JPH05313032A - Manufacture of optical waveguide - Google Patents

Manufacture of optical waveguide

Info

Publication number
JPH05313032A
JPH05313032A JP4116195A JP11619592A JPH05313032A JP H05313032 A JPH05313032 A JP H05313032A JP 4116195 A JP4116195 A JP 4116195A JP 11619592 A JP11619592 A JP 11619592A JP H05313032 A JPH05313032 A JP H05313032A
Authority
JP
Japan
Prior art keywords
ion exchange
optical waveguide
mask
waveguide
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116195A
Other languages
Japanese (ja)
Inventor
Kenichi Nakama
健一 仲間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4116195A priority Critical patent/JPH05313032A/en
Publication of JPH05313032A publication Critical patent/JPH05313032A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

PURPOSE:To provide a method of manufacturing an optical waveguide, low in loss and useful for a waveguide type optical sensor by evanescent coupling, by ion exchange. CONSTITUTION:A first ion-exchange control mask 4 is formed on a glass base 2 first. This mask is provided with the opening 4A of a waveguide pattern, and the base 2 is submerged in fused salt containing cation capable of raising refractive index to perform first ion exchange. The mask 4 is then removed from the base 2, and a second ion-exchange control mask 5 is formed at a part of a formed optical waveguide 1. A diffraction grating pattern, for instance, is formed in the vicinity of the center of the glass base 2, along the optical waveguide 1, across the length of 5mm. Both faces of the glass base 2 with the second mask 5 formed thereon are independently brought into contact with fused salt containing cation capable of lowering refractive index, and the electric field is applied to the glass base 2 with the mask 5 side as positive potential to perform second ion exchange.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオン交換による光導
波路の作製方法に関し、特にエバネッセント結合による
導波路型光センサ等に有用な低損失の光導波路を作製す
る方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an optical waveguide by ion exchange, and more particularly to a method for producing a low loss optical waveguide useful for a waveguide type optical sensor by evanescent coupling.

【0002】[0002]

【従来の技術】ガラス基板中に光導波路を作製する方法
として二段電界印加イオン交換法が知られている。この
方法では、最初にガラス基板表面をイオン透過防止機能
のある被膜で被覆するとともに、この被膜に所定の光導
波路パターンの開口を設けて第1のイオン交換制御マス
クとする。次に、このマスク被覆ガラス基板を、基板ガ
ラスの屈折率を上昇させ得る陽イオンを含む溶融塩に浸
漬して第1段のイオン交換処理を行う。この第1段イオ
ン交換処理の後、基板からマスク被膜を除去する。
2. Description of the Related Art A two-step electric field applied ion exchange method is known as a method for producing an optical waveguide in a glass substrate. In this method, first, the surface of the glass substrate is covered with a film having an ion permeation preventing function, and an opening of a predetermined optical waveguide pattern is provided in this film to form a first ion exchange control mask. Next, this mask-covered glass substrate is immersed in a molten salt containing cations capable of increasing the refractive index of the substrate glass to perform a first-stage ion exchange treatment. After this first stage ion exchange treatment, the mask coating is removed from the substrate.

【0003】次いで、基板のマスクで被覆されていた面
及び裏面をそれぞれ独立に、屈折率を下降させ得る陽イ
オンを含む溶融塩に接触させ、マスクで被覆されていた
面を正電位として基板に電界を印加して第2段イオン交
換処理を行うことにより導波路を基板肉厚内に埋め込
む。
Next, the surface and the back surface of the substrate covered with the mask are independently brought into contact with a molten salt containing cations capable of decreasing the refractive index, and the surface covered with the mask is applied to the substrate as a positive potential. The waveguide is embedded in the thickness of the substrate by applying the electric field and performing the second stage ion exchange treatment.

【0004】上述した二段電界印加イオン交換法による
と、標準的な単一モード光ファイバとの結合損失が一箇
所当たり0.2dB以下、伝搬損失が0.1dB/cm
以下の極めて低損失な単一モード導波路が作製可能であ
り、光ファイバ通信に用いる分岐合流等の導波路デバイ
スの製作に適用されていた。この方法で作製した光導波
路の側断面図を図2に示す。導波路1は断面円形でガラ
ス基板2中に一様に埋め込まれ、埋め込み深さは基板表
面から15〜20μm程度である。
According to the above-mentioned two-step electric field application ion exchange method, the coupling loss with a standard single mode optical fiber is 0.2 dB or less per point, and the propagation loss is 0.1 dB / cm.
The following single-mode waveguide with extremely low loss can be produced, and it has been applied to the production of waveguide devices such as branching and merging used for optical fiber communication. FIG. 2 shows a side sectional view of an optical waveguide manufactured by this method. The waveguide 1 has a circular cross section and is uniformly embedded in the glass substrate 2, and the embedded depth is about 15 to 20 μm from the substrate surface.

【0005】一方、エバネッセント結合による導波路型
光センサ等には従来、ニオブ酸リチウム結晶基板にTi
拡散で作製した単一モード導波路や、前述した二段イオ
ン交換法のうちの第1段のイオン交換処理工程のみで作
製した単一モード導波路が用いられていた。一例とし
て、後者の方法で作製した光導波路の側断面を図3に示
す。導波路1は半円形でガラス基板2の表面に作製され
ており、油などの被測定物質3が導波路1の表面に付着
した場合は、強いエバネッセント結合が得られ、導波路
の挿入損失が大きく変化するため、高感度な光センサが
作製可能であった。
On the other hand, in a waveguide type optical sensor by evanescent coupling, a lithium niobate crystal substrate is conventionally used as Ti.
A single-mode waveguide manufactured by diffusion and a single-mode waveguide manufactured only by the first-step ion exchange treatment step of the above-described two-step ion exchange method have been used. As an example, FIG. 3 shows a side cross section of an optical waveguide manufactured by the latter method. The waveguide 1 is formed in a semi-circular shape on the surface of the glass substrate 2. When the substance 3 to be measured such as oil adheres to the surface of the waveguide 1, strong evanescent coupling is obtained, and the insertion loss of the waveguide is reduced. Because of the large change, a highly sensitive optical sensor could be manufactured.

【0006】[0006]

【発明が解決しようとする課題】図2に示した従来の光
導波路は極めて低損失であるため、光ファイバ通信用に
は特に不具合は生じず、良好な分岐合流器等の光デバイ
スが作製できていた。しかし光センサ用に使用する場合
は、導波路が埋め込まれていてエバネッセント波の基板
表面への滲み出しが非常に小さいため、被測定物質が導
波路の表面に付着しても導波路の挿入損失はほとんど変
化せず、光センサとして使用できなかった。
Since the conventional optical waveguide shown in FIG. 2 has an extremely low loss, no particular problems occur for optical fiber communication, and a good optical device such as a branching junction can be manufactured. Was there. However, when it is used for an optical sensor, since the waveguide is embedded and the evanescent wave does not seep to the substrate surface very much, the insertion loss of the waveguide does not occur even if the substance to be measured adheres to the surface of the waveguide. Was almost unchanged and could not be used as an optical sensor.

【0007】前述した二段イオン交換法の第2段イオン
交換処理工程の条件を調整して、埋め込み深さを数μm
〜10μmにすれば、エバネッセント波の基板表面への
滲み出しが大きくなって光センサとして使用できるが、
導波路のモードフィールド径が楕円になるため、単一モ
ードファイバとの結合損失が一箇所当たり0.3〜0.
5dBに増加する問題があった。また光センサの感度
は、導波路の埋め込み深さと被測定物質の屈折率によっ
て決まるため、被測定物質の種類によって第2イオン交
換処理工程の条件を調整しなければならないという問題
があった。
The embedding depth is set to several μm by adjusting the conditions of the second-stage ion exchange treatment step of the above-mentioned two-stage ion exchange method.
If it is set to be 10 μm, the evanescent wave will be exuded to the substrate surface so much that it can be used as an optical sensor.
Since the mode field diameter of the waveguide is elliptical, the coupling loss with the single mode fiber is 0.3 to 0.
There was a problem of increasing to 5 dB. Further, the sensitivity of the optical sensor is determined by the buried depth of the waveguide and the refractive index of the substance to be measured, so that there is a problem in that the condition of the second ion exchange treatment step must be adjusted depending on the type of the substance to be measured.

【0008】一方、図3に示したタイプの光導波路で
は、高感度が得られるものの、単一モードファイバとの
結合損失が一箇所当たり0.5〜0.8dB、伝搬損失
が0.2〜0.3dB/cmと大きく、表面に被測定物
質が付着した場合の光導波路の挿入損失増加も5〜10
dBと非常に大きい問題があった。従って、光センサを
多段に直列に接続したシステムでは伝送マージンが小さ
くなり、接続個数が制限されてしまう問題があった。
On the other hand, in the optical waveguide of the type shown in FIG. 3, although high sensitivity is obtained, the coupling loss with the single mode fiber is 0.5 to 0.8 dB per point and the propagation loss is 0.2 to. It is as large as 0.3 dB / cm, and the insertion loss increase of the optical waveguide when the substance to be measured adheres to the surface is 5 to 10
There was a very big problem with dB. Therefore, in a system in which optical sensors are connected in series in multiple stages, there is a problem that the transmission margin becomes small and the number of connections is limited.

【0009】さらに、CVD法などでバッファ層として
基板表面に光導波路よりも屈折率の低い物質(例えばS
iO2など)を数μm〜10μm程度付着すれば、被測
定物質付着時の挿入損失の増加を小さくでき、光センサ
の感度や、被測定物質が付着した場合の光導波路の挿入
損失増加量も調整できるが、製作工程が複雑になる問題
があった。
Further, a material having a refractive index lower than that of the optical waveguide (for example, S
iO 2 etc.) for several μm to 10 μm can reduce the increase in insertion loss when the substance to be measured is attached, and also increase the sensitivity of the optical sensor and increase the insertion loss of the optical waveguide when the substance to be measured is attached. Although it can be adjusted, there is a problem that the manufacturing process becomes complicated.

【0010】[0010]

【課題を解決するための手段】前記従来の問題を解決す
るために本発明では、前述の二段電界印加イオン交換法
による光導波路の作製方法において、第1イオン交換処
理工程後に、基板表面に形成された光導波路の一部に第
2のイオン交換制御マスクを形成して第2イオン交換処
理を行い、第2イオン交換制御マスクを形成した部分の
光導波路の埋め込み深さを他の部分よりも小さくするこ
とにより、光導波路の埋め込み深さを部分的に変化させ
るものである。
In order to solve the above-mentioned conventional problems, in the present invention, in the method for producing an optical waveguide by the above-mentioned two-step electric field applied ion exchange method, a substrate surface is formed after the first ion exchange treatment step. A second ion-exchange control mask is formed on a part of the formed optical waveguide and a second ion-exchange treatment is performed, so that the embedded depth of the optical waveguide of the part where the second ion-exchange control mask is formed is smaller than that of the other part. Also, the embedding depth of the optical waveguide is partially changed by making it smaller.

【0011】[0011]

【作用】第2のイオン交換制御マスクを形成した部分の
み、光導波路の埋め込み深さを小さくすることにより、
単一モードファイバとの結合損失や伝搬損失が小さく、
かつ、エバネッセント波の基板表面への滲み出しが有
り、光センサとして使用可能な光導波路が実現できる。
By reducing the embedded depth of the optical waveguide only in the portion where the second ion exchange control mask is formed,
Small coupling loss and propagation loss with single mode fiber,
Moreover, the evanescent wave seeps out to the substrate surface, and an optical waveguide usable as an optical sensor can be realized.

【0012】また、埋め込み深さと、埋め込み深さの小
さい部分の長さを調整することにより、第2イオン交換
処理工程の条件を変更することなく、光センサの感度と
被測定物質が付着した場合の光導波路の挿入損失増加量
を容易に調整できる光導波路を実現できる。
Further, by adjusting the embedding depth and the length of the portion having a small embedding depth, the sensitivity of the optical sensor and the substance to be measured can be adhered without changing the conditions of the second ion exchange treatment step. It is possible to realize an optical waveguide in which the increase amount of insertion loss of the optical waveguide can be easily adjusted.

【0013】[0013]

【実施例】以下本発明を図1に示した一実施例に基づき
詳細に説明する。図1の(a)は、ガラス基板2に第1
のイオン交換制御マスク4を形成し、このマスクに導波
路パターンの開口4Aを設けた状態を示している。ガラ
ス基板2は、NaイオンとKイオンを含有するボロシリ
ケート系の光学ガラスであり、屈折率はnd=1.51
である。第1のイオン交換制御マスク4はTiのスパッ
タ蒸着で成膜した。導波路パターンは直線状であり、フ
ォトリソグラフィとエッチング法により作製した。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the embodiment shown in FIG. In FIG. 1A, the glass substrate 2 has a first
The ion exchange control mask 4 is formed and the mask is provided with the opening 4A of the waveguide pattern. The glass substrate 2 is a borosilicate optical glass containing Na ions and K ions, and has a refractive index of nd = 1.51.
Is. The first ion exchange control mask 4 was formed by sputtering Ti deposition. The waveguide pattern was linear and was produced by photolithography and etching.

【0014】(b)は、ガラス基板2の屈折率を上昇さ
せ得る陽イオンを含む溶融塩に、(a)で第1のイオン
交換制御マスク4が作製されたガラス基板2を浸漬して
第1のイオン交換処理を行った後の状態を示している。
この例では、Tlイオン、Kイオン等を含有する溶融塩
を使用し、熱イオン交換をガラス基板2のガラス点より
も約100℃低い温度で1時間行った。
In (b), the glass substrate 2 on which the first ion exchange control mask 4 has been prepared in (a) is immersed in a molten salt containing cations capable of increasing the refractive index of the glass substrate 2. The state after performing the ion exchange process of No. 1 is shown.
In this example, a molten salt containing Tl ions, K ions and the like was used, and the thermal ion exchange was performed at a temperature about 100 ° C. lower than the glass point of the glass substrate 2 for 1 hour.

【0015】(c)は、(b)の第1イオン交換処理後
のガラス基板2から、(a)と同様のエッチャントを使
用して第1イオン交換制御マスク4を除去した後の状態
を示しており、基板表面に半円形の光導波路1が形成さ
れている。
(C) shows a state after the first ion exchange control mask 4 is removed from the glass substrate 2 after the first ion exchange treatment of (b) by using the same etchant as in (a). The semi-circular optical waveguide 1 is formed on the substrate surface.

【0016】(d)は、(c)の第1イオン交換処理で
形成した光導波路1の一部分に、第2のイオン交換制御
マスク5を形成した後の状態を示している。この例で
は、第2イオン交換制御マスク5は、第1マスク4と同
様にTiのスパッタ蒸着で成膜し、フォトリソグラフィ
とエッチング法により、回折格子状のパターンをガラス
基板2の中央付近に光導波路1に沿って5mmの長さに
わたって作製した。
(D) shows a state after the second ion exchange control mask 5 is formed on a part of the optical waveguide 1 formed by the first ion exchange treatment of (c). In this example, the second ion exchange control mask 5 is formed by sputtering deposition of Ti similarly to the first mask 4, and a diffraction grating pattern is formed near the center of the glass substrate 2 by photolithography and etching. Fabrication was performed along the waveguide 1 for a length of 5 mm.

【0017】第2のイオン交換制御マスク5の回折格子
状パターンのマスク部分の幅は2μmとした。また第2
のイオン交換制御マスク5のうち、両端から0.5mm
の領域では、回折格子状パターンの開口幅は、パターン
の開口面積が第2のイオン交換制御マスク5の無い部分
の90%から50%まで徐々に変化するように設定し
た。さらに、第2のイオン交換制御マスク5のうち、前
記領域以外の領域では、回折格子状パターンの開口幅は
2μmに設定し、回折格子状パターンの開口面積が50
%で一定になるようにした。
The width of the mask portion of the diffraction grating pattern of the second ion exchange control mask 5 was set to 2 μm. The second
0.5mm from both ends of the ion exchange control mask 5
In the region (2), the opening width of the diffraction grating pattern was set so that the opening area of the pattern gradually changed from 90% to 50% of the portion without the second ion exchange control mask 5. Further, in the region other than the above region of the second ion exchange control mask 5, the opening width of the diffraction grating pattern is set to 2 μm, and the opening area of the diffraction grating pattern is 50 μm.
It was made to be constant in%.

【0018】(e)は、(d)で第2のイオン交換制御
マスク5が作製されたガラス基板2の両面をそれぞれ独
立に、屈折率を下降させ得る陽イオンを含む溶融塩に接
触させ、第1のイオン交換制御マスク4の付いていた
側、すなわち第2のイオン交換制御マスク5の付いてい
る側を正電位として、ガラス基板2に電界を印加して第
2のイオン交換を行った後の状態を示している。
In (e), both surfaces of the glass substrate 2 on which the second ion exchange control mask 5 is formed in (d) are independently brought into contact with a molten salt containing a cation capable of decreasing the refractive index, With the side having the first ion exchange control mask 4, that is, the side having the second ion exchange control mask 5 as a positive potential, an electric field was applied to the glass substrate 2 to perform the second ion exchange. The latter state is shown.

【0019】この例では、Kイオンを含有する溶融塩を
使用し、第1のイオン交換よりも約50℃高い温度で電
界強度=50V/mmで1時間電界印加イオン交換を行
った。
In this example, a molten salt containing K ions was used, and an electric field was applied for 1 hour at an electric field strength of 50 V / mm at a temperature about 50 ° C. higher than that of the first ion exchange.

【0020】(f)は、(e)の第2のイオン交換後の
ガラス基板2から、(a)と同様のエッチャントを使用
して第2のイオン交換制御マスク5を除去した後の状態
を示している。この例では、光導波路の埋め込み深さ
は、第2イオン交換制御マスク5の無かった部分で約1
5μm、第2のイオン交換マスク5の中心部分で約7μ
mであった。
(F) shows a state after the second ion exchange control mask 5 is removed from the glass substrate 2 after the second ion exchange in (e) using the same etchant as in (a). Shows. In this example, the embedded depth of the optical waveguide is about 1 at the portion without the second ion exchange control mask 5.
5 μm, about 7 μm at the center of the second ion exchange mask 5
It was m.

【0021】上述した実施例において作製された光導波
路は、波長1.3μmで単一モードであり、35mmの
長さの導波路の過剰損失は約1.0dBと低損失であっ
た。損失の内訳は、単一モードファイバとの結合損失が
一箇所あたり0.15dB、伝搬損失が0.06dB/
cm、埋め込み深さが変化している領域での放射損失が
一箇所あたり0.25dBであった。また、導波路に屈
折率nd=1.52の油を塗布した結果、光導波路の挿
入損失が約1.0dB増加した。
The optical waveguides produced in the above-described examples were single mode at a wavelength of 1.3 μm, and the excess loss of the waveguide having a length of 35 mm was low at about 1.0 dB. The breakdown of the loss is that the coupling loss with the single mode fiber is 0.15 dB per point, and the propagation loss is 0.06 dB /
cm, the radiation loss in the region where the burying depth was changed was 0.25 dB per location. Further, as a result of coating the waveguide with oil having a refractive index nd = 1.52, the insertion loss of the optical waveguide increased by about 1.0 dB.

【0022】本実施例では、第2のイオン交換制御マス
ク5の中心部分の開口面積は、第2のイオン交換制御マ
スク5の無い部分の50%としたが、開口面積が30%
から80%の範囲では、導波路の埋め込み深さが開口面
積とほぼ比例するので、光センサシステムの伝送マージ
ンや雑音、及び被測定物質の屈折率に応じて、必要な感
度が得られるように開口面積を決めればよい。
In this embodiment, the opening area of the central portion of the second ion exchange control mask 5 is 50% of the area without the second ion exchange control mask 5, but the opening area is 30%.
In the range of from 80% to 80%, the embedded depth of the waveguide is almost proportional to the opening area, so that the required sensitivity can be obtained according to the transmission margin and noise of the optical sensor system and the refractive index of the substance to be measured. The opening area may be determined.

【0023】また、第2のイオン交換制御マスク5の長
さは5mmとしたが、センサの感度及び、被測定物質が
付着した場合の光導波路の挿入損失増加量は、第2のイ
オン交換制御マスク5の長さにほぼ比例するので、前記
開口面積と同様に光センサシステムの伝送マージンや雑
音と被測定物質の屈折率に応じて、第2のイオン交換制
御マスク5の長さを決めればよい。
Although the length of the second ion exchange control mask 5 is set to 5 mm, the sensitivity of the sensor and the insertion loss increase amount of the optical waveguide when the substance to be measured adheres are determined by the second ion exchange control. Since it is almost proportional to the length of the mask 5, if the length of the second ion exchange control mask 5 is determined according to the transmission margin and noise of the optical sensor system and the refractive index of the substance to be measured as in the case of the opening area. Good.

【0024】すなわち、第2のイオン交換制御マスク5
の中心部の開口面積と長さを調整することにより、導波
路の作製工程を変更することなく種々の光センサシステ
ムや被測定物質に応じた低損失の導波路型光センサが簡
単に実現できる。
That is, the second ion exchange control mask 5
By adjusting the opening area and length of the central part of the, it is possible to easily realize a low loss waveguide type optical sensor according to various optical sensor systems and substances to be measured without changing the waveguide manufacturing process. .

【0025】なお本実施例では、光導波路の埋め込み深
さが変化している領域での放射損失は一箇所あたり0.
25dBであったが、第2のイオン交換制御マスク5の
開口面積を変化させている領域の長さを長くして、埋め
込み深さの変化をより緩やかにすれば低減できる。
In this embodiment, the radiation loss in the region where the embedded depth of the optical waveguide changes is 0.
Although it was 25 dB, it can be reduced by increasing the length of the region in which the opening area of the second ion exchange control mask 5 is changed to make the change of the embedding depth more gradual.

【0026】以上本発明を一つの実施例に基づいて説明
したが、実施例以外に種々の作製方法を採り得る。例え
ば、本実施例では第2のイオン交換制御マスク5として
Ti膜を使用したが、SiO2のように光導波路1より
も屈折率が小さく、イオン透過防止機能をもつ物質であ
れば、第2のイオン交換処理を行った後、第2のイオン
交換制御マスク5を除去しないで使用することができ
る。
Although the present invention has been described based on one embodiment, various manufacturing methods other than the embodiment can be adopted. For example, in the present embodiment, the Ti film is used as the second ion exchange control mask 5, but if it is a substance such as SiO 2 having a smaller refractive index than the optical waveguide 1 and having an ion permeation preventing function, the second film is used. After performing the ion exchange treatment of No. 2, it can be used without removing the second ion exchange control mask 5.

【0027】[0027]

【発明の効果】本発明によれば、エバネッセント結合に
よる導波路型光センサを低損失化でき、また、光センサ
システムや被測定物質の屈折率に応じて、センサ感度や
被測定物質が付着した場合の挿入損失増加量の調整が容
易な光導波路を作製することができる。
According to the present invention, it is possible to reduce the loss of a waveguide type optical sensor by evanescent coupling, and the sensor sensitivity and the substance to be measured adhere depending on the optical sensor system and the refractive index of the substance to be measured. In this case, it is possible to manufacture an optical waveguide in which the amount of increase in insertion loss can be easily adjusted.

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)ないし(f)は本発明の一実施例を段階
的に示す断面図
1A to 1F are cross-sectional views showing an embodiment of the present invention step by step.

【図2】従来の二段電界印加イオン交換法により作製し
た光導波路を示す横断面及び側断面図
FIG. 2 is a cross-sectional view and a side cross-sectional view showing an optical waveguide manufactured by a conventional two-step electric field application ion exchange method.

【図3】従来の一段の熱イオン交換処理で作製した光導
波路を示す横断面及び側断面図
FIG. 3 is a cross-sectional view and a side cross-sectional view showing an optical waveguide manufactured by a conventional one-step thermionic exchange treatment.

【符号の説明】[Explanation of symbols]

1 光導波路 2 ガラス基板 3 被測定物質 4 第1のイオン交換制御マスク 4A パターン開口 5 第2のイオン交換制御マスク 1 Optical Waveguide 2 Glass Substrate 3 Target Substance 4 First Ion Exchange Control Mask 4A Pattern Aperture 5 Second Ion Exchange Control Mask

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ガラス基板表面をイオン透過防止機能の
ある被膜で被覆するとともに、該被膜に所定の光導波路
パターンの開口を設けて第1のイオン交換制御マスクと
し、このマスク被覆ガラス基板を、基板ガラスの屈折率
を上昇させ得る陽イオンを含む溶融塩に浸漬してイオン
交換処理を行った後、前記基板から前記マスクを除去し
て基板表面に光導波路を形成する第1のイオン交換処理
工程と、前記基板のマスクで被覆されていた面及び裏面
をそれぞれ独立に、屈折率を下降させ得る陽イオンを含
む溶融塩に接触させ、前記マスクで被覆されていた面を
正電位として基板に電界を印加してイオン交換を行うこ
とにより導波路を基板肉厚内に埋め込む第2のイオン交
換処理工程、とからなる二段電界印加イオン交換法によ
る光導波路の作製方法において、第1のイオン交換工程
終了後に形成された光導波路の一部に第2のイオン交換
制御マスクを形成して前記第2のイオン交換を行うこと
により、光導波路の埋め込み深さを部分的に変化させる
ことを特徴とする光導波路の作製方法。
1. A surface of a glass substrate is coated with a film having an ion permeation preventing function, and a predetermined optical waveguide pattern opening is provided in the film to form a first ion exchange control mask. A first ion exchange treatment in which the mask is removed from the substrate to form an optical waveguide on the substrate surface after the substrate glass is immersed in a molten salt containing cations capable of increasing the refractive index to perform the ion exchange treatment. The step and the mask-coated surface and the back surface of the substrate are independently brought into contact with a molten salt containing cations capable of decreasing the refractive index, and the mask-coated surface is applied to the substrate as a positive potential. A second ion exchange treatment step of embedding the waveguide in the substrate thickness by applying an electric field to perform ion exchange, and a method of producing an optical waveguide by a two-step electric field application ion exchange method In the method, a second ion exchange control mask is formed on a part of the optical waveguide formed after the completion of the first ion exchange step, and the second ion exchange is performed, so that the embedded depth of the optical waveguide is partially changed. A method of manufacturing an optical waveguide, which is characterized in that the optical waveguide is changed.
JP4116195A 1992-05-08 1992-05-08 Manufacture of optical waveguide Pending JPH05313032A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116195A JPH05313032A (en) 1992-05-08 1992-05-08 Manufacture of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116195A JPH05313032A (en) 1992-05-08 1992-05-08 Manufacture of optical waveguide

Publications (1)

Publication Number Publication Date
JPH05313032A true JPH05313032A (en) 1993-11-26

Family

ID=14681193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116195A Pending JPH05313032A (en) 1992-05-08 1992-05-08 Manufacture of optical waveguide

Country Status (1)

Country Link
JP (1) JPH05313032A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228865A (en) * 2001-01-29 2002-08-14 Fdk Corp Ion exchange method and method for producing light guide device by the same
WO2003071324A3 (en) * 2002-02-22 2004-03-04 Teem Photonics Mask for making an optical guide with variable embedding depth and method for using same to obtain the guide with variable embedding
CN100392446C (en) * 2006-05-08 2008-06-04 浙江南方通信集团股份有限公司 Method for preparing glass waveguide by ion mask
WO2009142646A1 (en) * 2008-05-23 2009-11-26 Hewlett-Packard Development Company, L.P. Optical interconnect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002228865A (en) * 2001-01-29 2002-08-14 Fdk Corp Ion exchange method and method for producing light guide device by the same
JP4662095B2 (en) * 2001-01-29 2011-03-30 Fdk株式会社 Manufacturing method of optical waveguide device
WO2003071324A3 (en) * 2002-02-22 2004-03-04 Teem Photonics Mask for making an optical guide with variable embedding depth and method for using same to obtain the guide with variable embedding
CN100392446C (en) * 2006-05-08 2008-06-04 浙江南方通信集团股份有限公司 Method for preparing glass waveguide by ion mask
WO2009142646A1 (en) * 2008-05-23 2009-11-26 Hewlett-Packard Development Company, L.P. Optical interconnect

Similar Documents

Publication Publication Date Title
US5160523A (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
US4375312A (en) Graded index waveguide structure and process for forming same
US4765702A (en) Glass integrated optical component
US6769274B2 (en) Method of manufacturing a planar waveguide using ion exchange method
CA1333856C (en) Method of making integrated optical component
US4711514A (en) Product of and process for forming tapered waveguides
JPH11125726A (en) Optical waveguide and its manufacture
US4136439A (en) Method for the production of a light conductor structure with interlying electrodes
US4080244A (en) Method for the production of a light conducting structure with interlying electrodes
JPH05313032A (en) Manufacture of optical waveguide
JPH0791091B2 (en) Method for manufacturing low-loss embedded waveguide
US6483964B1 (en) Method of fabricating an optical component
JPH10227930A (en) Temperature-independent optical waveguide and its manufacture
JP4313772B2 (en) Manufacturing method of optical waveguide
JPH10123341A (en) Optical waveguide and its production
JPH0462644B2 (en)
JPS6053904A (en) Ridge type light guide
JP2001221926A (en) Production of optical waveguide element
JPS6343105A (en) Single mode optical waveguide
JPS60156014A (en) Production of flush type optical waveguide device
CN118091838A (en) Waveguide structure for improving optical waveguide loss and polarization sensitivity and preparation method thereof
JPS60156012A (en) Flush type optical waveguide
JP2570822B2 (en) Manufacturing method of optical waveguide
JPH06174952A (en) Substrate type optical waveguide and its production
KR100374345B1 (en) Method for manufacturing buried optical waveguide

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees