JP2002228865A - Ion exchange method and method for producing light guide device by the same - Google Patents

Ion exchange method and method for producing light guide device by the same

Info

Publication number
JP2002228865A
JP2002228865A JP2001020691A JP2001020691A JP2002228865A JP 2002228865 A JP2002228865 A JP 2002228865A JP 2001020691 A JP2001020691 A JP 2001020691A JP 2001020691 A JP2001020691 A JP 2001020691A JP 2002228865 A JP2002228865 A JP 2002228865A
Authority
JP
Japan
Prior art keywords
ion exchange
ion
glass substrate
exchange method
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001020691A
Other languages
Japanese (ja)
Other versions
JP4662095B2 (en
Inventor
Tomohiro Fujisawa
友弘 藤沢
Tomoya Harada
知也 原田
Tomoyuki Hayashi
智幸 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2001020691A priority Critical patent/JP4662095B2/en
Publication of JP2002228865A publication Critical patent/JP2002228865A/en
Application granted granted Critical
Publication of JP4662095B2 publication Critical patent/JP4662095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ion exchange method capable of controlling the depth of regions having different refractive indexes formed in a glass substrate and capable of achieving a desired refractive index distribution and a uniform embedding depth even in parts having different opening widths of a mask when regions having different refractive indexes are formed in a glass substrate by the ion exchange method. SOLUTION: In a method for forming regions 16 having different refractive indexes in a glass substrate 10 by substituting ions in a molten salt for ions in the glass substrate 10 by an ion exchange method, an ion permeation controlling film 14 is formed on the surface of the glass substrate and the refractive index is partially controlled by carrying out ion exchange through the ion permeation controlling film. The ion permeation controlling film is preferably formed by sputtering or vapor deposition and is, e.g. a monolayer or multiplayer film of <=5 nm thickness comprising one or more materials selected from Ti, Pt and Au or a porous film of <=100 nm thickness comprising SiO2 or Al2O3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、イオン交換方法及
びそれを用いた光導波路デバイスの製造方法に関し、更
に詳しく述べると、ガラス基板表面にイオン透過制御膜
を形成し、該イオン透過制御膜を通してイオン交換を行
わせることにより、その材質と膜厚とに応じて屈折率の
異なる領域を制御するようにしたイオン交換方法に関す
るものである。本発明方法は、特に光導波路デバイスの
製造に有用であるが、その他の各種微小光学素子の製造
に利用可能である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion exchange method and a method for manufacturing an optical waveguide device using the same. More specifically, an ion permeation control film is formed on a glass substrate surface, The present invention relates to an ion exchange method in which regions having different refractive indices are controlled in accordance with the material and the film thickness by performing ion exchange. The method of the present invention is particularly useful for manufacturing an optical waveguide device, but can be used for manufacturing various other micro-optical elements.

【0002】[0002]

【従来の技術】各種光デバイスの小型化、高性能化、集
積化に伴って、同一基板上に様々な形状寸法の光導波路
を共存させることが要求されている。例えば、AWG型
光導波路デバイスを製造する場合には、同一基板上に、
アレイ型導波路とスラブ型導波路といった導波路幅が極
端に異なる導波路パターンを形成する必要がある。
2. Description of the Related Art With miniaturization, high performance, and integration of various optical devices, it is required that optical waveguides of various shapes and sizes coexist on the same substrate. For example, when manufacturing an AWG type optical waveguide device, on the same substrate,
It is necessary to form waveguide patterns having extremely different waveguide widths, such as an array type waveguide and a slab type waveguide.

【0003】そのような場合、従来技術では、光導波路
の形状が制御し易い利点を有することから、石英ガラス
系基板を用いて火炎堆積法で光導波路領域を形成するこ
とが行われていた。しかし、火炎堆積法は、Si基板上
に石英系ガラスを堆積することで光導波路を形成するも
ので、高温プロセス(1200〜1300℃程度)であ
る。この方法は、作製工程中に高温に曝されるため内部
応力等が異方的に作用し、光通信で重要となる偏波依存
損失が大きく、製法が複雑でコスト高となる欠点があ
る。
In such a case, in the prior art, since the shape of the optical waveguide is easily controlled, the optical waveguide region is formed by a flame deposition method using a quartz glass-based substrate. However, the flame deposition method forms an optical waveguide by depositing quartz-based glass on a Si substrate, and is a high-temperature process (about 1200 to 1300 ° C.). Since this method is exposed to high temperatures during the manufacturing process, internal stress and the like act anisotropically, there is a large polarization dependent loss that is important in optical communication, and there is a disadvantage that the manufacturing method is complicated and the cost is high.

【0004】そこで近年、基板として多成分ガラスを用
い、溶融塩中に浸漬してガラス基板中のイオンと溶融塩
中のイオンを置き換えて光導波路(屈折率の異なる領
域)を形成するイオン交換法が用いられている。この方
法は、低温プロセス(200〜500℃程度)であり、
製造が容易で安価にできる利点がある。
[0004] In recent years, an ion exchange method for forming an optical waveguide (a region having a different refractive index) by using a multi-component glass as a substrate, immersing the substrate in a molten salt, and replacing ions in the glass substrate with ions in the molten salt. Is used. This method is a low-temperature process (about 200 to 500 ° C.)
There is an advantage that it can be manufactured easily and inexpensively.

【0005】[0005]

【発明が解決しようとする課題】しかし、イオン交換法
では、光導波路となるマスク開口幅が極端に異なると、
コア部分の屈折率分布やイオンの埋め込み深さが変化
し、設計が非常に難しい。光導波路において、埋め込み
深さが変化すると、その変化した部分で光の損失が生じ
る。
However, in the ion exchange method, if the opening width of the mask serving as the optical waveguide is extremely different,
The refractive index distribution of the core portion and the burying depth of the ions change, making the design very difficult. When the embedding depth changes in the optical waveguide, light loss occurs at the changed portion.

【0006】光導波路領域の埋め込み深さを制御する方
法として、マスク開口部分にイオン交換制御マスクを部
分的(回折格子状パターンなど)に形成し、電界印加イ
オン交換を行うことで、イオン交換時の埋め込み深さを
制御する方法が提案されている(例えば、特開平5−3
13032号公報参照)。しかし、マスク開口部にイオ
ン交換制御マスクを部分的に形成してイオン交換を行う
と、光導波路領域の埋め込み深さに微小なゆらぎが生
じ、挿入損失(伝搬する光の損失)が大きくなる問題が
生じる。
As a method of controlling the burying depth of the optical waveguide region, an ion exchange control mask is partially formed (such as a diffraction grating pattern) at the mask opening, and an electric field application ion exchange is performed. There has been proposed a method of controlling the embedding depth of a semiconductor device (for example, Japanese Patent Laid-Open No.
No. 13032). However, when ion exchange is performed by partially forming an ion exchange control mask in the mask opening, a small fluctuation occurs in the buried depth of the optical waveguide region, and the insertion loss (loss of propagating light) increases. Occurs.

【0007】本発明の目的は、ガラス基板中に形成する
屈折率の異なる領域の深さを制御できるイオン交換方法
を提供することである。本発明の他の目的は、イオン交
換法でガラス基板中に屈折率の異なる領域を形成する
際、マスク開口幅が異なる部分でも所望の屈折率分布や
一定の埋め込み深さに制御できるイオン交換方法を提供
することである。本発明の更に他の目的は、幅が極端に
異なる光導波路でも、ほぼ同じ埋め込み深さとなるよう
にイオン交換法で形成できる光導波路デバイスの製造方
法を提供することである。
An object of the present invention is to provide an ion exchange method capable of controlling the depth of regions having different refractive indexes formed in a glass substrate. Another object of the present invention is to provide an ion exchange method which can control a desired refractive index distribution and a constant burying depth even in a portion having a different mask opening width when forming regions having different refractive indexes in a glass substrate by an ion exchange method. It is to provide. Still another object of the present invention is to provide a method of manufacturing an optical waveguide device that can be formed by an ion exchange method so that optical waveguides having extremely different widths have substantially the same burying depth.

【0008】[0008]

【課題を解決するための手段】本発明は、イオン交換法
によりガラス基板中のイオンと溶融塩中のイオンを置き
換えて屈折率の異なる領域を形成する方法において、ガ
ラス基板表面にイオン透過制御膜を形成し、該イオン透
過制御膜を通してイオン交換を行うことにより屈折率を
部分的に制御可能としたイオン交換方法である。イオン
透過制御膜の形成方法は、膜厚制御が容易なことなどの
理由から、通常、スパッタ法又は蒸着法が好ましい。
SUMMARY OF THE INVENTION The present invention relates to a method of forming a region having a different refractive index by replacing ions in a glass substrate with ions in a molten salt by an ion exchange method. Is formed, and the refractive index can be partially controlled by performing ion exchange through the ion permeation control membrane. As a method for forming the ion permeation control film, a sputtering method or a vapor deposition method is usually preferable because the film thickness can be easily controlled.

【0009】イオン透過制御膜としては、例えばTi、
Pt、Auから選ばれた1種以上の材料からなり、全膜
厚が5nm以下である単層又は多層膜を用いることができ
る。その他、SiO2 又はAl2 3 からなり、膜厚が
100nm以下のポーラスな膜であってもよい。
As the ion permeation control film, for example, Ti,
A single-layer or multilayer film made of at least one material selected from Pt and Au and having a total thickness of 5 nm or less can be used. In addition, a porous film made of SiO 2 or Al 2 O 3 and having a thickness of 100 nm or less may be used.

【0010】これらのイオン透過制御膜は、その材質及
び膜厚を調整することによってイオンを置換する領域
(屈折率の異なる領域)の深さを制御することができ
る。成膜初期は、基板ガラスの表面張力によって膜は島
状に成長する。特にアルミナ(Al2 3 )のような場
合には、柱状に成長しポーラスな膜となる。本発明は、
この現象を利用し、膜材料と膜厚によってイオン交換を
制御しているのである。イオン交換を行うマスク開口形
状が同じ場合には、イオン透過制御膜が薄くなるほど屈
折率の異なる領域は深くなり、イオン透過制御膜が同じ
膜厚でも、イオン交換を行うマスク開口幅が広くなるほ
ど屈折率の異なる領域は深くなる。
These ion permeation control films can control the depth of a region where ions are replaced (a region having a different refractive index) by adjusting the material and the film thickness. At the beginning of film formation, the film grows in an island shape due to the surface tension of the substrate glass. In particular, in the case of alumina (Al 2 O 3 ), it grows in a columnar shape and becomes a porous film. The present invention
Utilizing this phenomenon, ion exchange is controlled by the film material and film thickness. If the mask opening shape for performing ion exchange is the same, the region having a different refractive index becomes deeper as the ion permeation control film becomes thinner. Areas with different rates become deeper.

【0011】また本発明は、イオン交換法によりガラス
基板中のイオンと溶融塩中のイオンを置き換えて屈折率
の異なる光導波路領域を形成する方法を用い、幅の異な
る光導波路領域が共存する光導波路デバイスを製造する
方法である。本発明では、上記のようなイオン交換方法
を用い、光導波路用パターンのマスク開口幅の大きさの
異なる部分に形成するイオン透過制御膜の膜厚を開口幅
に応じて変化させることにより、光導波路領域の埋め込
み深さを開口幅に依存せずにほぼ一定に制御する。
Further, the present invention uses a method in which ions in a glass substrate and ions in a molten salt are replaced by ion exchange to form optical waveguide regions having different refractive indices. This is a method for manufacturing a waveguide device. In the present invention, by using the above-described ion exchange method, by changing the thickness of the ion transmission control film formed in the portion of the optical waveguide pattern where the mask opening width is different according to the opening width, the optical waveguide pattern is formed. The embedding depth of the waveguide region is controlled to be substantially constant without depending on the opening width.

