095B2 (en) 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020691A JP4662095B2 (en) 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device

Publications (2)

Publication Number Publication Date
JP2002228865A JP2002228865A (en) 2002-08-14
JP4662095B2 true JP4662095B2 (en) 2011-03-30

Family

ID=18886363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020691A Expired - Fee Related JP4662095B2 (en) 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device

Country Status (1)

Country Link
JP (1) JP4662095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1721874B1 (en) * 2004-02-20 2013-11-27 Isuzu Glass Co., Ltd. Method for manufacturing optical element of refractive index distribution type

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106152A (en) * 1977-02-28 1978-09-14 Nec Corp Integrated taper type optical conjunction device and preparation therefor
JPS6177807A (en) * 1984-09-25 1986-04-21 Nippon Sheet Glass Co Ltd Production of optical element by ion exchange
JPH02113209A (en) * 1988-10-24 1990-04-25 Nippon Sheet Glass Co Ltd Manufacture of y-branch waveguide
JPH03276105A (en) * 1990-03-27 1991-12-06 Nippon Sheet Glass Co Ltd Production of y-branch waveguide
JPH05313032A (en) * 1992-05-08 1993-11-26 Nippon Sheet Glass Co Ltd Manufacture of optical waveguide
JPH09281536A (en) * 1995-12-28 1997-10-31 Matsushita Electric Ind Co Ltd Optical waveguide and optical wavelength conversion element and their production as well as short wavelength light generator and optical pickup

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106152A (en) * 1977-02-28 1978-09-14 Nec Corp Integrated taper type optical conjunction device and preparation therefor
JPS6177807A (en) * 1984-09-25 1986-04-21 Nippon Sheet Glass Co Ltd Production of optical element by ion exchange
JPH02113209A (en) * 1988-10-24 1990-04-25 Nippon Sheet Glass Co Ltd Manufacture of y-branch waveguide
JPH03276105A (en) * 1990-03-27 1991-12-06 Nippon Sheet Glass Co Ltd Production of y-branch waveguide
JPH05313032A (en) * 1992-05-08 1993-11-26 Nippon Sheet Glass Co Ltd Manufacture of optical waveguide
JPH09281536A (en) * 1995-12-28 1997-10-31 Matsushita Electric Ind Co Ltd Optical waveguide and optical wavelength conversion element and their production as well as short wavelength light generator and optical pickup

Also Published As

Publication number Publication date
JP2002228865A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
KR100415625B1 (en) Method for manufacturing a planar type waveguide using an ion exchange method
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
JPS60114811A (en) Optical waveguide and its production
US20060072891A1 (en) Methods of manufacturing mold for patterning lower cladding layer of wavelength filter and of manufacturing waveguide-type wavelength filter using the mold
JP4662095B2 (en) Manufacturing method of optical waveguide device
KR20020092209A (en) Optical waveguide apparatus and method of producing the same
AU729257B2 (en) Method of fabricating an optical component and optical component made thereby
JP3500990B2 (en) Method for manufacturing substrate-type optical waveguide
JP4051436B2 (en) Concave lens, concave lens array and manufacturing method thereof
KR100464552B1 (en) Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity
JPH02244104A (en) Glass optical wave guide
JPH05181031A (en) Optical waveguide and its production
JPH0720336A (en) Structure of optical waveguide and its production
JPS59137346A (en) Manufacture of glass waveguide
Ojha Fabrication technologies for planar waveguide WDM components
Blanchetière et al. Optimization of planar silica-on-silicon photonic devices through cladding material properties
JP4078415B2 (en) Microlens, microlens array and manufacturing method thereof
JP3943149B2 (en) Optical waveguide and method for manufacturing the same
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JPH05313032A (en) Manufacture of optical waveguide
KR100441242B1 (en) Coarse Wavelength Division Multiplexer manufactural method using the Thin Film Filter deposited Planar silica optical waveguide
US20220236481A1 (en) Optical Waveguide and Manufacturing Method Thereof
JPH0462644B2 (en)
JP2004046044A (en) Quartz-based optical waveguide
JP4304269B2 (en) Convex lens, convex lens array, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees