JPH06174952A - Substrate type optical waveguide and its production - Google Patents

Substrate type optical waveguide and its production

Info

Publication number
JPH06174952A
JPH06174952A JP32970992A JP32970992A JPH06174952A JP H06174952 A JPH06174952 A JP H06174952A JP 32970992 A JP32970992 A JP 32970992A JP 32970992 A JP32970992 A JP 32970992A JP H06174952 A JPH06174952 A JP H06174952A
Authority
JP
Japan
Prior art keywords
optical waveguide
layer
substrate
softening point
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32970992A
Other languages
Japanese (ja)
Inventor
Hiromi Hidaka
啓▲視▼ 日▲高▼
Kensuke Shima
研介 島
Tokuan Shin
得安 晋
Akira Wada
朗 和田
Ryozo Yamauchi
良三 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP32970992A priority Critical patent/JPH06174952A/en
Publication of JPH06174952A publication Critical patent/JPH06174952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily produce the smooth optical waveguide having an approximately circular shape in section. CONSTITUTION:This substrate type optical waveguide is constituted by providing the optical waveguide 14 having the approximately circular shape in section on a substrate 12 and providing a base material layer 15 narrower in width than the optical waveguide 14 between the substrate 12 and the optical waveguide 14. The base material layer 15 consists of glass having a high softening point and the optical waveguide 14 consists of glass having the refractive index higher than the refractive index of the base material layer 15 and the softening point lower than the softening point of the base material layer. The base material layer 15 and the optical waveguide layer 14 are successively laminated on the substrate 12. The base material layer 15 and the optical waveguide layer 14 are then selectively etched in such a manner that the width of the base material layer 15 is narrower than the optical waveguide layer 14. The optical waveguide layer 14 is then softened by a heat treatment at the prescribed temp. below the softening point of the base material layer 15, by which the optical waveguide is produced. Then, scattering loss is decreased in a single mode and further, the coupling loss with an optical fiber is decreased as well in the case of a multimode. In addition, the reflection loss of the optical waveguide 14 is decreased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光通信、光情報処理シ
ステム等に用いられ、損失のない基板型光導波路及びそ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lossless substrate type optical waveguide used for optical communication, an optical information processing system and the like, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】近年、光通信システム、光情報処理シス
テム等の分野においては、高速化、小型化への要求が高
まる一方であり、これらのシステムを構成する光デバイ
スや光コンポーネント等に対しても小型化、高速化、高
信頼性に対する要求が高まる一方である。そして、これ
らの光デバイスの一つに、例えば図5に示すような基板
型光導波路1がある。この基板型光導波路1は、シリコ
ン(Si)基板2上に断面矩形状の光導波路3が形成さ
れ、該光導波路3が埋込層4により埋め込まれたもので
ある。前記光導波路3は高屈折率の石英(SiO2)ガ
ラスから、また、埋込層4は光導波路3より低屈折率の
石英ガラスからそれぞれ構成されている。この基板型光
導波路1は、光通信システムにおいて多用されている石
英系光ファイバとの整合性に優れ、また、低損失、高信
頼性、小型等の様々な特徴も有する。
2. Description of the Related Art In recent years, in the fields of optical communication systems, optical information processing systems, etc., there is a growing demand for higher speed and smaller size. The demand for smaller size, higher speed, and higher reliability is increasing. And, as one of these optical devices, there is a substrate type optical waveguide 1 as shown in FIG. 5, for example. In this substrate type optical waveguide 1, an optical waveguide 3 having a rectangular cross section is formed on a silicon (Si) substrate 2, and the optical waveguide 3 is embedded by an embedding layer 4. The optical waveguide 3 is made of quartz (SiO 2 ) glass having a high refractive index, and the embedding layer 4 is made of quartz glass having a lower refractive index than the optical waveguide 3. This substrate-type optical waveguide 1 has excellent compatibility with a silica-based optical fiber that is widely used in optical communication systems, and also has various characteristics such as low loss, high reliability, and small size.

【0003】前記基板型光導波路1の製造方法として
は、通常、シリコン基板2の上に、FHD法やLP(減
圧:Low Pressure)CVD法等により光導波路3を形成
する方法が一般的である。例えば、FHD法によりシリ
コン基板2上に光導波路3を形成するには、このシリコ
ン基板2上に高屈折率の石英ガラス粉体を火炎堆積し、
次いで、このシリコン基板2を1400℃程度に加熱し
前記石英ガラス粉体を焼結させて光導波路層とする。次
いで、フォトリソグラフィにより該光導波路層をパター
ン形成して光導波路3とする。
As a method of manufacturing the substrate type optical waveguide 1, a method of forming the optical waveguide 3 on the silicon substrate 2 by the FHD method, LP (Low Pressure) CVD method or the like is generally used. . For example, in order to form the optical waveguide 3 on the silicon substrate 2 by the FHD method, silica glass powder having a high refractive index is flame-deposited on the silicon substrate 2,
Next, the silicon substrate 2 is heated to about 1400 ° C. to sinter the quartz glass powder to form an optical waveguide layer. Then, the optical waveguide layer is patterned by photolithography to form the optical waveguide 3.

【0004】また、LPCVD法によりシリコン基板2
上に光導波路3を形成するには、このシリコン基板2と
光導波路層との密着性を高め、かつ滑らかな表面を得る
ために、300〜600℃に加熱したシリコン基板2上
に高屈折率の石英ガラスを堆積し光導波路層とする。次
いで、フォトリソグラフィにより該光導波路層をパター
ン形成して光導波路3とする。
Further, the silicon substrate 2 is formed by the LPCVD method.
In order to form the optical waveguide 3 on the silicon substrate 2, in order to improve the adhesion between the silicon substrate 2 and the optical waveguide layer and to obtain a smooth surface, the silicon substrate 2 heated to 300 to 600 ° C. has a high refractive index. Quartz glass is deposited to form an optical waveguide layer. Then, the optical waveguide layer is patterned by photolithography to form the optical waveguide 3.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前記基
板型光導波路1では、光導波路3の断面が矩形状である
ために、シングルモードでは散乱損失が生じ、マルチモ
ードでは、さらに光ファイバとの間に結合損失が生じる
という問題があった。また、基板型光導波路1の製造方
法では、フォトリソグラフィにより該光導波路層をパタ
ーン形成して光導波路3を作製しているために、光導波
路3の断面形状は矩形状または台形状に限られてしま
い、円形や楕円形のものを作製することができないとい
う問題があった。
However, in the substrate type optical waveguide 1, since the optical waveguide 3 has a rectangular cross section, scattering loss occurs in the single mode, and in the multimode, the optical fiber 3 is further separated from the optical fiber. There is a problem that coupling loss occurs in the. Further, in the method for manufacturing the substrate type optical waveguide 1, since the optical waveguide layer is patterned by photolithography to produce the optical waveguide 3, the cross-sectional shape of the optical waveguide 3 is not limited to a rectangular shape or a trapezoidal shape. However, there is a problem that a circular or elliptical shape cannot be manufactured.

【0006】本発明は、上記の事情に鑑みてなされたも
のであって、光導波路の断面形状を略円形状とすること
により、損失のない基板型光導波路及びその製造方法を
提供することにある。
The present invention has been made in view of the above circumstances, and provides a substrate-type optical waveguide without loss and a method for manufacturing the same by making the cross-sectional shape of the optical waveguide substantially circular. is there.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明は次の様な基板型光導波路及びその製造方法
を採用した。すなわち、請求項1記載の基板型光導波路
は、基板上に、断面が略円形状の光導波路を設け、前記
基板と光導波路との間に該光導波路より幅の狭い基材層
を設け、該基材層は高軟化点のガラスからなり、前記光
導波路は該基材層より高屈折率かつ低軟化点のガラスか
らなることを特徴としている。
In order to solve the above problems, the present invention adopts the following substrate type optical waveguide and its manufacturing method. That is, the substrate type optical waveguide according to claim 1, wherein an optical waveguide having a substantially circular cross section is provided on the substrate, and a base layer having a width narrower than the optical waveguide is provided between the substrate and the optical waveguide. The base material layer is made of glass having a high softening point, and the optical waveguide is made of glass having a higher refractive index and a lower softening point than the base material layer.

【0008】また、請求項2記載の基板型光導波路は、
請求項1記載の基板型光導波路において、前記基材層及
び光導波路の周囲に、該光導波路より低屈折率かつ高軟
化点のガラスからなる埋込層を設けてなることを特徴と
している。
The substrate type optical waveguide according to claim 2 is
The substrate type optical waveguide according to claim 1 is characterized in that an embedded layer made of glass having a lower refractive index and a higher softening point than the optical waveguide is provided around the base material layer and the optical waveguide.

【0009】また、請求項3記載の基板型光導波路の製
造方法は、基板上に、高軟化点ガラスからなる基材層、
該基材層より高屈折率かつ低軟化点のガラスからなる光
導波路層を順次積層し、次いで、前記基材層の幅が光導
波路層の幅より狭くなるように、該基材層及び光導波路
層を選択的に蝕刻し、次いで、前記基材層の軟化点以下
の所定の温度にて熱処理し、前記光導波路層を軟化させ
て断面が略円形状の光導波路とすることを特徴としてい
る。
According to a third aspect of the present invention, there is provided a substrate type optical waveguide manufacturing method, wherein a substrate layer made of high softening point glass is provided on a substrate.
An optical waveguide layer made of glass having a higher refractive index and a lower softening point than the base layer is sequentially laminated, and then the base layer and the optical waveguide layer are arranged so that the width of the base layer is narrower than that of the optical waveguide layer. Characterized in that the waveguide layer is selectively etched and then heat-treated at a predetermined temperature not higher than the softening point of the base material layer to soften the optical waveguide layer to form an optical waveguide having a substantially circular cross section. There is.

【0010】また、請求項4記載の基板型光導波路の製
造方法は、請求項3記載の基板型光導波路の製造方法に
おいて、前記基材層及び光導波路の周囲に、該光導波路
より低屈折率かつ高軟化点のガラスを堆積し、次いで、
この堆積したガラスの軟化点以上の所定の温度にて熱処
理し、この堆積したガラスを軟化させて埋込層とするこ
とを特徴としている。
A method of manufacturing a substrate type optical waveguide according to a fourth aspect is the method of manufacturing a substrate type optical waveguide according to the third aspect, wherein the substrate layer and the optical waveguide have a lower refractive index than the optical waveguide. Rate and high softening point glass is deposited, then
It is characterized in that the deposited glass is heat-treated at a predetermined temperature higher than the softening point of the deposited glass to soften the deposited glass to form an embedded layer.

【0011】また、請求項5記載の基板型光導波路の製
造方法は、基板上に、高軟化点ガラスからなる基材層、
該基材層より高屈折率かつ低軟化点のガラスからなる光
導波路層を順次積層し、次いで、前記基材層の幅が光導
波路層の幅より狭くなるように、該基材層及び光導波路
層を選択的に蝕刻し、次いで、前記基材層及び光導波路
層の周囲に、該光導波路層より低屈折率かつ高軟化点の
ガラスを堆積し、次いで、この堆積したガラスの軟化点
以下の所定の温度にて熱処理し、前記光導波路層を軟化
させて断面が略円形状の光導波路とし、次いで、この堆
積したガラスの軟化点以上の所定の温度にて熱処理し、
この堆積したガラスを軟化させて埋込層とすることを特
徴としている。
According to a fifth aspect of the present invention, there is provided a method of manufacturing a substrate type optical waveguide, wherein a substrate layer made of high softening point glass is provided on a substrate.
An optical waveguide layer made of glass having a higher refractive index and a lower softening point than the base layer is sequentially laminated, and then the base layer and the optical waveguide layer are arranged so that the width of the base layer is narrower than that of the optical waveguide layer. The waveguide layer is selectively etched, and then a glass having a lower refractive index and a higher softening point than the optical waveguide layer is deposited around the base layer and the optical waveguide layer, and then the softening point of the deposited glass is deposited. Heat treatment at the following predetermined temperature to soften the optical waveguide layer to form an optical waveguide having a substantially circular cross section, and then heat treatment at a predetermined temperature of the softening point of the deposited glass or higher,
It is characterized in that the deposited glass is softened to form a buried layer.

【0012】[0012]

【作用】本発明の請求項1記載の基板型光導波路では、
基板上に、基材層より高屈折率のガラスからなる断面が
略円形状の光導波路を設けることにより、シングルモー
ドの場合では散乱損失が低減し、マルチモードの場合で
は、さらに光ファイバとの間の結合損失をも低減する。
In the substrate type optical waveguide according to claim 1 of the present invention,
By providing an optical waveguide having a substantially circular cross section made of glass having a higher refractive index than the base material layer on the substrate, scattering loss is reduced in the case of single mode, and further in the case of multimode, the optical fiber It also reduces the coupling loss between them.

【0013】また、請求項2記載の基板型光導波路で
は、前記基材層及び光導波路の周囲に、該光導波路より
低屈折率のガラスからなる埋込層を設けることにより、
該光導波路の反射損失を低減する。
Further, in the substrate type optical waveguide according to a second aspect of the present invention, an embedded layer made of glass having a refractive index lower than that of the optical waveguide is provided around the base material layer and the optical waveguide.
The reflection loss of the optical waveguide is reduced.

【0014】また、請求項3記載の基板型光導波路の製
造方法では、突条の基材層及び光導波路層を、前記基材
層の軟化点以下の所定の温度にて熱処理することによ
り、前記光導波路層が軟化し表面張力により断面が略円
形状でかつなめらかな光導波路となる。
Further, in the method of manufacturing a substrate type optical waveguide according to a third aspect of the present invention, the ridged base material layer and the optical waveguide layer are heat-treated at a predetermined temperature below the softening point of the base material layer, The optical waveguide layer is softened, and due to the surface tension, the optical waveguide has a substantially circular cross section and is smooth.

【0015】また、請求項4記載の基板型光導波路の製
造方法では、前記基材層及び光導波路の周囲に該光導波
路より低屈折率かつ高軟化点のガラスを堆積し、次い
で、この堆積したガラスの軟化点以上の所定の温度にて
熱処理することにより、この堆積したガラスが軟化して
埋込層となる。
In the method of manufacturing a substrate type optical waveguide according to a fourth aspect, glass having a lower refractive index and a higher softening point than the optical waveguide is deposited around the base material layer and the optical waveguide, and then this deposition is performed. By heat-treating at a predetermined temperature equal to or higher than the softening point of the formed glass, the deposited glass is softened and becomes an embedded layer.

【0016】また、請求項5記載の基板型光導波路の製
造方法では、突条の基材層及び光導波路層の周囲に、該
光導波路層より高軟化点のガラスを堆積し、次いで、こ
の堆積したガラスの軟化点以下の所定の温度にて熱処理
することにより、前記光導波路層が軟化し表面張力によ
り断面が略円形状でかつなめらかな光導波路となる。次
いで、この堆積したガラスの軟化点以上の所定の温度に
て熱処理することにより、この堆積したガラスが軟化し
て埋込層となる。
Further, in the method for manufacturing a substrate type optical waveguide according to a fifth aspect, glass having a higher softening point than the optical waveguide layer is deposited around the base material layer of the ridge and the optical waveguide layer, and then, By heat-treating at a predetermined temperature equal to or lower than the softening point of the deposited glass, the optical waveguide layer is softened to form an optical waveguide having a substantially circular cross section due to surface tension. Then, by heat-treating at a predetermined temperature equal to or higher than the softening point of the deposited glass, the deposited glass is softened to form an embedded layer.

【0017】[0017]

【実施例】図1は、本発明の一実施例の基板型光導波路
11を示す正断面図である。この基板型光導波路11
は、基板12の上面12a全体にクラッド層13が設け
られ、該クラッド層13上に断面が略円形状の光導波路
14が設けられ、前記クラッド層13と光導波路14と
の間に該光導波路14より幅の狭い断面逆台形状の突条
の基材層15が設けられ、基材層15及び光導波路14
の周囲に埋込層16が設けられている。基板12は、1
800℃以上の温度に耐えられる材料からなるもので、
例えば、シリコン基板、石英基板、サファイア基板等が
好適に用いられる。
1 is a front sectional view showing a substrate type optical waveguide 11 according to an embodiment of the present invention. This substrate type optical waveguide 11
Is provided with a cladding layer 13 on the entire upper surface 12a of the substrate 12, an optical waveguide 14 having a substantially circular cross section is provided on the cladding layer 13, and the optical waveguide is provided between the cladding layer 13 and the optical waveguide 14. 14 is provided with a protruding base material layer 15 having an inverted trapezoidal cross section, and the base material layer 15 and the optical waveguide 14 are provided.
A buried layer 16 is provided around the. Substrate 12 is 1
It is made of a material that can withstand temperatures above 800 ° C.
For example, a silicon substrate, a quartz substrate, a sapphire substrate or the like is preferably used.

【0018】クラッド層13は低屈折率の石英ガラスに
より、基材層15は低屈折率かつ高軟化点の石英ガラス
により、光導波路14は該基材層15より高屈折率かつ
低軟化点の石英ガラスにより、埋込層16は該光導波路
14より低屈折率かつ高軟化点の石英ガラスによりそれ
ぞれ構成されている。前記石英ガラスは、リン(P)、
アルミニウム(Al)、ゲルマニウム(Ge)、チタン
(Ti)等を添加すると屈折率が上昇し、ホウ素
(B)、フッ素(F)等を添加すると屈折率が低下し、
また、これら添加物の総添加量が増大すると軟化点が低
下し、総添加量が減少すると軟化点が上昇するという性
質がある。したがって、屈折率を上昇させる添加物と屈
折率を低下させる添加物との割合を変えることにより、
該石英ガラスの屈折率を所定の屈折率とすることができ
る。また、これら添加物の総添加量を変えることによ
り、該石英ガラスの軟化点を所定の軟化点とすることが
できる。
The cladding layer 13 is made of silica glass having a low refractive index, the base layer 15 is made of silica glass having a low refractive index and a high softening point, and the optical waveguide 14 is made of silica glass having a high refractive index and a low softening point. The burying layer 16 is made of quartz glass, and is made of quartz glass having a lower refractive index and a higher softening point than the optical waveguide 14. The quartz glass is phosphorus (P),
Addition of aluminum (Al), germanium (Ge), titanium (Ti) or the like increases the refractive index, and addition of boron (B), fluorine (F) or the like decreases the refractive index,
Further, there is a property that the softening point decreases when the total addition amount of these additives increases and the softening point increases when the total addition amount decreases. Therefore, by changing the ratio of the additive for increasing the refractive index and the additive for decreasing the refractive index,
The refractive index of the quartz glass can be a predetermined refractive index. Further, the softening point of the quartz glass can be set to a predetermined softening point by changing the total addition amount of these additives.

【0019】この基板型光導波路11では、光導波路1
4の断面が略円形状であるから、シングルモードの場合
では散乱損失が低減し、マルチモードの場合では、さら
に光ファイバとの間の結合損失をも低減する。また、埋
込層16を設けることにより、該光導波路14の反射損
失が低減する。
In this substrate type optical waveguide 11, the optical waveguide 1
Since the cross section of 4 is substantially circular, the scattering loss is reduced in the case of the single mode, and the coupling loss with the optical fiber is further reduced in the case of the multi mode. Further, by providing the buried layer 16, the reflection loss of the optical waveguide 14 is reduced.

【0020】次に、基板型光導波路11の製造方法につ
いて図2に基づき説明する。まず、基板12上にクラッ
ド層13を形成し、該クラッド層13上にFHD法やL
PCVD法により基材層21、光導波路層22を順次積
層する(同図(a))。次いで、反応性イオンエッチン
グ(RIE)により基材層21及び光導波路層22を加
工し、基材層21a(15)の幅が光導波路層22aの
幅より狭い断面逆台形状の突条とする(同図(b))。
次いで、基材層15及び光導波路層22aを、基材層1
5の軟化点以下の所定の温度にて熱処理し、光導波路層
22aを軟化させて表面張力により断面が略円形状の光
導波路14とする(同図(c))。ここでは、光導波路
層22aが軟化し表面張力により断面が略円形状に変形
し、断面が略円形状でかつなめらかな光導波路14とな
る。
Next, a method of manufacturing the substrate type optical waveguide 11 will be described with reference to FIG. First, the clad layer 13 is formed on the substrate 12, and the FHD method or the L method is performed on the clad layer 13.
The base material layer 21 and the optical waveguide layer 22 are sequentially laminated by the PCVD method ((a) in the same figure). Next, the base material layer 21 and the optical waveguide layer 22 are processed by reactive ion etching (RIE) to form a ridge having an inverted trapezoidal cross section in which the width of the base material layer 21a (15) is narrower than the width of the optical waveguide layer 22a. ((B) of the same figure).
Next, the base material layer 15 and the optical waveguide layer 22a are attached to the base material layer 1
Heat treatment is performed at a predetermined temperature not higher than the softening point of No. 5 to soften the optical waveguide layer 22a to obtain the optical waveguide 14 having a substantially circular cross section due to surface tension (FIG. 7C). Here, the optical waveguide layer 22a is softened and the cross section is deformed into a substantially circular shape by the surface tension, and the optical waveguide 14 having a substantially circular cross section and being smooth is formed.

【0021】次いで、前記基材層15及び光導波路14
の周囲に、該光導波路14より低屈折率かつ高軟化点の
ガラス23を堆積する。次いで、この堆積したガラス2
3の軟化点以上の所定の温度にて熱処理し、この堆積し
たガラス23を軟化させて埋込層16とする(同図
(d))。以上により、基板型光導波路11を製造する
ことができる。この方法では、光導波路層22aを熱処
理することにより断面が略円形状でかつなめらかな光導
波路14を容易に作製することができ、しかも、基材層
15及び光導波路層22aは極めて高精度で作製するこ
とができるので、光導波路14の径も極めて高精度なも
のとなる。
Next, the base layer 15 and the optical waveguide 14
A glass 23 having a lower refractive index and a higher softening point than the optical waveguide 14 is deposited around the glass. Then this deposited glass 2
Heat treatment is performed at a predetermined temperature equal to or higher than the softening point of No. 3, and the deposited glass 23 is softened to form the embedded layer 16 (FIG. 3D). By the above, the substrate type optical waveguide 11 can be manufactured. According to this method, the optical waveguide layer 22a is heat-treated to easily manufacture the optical waveguide 14 having a substantially circular cross section, and the base material layer 15 and the optical waveguide layer 22a can be manufactured with extremely high accuracy. Since it can be manufactured, the diameter of the optical waveguide 14 also becomes extremely highly accurate.

【0022】以上説明した様に、上記実施例の基板型光
導波路11によれば、基板12上に断面が略円形状の光
導波路14を設けたので、シングルモードの場合では散
乱損失を低減することができ、マルチモードの場合で
は、さらに光ファイバとの間の結合損失をも低減するこ
とができる。また、基材層15及び光導波路14の周囲
に埋込層16を設けたので、光導波路14の反射損失を
低減することができる。
As described above, according to the substrate type optical waveguide 11 of the above embodiment, since the optical waveguide 14 having a substantially circular cross section is provided on the substrate 12, the scattering loss is reduced in the single mode. In the case of multimode, the coupling loss with the optical fiber can be further reduced. Further, since the embedding layer 16 is provided around the base material layer 15 and the optical waveguide 14, the reflection loss of the optical waveguide 14 can be reduced.

【0023】また、上記実施例の基板型光導波路11の
製造方法によれば、突条の基材層15及び光導波路層2
2aを、基材層15の軟化点以下の所定の温度にて熱処
理するので、断面が略円形状でかつなめらかな光導波路
14を容易に作製することができる。また、基材層15
及び光導波路14の周囲に、該光導波路14より低屈折
率かつ高軟化点のガラス23を堆積し、次いで、この堆
積したガラス23の軟化点以上の所定の温度にて熱処理
するので、基材層15及び光導波路14の周囲に容易に
埋込層16を作製することができる。
Further, according to the method of manufacturing the substrate type optical waveguide 11 of the above embodiment, the ridged base layer 15 and the optical waveguide layer 2 are provided.
Since 2a is heat-treated at a predetermined temperature equal to or lower than the softening point of the base material layer 15, the optical waveguide 14 having a substantially circular cross section and being smooth can be easily manufactured. In addition, the base material layer 15
Further, a glass 23 having a lower refractive index and a higher softening point than the optical waveguide 14 is deposited around the optical waveguide 14, and then heat-treated at a predetermined temperature equal to or higher than the softening point of the deposited glass 23. The buried layer 16 can be easily formed around the layer 15 and the optical waveguide 14.

【0024】図3は、上記基板型光導波路11の製造方
法の他の実施例を示す図である。この方法では、まず、
基板12上にクラッド層13を形成し、該クラッド層1
3上にFHD法やLPCVD法により基材層21、光導
波路層22を順次積層する(同図(a))。次いで、R
IEにより基材層21及び光導波路層22を加工し、基
材層21a(15)の幅が光導波路層22aの幅より狭
い断面逆台形状の突条とする(同図(b))。次いで、
前記基材層15及び光導波路層22aの周囲に、該光導
波路層22aより低屈折率かつ高軟化点のガラス23を
堆積する(同図(c))。
FIG. 3 is a diagram showing another embodiment of the method for manufacturing the substrate type optical waveguide 11. In this method,
The clad layer 13 is formed on the substrate 12, and the clad layer 1 is formed.
The base material layer 21 and the optical waveguide layer 22 are sequentially laminated on the substrate 3 by the FHD method or the LPCVD method (FIG. 7A). Then R
The base material layer 21 and the optical waveguide layer 22 are processed by IE to form a ridge having an inverted trapezoidal cross section in which the width of the base material layer 21a (15) is narrower than the width of the optical waveguide layer 22a (FIG. 2B). Then
Around the base layer 15 and the optical waveguide layer 22a, a glass 23 having a lower refractive index and a higher softening point than the optical waveguide layer 22a is deposited (FIG. 7C).

【0025】次いで、この堆積したガラス23の軟化点
以下の所定の温度にて熱処理し、前記光導波路層22a
を軟化させて光導波路14とする。ここでは、光導波路
層22aが軟化し表面張力により断面が略円形状に変形
し、断面が略円形状の光導波路14となる。さらに、こ
の堆積したガラス23の軟化点以上の所定の温度にて熱
処理し、この堆積したガラス23を軟化させて埋込層1
6とする(同図(d))。なお、この温度プロファイル
の一例を図4に示す。
Next, heat treatment is performed at a predetermined temperature below the softening point of the deposited glass 23, and the optical waveguide layer 22a is formed.
Is softened to form an optical waveguide 14. Here, the optical waveguide layer 22a is softened and the cross section is deformed into a substantially circular shape by the surface tension, and the optical waveguide 14 having a substantially circular cross section is formed. Further, the embedded glass 1 is heat-treated at a predetermined temperature equal to or higher than the softening point of the deposited glass 23 to soften the deposited glass 23.
6 ((d) in the figure). An example of this temperature profile is shown in FIG.

【0026】以上により、基板型光導波路11を製造す
ることができる。この方法においても、上記実施例の製
造方法と同様の作用・効果を奏することができる。しか
も、1つの温度プロファイルの中にガラス23の軟化点
以下の温度と軟化点以上の温度各々において一定時間保
持させるプログラムを組み込むことにより、1つの温度
プロファイルで複数の熱処理を行うことができ、効率的
である。
Through the above steps, the substrate type optical waveguide 11 can be manufactured. Also in this method, the same actions and effects as those of the manufacturing method of the above embodiment can be obtained. Moreover, by incorporating a program for holding the glass 23 at a temperature below the softening point and a temperature above the softening point for a certain period of time into one temperature profile, it is possible to perform a plurality of heat treatments with one temperature profile. Target.

【0027】[0027]

【発明の効果】以上説明した様に、本発明の請求項1記
載の基板型光導波路によれば、基板上に、断面が略円形
状の光導波路を設け、前記基板と光導波路との間に該光
導波路より幅の狭い基材層を設け、該基材層は高軟化点
のガラスからなり、前記光導波路は該基材層より高屈折
率かつ低軟化点のガラスからなることとしたので、シン
グルモードでは散乱損失を低減することができ、マルチ
モードの場合では、さらに光ファイバとの間の結合損失
をも低減することができる。
As described above, according to the substrate type optical waveguide of the first aspect of the present invention, the optical waveguide having a substantially circular cross section is provided on the substrate, and the space between the substrate and the optical waveguide is provided. A base layer having a width narrower than that of the optical waveguide is provided, the base layer is made of glass having a high softening point, and the optical waveguide is made of glass having a higher refractive index and a lower softening point than the base layer. Therefore, the scattering loss can be reduced in the single mode, and the coupling loss with the optical fiber can be further reduced in the multimode.

【0028】また、請求項2記載の基板型光導波路によ
れば、前記基材層及び光導波路の周囲に、該光導波路よ
り低屈折率かつ高軟化点のガラスからなる埋込層を設け
てなることとしたので、光導波路の反射損失を低減する
ことができる。
Further, according to the substrate type optical waveguide of claim 2, an embedding layer made of glass having a lower refractive index and a higher softening point than the optical waveguide is provided around the base material layer and the optical waveguide. Therefore, the reflection loss of the optical waveguide can be reduced.

【0029】また、請求項3記載の基板型光導波路の製
造方法によれば、突条の基材層及び光導波路層を、前記
基材層の軟化点以下の所定の温度にて熱処理するので、
断面が略円形状でかつなめらかな光導波路を容易に作製
することができる。
Further, according to the manufacturing method of the substrate type optical waveguide of the third aspect, the base material layer and the optical waveguide layer of the ridge are heat-treated at a predetermined temperature below the softening point of the base material layer. ,
It is possible to easily manufacture a smooth optical waveguide having a substantially circular cross section.

【0030】また、請求項4記載の基板型光導波路の製
造方法によれば、前記基材層及び光導波路の周囲に、該
光導波路より低屈折率かつ高軟化点のガラスを堆積し、
次いで、この堆積したガラスの軟化点以上の所定の温度
にて熱処理するので、基材層及び光導波路の周囲に容易
に埋込層を作製することができる。
Further, according to the method of manufacturing a substrate type optical waveguide of claim 4, glass having a lower refractive index and a higher softening point than the optical waveguide is deposited around the base layer and the optical waveguide.
Then, since the heat treatment is performed at a predetermined temperature equal to or higher than the softening point of the deposited glass, the embedding layer can be easily formed around the base material layer and the optical waveguide.

【0031】また、請求項5記載の基板型光導波路の製
造方法によれば、突条の基材層及び光導波路層の周囲
に、該光導波路層より低屈折率かつ高軟化点のガラスを
堆積し、次いで、この堆積したガラスの軟化点以下の所
定の温度にて熱処理するので、断面が略円形状でかつな
めらかな光導波路を容易に作製することができる。ま
た、この堆積したガラスを軟化点以上の所定の温度にて
熱処理するので、基材層及び光導波路の周囲に容易に埋
込層を作製することができる。しかも、1つの温度プロ
ファイルにより2つの熱処理を行うことができるので、
効率的である。
Further, according to the method of manufacturing a substrate type optical waveguide of claim 5, glass having a lower refractive index and a higher softening point than the optical waveguide layer is provided around the ridge base material layer and the optical waveguide layer. Since they are deposited and then heat-treated at a predetermined temperature equal to or lower than the softening point of the deposited glass, an optical waveguide having a substantially circular cross section and a smooth cross section can be easily manufactured. Moreover, since the deposited glass is heat-treated at a predetermined temperature equal to or higher than the softening point, an embedding layer can be easily formed around the base material layer and the optical waveguide. Moreover, since two heat treatments can be performed with one temperature profile,
It is efficient.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の基板型光導波路を示す正
断面図である。
FIG. 1 is a front sectional view showing a substrate type optical waveguide according to an embodiment of the present invention.

【図2】 本発明の基板型光導波路の製造方法を示す過
程図である。
FIG. 2 is a process drawing showing a method for manufacturing a substrate type optical waveguide of the present invention.

【図3】 本発明の基板型光導波路の他の製造方法を示
す過程図である。
FIG. 3 is a process drawing showing another method for manufacturing the substrate type optical waveguide of the present invention.

【図4】 本発明の他の製造方法の温度プロファイルの
一例を示す図である。
FIG. 4 is a diagram showing an example of a temperature profile of another manufacturing method of the present invention.

【図5】 従来の基板型光導波路を示す正断面図であ
る。
FIG. 5 is a front sectional view showing a conventional substrate type optical waveguide.

【符号の説明】[Explanation of symbols]

11…基板型光導波路、12基板、12a上面、13ク
ラッド層、14光導波路、15基材層、16埋込層、2
1基材層、22光導波路層、23低折率かつ高軟化点の
ガラス。
11 ... Substrate type optical waveguide, 12 substrate, 12a upper surface, 13 clad layer, 14 optical waveguide, 15 base material layer, 16 embedding layer, 2
1 base material layer, 22 optical waveguide layer, 23 low folding rate and high softening point glass.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 和田 朗 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内 (72)発明者 山内 良三 千葉県佐倉市六崎1440番地 株式会社フジ クラ佐倉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Akira Wada 1440 Rokuzaki, Sakura-shi, Chiba Fujikura Co., Ltd.Sakura factory (72) Ryozo Yamauchi 1440 Rokuzaki, Sakura-shi, Chiba Fujikura Sakura Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上に、断面が略円形状の光導波路を
設け、前記基板と光導波路との間に該光導波路より幅の
狭い基材層を設け、 該基材層は高軟化点のガラスからなり、前記光導波路は
該基材層より高屈折率かつ低軟化点のガラスからなるこ
とを特徴とする基板型光導波路。
1. An optical waveguide having a substantially circular cross section is provided on a substrate, and a base layer having a width narrower than that of the optical waveguide is provided between the substrate and the optical waveguide, and the base layer has a high softening point. Substrate optical waveguide, wherein the optical waveguide is made of glass having a higher refractive index and a lower softening point than the base material layer.
【請求項2】 請求項1記載の基板型光導波路におい
て、 前記基材層及び光導波路の周囲に、該光導波路より低屈
折率かつ高軟化点のガラスからなる埋込層を設けてなる
ことを特徴とする基板型光導波路。
2. The substrate type optical waveguide according to claim 1, wherein an embedded layer made of glass having a lower refractive index and a higher softening point than the optical waveguide is provided around the base material layer and the optical waveguide. A substrate-type optical waveguide characterized by:
【請求項3】 基板上に、高軟化点ガラスからなる基材
層、該基材層より高屈折率かつ低軟化点のガラスからな
る光導波路層を順次積層し、 次いで、前記基材層の幅が光導波路層の幅より狭くなる
ように、該基材層及び光導波路層を選択的に蝕刻し、 次いで、前記基材層の軟化点以下の所定の温度にて熱処
理し、前記光導波路層を軟化させて断面が略円形状の光
導波路とすることを特徴とする基板型光導波路の製造方
法。
3. A substrate layer made of glass having a high softening point and an optical waveguide layer made of glass having a higher refractive index and a lower softening point than the substrate layer are sequentially laminated on a substrate, and then the substrate layer The base material layer and the optical waveguide layer are selectively etched so that the width is narrower than the width of the optical waveguide layer, and then heat treated at a predetermined temperature not higher than the softening point of the base material layer, A method of manufacturing a substrate-type optical waveguide, comprising softening a layer to form an optical waveguide having a substantially circular cross section.
【請求項4】 請求項3記載の基板型光導波路の製造方
法において、 前記基材層及び光導波路の周囲に、該光導波路より低屈
折率かつ高軟化点のガラスを堆積し、 次いで、この堆積したガラスの軟化点以上の所定の温度
にて熱処理し、この堆積したガラスを軟化させて埋込層
とすることを特徴とする基板型光導波路の製造方法。
4. The method for manufacturing a substrate type optical waveguide according to claim 3, wherein glass having a lower refractive index and a higher softening point than the optical waveguide is deposited around the base material layer and the optical waveguide, and then, A method for manufacturing a substrate-type optical waveguide, comprising heat-treating at a predetermined temperature equal to or higher than the softening point of the deposited glass to soften the deposited glass to form an embedded layer.
【請求項5】 基板上に、高軟化点ガラスからなる基材
層、該基材層より高屈折率かつ低軟化点のガラスからな
る光導波路層を順次積層し、 次いで、前記基材層の幅が光導波路層の幅より狭くなる
ように、該基材層及び光導波路層を選択的に蝕刻し、 次いで、前記基材層及び光導波路層の周囲に、該光導波
路層より低屈折率かつ高軟化点のガラスを堆積し、 次いで、この堆積したガラスの軟化点以下の所定の温度
にて熱処理し、前記光導波路層を軟化させて断面が略円
形状の光導波路とし、 次いで、この堆積したガラスの軟化点以上の所定の温度
にて熱処理し、この堆積したガラスを軟化させて埋込層
とすることを特徴とする基板型光導波路の製造方法。
5. A base material layer made of glass having a high softening point and an optical waveguide layer made of glass having a higher refractive index and a lower softening point than the base material layer are sequentially laminated on a substrate, and then the base material layer is formed. The base material layer and the optical waveguide layer are selectively etched so that the width is narrower than the width of the optical waveguide layer, and then the refractive index around the base material layer and the optical waveguide layer is lower than that of the optical waveguide layer. And a glass having a high softening point is deposited, and then heat-treated at a predetermined temperature equal to or lower than the softening point of the deposited glass to soften the optical waveguide layer to form an optical waveguide having a substantially circular cross section, and then, A method for manufacturing a substrate-type optical waveguide, comprising heat-treating at a predetermined temperature equal to or higher than the softening point of the deposited glass to soften the deposited glass to form an embedded layer.
JP32970992A 1992-12-09 1992-12-09 Substrate type optical waveguide and its production Pending JPH06174952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32970992A JPH06174952A (en) 1992-12-09 1992-12-09 Substrate type optical waveguide and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32970992A JPH06174952A (en) 1992-12-09 1992-12-09 Substrate type optical waveguide and its production

Publications (1)

Publication Number Publication Date
JPH06174952A true JPH06174952A (en) 1994-06-24

Family

ID=18224400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32970992A Pending JPH06174952A (en) 1992-12-09 1992-12-09 Substrate type optical waveguide and its production

Country Status (1)

Country Link
JP (1) JPH06174952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445722B2 (en) 1997-08-18 2002-09-03 Nec Corporation Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
US7024093B2 (en) 2002-12-02 2006-04-04 Shipley Company, Llc Methods of forming waveguides and waveguides formed therefrom
JP2006171078A (en) * 2004-12-13 2006-06-29 Hitachi Cable Ltd Method for manufacturing device having 3-dimensional tapered structure

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6445722B2 (en) 1997-08-18 2002-09-03 Nec Corporation Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
US7262435B2 (en) 1997-08-18 2007-08-28 Nec Corporation Single-transverse-mode laser diode with multi-mode waveguide region and manufacturing method of the same
US7024093B2 (en) 2002-12-02 2006-04-04 Shipley Company, Llc Methods of forming waveguides and waveguides formed therefrom
JP2006171078A (en) * 2004-12-13 2006-06-29 Hitachi Cable Ltd Method for manufacturing device having 3-dimensional tapered structure

Similar Documents

Publication Publication Date Title
US5483613A (en) Optical device with substrate and waveguide structure having thermal matching interfaces
US4871221A (en) Optical waveguide device
US5064266A (en) Circular channel waveguides and lenses formed from rectangular channel waveguides
JP2002303752A (en) Optical waveguide and method for manufacturing the same
JPS6291434A (en) Manufacture of plane-shaped optical waveguide
JPH11125727A (en) Production of optical waveguide
JPH06174952A (en) Substrate type optical waveguide and its production
US6339667B1 (en) Optical waveguide and method for fabricating the same
JP2003131056A (en) Optical circuit and method for manufacturing the same
US6483964B1 (en) Method of fabricating an optical component
JP3070018B2 (en) Quartz optical waveguide and method of manufacturing the same
JP2848144B2 (en) Tunable optical filter
US6631235B1 (en) Planar lightwave circuit platform and method for manufacturing the same
US20030169968A1 (en) Photonic signal transmitting device
JP3196797B2 (en) Manufacturing method of laminated quartz optical waveguide
JPH0560927A (en) Optical waveguide
JPH05257021A (en) Production of optical waveguide
JPS57176005A (en) Manufacture of optical waveguide circuit
JPH05307124A (en) Optical coupling circuit
JPH06331844A (en) Quartz optical waveguide and its production
JPS63184707A (en) Manufacture of planar light waveguide
JPS59137346A (en) Manufacture of glass waveguide
JPH0375606A (en) Flush type optical waveguide made of quartz system and production thereof
JPH0720336A (en) Structure of optical waveguide and its production
JPH03245107A (en) Branching/multiplexing optical waveguide circuit