【0012】ガラス基板としては、Naイオンを含む多
成分ガラスを用い、その1価のNaイオンの一部をAg
イオンでイオン交換することで光導波路領域を形成する
のが好ましい。
As the glass substrate, a multi-component glass containing Na ions is used, and a part of the monovalent Na ions is converted to Ag.
It is preferable to form the optical waveguide region by ion exchange with ions.

【0013】[0013]

【発明の実施の形態】図1は本発明に係る光導波路デバ
イスの製造方法の一例を模式的に示すものである。図1
のAでは、ガラス基板10上に、光導波路パターンに相
当する開口を有するイオン透過防止マスク(膜厚tm
12及び開口部分に位置するイオン透過制御膜14を設
けている。これらは例えば同じTi膜などでよい。イオ
ン透過防止マスク12の膜厚tm は、イオン交換が行わ
れないような十分な厚さ(例えばTi膜の場合には10
nm程度もしくはそれ以上)とする。ここでは、幅が異な
る3本の開口(開口幅:w1 <w2 <w3 )を形成する
ものとし、それぞれの開口部分のイオン透過制御膜の膜
厚を、一例として、t1 =0<t2 <t3 というように
変化させる。
FIG. 1 schematically shows an example of a method for manufacturing an optical waveguide device according to the present invention. Figure 1
In A, an ion transmission preventing mask (thickness t m ) having an opening corresponding to the optical waveguide pattern on the glass substrate 10.
12 and an ion permeation control film 14 located at the opening. These may be, for example, the same Ti film. The thickness t m of the ion permeation prevention mask 12 is set to a thickness sufficient to prevent ion exchange (for example, 10 in the case of a Ti film).
nm or more). Here, three openings having different widths (opening width: w 1 <w 2 <w 3 ) are formed, and the thickness of the ion permeation control film at each opening is, for example, t 1 = 0. <T 2 <t 3 .

【0014】これを溶融塩中に浸漬してイオン交換を行
うと、マスク部分はイオン交換が行われないが、開口部
に相当するTi膜が無い部分及び薄いイオン透過制御膜
14の部分ではイオンの拡散が生じ、ガラス基板中のイ
オンとの置き換えが生じる。開口幅の広い部分はイオン
交換が行われ易いがイオン透過制御膜14で制御され、
開口幅の最も狭い部分は最もイオン交換が行われ難いが
完全な開口となっているのでイオン透過制御膜を有する
場合よりもイオン交換が促進される。このように開口幅
に応じてイオン透過制御膜の膜厚を調整することで、図
1のBに示すように、イオン交換によって屈折率が異な
るようになった領域(光導波路領域)16の深さを開口
幅に関係なくほぼ一定(d)に制御することができ、そ
のような光導波路デバイスが得られる。
When this is immersed in a molten salt and ion exchange is performed, ion exchange is not performed in the mask portion, but in the portion where there is no Ti film corresponding to the opening and in the portion of the thin ion permeation control film 14 where ion is not exchanged. Diffusion occurs and replacement with ions in the glass substrate occurs. The portion having a large opening width is easily subjected to ion exchange, but is controlled by the ion permeation control membrane 14,
The portion where the opening width is the narrowest is the one where ion exchange is most difficult to be performed, but since it is a complete opening, ion exchange is promoted as compared with the case where the ion permeation control membrane is provided. By adjusting the thickness of the ion permeation control film according to the opening width in this manner, as shown in FIG. 1B, the depth of the region (optical waveguide region) 16 where the refractive index is changed by ion exchange. The height can be controlled to be substantially constant (d) regardless of the opening width, and such an optical waveguide device can be obtained.

【0015】本発明は、光導波路形成以外にも利用でき
ることはいうまでもない。例えば、平板型のマイクロレ
ンズアレイのように屈折率の異なる領域を規則的に多数
配列形成する構造などにも利用できる。
It is needless to say that the present invention can be used for other than forming an optical waveguide. For example, the present invention can be applied to a structure in which a large number of regions having different refractive indices are regularly arranged like a flat microlens array.

【0016】[0016]

【実施例】(実施例1)アルカリイオンとしてNaイオ
ンのみが含まれるアルミノボロシリケート系ガラス基板
上に、イオン透過制御膜としてTi膜をガラス基板全面
に成膜した。膜厚が0.5,1,3,5,6nmとなるよ
うにスパッタ法により成膜し、それぞれ硝酸銀からなる
溶融塩中で280℃、4時間イオン交換を行った。また
比較のために、Ti膜無しのガラス基板についても、同
様のイオン交換処理を行った。
(Example 1) A Ti film as an ion permeation control film was formed on the entire surface of an aluminoborosilicate glass substrate containing only Na ions as alkali ions. Films were formed by a sputtering method so as to have a film thickness of 0.5, 1, 3, 5, and 6 nm, and ion exchange was performed at 280 ° C. for 4 hours in a molten salt composed of silver nitrate. For comparison, the same ion exchange treatment was performed on a glass substrate without a Ti film.

【0017】イオン交換処理した各ガラス基板につい
て、屈折率変化ΔnとAgイオンの拡散深さを測定した
ところ表1に示す結果が得られた。この結果から、Ti
膜厚を0〜5nmの範囲で調整することによって、イオン
交換時の屈折率分布、拡散深さを部分的に制御可能なこ
とが確認できた。またTi膜厚が5nmを超えると、イオ
ンの拡散が極めて生じ難くなり、屈折率の変化が殆ど生
じなくなることも確認できた。
When the refractive index change Δn and the diffusion depth of Ag ions were measured for each of the glass substrates subjected to the ion exchange treatment, the results shown in Table 1 were obtained. From this result, Ti
By adjusting the film thickness in the range of 0 to 5 nm, it was confirmed that the refractive index distribution and diffusion depth during ion exchange can be partially controlled. Also, it was confirmed that when the Ti film thickness exceeds 5 nm, diffusion of ions becomes extremely difficult to occur, and a change in the refractive index hardly occurs.

【0018】[0018]

【表1】 [Table 1]

【0019】(実施例2)実施例1と同じアルカリイオ
ンとしてNaイオンのみが含まれるアルミノボロシリケ
ート系ガラス基板上に、イオン透過制御膜としてSiO
2 膜をガラス基板全面に成膜した。膜厚が5,10,1
5,50,100,150nmとなるようにスパッタ法に
より成膜し、それぞれ硝酸銀からなる溶融塩中で280
℃、4時間イオン交換を行った。また比較のために、S
iO2 膜無しのガラス基板についても、同様のイオン交
換処理を行った。
(Example 2) On the same aluminoborosilicate glass substrate containing only Na ions as alkali ions as in Example 1, SiO was used as an ion permeation control film.
Two films were formed on the entire surface of the glass substrate. 5,10,1 film thickness
Films were formed by sputtering to have a thickness of 5, 50, 100, and 150 nm, and 280 in a molten salt made of silver nitrate.
C., ion exchange was performed for 4 hours. For comparison, S
The same ion exchange treatment was performed on the glass substrate without the iO 2 film.

【0020】イオン交換処理した各ガラス基板につい
て、屈折率変化ΔnとAgイオンの拡散深さを測定した
ところ表2に示す結果が得られた。この結果から、Si
2 膜厚を0〜100nmの範囲で調整することによっ
て、イオン交換時の屈折率分布、拡散深さを部分的に制
御可能なことが確認できた。またSiO2 膜厚が100
nmを超えると、イオンの拡散が極めて生じ難くなり、屈
折率の変化が殆ど生じなくなることも確認できた。
When the refractive index change Δn and the diffusion depth of Ag ions were measured for each of the glass substrates subjected to the ion exchange treatment, the results shown in Table 2 were obtained. From this result, Si
It was confirmed that by adjusting the O 2 film thickness in the range of 0 to 100 nm, the refractive index distribution and diffusion depth during ion exchange can be partially controlled. When the SiO 2 film thickness is 100
When it exceeds nm, it was also confirmed that diffusion of ions was extremely unlikely to occur, and almost no change in refractive index occurred.

【0021】[0021]

【表2】 [Table 2]

【0022】(実施例3)実施例1と同じアルカリイオ
ンとしてNaイオンのみが含まれるアルミノボロシリケ
ート系ガラス基板上に、光導波路パターンの開口を有す
るTiマスクを、開口幅2.1μmと2005.7μm
の2種類形成した。また比較のために、開口幅200
5.7μmについては開口部にイオン透過制御膜として
1.2nm厚のTi膜を形成したものも用意した。これら
の試料を、実施例1と同様に、それぞれ硝酸銀からなる
溶融塩中で280℃、4時間イオン交換を行った。
Example 3 A Ti mask having an opening of an optical waveguide pattern was formed on an aluminoborosilicate glass substrate containing only Na ion as an alkali ion in the same manner as in Example 1, with an opening width of 2.1 μm and a thickness of 2005. 7 μm
2 types were formed. For comparison, the opening width 200
For 5.7 μm, a 1.2 nm thick Ti film was formed as an ion permeation control film in the opening. These samples were ion-exchanged at 280 ° C. for 4 hours in a molten salt made of silver nitrate in the same manner as in Example 1.

【0023】イオン交換処理した各ガラス基板につい
て、屈折率変化ΔnとAgイオンの拡散深さを測定し
た。その結果を表3に示す。この結果から、マスク開口
幅が異なるとイオン交換時の屈折率分布、拡散深さが変
わるが、イオン透過制御膜の膜厚を調整することでイオ
ン交換時の屈折率分布、拡散深さマスク開口幅に依存せ
ずにほぼ一定に制御可能なことが確認できた。
The refractive index change Δn and the diffusion depth of Ag ions were measured for each of the ion-exchanged glass substrates. Table 3 shows the results. From this result, if the mask opening width is different, the refractive index distribution and diffusion depth during ion exchange change, but the refractive index distribution and diffusion depth during ion exchange can be adjusted by adjusting the thickness of the ion transmission control film. It was confirmed that the control could be made almost constant without depending on the width.

【0024】[0024]

【表3】 [Table 3]

【0025】[0025]

【発明の効果】本発明は上記のように、ガラス基板表面
にイオン透過制御膜を形成し、該イオン透過制御膜を通
してイオン交換を行うことにより屈折率を部分的に制御
可能としたイオン交換方法であるから、ガラス基板中に
形成する屈折率の異なる領域の深さを制御することがで
きる。また、イオン交換法でガラス基板中に屈折率の異
なる領域を形成する際、マスク開口幅の異なる部分でも
所望の屈折率分布や一定の埋め込み深さに制御できる。
As described above, the present invention provides an ion exchange method in which a refractive index can be partially controlled by forming an ion permeation control film on a glass substrate surface and performing ion exchange through the ion permeation control film. Therefore, it is possible to control the depth of regions having different refractive indexes formed in the glass substrate. Further, when regions having different refractive indices are formed in a glass substrate by an ion exchange method, a desired refractive index distribution and a constant embedding depth can be controlled even in portions having different mask opening widths.

【0026】この本発明方法を利用することによって、
幅が極端に異なる光導波路でも、ほぼ同じ埋め込み深さ
となるようにイオン交換法で形成できる光導波路デバイ
スが得られ、光伝搬の損失を低減できる。
By utilizing the method of the present invention,
An optical waveguide device that can be formed by an ion exchange method so that even optical waveguides having extremely different widths have substantially the same burying depth can be obtained, and light propagation loss can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明方法による光導波路の製造方法の一例を
示す説明図。
FIG. 1 is an explanatory view showing an example of a method for manufacturing an optical waveguide according to the method of the present invention.

【符号の説明】[Explanation of symbols]

10 ガラス基板 12 イオン交換防止マスク 14 イオン交換制御膜 16 光導波路 DESCRIPTION OF SYMBOLS 10 Glass substrate 12 Ion exchange prevention mask 14 Ion exchange control film 16 Optical waveguide

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 智幸 東京都港区新橋5丁目36番11号 エフ・デ ィー・ケイ株式会社内 Fターム(参考) 2H047 KA03 PA03 PA04 PA13 QA07 ────────────────────────────────────────────────── ─── Continuing on the front page (72) Inventor Tomoyuki Hayashi 5-36-11 Shimbashi, Minato-ku, Tokyo FDC Co., Ltd. F-term (reference) 2H047 KA03 PA03 PA04 PA13 PA13 QA07

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 イオン交換法によりガラス基板中のイオ
ンと溶融塩中のイオンを置き換えて屈折率の異なる領域
を形成する方法において、 ガラス基板表面にイオン透過制御膜を形成し、該イオン
透過制御膜を通してイオン交換を行うことにより屈折率
を部分的に制御可能としたことを特徴とするイオン交換
方法。
1. A method of forming a region having a different refractive index by replacing ions in a glass substrate with ions in a molten salt by an ion exchange method, comprising forming an ion permeation control film on a surface of the glass substrate, An ion exchange method characterized in that the refractive index can be partially controlled by performing ion exchange through a membrane.
【請求項2】 イオン透過制御膜をスパッタ法又は蒸着
法により形成する請求項1記載のイオン交換方法。
2. The ion exchange method according to claim 1, wherein the ion permeation control film is formed by a sputtering method or a vapor deposition method.
【請求項3】 イオン透過制御膜が、Ti、Pt、Au
から選ばれた1種以上の材料からなり、全膜厚が5nm以
下である請求項1又は2記載のイオン交換方法。
3. The ion permeation control film is made of Ti, Pt, Au.
3. The ion exchange method according to claim 1, comprising at least one material selected from the group consisting of:
【請求項4】 イオン透過制御膜が、SiO2 又はAl
2 3 からなり、膜厚が100nm以下のポーラスな膜で
ある請求項1又は2記載のイオン交換方法。
4. The ion transmission control film is made of SiO 2 or Al.
3. The ion exchange method according to claim 1, wherein the ion exchange method is a porous film made of 2 O 3 and having a thickness of 100 nm or less.
【請求項5】 イオン透過制御膜の膜厚を調整すること
によって屈折率の異なる領域の深さを制御する請求項1
乃至4のいずれかに記載のイオン交換方法。
5. The depth of regions having different refractive indices is controlled by adjusting the thickness of the ion permeation control film.
5. The ion exchange method according to any one of claims 1 to 4.
【請求項6】 イオン交換法によりガラス基板中のイオ
ンと溶融塩中のイオンを置き換えて屈折率の異なる光導
波路領域を形成する方法を用い、幅の異なる光導波路領
域が共存する光導波路デバイスを製造する方法におい
て、 請求項1乃至5のいずれかに記載のイオン交換方法を用
い、光導波路用パターンのマスク開口幅の大きさの異な
る部分に形成するイオン透過制御膜の膜厚を、開口幅に
応じて変化させることにより、光導波路領域の埋め込み
深さを開口幅に依存せずにほぼ一定に制御することを特
徴とする光導波路デバイスの製造方法。
6. A method for forming an optical waveguide region having a different refractive index by replacing an ion in a glass substrate and an ion in a molten salt by an ion exchange method. A method of manufacturing, comprising: using the ion exchange method according to any one of claims 1 to 5 to reduce the thickness of an ion permeation control film to be formed in a portion of the optical waveguide pattern having a different mask opening width. Wherein the depth of the optical waveguide region is controlled to be substantially constant without depending on the opening width.
【請求項7】 ガラス基板がNaイオンを含む多成分ガ
ラスからなり、その1価のNaイオンの一部をAgイオ
ンでイオン交換することで光導波路領域が形成されてい
る請求項6記載の光導波路デバイスの製造方法。
7. The optical waveguide according to claim 6, wherein the glass substrate is made of a multi-component glass containing Na ions, and the optical waveguide region is formed by ion-exchanging a part of the monovalent Na ions with Ag ions. Manufacturing method of waveguide device.
JP2001020691A 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device Expired - Fee Related JP4662095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001020691A JP4662095B2 (en) 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001020691A JP4662095B2 (en) 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device

Publications (2)

Publication Number Publication Date
JP2002228865A true JP2002228865A (en) 2002-08-14
JP4662095B2 JP4662095B2 (en) 2011-03-30

Family

ID=18886363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001020691A Expired - Fee Related JP4662095B2 (en) 2001-01-29 2001-01-29 Manufacturing method of optical waveguide device

Country Status (1)

Country Link
JP (1) JP4662095B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005080283A1 (en) * 2004-02-20 2007-10-25 五鈴精工硝子株式会社 Manufacturing method of gradient index optical element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106152A (en) * 1977-02-28 1978-09-14 Nec Corp Integrated taper type optical conjunction device and preparation therefor
JPS6177807A (en) * 1984-09-25 1986-04-21 Nippon Sheet Glass Co Ltd Production of optical element by ion exchange
JPH02113209A (en) * 1988-10-24 1990-04-25 Nippon Sheet Glass Co Ltd Manufacture of y-branch waveguide
JPH03276105A (en) * 1990-03-27 1991-12-06 Nippon Sheet Glass Co Ltd Production of y-branch waveguide
JPH05313032A (en) * 1992-05-08 1993-11-26 Nippon Sheet Glass Co Ltd Manufacture of optical waveguide
JPH09281536A (en) * 1995-12-28 1997-10-31 Matsushita Electric Ind Co Ltd Optical waveguide and optical wavelength conversion element and their production as well as short wavelength light generator and optical pickup

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106152A (en) * 1977-02-28 1978-09-14 Nec Corp Integrated taper type optical conjunction device and preparation therefor
JPS6177807A (en) * 1984-09-25 1986-04-21 Nippon Sheet Glass Co Ltd Production of optical element by ion exchange
JPH02113209A (en) * 1988-10-24 1990-04-25 Nippon Sheet Glass Co Ltd Manufacture of y-branch waveguide
JPH03276105A (en) * 1990-03-27 1991-12-06 Nippon Sheet Glass Co Ltd Production of y-branch waveguide
JPH05313032A (en) * 1992-05-08 1993-11-26 Nippon Sheet Glass Co Ltd Manufacture of optical waveguide
JPH09281536A (en) * 1995-12-28 1997-10-31 Matsushita Electric Ind Co Ltd Optical waveguide and optical wavelength conversion element and their production as well as short wavelength light generator and optical pickup

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005080283A1 (en) * 2004-02-20 2007-10-25 五鈴精工硝子株式会社 Manufacturing method of gradient index optical element

Also Published As

Publication number Publication date
JP4662095B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
US6769274B2 (en) Method of manufacturing a planar waveguide using ion exchange method
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
JP4662095B2 (en) Manufacturing method of optical waveguide device
AU729257B2 (en) Method of fabricating an optical component and optical component made thereby
JP4051436B2 (en) Concave lens, concave lens array and manufacturing method thereof
JP2001221926A (en) Production of optical waveguide element
JPH05181031A (en) Optical waveguide and its production
JPH0462644B2 (en)
KR100464552B1 (en) Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity
JPH05313032A (en) Manufacture of optical waveguide
JP3031066B2 (en) Method for manufacturing oxide film and method for manufacturing optical waveguide
JP3840835B2 (en) Method for manufacturing silica-based glass waveguide element
JPS59137346A (en) Manufacture of glass waveguide
JP2004046044A (en) Quartz-based optical waveguide
WO2020240675A1 (en) Optical waveguide and method for producing same
JP2004210611A (en) Glass thin film, photonic crystal obtained by using the same, and method of producing the glass thin film
JP5718215B2 (en) Optical waveguide and manufacturing method thereof
JP2001201647A (en) Optical waveguide circuit and its manufacturing method
KR20020048497A (en) Method of manufacturing planar optical waveguides through negative etching
JP2002341168A (en) Optical waveguide element, method for manufacturing the same and method for forming distribution of refractive index
JPH0933739A (en) Optical waveguide and its manufacture
Ojha Fabrication technologies for planar waveguide WDM components
JP2001183538A (en) Waveguide type optical device
JPH09133824A (en) Optical waveguide and its production
JPS6256905A (en) Production of optical waveguide having interference filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100604

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101222

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees