JP4646642B2 - Package for semiconductor devices - Google Patents

Package for semiconductor devices Download PDF

Info

Publication number
JP4646642B2
JP4646642B2 JP2005019472A JP2005019472A JP4646642B2 JP 4646642 B2 JP4646642 B2 JP 4646642B2 JP 2005019472 A JP2005019472 A JP 2005019472A JP 2005019472 A JP2005019472 A JP 2005019472A JP 4646642 B2 JP4646642 B2 JP 4646642B2
Authority
JP
Japan
Prior art keywords
semiconductor element
wiring board
lid
resin
package
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005019472A
Other languages
Japanese (ja)
Other versions
JP2006210575A (en
Inventor
和孝 前田
智子 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2005019472A priority Critical patent/JP4646642B2/en
Publication of JP2006210575A publication Critical patent/JP2006210575A/en
Application granted granted Critical
Publication of JP4646642B2 publication Critical patent/JP4646642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3731Ceramic materials or glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、樹脂製配線基板表面に半導体素子を載置してなる半導体素子用パッケージに関するものである。   The present invention relates to a package for a semiconductor element in which a semiconductor element is placed on the surface of a resin wiring board.

図3は従来構造の半導体素子用パッケージを示している。この半導体素子用パッケージはいわゆるBGA(Ball Grid Array)タイプの半導体素子用パッケージであり、配線基板92と、配線基板92上にはんだバンプ94を介してフリップチップ接続される半導体素子91と、この半導体素子91を覆うようにして配線基板92表面に取り付けられ且つその一部を半導体素子91の上面と接着してなる高熱伝導性蓋体93とを具備している。   FIG. 3 shows a semiconductor device package having a conventional structure. The semiconductor element package is a so-called BGA (Ball Grid Array) type semiconductor element package. The wiring board 92, the semiconductor element 91 flip-chip connected to the wiring board 92 via solder bumps 94, and the semiconductor A highly heat-conductive lid 93 is provided on the surface of the wiring substrate 92 so as to cover the element 91 and a part thereof is bonded to the upper surface of the semiconductor element 91.

具体的には、半導体素子91の底面には複数のはんだバンプ94が形成されており、このはんだバンプ94を溶融して配線基板92の表面に形成されたメタライズ配線層に半導体素子91をフリップチップ接続することにより、半導体素子は配線基板92に搭載されている。   Specifically, a plurality of solder bumps 94 are formed on the bottom surface of the semiconductor element 91, and the solder bump 94 is melted to flip-chip the semiconductor element 91 onto the metallized wiring layer formed on the surface of the wiring substrate 92. By connecting, the semiconductor element is mounted on the wiring board 92.

高熱伝導性蓋体93は、例えば銅やアルミニウムなどの熱伝導性の高い金属材料からなる平板形状のもので、配線基板92全体を覆うように配置され、半導体素子91との間では高熱伝導性の樹脂製接着材により接着されている。この高熱伝導性蓋体93は半導体素子91で発生する熱を放熱する放熱板としての機能を有する。   The high thermal conductivity lid 93 is a flat plate made of a metal material having high thermal conductivity such as copper or aluminum, and is disposed so as to cover the entire wiring substrate 92, and has high thermal conductivity with the semiconductor element 91. It is bonded with a resin adhesive. The high thermal conductive lid 93 has a function as a heat radiating plate for radiating heat generated in the semiconductor element 91.

尚、はんだバンプ94の周囲には、はんだバンプ94に加わる熱応力の緩和のために、例えばエポキシ樹脂などの熱硬化性樹脂からなる充填樹脂(アンダーフィル)95が設けられている。また、配線基板92の裏面には、外部回路基板(図示しない)との接続端子となるはんだボール96が設けられており、配線基板92の表面及び内部に形成されたメタライズ配線層により半導体素子91と電気的に接続されている(例えば特許文献1参照)。
特開2001−244390号公報
A filler resin (underfill) 95 made of a thermosetting resin such as an epoxy resin is provided around the solder bumps 94 in order to relieve thermal stress applied to the solder bumps 94. In addition, solder balls 96 serving as connection terminals with an external circuit board (not shown) are provided on the back surface of the wiring board 92, and the semiconductor element 91 is formed by a metallized wiring layer formed on the surface and inside of the wiring board 92. Are electrically connected to each other (see, for example, Patent Document 1).
JP 2001-244390 A

ここで、シリコンを主とする半導体素子の熱膨張係数が約3×10−6/℃であるのに対し、配線基板の熱膨張係数が8〜20×10−6/℃であり、これらの熱膨張係数の差は大きい。 Here, the thermal expansion coefficient of the semiconductor element mainly composed of silicon is about 3 × 10 −6 / ° C., whereas the thermal expansion coefficient of the wiring substrate is 8 to 20 × 10 −6 / ° C. The difference in thermal expansion coefficient is large.

したがって、例えば温度サイクル試験時に−55℃から125℃の温度変化を与えると、半導体素子と配線基板は反り変形を生じようとする。しかし、リッドに半導体素子が接着固定されているため、半導体素子搭載部は反り変形をすることができず、半導体素子搭載部以外の領域が大きく反ることになる。この際、配線基板92の半導体素子91角部付近に非常に高い応力が生じるため、配線基板92に亀裂が発生し、内部配線を断線してしまうおそれがある。   Therefore, for example, when a temperature change of −55 ° C. to 125 ° C. is given during a temperature cycle test, the semiconductor element and the wiring board tend to be warped. However, since the semiconductor element is bonded and fixed to the lid, the semiconductor element mounting portion cannot be warped and a region other than the semiconductor element mounting portion is greatly warped. At this time, a very high stress is generated in the vicinity of the corner portion of the semiconductor element 91 of the wiring board 92, so that the wiring board 92 may be cracked and the internal wiring may be disconnected.

半導体素子の動作周波数の向上にともない、配線基板を薄型化して配線基板内の配線長さを短くする傾向があるとともに、製品コスト低減のために配線基板をガラス繊維入りエポキシ樹脂等からなる熱膨張係数の高い樹脂製のものにする傾向があり、これにより配線基板の亀裂の問題は顕著になってきている。   As the operating frequency of semiconductor devices increases, the wiring board tends to be thinner and the wiring length in the wiring board tends to be shortened, and the wiring board is made of glass fiber epoxy resin to reduce product costs. There is a tendency to use a resin having a high coefficient, and as a result, the problem of cracks in the wiring board has become prominent.

したがって、本発明は樹脂製配線基板に亀裂が生じることのない、応力の緩和された半導体素子用パッケージを提供することを目的とする。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a package for a semiconductor element, in which a crack is not generated in a resin wiring board and the stress is relaxed.

本発明者等は、樹脂製配線基板と外部回路基板の熱膨張差によって発生する熱応力を低減する方法について種々検討を重ねた結果、リッド中央部に所定の面積の凹部を設けることで、半導体素子搭載部の反り変形を阻害せず、熱応力を低減することができ、長期にわたり安定した実装が可能となることを見いだし、本発明に至った。   As a result of various studies on methods for reducing the thermal stress generated due to the difference in thermal expansion between the resin wiring board and the external circuit board, the present inventors have provided a recess having a predetermined area in the center of the lid. The present inventors have found that thermal deformation can be reduced without hindering warpage deformation of the element mounting portion, and stable mounting can be achieved over a long period of time.

すなわち本発明は、樹脂製配線基板と、該樹脂製配線基板上にはんだバンプを介してフリップチップ接続される半導体素子と、該半導体素子を覆うようにして前記樹脂製配線基板表面に取り付けられ且つその一部を前記半導体素子の上面と接着してなる高熱伝導性蓋体と、前記樹脂製配線基板裏面に設けられ、前記半導体素子と電気的に接続された接続端
子とを具備する半導体素子用パッケージであって、前記高熱伝導性蓋体における前記半導体素子との接着面の略中央部に、該接着面より小さく、且つ接着面積の50%以上の面積の凹部が設けられ、該凹部に高熱伝導性樹脂が充填されたことを特徴とする半導体素子用パッケージである。これにより、樹脂製配線基板の半導体素子搭載部の反り変形を阻害しないため、半導体素子と樹脂製配線基板の熱膨張差が生じた場合であっても、樹脂製配線基板に生じる熱応力を低減することができる。
That is, the present invention includes a resin wiring board, a semiconductor element flip-chip connected to the resin wiring board via a solder bump, and is attached to the surface of the resin wiring board so as to cover the semiconductor element. A semiconductor device comprising: a highly thermally conductive lid part of which is bonded to the upper surface of the semiconductor element; and a connection terminal provided on the back surface of the resin wiring board and electrically connected to the semiconductor element. In the package, a concave portion having an area smaller than the bonding surface and 50% or more of the bonding area is provided at a substantially central portion of the bonding surface with the semiconductor element in the high thermal conductivity lid. A package for a semiconductor element, which is filled with a conductive resin. As a result, the warp deformation of the semiconductor element mounting portion of the resin wiring board is not hindered, so even if there is a difference in thermal expansion between the semiconductor element and the resin wiring board, the thermal stress generated in the resin wiring board is reduced. can do.

ここで、凹部が50〜300μmの深さを有するのが好ましい。これにより、好ましい程度の放熱性を確保することができる。   Here, the recess preferably has a depth of 50 to 300 μm. Thereby, the heat dissipation of a preferable grade is securable.

また、高熱伝導性蓋体が、天面に設けられたリッドと、該リッドの周縁部にスカート状に接合されたスティフナとを含み、前記リッドが前記半導体素子に接する内層と前記半導体素子に接しない外層からなり、前記凹部が前記内層に形成された貫通孔からなるのが好ましい。これにより、削り出し、プレス、鋳造等の方法で凹部を形成するよりも、コスト的に有利であり、作製も容易となる。   The high thermal conductivity lid includes a lid provided on the top surface and a stiffener joined to the peripheral edge of the lid in a skirt shape, and the lid is in contact with the inner layer and the semiconductor element. It is preferable that the concave portion is formed of a through hole formed in the inner layer. This is advantageous in terms of cost and easier to manufacture than forming the recesses by a method such as machining, pressing, or casting.

さらに、高熱伝導性樹脂がポリフェニレンサルファイドを主成分とするのが好ましい。ポリフェニレンサルファイドは他の樹脂に比して極めて熱伝導性がいいので、本発明における放熱性をさらに向上させることができる。   Furthermore, it is preferable that the high thermal conductive resin is mainly composed of polyphenylene sulfide. Since polyphenylene sulfide has extremely good thermal conductivity as compared with other resins, the heat dissipation in the present invention can be further improved.

尚、高熱伝導性蓋体としては、Cu、Al、Al−SiC複合材料、Cu−W合金、Cu−Cr合金、Fe−Ni−Co合金のうちの一種からなるものが挙げられる。   In addition, as a highly heat-conductive cover body, what consists of 1 type in Cu, Al, Al-SiC composite material, Cu-W alloy, Cu-Cr alloy, and Fe-Ni-Co alloy is mentioned.

以上詳述したように、本発明の半導体素子用パッケージは、高熱伝導性蓋体の半導体素子と接する部位に、反り変形を阻害しないための所定の大きさの凹部を設けることで、発生する最大応力を低減し、半導体素子と樹脂製配線基板の熱膨張差が生じた場合であっても、長期間にわたり正確かつ強固に、電気的に接続させることが可能となる。
As described above in detail, semiconductor element package of the present invention, the site of deposition and the semiconductor device contact high thermal conductivity lid, by providing a predetermined size recess for not inhibit warping deformation, occurs Therefore, even when a difference in thermal expansion occurs between the semiconductor element and the resin wiring board, the electrical connection can be made accurately and firmly over a long period of time.

以下、本発明の実施形態について図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の一実施形態を示す断面図であり、本発明の半導体素子用パッケージは、樹脂製配線基板2と、樹脂製配線基板2上にはんだバンプ5を介してフリップチップ接続される半導体素子1と、この半導体素子1を覆うようにして樹脂製配線基板2表面に取り付けられ且つその一部を前記半導体素子1の上面と接着してなる高熱伝導性蓋体と、樹脂製配線基板2裏面に設けられ、半導体素子1と電気的に接続された接続端子(はんだボール7)とを具備する半導体素子用パッケージであって、前記高熱伝導性蓋体における前記半導体素子との接着面の略中央部に、接着面積の50%以上の面積の凹部が設けられ、該凹部に高熱伝導性樹脂が充填されたことを特徴とするものである。   FIG. 1 is a cross-sectional view showing an embodiment of the present invention. A semiconductor element package of the present invention is flip-chip connected to a resin wiring board 2 and solder bumps 5 on the resin wiring board 2. A semiconductor element 1, a high thermal conductive lid that is attached to the surface of the resin wiring board 2 so as to cover the semiconductor element 1 and a part thereof is bonded to the upper surface of the semiconductor element 1, and a resin wiring board 2 A package for a semiconductor element provided with a connection terminal (solder ball 7) provided on the back surface and electrically connected to the semiconductor element 1, wherein the bonding surface of the high thermal conductivity lid to the semiconductor element is A concave portion having an area of 50% or more of the bonding area is provided in a substantially central portion, and the concave portion is filled with a high thermal conductive resin.

樹脂製配線基板2は、ガラス−エポキシ樹脂、ガラス−ポリイミド樹脂複合材料などの有機樹脂を含む材料からなる基板の表面及び裏面に接続パターン(図示しない)が形成され、基板の内部にこれらの接続パターンを電気的に接続するビアホールが配設されたもので、この熱膨張係数は12〜18×10−6/℃程度のものである。 The resin wiring board 2 has connection patterns (not shown) formed on the front and back surfaces of a substrate made of a material containing an organic resin such as glass-epoxy resin or glass-polyimide resin composite material, and these connections are made inside the substrate. A via hole for electrically connecting the patterns is provided, and this coefficient of thermal expansion is about 12 to 18 × 10 −6 / ° C.

半導体素子1は、主としてシリコンからなり、熱膨張係数が約3×10−6/℃のものである。半導体素子1の底面には複数の接続用電極(図示しない)が設けられており、はんだバンプ5を介して樹脂製配線基板2の表面に設けられた接続パターンに接続されている。すなわち、はんだバンプ5を溶融させて、樹脂製配線基板2の表面に形成された接続パターンにフリップチップ接続することにより、半導体素子1は樹脂製配線基板2に搭載されている。ここで、はんだバンプ5としては、例えば鉛を90%以上含有する比較的高融点のはんだであるのが好ましく、これにより外部回路基板(図示しない)へ実装する際の加熱による再溶融を防止できる。尚、はんだバンプ5の周りには、熱硬化性樹脂からなるアンダーフィル6が充填されており、はんだバンプ5に加わる応力をより広い面積で受けることにより、応力を緩和させている。 The semiconductor element 1 is mainly made of silicon and has a thermal expansion coefficient of about 3 × 10 −6 / ° C. A plurality of connection electrodes (not shown) are provided on the bottom surface of the semiconductor element 1, and are connected to a connection pattern provided on the surface of the resin wiring board 2 via solder bumps 5. That is, the semiconductor element 1 is mounted on the resin wiring board 2 by melting the solder bumps 5 and performing flip chip connection to a connection pattern formed on the surface of the resin wiring board 2. Here, the solder bump 5 is preferably a solder having a relatively high melting point containing, for example, 90% or more of lead, thereby preventing remelting due to heating when mounted on an external circuit board (not shown). . The solder bump 5 is filled with an underfill 6 made of a thermosetting resin, and the stress is relaxed by receiving the stress applied to the solder bump 5 in a wider area.

樹脂製配線基板2の表面には、高熱伝導性蓋体(リッド3、スティフナ4)が取り付けられている。具体的には、半導体素子1を覆うようにちょうど天面に位置して設けられたリッド3と、リッド3の周縁部にスカート状に接合されたスティフナ4とからなる高熱伝導性蓋体が、樹脂製配線基板2の表面に接着され固定されている。このスティフナ4は、リッド3の機械的安定性を高める役割を有している。そして、リッド3は半導体素子1の上面に高熱伝導性接着材によって接着されている。ここで、高熱伝導性蓋体のうち少なくともリッド3は、Cu、Al、Al−SiC複合材料、Cu−W合金、Cu−Cr合金、Fe−Ni−Co合金等からなる熱伝導性の高い材料により形成されている。また、高熱伝導性接着材は、リッド3と半導体素子1とを熱的にかつ機械的に接続させる機能を有するものであり、金属フィラー(例えば銀)入り樹脂ペースト、非金属フィラー(例えばシリコン)入り樹脂ペースト、又はロウ材(例えばはんだ)等の熱伝導性が良く強い接着力を有する材料が好適に採用できる。尚、スティフナ4は、上記の高熱伝導性接着材あるいはエポキシ系接着剤によりリッド3と接着され、またこれと同様の接着材により樹脂製配線基板2に接着されているが、樹脂製配線基板2またはリッド3と予め一体成形されたものであってもよい。   On the surface of the resin wiring board 2, a high thermal conductive lid (lid 3, stiffener 4) is attached. Specifically, a highly heat-conductive lid comprising a lid 3 provided on the top surface so as to cover the semiconductor element 1 and a stiffener 4 joined to the peripheral edge of the lid 3 in a skirt shape, It is adhered and fixed to the surface of the resin wiring board 2. The stiffener 4 has a role of increasing the mechanical stability of the lid 3. The lid 3 is bonded to the upper surface of the semiconductor element 1 with a high thermal conductive adhesive. Here, at least the lid 3 of the high thermal conductivity lid is a material having high thermal conductivity made of Cu, Al, Al—SiC composite material, Cu—W alloy, Cu—Cr alloy, Fe—Ni—Co alloy or the like. It is formed by. Further, the high thermal conductive adhesive has a function of thermally and mechanically connecting the lid 3 and the semiconductor element 1, and is a resin paste containing a metal filler (for example, silver) or a non-metal filler (for example, silicon). A material having a high thermal conductivity and a strong adhesive force such as a resin paste or brazing material (for example, solder) can be suitably used. The stiffener 4 is bonded to the lid 3 with the above high thermal conductive adhesive or epoxy adhesive, and is bonded to the resin wiring board 2 with the same adhesive, but the resin wiring board 2 Alternatively, it may be integrally formed with the lid 3 in advance.

また、樹脂製配線基板2の裏面には、外部回路基板(図示しない)との接続端子となるはんだボール7が設けられており、このはんだボール7と半導体素子1とは、樹脂製配線基板2の表面に形成された接続パターン、樹脂製配線基板2の内部に形成されたビアホール及び樹脂製配線基板2の表面に形成された接続パターンを介して電気的に接続されている。ここで、はんだボール7としては、はんだバンプより低融点の材料、具体的には錫−鉛はんだ合金を用いるのが好ましい。
A solder ball 7 serving as a connection terminal to an external circuit board (not shown) is provided on the back surface of the resin wiring board 2. The solder ball 7 and the semiconductor element 1 are connected to the resin wiring board 2. Are electrically connected via a connection pattern formed on the surface, via holes formed inside the resin wiring board 2 and connection patterns formed on the surface of the resin wiring board 2. Here, as the solder ball 7, it is preferable to use a material having a melting point lower than that of the solder bump 5 , specifically, a tin-lead solder alloy.

そして、リッド3における半導体素子1との接着面の略中央部には、半導体素子1との接面積の50%以上の面積の凹部31が設けられており、樹脂製配線基板2における半導体素子1搭載部の反り変形を阻害しないような構造となっている。ここで、凹部31の面積は、安定した固定及び放熱性の点から、半導体素子1との接面よりも小さい面積である必要があり、また樹脂製配線基板2における半導体素子1搭載部の反り変形を阻害しないように半導体素子1との接面積の50%以上である必要がある。また、この凹部31は50〜300μmの深さを有するのが好ましい。このような数値範囲の深さに規定することで、反りによる応力緩和と放熱性を両立させるという効果を奏する。すなわち、後述の高熱伝導性樹脂311と協働して、好ましい程度の放熱性を確保することができるのである。
Then, a substantially central portion of the bonding surface of the semiconductor element 1 in the lid 3, the recess 31 of more than 50% of the area of the contact adhesive area is provided between the semiconductor element 1, a semiconductor device of a resin wiring board 2 1 It has a structure that does not hinder the warp deformation of the mounting portion. Here, the area of the recess 31, in terms of stable fixation and heat dissipation, must be smaller in area than contact adhesive surface of the semiconductor element 1, the semiconductor element 1 mounted in or tree butter manufactured wiring board 2 so as not to inhibit the warpage of parts is required to be 50% or more of the contact adhesive area of the semiconductor element 1. Moreover, it is preferable that this recessed part 31 has a depth of 50-300 micrometers. By defining the depth within such a numerical range, there is an effect of achieving both stress relaxation due to warpage and heat dissipation. That is, a desirable degree of heat dissipation can be ensured in cooperation with the high thermal conductive resin 311 described later.

さらに、この凹部31には、高熱伝導性樹脂311が充填されている。ここで、高熱伝導性とは、好ましくは熱伝導率2〜30W/m・K程度のものを意味する。このように凹部31に高熱伝導性樹脂311を充填するにより、凹部31を形成したことによる放熱性が低減するという問題を解消することができる。この高熱伝導性樹脂311としては、エポキシ系樹脂、シリコーン樹脂、ポリアルファオレフィンをベースとしたグリースなどの樹脂にアルミニウム、銅等の金属フィラー、アルミナ、窒化アルミニウム、窒化ホウ素等の無機フィラーを混合させたもの等が挙げられるが、特にポリフェニレンサルファイドを主成分とする樹脂あるいはこれに上記フィラーを混合したものが熱伝導性が非常によく好ましく採用できる。   Further, the recess 31 is filled with a high thermal conductive resin 311. Here, the high thermal conductivity preferably means a material having a thermal conductivity of about 2 to 30 W / m · K. Thus, by filling the concave portion 31 with the high thermal conductive resin 311, it is possible to solve the problem that the heat dissipation due to the formation of the concave portion 31 is reduced. As this high thermal conductive resin 311, an epoxy resin, a silicone resin, a resin such as grease based on polyalphaolefin, a metal filler such as aluminum or copper, and an inorganic filler such as alumina, aluminum nitride, or boron nitride are mixed. In particular, a resin containing polyphenylene sulfide as a main component or a mixture of this with the above filler can be preferably used because of its very good thermal conductivity.

図1に示す凹部31は、削り出し、プレス、鋳造等の方法により形成することが可能である。しかしながら、このような方法でリッド3に凹部31を形成することは、多くの加工時間を要してしまう。そこで、図2に示すように、リッド3を多層構造とする方法も好ましく採用できる。   The recess 31 shown in FIG. 1 can be formed by a method such as cutting, pressing, or casting. However, forming the recess 31 in the lid 3 by such a method requires a lot of processing time. Therefore, as shown in FIG. 2, a method in which the lid 3 has a multilayer structure can also be preferably employed.

図2に示す半導体素子用パッケージは、リッド3が、半導体素子1に接する内層32と半導体素子1に接しない外層33から構成される。このリッド3(内層32と外層33)は、Cu、Al、Al−SiC複合材料、Cu−W合金、Cu−Cr合金、Fe−Ni−Co合金等からなる熱伝導性の高い材料により形成されている。ここで、内層32における半導体素子1との接着面の略中央部には、接着面積の50%以上の断面積の貫通孔321が形成されている。また、外層33は貫通孔の形成されていない平板状の部材である。このような内層32と外層33を組み合わせた構成により、ちょうど半導体素子1との接着面積の50%以上の面積の凹部が設けられた構造となる。ここで、放熱性を考慮して、内層32の厚みは50〜300μmであるのが好ましく、これにより深さ50〜300μmの凹部が設けられた構造となる。尚、内層32と外層33の材質を異ならせることで、必要な放熱性能と作製コストを調節することも可能である。   In the semiconductor element package shown in FIG. 2, the lid 3 includes an inner layer 32 that contacts the semiconductor element 1 and an outer layer 33 that does not contact the semiconductor element 1. The lid 3 (inner layer 32 and outer layer 33) is formed of a material having high thermal conductivity made of Cu, Al, Al—SiC composite material, Cu—W alloy, Cu—Cr alloy, Fe—Ni—Co alloy or the like. ing. Here, a through-hole 321 having a cross-sectional area of 50% or more of the adhesion area is formed at a substantially central portion of the inner layer 32 on the adhesion surface with the semiconductor element 1. The outer layer 33 is a flat plate member in which no through hole is formed. With such a configuration in which the inner layer 32 and the outer layer 33 are combined, a structure in which a recess having an area of 50% or more of the bonding area with the semiconductor element 1 is provided. Here, in consideration of heat dissipation, the thickness of the inner layer 32 is preferably 50 to 300 μm, thereby providing a structure in which a recess having a depth of 50 to 300 μm is provided. In addition, it is also possible to adjust required heat dissipation performance and production cost by making the material of the inner layer 32 and the outer layer 33 different.

このような図2に示す構造とすることで、低コストで図1に示す構造と同様の効果を得ることができる。すなわち、リッド3に凹部31を形成するよりも貫通孔321を形成するほうがコストは低く、作製も容易である。   By adopting such a structure shown in FIG. 2, the same effect as the structure shown in FIG. 1 can be obtained at low cost. That is, it is cheaper to form the through holes 321 than to form the recesses 31 in the lid 3, and the fabrication is easy.

尚、本発明の半導体素子用パッケージには、さらに放熱性を上げるために、図2に示すような放熱フィン8を取り付けた構造としてもよい。   The semiconductor element package of the present invention may have a structure in which heat radiating fins 8 as shown in FIG. 2 are attached in order to further improve heat dissipation.

このように本発明の半導体素子用パッケージでは、高熱伝導性蓋体における半導体素子の上部に、樹脂製配線基板の半導体素子搭載部の反り変形を阻害しないために、所望の面積の凹部を設けたので、半導体素子と樹脂製配線基板の熱膨張差が生じた場合であっても、樹脂製配線基板に生じる熱応力を低減することができる。   Thus, in the package for a semiconductor element of the present invention, a recess having a desired area is provided on the upper part of the semiconductor element in the high thermal conductivity lid so as not to inhibit the warp deformation of the semiconductor element mounting portion of the resin wiring board. Therefore, even when a difference in thermal expansion occurs between the semiconductor element and the resin wiring board, the thermal stress generated in the resin wiring board can be reduced.

実施例として、図1に示す構造の半導体素子用パッケージを用意した。具体的構造としては、半導体素子1の大きさが17mm角で厚さ0.7mm、配線基板2の大きさが45mm角で厚さ0.7mm、リッド3の大きさが45mm角で厚さ0.5mm、スティフナ4の大きさが外形40mm角、開口部31mm角、厚さ0.7mmである。そして、リッド3の半導体素子1との接面中央部に、表1に示すような凹部開口径(正方形状の一辺の長さ)、深さ0.2mmの凹部31を設けた。そして、この凹部31に、ポリフェニレンサルファイド樹脂にアルミナフィラーを50vol%混入させた高熱伝導性樹脂を充填した。

As an example, a package for a semiconductor device having the structure shown in FIG. 1 was prepared. Specifically, the semiconductor element 1 is 17 mm square and 0.7 mm thick, the wiring board 2 is 45 mm square and 0.7 mm thick, and the lid 3 is 45 mm square and 0 mm thick. .5 mm, the size of the stiffener 4 is 40 mm square, 31 mm square opening, and 0.7 mm thick. Then, the contact bonding surface central portion of the semiconductor element 1 of the lid 3, the recess opening diameter shown in Table 1 (the length of the square side) and a recess 31 of depth 0.2 mm. Then, the concave portion 31 was filled with a high thermal conductive resin in which 50 vol% of alumina filler was mixed with polyphenylene sulfide resin.

ここで、半導体素子との接着面積に対する凹部の面積が50%以上のものを試料No.2、3とした。   Here, a sample having a recess area of 50% or more with respect to the adhesion area with the semiconductor element was used as a sample No. 2 and 3.

また、比較例として凹部のないものを試料No.1、半導体素子との接着面積に対する凹部の面積が50%未満のものを試料No.4〜7とした。   In addition, as a comparative example, a sample having no recess is sample No. 1. A sample having a recess area of less than 50% with respect to the adhesion area with the semiconductor element is designated as Sample No. 4-7.

これらの試料を大気の雰囲気にて−55℃と125℃の各温度に制御した恒温槽に、25分/25分の保持を1サイクルとして最高3500サイクル繰り返した。そして、100サイクル毎に外部回路基板の配線導体と樹脂製配線基板との電気抵抗を測定し、電気抵抗に変化が現れるまでのサイクル数を測定した。その結果を表1に示す。

Figure 0004646642
These samples were repeated in a constant temperature bath controlled at −55 ° C. and 125 ° C. in an air atmosphere for a maximum of 3500 cycles with 25 minutes / 25 minutes held as one cycle. Then, the electrical resistance between the wiring conductor of the external circuit board and the resin wiring board was measured every 100 cycles, and the number of cycles until a change appeared in the electrical resistance was measured. The results are shown in Table 1.
Figure 0004646642

表1より明らかなように、本発明の半導体素子用パッケージ(試料No.2、3)は、3000サイクルまで抵抗変化は全く認められず、極めて安定で良好な電気的接続状態を維持できた。しかし、本発明範囲外である凹部のない試料No.1、凹部面積の半導体素子との接着面積に対する面積比が50%未満の試料No.4〜7では、3000サイクル未満の早い段階から抵抗変化が検出され、実装後の信頼性に欠けることがわかった。   As is clear from Table 1, the package for semiconductor elements of the present invention (Sample Nos. 2 and 3) did not show any change in resistance until 3000 cycles, and was able to maintain an extremely stable and good electrical connection state. However, a sample No. having no recess, which is outside the scope of the present invention. 1. Sample No. having an area ratio of less than 50% to the adhesion area of the recess area to the semiconductor element. 4 to 7, it was found that resistance change was detected from an early stage of less than 3000 cycles, and the reliability after mounting was lacking.

本発明の半導体素子用パッケージの一実施形態の断面構造図である。1 is a cross-sectional structure diagram of an embodiment of a package for a semiconductor device of the present invention. 本発明の半導体素子用パッケージの他の実施形態の断面構造図である。It is sectional structure drawing of other embodiment of the package for semiconductor elements of this invention. 従来の半導体素子用パッケージの断面構造図である。It is sectional structure drawing of the conventional package for semiconductor elements.

符号の説明Explanation of symbols

1:半導体素子
2:樹脂製配線基板
3:リッド
31:凹部
311:高熱伝導性樹脂
32:内層
321:貫通孔
33外層
4:スティフナ
5:はんだバンプ
6:アンダーフィル(充填樹脂)
7:はんだボール
1: Semiconductor element 2: Resin wiring board 3: Lid 31: Recess 311: High thermal conductive resin 32: Inner layer 321: Through hole 33 Outer layer 4: Stiffener 5: Solder bump 6: Underfill (filling resin)
7: Solder balls

Claims (5)

樹脂製配線基板と、該樹脂製配線基板上にはんだバンプを介してフリップチップ接続される半導体素子と、該半導体素子を覆うようにして前記樹脂製配線基板表面に取り付けられ且つその一部を前記半導体素子の上面と接着してなる高熱伝導性蓋体と、前記樹脂製配線基板裏面に設けられ、前記半導体素子と電気的に接続された接続端子とを具備する半導体素子用パッケージであって、前記高熱伝導性蓋体における前記半導体素子との接着面の略中央部に、該接着面より小さく、且つ接着面積の50%以上の面積の凹部が設けられ、該凹部に高熱伝導性樹脂が充填されたことを特徴とする半導体素子用パッケージ。 A resin wiring board; a semiconductor element flip-chip connected to the resin wiring board via solder bumps; and a part of the resin wiring board attached to the surface of the resin wiring board so as to cover the semiconductor element A package for a semiconductor element, comprising: a highly thermally conductive lid bonded to the upper surface of the semiconductor element; and a connection terminal provided on the back surface of the resin wiring board and electrically connected to the semiconductor element, A recess having an area smaller than the bonding surface and 50% or more of the bonding area is provided at a substantially central portion of the bonding surface with the semiconductor element in the high thermal conductive lid , and the concave portion is filled with a high thermal conductive resin. A package for a semiconductor device, characterized in that 凹部が50〜300μmの深さを有することを特徴とする請求項1記載の半導体素子用パッケージ。   2. The package for a semiconductor device according to claim 1, wherein the recess has a depth of 50 to 300 [mu] m. 高熱伝導性蓋体が、天面に設けられたリッドと、該リッドの周縁部にスカート状に接合されたスティフナとを含み、前記リッドが前記半導体素子に接する内層と前記半導体素子に接しない外層からなり、前記凹部が前記内層に形成された貫通孔からなることを特徴とする請求項1または2記載の半導体素子用パッケージ。   The high thermal conductive lid includes a lid provided on the top surface, and a stiffener joined to the peripheral edge of the lid in a skirt shape, and the lid is in contact with the semiconductor element and the outer layer is not in contact with the semiconductor element 3. The package for a semiconductor device according to claim 1, wherein the recess is a through hole formed in the inner layer. 高熱伝導性樹脂がポリフェニレンサルファイドを主成分とすることを特徴とする請求項1〜3のいずれか記載の半導体素子用パッケージ。   The package for a semiconductor device according to any one of claims 1 to 3, wherein the high thermal conductive resin contains polyphenylene sulfide as a main component. 高熱伝導性蓋体がCu、Al、Al−SiC複合材料、Cu−W合金、Cu−Cr合金、Fe−Ni−Co合金のうちの一種からなる請求項1〜4のいずれかに記載の半導体素子用パッケージ。   The semiconductor according to any one of claims 1 to 4, wherein the high thermal conductive lid is made of one of Cu, Al, Al-SiC composite material, Cu-W alloy, Cu-Cr alloy, and Fe-Ni-Co alloy. Device package.
JP2005019472A 2005-01-27 2005-01-27 Package for semiconductor devices Expired - Fee Related JP4646642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005019472A JP4646642B2 (en) 2005-01-27 2005-01-27 Package for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005019472A JP4646642B2 (en) 2005-01-27 2005-01-27 Package for semiconductor devices

Publications (2)

Publication Number Publication Date
JP2006210575A JP2006210575A (en) 2006-08-10
JP4646642B2 true JP4646642B2 (en) 2011-03-09

Family

ID=36967088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005019472A Expired - Fee Related JP4646642B2 (en) 2005-01-27 2005-01-27 Package for semiconductor devices

Country Status (1)

Country Link
JP (1) JP4646642B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220386503A1 (en) * 2021-05-26 2022-12-01 Prime World International Holdings Ltd. Optical transceiver with housing pressing thermal interface material by uneven surface

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4885016B2 (en) * 2007-03-02 2012-02-29 古河電気工業株式会社 Copper alloy wire for semiconductor container
JP5276565B2 (en) * 2009-10-14 2013-08-28 新光電気工業株式会社 Heat dissipation parts
WO2019116880A1 (en) * 2017-12-14 2019-06-20 株式会社オートネットワーク技術研究所 Circuit structure and electrical junction box

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210769A (en) * 2000-01-28 2001-08-03 Hitachi Ltd Semiconductor device
JP2003347354A (en) * 2002-05-28 2003-12-05 Fujitsu Ltd Manufacturing method of semiconductor device and semiconductor device, and semiconductor device unit
JP2004356218A (en) * 2003-05-27 2004-12-16 Kyocera Corp Semiconductor element housing package and semiconductor device
JP2005019709A (en) * 2003-06-26 2005-01-20 Chichibu Fuji Co Ltd Semiconductor laser unit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210769A (en) * 2000-01-28 2001-08-03 Hitachi Ltd Semiconductor device
JP2003347354A (en) * 2002-05-28 2003-12-05 Fujitsu Ltd Manufacturing method of semiconductor device and semiconductor device, and semiconductor device unit
JP2004356218A (en) * 2003-05-27 2004-12-16 Kyocera Corp Semiconductor element housing package and semiconductor device
JP2005019709A (en) * 2003-06-26 2005-01-20 Chichibu Fuji Co Ltd Semiconductor laser unit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220386503A1 (en) * 2021-05-26 2022-12-01 Prime World International Holdings Ltd. Optical transceiver with housing pressing thermal interface material by uneven surface

Also Published As

Publication number Publication date
JP2006210575A (en) 2006-08-10

Similar Documents

Publication Publication Date Title
US6262489B1 (en) Flip chip with backside electrical contact and assembly and method therefor
KR102182189B1 (en) Power overlay structure and method of making same
JP4828164B2 (en) Interposer and semiconductor device
JP6302184B2 (en) Reliable surface mount integrated power module
KR20160108821A (en) Semiconductor device package with warpage control structure
KR20080014004A (en) Interposer and semiconductor device
US11482461B2 (en) Semiconductor package and method for making the same
JP2003068931A (en) Semiconductor package and its manufacturing method
JP2008507126A (en) Assembly parts on external board and method for providing assembly parts
US10137518B2 (en) Semiconductor package, electronic device, and solder mounting method
JP4646642B2 (en) Package for semiconductor devices
JP4494249B2 (en) Semiconductor device
US5877553A (en) Metallic electronic component packaging arrangement
JP4577980B2 (en) Mounting board
JP3631638B2 (en) Mounting structure of semiconductor device package
US20060278975A1 (en) Ball grid array package with thermally-enhanced heat spreader
JP2001338999A (en) Semiconductor element storing package
WO2007141851A1 (en) Semiconductor package and electronic apparatus
TW417265B (en) Low-cost surface-mount compatible land-grid array (lga) chips cale package (csp) for packaging solder-bumped flip chips
JP3660817B2 (en) Electronic circuit module
JP4398223B2 (en) Semiconductor device
JP2002076193A (en) Semiconductor element storing package and package mounting board
US11948852B2 (en) Semiconductor device package
EP4138120A1 (en) Lidded semiconductor package
JP2001244390A (en) Package for semiconductor device and mounting structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4646642

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees