KR100464552B1 - Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity - Google Patents

Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity Download PDF

Info

Publication number
KR100464552B1
KR100464552B1 KR10-2002-0014519A KR20020014519A KR100464552B1 KR 100464552 B1 KR100464552 B1 KR 100464552B1 KR 20020014519 A KR20020014519 A KR 20020014519A KR 100464552 B1 KR100464552 B1 KR 100464552B1
Authority
KR
South Korea
Prior art keywords
optical
waveguide
optical waveguide
clad layer
manufacturing
Prior art date
Application number
KR10-2002-0014519A
Other languages
Korean (ko)
Other versions
KR20030075350A (en
Inventor
임기건
정경갑
김민이
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR10-2002-0014519A priority Critical patent/KR100464552B1/en
Publication of KR20030075350A publication Critical patent/KR20030075350A/en
Application granted granted Critical
Publication of KR100464552B1 publication Critical patent/KR100464552B1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12169Annealing
    • G02B2006/12171Annealing using a laser beam

Abstract

본 발명은 광도파로 소재의 광민감성을 높이고 자외선 레이저광을 이용하여 평판형 광소자를 제작하는 기술에 관한 것이다.The present invention relates to a technique for improving the optical sensitivity of an optical waveguide material and manufacturing a flat optical device using ultraviolet laser light.

본 발명은 광분배기, 광결합기, WDM 광소자, 광스위치 등 평판형 광도파로 수동소자 및 광증폭기와 같은 능동소자를 제작하는데 있어 종래의 도파로 제작방법인 증착 및 식각 공정을 대폭 줄일 수 있고, 공정중의 이물질 인입과 결정상 형성되는 등의 문제점을 해결할 수 있으며 상부 클래드층을 열처리한 후 도파로 형성에 따른 코어 영역의 확산 및 코어의 굴절률 변화 등의 문제점을 해결할 수 있다.The present invention can greatly reduce the deposition and etching processes of the conventional waveguide fabrication method in the production of active devices such as optical wave splitter, optical coupler, WDM optical device, optical switch, passive optical waveguide passive device and optical amplifier. It is possible to solve problems such as foreign matter inflow and crystal phase formation, and to solve problems such as diffusion of core region and change of refractive index of core due to waveguide formation after heat treatment of the upper cladding layer.

결과적으로, 광도파로 제작 공정수를 줄이고 재현성을 향상시켜 광도파로의 전송효율과 특성을 효과적으로 개선할 수 있다.As a result, it is possible to effectively improve the transmission efficiency and characteristics of the optical waveguide by reducing the number of optical waveguide manufacturing process and improving the reproducibility.

Description

광민감성을 이용한 평판형 도파로 광소자 제작방법{MANUFACTURING METHOD OF PLANAR WAVEGUIDE DEVICES BY USE OF UV LASER BEAM ON PHOTONIC FILMS WITH ENHANCED PHOTOSENSITIVITY}MANUFACTURING METHOD OF PLANAR WAVEGUIDE DEVICES BY USE OF UV LASER BEAM ON PHOTONIC FILMS WITH ENHANCED PHOTOSENSITIVITY}

본 발명은 광민감성을 이용한 평판형 도파로 광소자 제작방법에 관한 것으로, 광도파로 소재의 광민감성을 높이고 자외선 레이저광을 이용하여 평판형 광소자를 제작하는 기술에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for fabricating a flat waveguide optical device using photosensitivity, and to a technique of increasing the photosensitive sensitivity of an optical waveguide material and manufacturing a flat optical device using ultraviolet laser light.

일반적으로 광통신소자의 기본 구조를 광도파로(optical waveguide)라 하며, 기판위에 제조된 광도파로를 평판형(planar) 광도파로라고 한다.Generally, the basic structure of an optical communication device is called an optical waveguide, and an optical waveguide manufactured on a substrate is called a planar optical waveguide.

광도파로(이하, 도파로라 한다)는 코어(core)층에 형성되며, 코어층을 형성하기 위한 방법으로서 스퍼터증착, 화염가수분해증착, 졸-겔적층, 폴리머적층 등의 제조공정과 코어형상을 제작하기 위한 노광 및 건식 또는 습식 식각에 의해 완성하는 반도체 채널제작 공정 또는 이온교환법에 의한 채널제작 공정 등이 알려져 있다.An optical waveguide (hereinafter referred to as a waveguide) is formed in a core layer. As a method for forming a core layer, a process such as sputter deposition, flame hydrolysis deposition, sol-gel lamination, and polymer lamination and the core shape are performed. BACKGROUND OF THE INVENTION A semiconductor channel fabrication process or a channel fabrication process by ion exchange, etc., which are completed by exposure and dry or wet etching for production, are known.

습식 및 건식 식각 공정은 코어 표면이 거칠어 광전송의 손실을 발생시키고 상부 클래드(clad)층의 열처리시 코어층과 상부 클래드층 사이의 계면에서 기공이나 결정상을 형성하는 단점이 있다.Wet and dry etching process has the disadvantage that the core surface is rough, causing loss of light transmission and forming pores or crystal phase at the interface between the core layer and the upper cladding layer during heat treatment of the upper cladding layer.

이온결합법은 박막위에 도파로 패턴(pattern)을 스퍼터로 증착하는 과정과 부수되는 여러 공정의 불편함과 이물질의 인입, 이온의 확산에 따른 도파로 각부위의 굴절률을 정밀 제어하는데 어려움이 있다. 이에 따라 파장 분할기 등의 미세 패턴을 응용하는 소자의 제작 및 다른 광능동소자를 함께 실장하여 집적화 하는 것이 실제적으로 곤란하다.The ion coupling method has difficulty in precisely controlling the refractive index of each part of the waveguide due to the inconvenience of the process of depositing the waveguide pattern on the thin film by sputtering and the accompanying process, the introduction of foreign substances, and the diffusion of ions. As a result, it is practically difficult to fabricate a device that applies a fine pattern such as a wavelength divider and to mount and integrate other photoactive devices together.

또한, 졸-겔(sol-gel)에 의한 방법은 실리카 또는 실리콘 기판위에 여러 알콕사이드물질과 금속을 합성하여 침적에 의한 코팅방법을 이용하므로 제조공정상 5㎛ 이상의 두꺼운 막을 형성하는데 어려움이 있고, 막에 존재하는 유기물을 제거하기 위한 별도의 공정이 필요할 뿐만 아니라 잔존하는 유기물로 인하여 다른 공법에 비하여 광손실이 크다는 문제점이 있다.In addition, since the sol-gel method uses a coating method by synthesizing various alkoxide materials and metals on a silica or silicon substrate, it is difficult to form a thick film of 5 μm or more in the manufacturing process. In addition to the need for a separate process for removing the organic material present, there is a problem that the light loss is greater than other methods due to the remaining organic material.

본 발명은 전술한 문제점을 해결하기 위하여 안출된 것으로, 그 목적은 도파로층의 제작공정을 간소화시키고 제작공정상의 이물질 인입과 결정상의 형성을 저감시켜 광전송 효율 및 특성을 개선하기 위하여 증가된 도파재질의 광민감성을 활용하고 시준된 자외선레이저광을 사용하여 수동형 및 능동형 평판도파로 광소자 제작방법을 제공한다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its object is to simplify the manufacturing process of the waveguide layer and reduce the introduction of foreign substances and the formation of crystal phase in the manufacturing process to improve the light transmission efficiency and characteristics. Provides optical device fabrication method using passive and active flat waveguide using photosensitive and collimated UV laser light.

도 1은 본 발명에 따른 평판형 광소자의 제작 공정도,1 is a manufacturing process diagram of a flat plate optical device according to the present invention,

도 2는 본 발명에 따른 평판형 광증폭기의 제작 공정도,2 is a manufacturing process diagram of a flat plate optical amplifier according to the present invention;

도 3은 본 발명에 따른 수소처리 후의 공정 상세도.Figure 3 is a detailed view of the process after hydrotreating according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

100 : 기판 200 : 하부 클래드층100: substrate 200: lower clad layer

300 : 코어층 301 : 광도파로300: core layer 301: optical waveguide

500 : 상부 클래드층 600 : 포토마스크500: upper cladding layer 600: photomask

이를 위하여 본 발명은 광민감성을 이용한 평판형 광소자 제작방법에 있어서, 실리콘 혹은 실리카 기판, 알루미나 기판 상면에 에어로졸 화염가수분해증착(AFD)이나 화염가수분해증착(FHD) 등 기존 박막제조공법으로 하부 클래드층을 형성시키는 하부 클래드층 형성공정과, 하부 클래드층 상면에 AFD 또는 FHD 방법으로 수 ㏖% 이상의 게르마늄(Ge)이 첨가된 다성분계 산화물박막을 쌓아 코어층을 형성시키는 코어층 형성공정과, 코어층 상면에 AFD, FHD, 스퍼터증착, 졸-겔(sol-gel)적층, 폴리머적층으로 상부 클래드층을 형성시키는 상부 클래드층 형성공정과, 코어층의 자외선에 대한 광민감성을 증가시키기 위한 수소처리공정과, 상부 클래드층 상면에 도파로 포토마스크를 활용하여 UV 파장대역의 레이저광을 조사하여 광도파로를 형성하는 광도파로 형성공정으로 구성된다.To this end, the present invention is a method for fabricating a flat-panel optical device using photosensitivity, the lower part of the thin film manufacturing method such as aerosol hydrolysis deposition (AFD) or flame hydrolysis deposition (FHD) on the upper surface of the silicon or silica substrate, alumina substrate A lower clad layer forming step of forming a clad layer, and a core layer forming step of forming a core layer by stacking a multi-component oxide thin film containing at least several mol% germanium (Ge) on the upper surface of the lower clad layer by AFD or FHD; AFD, FHD, sputter deposition, sol-gel lamination, polymer lamination to form the upper cladding layer on the upper surface of the core layer, and hydrogen to increase the photosensitivity to ultraviolet rays of the core layer Process of forming optical waveguide by irradiating laser light of UV wavelength band by using waveguide photomask on upper clad layer upper surface It consists of.

증폭기 제작 공정에 있어서는 희토류원소를 첨가시키는 코어 제작공정과 광도파로 형성과정 후에 이득평탄화 브라그격자 형성공정이 추가된다.In the amplifier fabrication process, a gain flattening Bragg grating formation process is added after the core fabrication process of adding the rare earth element and the optical waveguide formation process.

WDM 필터 제작 공정에 있어서는 광도파로 형성과정 후에 파장분할을 위한 브라그격자 형성공정이 추가된다.In the WDM filter fabrication process, a Bragg grating formation process for wavelength division is added after the optical waveguide formation process.

이하, 첨부도면을 참조하여 본 발명에 따른 광민감성을 이용한 평판형 도파로 광소자 제작방법의 바람직한 실시예를 설명한다.Hereinafter, with reference to the accompanying drawings will be described a preferred embodiment of a flat waveguide optical device manufacturing method using a light sensitivity according to the present invention.

도 1은 본 발명에 따른 광민감성을 이용한 광소자 제작공정을 도시한 공정도이다.1 is a process chart showing an optical device manufacturing process using the light sensitivity according to the present invention.

도시한 바와 같이, 실리콘 또는 실리카 기판, 혹은 알루미나 기판(100) 상면에 에어로졸 화염가수분해증착(Aerosol Flame Deposition ; AFD)이나 화염가수분해증착(Flame Hydrolysis Deposition ; FHD) 방법으로 하부 클래드(clad)층(200)을 제작한다.As shown, the lower clad layer on the silicon or silica substrate or the alumina substrate 100 by aerosol flame deposition (AFD) or flame hydrolysis deposition (FHD). Produce 200.

하부 클래드층(200)의 제작 공정이 완료되면, 하부 클래드층(200) 상면에 에어로졸 화염가수증착(AFD)이나 화염가수분해증착(FHD) 방법으로 수 ㏖% 이상의 게르마늄(Ge)이 첨가된 다성분계 산화물박막을 쌓아 코어층(300)을 제작한다.When the fabrication process of the lower clad layer 200 is completed, more than several mol% of germanium (Ge) is added to the upper surface of the lower clad layer 200 by aerosol hydro-deposition (AFD) or flame hydrolysis deposition (FHD). The core layer 300 is manufactured by stacking the component oxide thin film.

코어층(300)의 제작 공정이 완료되면, 코어층(300) 상면에 에어로졸 화염가수분해증착(AFD)이나 스퍼터증착, 화염가수분해증착(FHD), 졸-겔(sol-gel)적층, 폴리머적층 등으로 상부 클래드층(500)을 제작한다.When the fabrication process of the core layer 300 is completed, aerosol hydrolysis deposition (AFD), sputter deposition, flame hydrolysis deposition (FHD), sol-gel lamination, polymer on the upper surface of the core layer 300 The upper clad layer 500 is manufactured by lamination or the like.

상부 클래드층(500)의 제작 공정이 완료되면, 게르마늄(Ge)과 자외선 사이의 광민감성을 증가시키기 위해 기 증착된 박막을 고온 고압의 수소처리과정을 거친다.When the fabrication process of the upper cladding layer 500 is completed, the pre-deposited thin film is subjected to a high temperature and high pressure hydrogen treatment process to increase the photosensitivity between germanium (Ge) and ultraviolet rays.

수소처리 공정이 완료되면, 수소 처리된 상부 클래드층(500) 상면에 포토마스크(600)를 위치시킨 다음 UV 레이저광을 조사하여 광도파로(301)를 형성시킨다.When the hydrotreating process is completed, the photomask 600 is positioned on the hydroclad upper clad layer 500 and then irradiated with UV laser light to form the optical waveguide 301.

도 2는 본 발명에 따른 광민감성을 이용한 평판형 광증폭기의 제작공정을 도시한 공정도이다.2 is a process chart showing a manufacturing process of a flat plate optical amplifier using light sensitivity according to the present invention.

실리콘 혹은 실리카 기판, 알루미나 기판(100) 상면에 에어로졸 화염가수분해증착(AFD)이나 화염가수분해증착(FHD)으로 하부 클래드층(200)을 제작한다.The lower clad layer 200 is fabricated on an upper surface of the silicon or silica substrate and the alumina substrate 100 by aerosol hydrolysis deposition (AFD) or flame hydrolysis deposition (FHD).

하부 클래드층(200) 제작 공정이 완료되면, 하부 클래드층(200) 상면에 에어로졸 화염가수증착(AFD)이나 화염가수분해증착(FHD) 방법으로 게르마늄(Ge)과 희토류원소(Er, Nb, Pr, Yb 등)가 첨가된 다성분계 산화물박막을 쌓아 코어층(400)을 제작한다.When the manufacturing process of the lower clad layer 200 is completed, germanium (Ge) and rare earth elements (Er, Nb, Pr) are formed on the upper surface of the lower clad layer 200 by aerosol hydro-deposition (AFD) or flame hydrolysis deposition (FHD). , Yb, etc.) to add a multi-component oxide thin film to produce a core layer 400.

코어층(400) 제작 공정이 완료되면, 코어층(400) 상면에 에어로졸 화염가수분해증착(AFD)이나 스퍼터증착, 화염가수분해증착, 졸-겔(sol-gel)적층, 폴리머적층으로 상부 클래드층(500)을 제작한다.When the core layer 400 fabrication process is completed, aerosol hydrolysis deposition (AFD) or sputter deposition, flame hydrolysis deposition, sol-gel lamination, polymer lamination on the upper surface of the core layer 400 Fabricate layer 500.

상부 클래드층(500)의 제작 공정이 완료되면, 게르마늄(Ge)과 자외선 사이의 광민감성을 증가시키기 위해 기 증착된 박막을 고온 고압의 수소처리과정을 거친다.When the fabrication process of the upper cladding layer 500 is completed, the pre-deposited thin film is subjected to a high temperature and high pressure hydrogen treatment process to increase the photosensitivity between germanium (Ge) and ultraviolet rays.

수소처리공정이 완료되면, 수소처리된 상부 클래드층(500) 상면에 포토마스크(600)를 위치시킨 다음 UV 레이저광을 조사하여 광도파로(301)를 형성시킨다.When the hydrotreating process is completed, the photomask 600 is positioned on the hydroclad upper clad layer 500 and then irradiated with UV laser light to form the optical waveguide 301.

그리고 도 3은 광소자나 광증폭기의 제작방법 상에서 광도파로의 형성이 완료된 이후의 공정을 도시한 것으로, 광도파로(301,401)의 제작 공정이 완료되면, 증폭기의 이득율 평탄화(gain flattening), WDM 필터의 파장분할 기능을 위하여 위상 마스크(Phase Mask)를 상부 클래드층(500)에 위치시키고 동일한 UV 레이저광을이용하여 코어에 브라그격자(Bragg Grating)를 형성시킨다.3 illustrates a process after formation of the optical waveguide in the manufacturing method of the optical device or the optical amplifier. When the manufacturing process of the optical waveguides 301 and 401 is completed, gain flattening of the amplifier and a WDM filter are performed. A phase mask is placed on the upper clad layer 500 for the wavelength division function of and a Bragg grating is formed on the core using the same UV laser light.

이상에서 상세히 설명한 바와 같이, 본 발명에 따르면 게르마늄과 희토류원소가 첨가된 광도파로를 제작하는데 있어 종래의 도파로 제작방법인 화염가수분해증착방법이나 에어로졸 화염가수분해증착방법, 이온교환법, 졸-겔법 등에 필요한 식각공정에 따른 이물질 인입과 결정상이 형성되는 등의 문제점을 해결할 수 있으며, 상부 클래드층을 열처리한 후 도파로 형성에 따른 코어 영역의 확산 및 코어의 굴절률 변화 등의 문제점을 해결할 수 있고, 마스크패턴을 형성시키기 위한 스퍼터공정 등을 제거할 수 있다.As described in detail above, according to the present invention, in the fabrication of an optical waveguide containing germanium and rare earth elements, the conventional method of fabricating a waveguide is a hydrolysis deposition method, an aerosol hydrolysis deposition method, an ion exchange method, a sol-gel method, and the like. It can solve problems such as foreign material introduction and crystal phase formation according to the required etching process, and problems such as diffusion of core region and change of refractive index of core due to waveguide formation after heat treatment of the upper cladding layer, mask pattern The sputtering process for forming a can be removed.

이에 따라, 광도파로 제작 공정을 대폭 간소화하고 부수적인 문제점을 갖는 공정을 제거하여 재현성이 향상되므로 전반적인 광전송 효율 및 특성을 매우 효과적으로 개선할 수 있다.Accordingly, the optical waveguide fabrication process is greatly simplified, and the reproducibility is improved by eliminating a process having an incidental problem, so that the overall optical transmission efficiency and characteristics can be improved very effectively.

Claims (3)

평판형 도파로 광소자 제작방법에 있어서,In the flat waveguide optical device manufacturing method, 실리콘 혹은 실리카 기판, 알루미나 기판 상면에 에어로졸 화염가수분해증착(AFD)으로 하부 클래드층을 형성시키는 하부 클래드층 형성공정과,A lower clad layer forming process of forming a lower clad layer by aerosol hydrolysis deposition (AFD) on an upper surface of a silicon or silica substrate or an alumina substrate, 상기 하부 클래드층 상면에 에어로졸 화염가수분해증착(AFD)으로 수 mol% 이상의 게르마늄(Ge) 또는 게르마늄과 희토류원소(Er, Yb, Nb 등)가 첨가된 다성분계 산화물박막의 코어층을 형성시키는 코어층 형성공정과,A core for forming a core layer of a multi-component oxide thin film containing a plurality of mol% germanium (Ge) or germanium and rare earth elements (Er, Yb, Nb, etc.) added to the upper surface of the lower clad layer by aerosol hydrolysis deposition (AFD). Layer forming process, 상기 코어층 상면에 에어로졸 화염가수분해증착(AFD)으로 상부 클래드층을 형성시키는 상부 클래드층 형성공정과,An upper clad layer forming process of forming an upper clad layer by aerosol hydrolysis deposition (AFD) on an upper surface of the core layer; 상기 코어층의 게르마늄(Ge)과 UV선 간의 광민감성을 증가시키기 위해 증착 박막을 온도와 압력에 따라 수소처리하는 수소처리공정과,A hydrotreating process of hydrotreating the deposited thin film according to temperature and pressure to increase light sensitivity between germanium (Ge) and UV rays of the core layer; 수소 처리된 상기 상부 클래드층 상면에 포토마스크와 시준된 UV선을 조사하여 광도파로를 형성하는 광도파로 형성공정으로 이루어진 것을 특징으로 하는 광민감성을 이용한 평판형 도파로 광소자 제작방법.A method of fabricating a flat waveguide optical device using photo-sensitivity, comprising an optical waveguide forming process of forming an optical waveguide by irradiating a photomask and collimated UV rays on an upper surface of the hydrogenated upper clad layer. 제 1항에 있어서,The method of claim 1, 상기 광도파로 형성공정과 여기에 활용된 UV레이저 장치를 이용하고 상기 포토마스크를 위상마스크로 대체하여 이득화평탄화를 구현한 평판형 광증폭기 제작공정을 더 포함하는 것을 특징으로 하는 광민감성을 이용한 평판형 도파로 광소자 제작방법.The optical waveguide forming process and the UV laser device utilized for the optical waveguide, and the photomask is replaced by a phase mask, the flat plate type optical amplifier further comprising the step of achieving a flattening gain flattening, characterized in that it further comprises a flat plate Method for manufacturing optical waveguide optical element. 제 1항에 있어서,The method of claim 1, 상기 광도파로 형성공정과 여기에 활용된 UV 레이저 장치를 이용하고 상기 포토마스크를 위상마스크로 대체하여 파장분할기능을 구현한 WDM 필터 제작공정을 더 포함하는 것을 특징으로 하는 광민감성을 이용한 평판형 도파로 광소자 제작방법.The optical waveguide forming process and the WDM filter fabrication process using the UV laser device utilized to implement the wavelength division function by replacing the photomask with a phase mask is further included. Optical device manufacturing method.
KR10-2002-0014519A 2002-03-18 2002-03-18 Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity KR100464552B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0014519A KR100464552B1 (en) 2002-03-18 2002-03-18 Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0014519A KR100464552B1 (en) 2002-03-18 2002-03-18 Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity

Publications (2)

Publication Number Publication Date
KR20030075350A KR20030075350A (en) 2003-09-26
KR100464552B1 true KR100464552B1 (en) 2005-02-02

Family

ID=32225188

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0014519A KR100464552B1 (en) 2002-03-18 2002-03-18 Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity

Country Status (1)

Country Link
KR (1) KR100464552B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235659A (en) * 1992-05-05 1993-08-10 At&T Bell Laboratories Method of making an article comprising an optical waveguide
JPH10133043A (en) * 1996-10-31 1998-05-22 Hitachi Cable Ltd Waveguide type optical parts and their production
US5841928A (en) * 1994-09-23 1998-11-24 British Telecommunications Public Limited Company Planar waveguides made by use of photosensitive changes to the refractive index of a deposited layer
KR20010011526A (en) * 1999-07-28 2001-02-15 윤종용 Center wavelength control method in wavelegth division multi/demultiplexer with planar arrayed waveguide grating
US6226433B1 (en) * 1998-10-28 2001-05-01 Alcatel Planar optical waveguide and method of spatially selectively increasing the refractive index in a glass

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235659A (en) * 1992-05-05 1993-08-10 At&T Bell Laboratories Method of making an article comprising an optical waveguide
US5841928A (en) * 1994-09-23 1998-11-24 British Telecommunications Public Limited Company Planar waveguides made by use of photosensitive changes to the refractive index of a deposited layer
JPH10133043A (en) * 1996-10-31 1998-05-22 Hitachi Cable Ltd Waveguide type optical parts and their production
US6226433B1 (en) * 1998-10-28 2001-05-01 Alcatel Planar optical waveguide and method of spatially selectively increasing the refractive index in a glass
KR20010011526A (en) * 1999-07-28 2001-02-15 윤종용 Center wavelength control method in wavelegth division multi/demultiplexer with planar arrayed waveguide grating

Also Published As

Publication number Publication date
KR20030075350A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US6946238B2 (en) Process for fabrication of optical waveguides
US7221826B2 (en) Spot-size transformer, method of producing spot-size transformer and waveguide-embedded optical circuit using spot-size transformer
JP2988916B2 (en) Fabrication method of optical waveguide
JPH0886928A (en) Manufacture of bragg reflector for waveguide and obtained product
JP2006106749A (en) Method of manufacturing mold for patterning lower cladding layer of wavelength filter and of manufacturing waveguide-type wavelength filter using the mold
JPH09325227A (en) Optical waveguide grating
JPH1048443A (en) Polymer waveguide and its production
KR100464552B1 (en) Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity
CN113534341B (en) Tunable waveguide grating filter based on femtosecond laser direct writing and manufacturing method thereof
US6826344B2 (en) Optical element and method of fabrication thereof
KR100440763B1 (en) Optical waveguide-type filter device for flattening gain and method for manufacturing the same
JP3477497B2 (en) Planar optical waveguide and method of manufacturing the same
JP4662095B2 (en) Manufacturing method of optical waveguide device
KR100261308B1 (en) Fabrication method of planar grating optical filter
Wosinski Technology for photonic components in silica/silicon material structure
JPH0720336A (en) Structure of optical waveguide and its production
KR100441242B1 (en) Coarse Wavelength Division Multiplexer manufactural method using the Thin Film Filter deposited Planar silica optical waveguide
KR20020048497A (en) Method of manufacturing planar optical waveguides through negative etching
JPH11109156A (en) Optical waveguide, and its manufacture
JP2002311261A (en) Optical waveguide and method for manufacturing the same
JPS6397906A (en) Waveguide type optical filter
Ojha Fabrication technologies for planar waveguide WDM components
Nishii et al. Athermal optical waveguide filter fabricated by short-pulse laser irradiation
JPH1195055A (en) Manufacture of optical waveguide element
JPH08304643A (en) Optical waveguide type long wavelength light cut-off filter and optical wavelength demultiplexing circuit

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
N231 Notification of change of applicant
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20131220

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20141219

Year of fee payment: 11

LAPS Lapse due to unpaid annual fee