JP2004356218A - Semiconductor element housing package and semiconductor device - Google Patents

Semiconductor element housing package and semiconductor device Download PDF

Info

Publication number
JP2004356218A
JP2004356218A JP2003149526A JP2003149526A JP2004356218A JP 2004356218 A JP2004356218 A JP 2004356218A JP 2003149526 A JP2003149526 A JP 2003149526A JP 2003149526 A JP2003149526 A JP 2003149526A JP 2004356218 A JP2004356218 A JP 2004356218A
Authority
JP
Japan
Prior art keywords
semiconductor element
thermal expansion
metal frame
coefficient
resin substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003149526A
Other languages
Japanese (ja)
Inventor
Seiichi Abe
誠一 阿部
Atsushi Kumano
篤 熊野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003149526A priority Critical patent/JP2004356218A/en
Publication of JP2004356218A publication Critical patent/JP2004356218A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a semiconductor element housing package where the connection of a semiconductor element with an external electric circuit board is kept high enough in reliability in an environment where heat is repeatedly applied with the operation of the semiconductor element and the change of an operating environment, and to provide a semiconductor device. <P>SOLUTION: The semiconductor element housing package is equipped with a resin board 1 with a mounting pad mounted with a semiconductor element 4 and located at the center of its top surface, a metal frame 2 which is fixed on the top surface of the resin board 1 surrounding the mounting pad, and a metal lid 3 which is stacked up on the top surface of the metal frame 2 fixing the periphery of its lower surface to the top surface of the metal frame 2 so as to cover the mounting pad. The thermal expansion coefficient of the resin board 1 is larger than that of the semiconductor element 4 and intermediate between those of the semiconductor element 4 and the metal frame 2. The thermal expansion coefficient of the metal frame 2 is larger than that of the metal lid 3, and a semiconductor device is provided using the above semiconductor element housing package. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子がフリップチップ接続によって搭載される半導体素子収納用パッケージおよびこの半導体素子収納用パッケージを用いた半導体装置に適用して、使用耐久性、信頼性に優れたものとするのに有効な技術に関するものである。
【0002】
【従来の技術】
近年、マイクロプロセッサやASIC(Application Specific Integrated Circuit)等に代表される半導体素子が搭載される半導体装置においては、半導体素子の高集積化に伴い、半導体素子の実装方法は、この素子およびこの素子を搭載する半導体素子収納用パッケージの小型化に対応できるフリップチップ実装に移行している。
【0003】
この実装方法では、まず、半導体素子の電極パッドの表面にスパッタリング法等でBLM(Ball Limiting Metallurgy)重ね膜を堆積し、次いで、フォトリソグラフィ技術を用いたエッチング法でBLM重ね膜をパターニングして、電極パッド上にBLM電極を形成する。
【0004】
次に、フォトレジストを用いたリフトオフ法で円錐台状の半田をBLM電極上に形成した後、これを溶融させて、球状の半田ボールを形成する。
【0005】
次に、この半田ボールが半導体素子収納用パッケージの容器本体上に形成された電極に接触するようにして半導体素子を半導体素子収納用パッケージの容器本体に搭載するとともに半田ボールを溶融させて半導体素子の電極パッドと半導体素子収納用パッケージの容器本体の電極とを半田を介して接続する。
【0006】
最後に、半導体素子が搭載されたこの半導体素子収納用パッケージの容器本体に金属蓋体を容器本体の封止部において位置合わせして、樹脂等の封止材で封止することにより半導体装置が完成する。
【0007】
ここで、半導体素子収納用パッケージの容器本体となる基板には、セラミック基板または樹脂基板が用いられる。特に、半導体素子収納用パッケージ容器本体となる基板が樹脂基板の場合は、この樹脂基板の剛性を高めるために、半導体素子を内部に収納するための開口部が形成された金属枠体が樹脂基板に接合されて用いられ、この金属枠体上に金属蓋体が接着剤を介して接合される。
【0008】
また、金属蓋体は、半導体素子の保護だけではなく、半導体素子で発生する熱を外部へ放熱する放熱板としての機能も有する。このため、この金属蓋体には熱伝導率の高い銅(Cu)材質やアルミニウム(Al)材質等の部材が使用され、半導体素子で発生する熱を逃がす放熱体として機能させるために、その厚みは通常、0.5mm乃至1.0mmとされている。
【0009】
さらに近年は、高速で動作し、かつ構造の複雑な半導体素子が搭載されるようになり、半導体素子の動作および使用環境の変化に伴って熱が繰り返し付加された場合において、半導体素子の破壊が発生しないように半導体素子に負荷をかけない構造や材料の採用が要求されている。このような要求に応えるためには、樹脂基板の熱膨張係数を小さくし、半導体素子の熱膨張係数にできるだけ近づけることが有効である。
【0010】
【特許文献1】
特開2001−110926号公報
【0011】
【発明が解決しようとする課題】
しかしながら、上述のように金属枠体を接合した樹脂基板を使用した半導体素子収納用パッケージ内に半導体素子を収容した半導体装置をいわゆるBGA(Ball Grid Array)構造やLGA(Land Grid Array)構造で外部電気回路基板であるプリント配線板に実装した形態では、樹脂基板の熱膨張係数を半導体素子の熱膨張係数(2×10−6〜4×10−6/℃)と同じにすると、樹脂基板に半導体素子の動作および使用環境の変化に伴って熱が繰り返し印加された場合に、その低温域では、樹脂基板,金属枠体(熱膨張係数:16×10−6〜25×10−6/℃),金属蓋体(熱膨張係数:16×10−6〜25×10−6/℃)およびプリント配線板(熱膨張係数:16×10−6/℃以上)の熱膨張係数の違いによって、熱膨張係数の大きな金属蓋体および金属枠体が熱膨張係数の小さな樹脂基板の外辺側を金属蓋体側に持ち上げる応力が発生する一方、熱膨張係数の大きなプリント配線板が熱膨張係数の小さな樹脂基板の外辺側をプリント配線板側に反らせる応力も発生し、樹脂基板と金属枠体とが剥がれたり、この半導体装置とプリント配線板の外部電気回路との接続端子である半田ボールのうち、樹脂基板の外辺に位置する半田ボールにストレスが集中し、その結果、この半田ボールが破壊されたりして、半導体装置が正常な機能を果たさなくなるという問題が発生する。
【0012】
従って、半導体素子の動作および使用環境の変化に伴って熱が繰り返し印加された場合に、金属蓋体と半導体素子との間,金属蓋体と金属枠体との間,金属枠体と樹脂基板との間,および半導体装置とプリント配線板の外部電気回路との接続端子である半田ボールの接合信頼性をいずれも満足する構造が必要とされている。
【0013】
本発明は、上記のような問題に鑑み案出されたものであり、その目的は、半導体素子の動作および使用環境の変化といった温度負荷が繰り返される環境下においても、半導体装置とプリント配線板とを接合する半田ボールの接合信頼性を保ちながら、金属蓋体と金属枠体との間、および金属枠体と樹脂基板との間の接合信頼性を確保することができる半導体素子収納用パッケージおよびその半導体素子収納用パッケージを用いた半導体装置を提供することにある。
【0014】
【課題を解決するための手段】
本発明の半導体素子収納用パッケージは、上面の中央部に半導体素子の搭載部を有する樹脂基板と、該樹脂基板の上面に前記搭載部を取り囲んで取着された金属枠体と、前記搭載部を覆うようにして前記金属枠体の上面に下面の周辺部が取着される金属蓋体とを具備する半導体素子収納用パッケージであって、前記樹脂基板の熱膨張係数が前記半導体素子の熱膨張係数より大きくかつ前記半導体素子の熱膨張係数と前記金属枠体の熱膨張係数との間の値であるとともに、前記金属枠体の熱膨張係数が前記金属蓋体の熱膨張係数より大きいことを特徴とするものである。
【0015】
また、本発明の半導体装置は、上記半導体素子収納用パッケージの前記搭載部に半導体素子が搭載されるとともに、前記金属枠体の上面に前記金属蓋体の前記周辺部が取着されて成ることを特徴とするものである。
【0016】
さらに、上記半導体素子収納用パッケージの前記搭載部に半導体素子が搭載されるとともに半導体素子の上面と前記金属蓋体の下面の中央部とが伝熱性部材を介して接合されていることを特徴とする半導体装置である。
【0017】
本発明の半導体素子収納用パッケージによれば、上面の中央部に半導体素子の搭載部を有する樹脂基板と、この樹脂基板の上面に搭載部を取り囲んで取着された金属枠体と、搭載部を覆うようにして金属枠体の上面に下面の周辺部が取着される金属蓋体とを具備し、この樹脂基板の熱膨張係数が半導体素子の熱膨張係数より大きくかつ半導体素子の熱膨張係数と金属枠体の熱膨張係数との間の値であることから、この半導体素子収納用パッケージを用いた半導体装置をプリント配線板に実装し、搭載した半導体素子の動作および使用環境の変化に伴って熱が繰り返し印加された場合に、半導体素子および樹脂基板間に発生する応力を小さく抑えることが可能となるとともに、金属枠体の熱膨張係数が金属蓋体の熱膨張係数より大きいことから、樹脂基板と金属枠体とが両者の熱膨張係数の差に起因して反ろうとする力と、金属蓋体と金属枠体とが両者の熱膨張係数の差に起因して反ろうとする力とがお互いに打ち消し合うように作用するため樹脂基板が大きく反るようなことはなく、したがって半導体素子収納用パッケージの外辺の位置に配置された半田ボールにストレスが集中してこの半田ボールが破壊されることによって半導体装置が正常な機能を果たさなくなったりする問題を有効に防止することが可能となる。その結果として、半導体装置とプリント配線板との接合に関して好適な半導体装置を提供することが可能となる。
【0018】
また、本発明の半導体装置によれば、上記各構成の本発明の半導体素子収納用パッケージの搭載部に半導体素子が搭載されるとともに、金属枠体の上面に金属蓋体の下面の周辺部が取着されて成るため、以上のような本発明の半導体素子収納用パッケージによる作用効果によって、半導体装置とプリント配線板との接合に関して高い信頼性を得ることが可能となる。
【0019】
また、本発明の半導体装置によれば、半導体素子の上面と金属蓋体の中央部の下面とが伝熱性部材を介して接合されているときには、半導体素子からの熱を金属蓋体に、あるいは金属蓋体の外側に取着される高熱伝導材料から成る放熱器に効率よく逃がすことが可能となり、長期的に安定した高放熱特性の半導体装置を提供することが可能となる。
【0020】
【発明の実施の形態】
以下、本発明の半導体素子収納用パッケージおよび半導体装置について添付図面に基づき詳細に説明する。図1は、本発明の半導体素子収納用パッケージおよびこれを用いた本発明の半導体装置の実施の形態の一例を示す断面図である。
【0021】
図1では、本発明をBGA型の半導体素子収納用パッケージに適用した場合の例を示しており、この図において、1は樹脂基板、2は金属枠体、3は金属蓋体、4は半導体素子である。
【0022】
この図1に示す例においては、半導体素子収納用パッケージは、下面の外部接続用電極(図示せず)に外部接続端子となる半田ボール5が接続された樹脂基板3と、その樹脂基板3の上面に、上面中央部の半導体素子4の搭載部を取り囲むように第1の接合部材6により取着された、半導体素子4を内部に収容するための開口部が形成された金属枠体2と、金属枠体2の開口部を覆うように金属枠体2の上面に第2の接合部材7により取着される金属蓋体3とから構成されている。
【0023】
本発明の半導体装置は例えば、図1に示すように、本発明の半導体素子収納用パッケージの半導体素子4の搭載部に形成された半導体素子接続用パッド(図示せず)にSn−Pb等の半田等から成る導体バンプ8により半導体素子4がフリップチップ実装され、この半導体素子4と樹脂基板1との間に、この実装部の補強のために熱硬化性樹脂を含有する充填剤、いわゆるアンダーフィル9が充填され、さらに、金属蓋体3が、樹脂基板1の半導体素子4の搭載部を覆うように金属枠体2の上面に第2の接合部材7により取着されることにより完成する。そして、この例では、半導体素子4の上面と金属蓋体3の下面とが伝熱性部材である第3の接合部材10で接続されている。
【0024】
樹脂基板1は、例えばポリフェノールエーテル等の材質から成る基板であったり、または、この基板上にポリイミド,エポキシ樹脂,フッ素樹脂,ポリノルボルネンまたはベンゾシクロブテン等の有機絶縁材料を使用したり、あるいはセラミックス粉末等の無機絶縁物粉末をエポキシ樹脂等の熱硬化性樹脂で結合して成る複合絶縁材料等の電気絶縁材料を使用して形成される、内部配線を有した多層基板構造とされている。
【0025】
この樹脂基板1は以下のようにして作製される。例えばポリフェノールエーテル樹脂から成る場合であれば、一般にガラス繊維を織り込んだ布にポリフェノールエーテル樹脂を含浸させて形成され絶縁層の上面に、有機樹脂前駆体をスピンコート法もしくはカーテンコート法等の塗布技術により被着させ、これを熱硬化処理することによって形成されるエポキシ樹脂等の有機樹脂から成る絶縁層(図示せず)と、銅を無電解めっき法や蒸着法等の薄膜形成技術で被着しこれにフォトリソグラフィ技術を採用することによって形成される薄膜配線導体層(図示せず)とを交互に積層することによって製作される。
【0026】
また、各薄膜配線導体層は、例えば銅(Cu),銀(Ag),ニッケル(Ni),クロム(Cr),チタン(Ti),金(Au)またはニオブ(Nb)やそれらの合金等の金属材料の薄膜等により形成すればよい。具体的には、例えば金属材料の薄膜で形成する場合は、スパッタリング法,真空蒸着法またはメッキ法により金属膜を形成した後、フォトリソグラフィ法により所定の配線パターンに形成すればよい。この樹脂基板1の上面中央部の搭載部には半導体素子4が接続される素子接続用の導体バンプ8が形成され、またその下面には外部接続端子となる半田ボール5が接続される外部接続用電極(図示せず)が形成されている。この樹脂基板1の熱膨張係数は、例えば5×10−6〜15×10−6/℃となっている。
【0027】
金属枠体2は、一般的には金属材料から成り、プレス加工や切削加工または研削加工等により、樹脂基板1の搭載部を取り囲む、半導体素子4を内部に収容するための開口部を持つ形状に成形されており、耐熱性に優れる熱硬化性樹脂や金属ろう材から成る第1の接合部材6により樹脂基板1に接合されている。
【0028】
金属蓋体3は、金属枠体2と同様に、一般的には金属材料から成り、プレス加工や切削加工または研削加工等により任意の形状に成形され、耐熱性を有する熱硬化性樹脂や金属ろう材から成る第2の接合部材7を介して金属枠体2の上面に接合されているとともにアルミニウムや銅、窒化アルミニウム等の高熱伝導材料の粉末を含有する熱伝導性のグリースやゲル状樹脂から成る伝熱性部材10を介して半導体素子4に熱的に接合されている。ここで、この金属蓋体3の外側に取着される放熱器(図示せず)へ効率よく熱を伝える媒体として機能するように、金属蓋体3を高熱伝導材料である銅(熱伝導率:400W/(m・K))から成るものとすると、この金属蓋体3は、半導体素子5からの熱を高熱伝導材料から成る放熱器に効率よく熱を逃がすことが可能となり、長期的に安定した高放熱特性の半導体装置を提供することが可能となる。
【0029】
半導体素子4はフリップチップ型のもので、シリコン(Si)系等の半導体材料から成り、その下面(樹脂基板1と対向する面)には多数の接続用バンプが形成されている。この半導体素子4の熱膨張係数は、例えば2×10−6〜4×10−6/℃となっている。
【0030】
そして、この半導体素子4は、樹脂基板1の上面の搭載部に搭載され、接続用バンプを樹脂基板1の半導体素子接続用の導体バンプ8に載置当接させ、しかる後、約250〜400℃の温度で加熱して接続用バンプを溶接させることにより、樹脂基板1の薄膜配線導体層と電気的に接続されている。この半導体素子4が樹脂基板1に実装された部分には、この実装部の補強のために熱硬化性樹脂を含有する充填剤、いわゆるアンダーフィル9が充填されている。
【0031】
本発明の半導体素子収納用パッケージおよびこれを用いた半導体装置は、上記のような構成において、半導体装置をプリント配線板(図示せず)に実装し、半導体素子4の動作および使用環境の変化に伴って熱が繰り返し付加された場合に、半導体素子4および半導体素子4と樹脂基板1間の接続部に発生する応力を小さく抑えるために、樹脂基板1の熱膨張係数が半導体素子4の熱膨張係数より大きくかつ半導体素子4の熱膨張係数と金属枠体2の熱膨張係数との間の値である。
【0032】
さらに、半導体素子4の動作および使用環境の変化に伴って熱が繰り返し付加された場合に、樹脂基板1と金属枠体2とが剥がれたり、半導体素子4とプリント配線板の外部電気回路との接続端子となる半田ボール5が破壊されたりすることによって半導体装置が正常な機能を果たさなくなることを防止するために、金属枠体2の熱膨張係数が金属蓋体3の熱膨張係数よりも大きなものとなっている。
【0033】
これによれば、上面中央部に半導体素子4の搭載部を有する樹脂基板1と、樹脂基板1の上面に半導体素子4の搭載部を取り囲んで取着された金属枠体2と、この搭載部を覆うようにして金属枠体2の上面に下面の周辺部が取着される金属蓋体3とを具備し、この樹脂基板1の熱膨張係数が半導体素子4の熱膨張係数よりも大きくかつ半導体素子4の熱膨張係数と金属枠体2の熱膨張係数との間の値であるとともに金属枠体2の熱膨張係数が金属蓋体3の熱膨張係数より大きいことから、この半導体装置をプリント配線板に実装し、半導体素子4の動作および使用環境の変化に伴って熱が繰り返し印加された場合に、半導体素子4および半導体素子4と樹脂基板1間の素子接続用の導体バンプ8に発生する応力を小さく抑えることが可能となる。ここで、樹脂基板1の熱膨張係数が半導体素子4の熱膨張係数(2×10−6〜4×10−6/℃)以下である場合には、熱膨張係数の大きな金属蓋体3および金属枠体2が樹脂基板1の外辺側を金属蓋体3側に持ち上げようとする応力が大きくなり、樹脂基板1と金属枠体2とが剥がれる問題が発生する。また、樹脂基板1の熱膨張係数が金属枠体2の熱膨張係数(16×10−6〜25×10−6/℃)以上である場合には、半導体素子4との熱膨脹率の差が大きくなり、半導体素子4と樹脂基板1を接続する素子接続用の導体バンプ8にストレスが集中して、この導体バンプ8が破壊されることによって半導体装置が正常な機能を果たさなくなる問題が発生する。
【0034】
さらに金属枠体2の熱膨張係数を金属蓋体3の熱膨張係数より大きなものとすると、樹脂基板1と金属枠体2との熱膨張係数とが両者の熱膨張係数の差に起因して反ろうとする力と、金属蓋体3と金属枠体2とが両者の熱膨張係数の差に起因して反ろうとする力とが互いに打ち消し合うように作用するため樹脂基板が大きく反るようなことがなく、半導体素子収納用パッケージの外辺の位置に配置された半田ボール5にストレスが集中してこの半田ボール5が破壊されたりして半導体装置が正常な機能を果たさなくなる問題を有効に防止することが可能となる。その結果として、半導体装置とプリント配線板との接合に関して好適な半導体素子収納用パッケージおよびこれ用いた半導体装置を提供することが可能となる。
【0035】
なお、本発明の好適な例としては、金属蓋体が銅からなり、その大きさが20×20〜100×100mmである場合であれば、金属枠体が熱膨張係数24×10−6/℃のアルミニウムや23×10−6/℃の錫から構成されておれば、樹脂基板1の外周部を持ち上げようとする応力が減少する。
【0036】
ここで、外形寸法が45×45mm、厚みが0.68mm、熱膨張係数が15×10−6/℃の樹脂基板1上に、外形寸法が樹脂基板1と同じで、開口部の大きさが33mm、厚みが0.66mmの金属枠体2を接合させるとともに、その開口部内の樹脂基板上に外形サイズが17×17mm,厚みが0.725mm,熱膨張係数が3×10−6/℃の半導体素子4を搭載し、さらに金属枠体2の上面に外形寸法が金属枠体2と同じで厚みが0.5mm、熱膨張係数が16×10−6/℃の金属蓋体3を接合させ、金属枠体2の熱膨張係数をそれぞれ11×10−6/℃、16×10−6/℃、24×10−6/℃として、た場合に、+150℃から−55℃まで冷却した際の樹脂基板1の反りを有限要素法を用いた熱応力解析によるシミュレーションにより比較した結果を図2に示す。なお、図2において、横軸は半導体素子4の中心から樹脂基板1の外辺までの距離を1として示してあり、縦軸は樹脂基板1の−55℃での反り量をあらわしている。
【0037】
図2に示す結果より、金属枠体2の熱膨張係数を金属蓋体3の熱膨張係数よりも大きくすることにより樹脂基板1の反りを低減することができることがわかる。
【0038】
そして、本発明の半導体素子収納用パッケージおよび半導体装置によれば、以上のように、樹脂基板1の熱膨張係数が半導体素子4の熱膨張係数と金属枠体2の熱膨張係数との間の値であるとともに、金属枠体2の熱膨張係数が金属蓋体3の熱膨張係数よりも大きなことから、半導体装置とプリント配線板との接合に関して高い信頼性を得ることが可能となる。
【0039】
また、半導体素子4の上面と金属蓋体3の中央部の下面とが伝熱性部材10で接合されているときには、半導体素子4からの熱を伝熱性部材10を介して金属蓋体3に効率よく伝達させることができるので、金属蓋体3の外側に取着される高熱伝導材料から成る放熱器に効率よく熱を逃がすことが可能となり、長期的に安定した高放熱特性の半導体装置を提供することが可能となる。これに対し、半導体素子4の上面と金属蓋体3の中央部の下面とが断熱性部材で接続されている場合には、半導体素子4で発生した熱を金属蓋体3を介して有効に放熱できなくなり、半導体素子4が熱により破壊されるという問題が発生するおそれがある。
【0040】
このような伝熱性部材10に好適な材料としては、例えばアルミニウムや銅等の高熱伝導性の金属フィラーまたは窒化アルミニウムや窒化珪素等の高熱伝導性のセラミックフィラー等を含有したエポキシ系樹脂や、同様のフィラーを含有したシリコーン系樹脂等を用いればよい。また、半導体素子4の上面と金属蓋体3の下面とは、伝熱性部材10で熱的に接続されていれば、必ずしも伝熱性部材10により強固に接合されている必要はない。
【0041】
なお、本発明は以上の実施の形態の例に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の変更を行なうことは何ら差し支えない。例えば、以上の例では本発明の半導体素子収納用パッケージをBGA型の半導体素子収納用パッケージに適用した場合の例を示したが、LGA型の半導体素子収納用パッケージ適用してもよい。
【0042】
【発明の効果】
本発明の半導体素子収納用パッケージは、上面の中央部に半導体素子の搭載部を有する樹脂基板と、該樹脂基板の上面に前記搭載部を取り囲んで取着された金属枠体と、前記搭載部を覆うようにして前記金属枠体の上面に下面の周辺部が取着される金属蓋体とを具備する半導体素子収納用パッケージであって、前記樹脂基板の熱膨張係数が前記半導体素子の熱膨張係数より大きくかつ前記半導体素子の熱膨張係数と前記金属枠体の熱膨張係数との間の値であるとともに、前記金属枠体の熱膨張係数が前記金属蓋体の熱膨張係数より大きいことを特徴とするものである
また、本発明の半導体装置は、上記半導体素子収納用パッケージの前記搭載部に半導体素子が搭載されるとともに、前記金属枠体の上面に前記金属蓋体の前記周辺部が取着されて成ることを特徴とするものである。
【0043】
さらに、上記半導体素子収納用パッケージの前記搭載部に半導体素子が搭載されるとともに半導体素子の上面と前記金属蓋体の下面の中央部とが伝熱性部材を介して接合されていることを特徴とする半導体装置である。
【0044】
本発明の半導体素子収納用パッケージによれば、上面の中央部に半導体素子の搭載部を有する樹脂基板と、この樹脂基板の上面に搭載部を取り囲んで取着された金属枠体と、搭載部を覆うようにして金属枠体の上面に下面の周辺部が取着される金属蓋体とを具備し、この樹脂基板の熱膨張係数が半導体素子の熱膨張係数より大きくかつ半導体素子の熱膨張係数と金属枠体の熱膨張係数との間の値であることから、この半導体素子収納用パッケージを用いた半導体装置をプリント配線板に実装し、搭載した半導体素子の動作および使用環境の変化に伴って熱が繰り返し印加された場合に、半導体素子および樹脂基板間に発生する応力を小さく抑えることが可能となるとともに、金属枠体の熱膨張係数が金属蓋体の熱膨張係数より大きいことから、樹脂基板と金属枠体とが両者の熱膨張係数の差に起因して反ろうとする力と、金属蓋体と金属枠体とが両者の熱膨張係数の差に起因して反ろうとする力とがお互いに打ち消し合うように作用するため樹脂基板が大きく反るようなことはなく、したがって半導体素子収納用パッケージの外辺の位置に配置された半田ボールにストレスが集中してこの半田ボールが破壊されることによって半導体装置が正常な機能を果たさなくなったりする問題を有効に防止することが可能となる。その結果として、半導体装置とプリント配線板との接合に関して好適な半導体装置を提供することが可能となる。
【0045】
また、本発明の半導体装置によれば、上記各構成の本発明の半導体素子収納用パッケージの搭載部に半導体素子が搭載されるとともに、金属枠体の上面に金属蓋体の下面の周辺部が取着されて成るため、以上のような本発明の半導体素子収納用パッケージによる作用効果によって、半導体装置とプリント配線板との接合に関して高い信頼性を得ることが可能となる。
【0046】
また、本発明の半導体装置によれば、半導体素子の上面と金属蓋体の中央部の下面とが伝熱性部材を介して接合されているときには、半導体素子からの熱を金属蓋体に、あるいは金属蓋体の外側に取着される高熱伝導材料から成る放熱器に効率よく逃がすことが可能となり、長期的に安定した高放熱特性の半導体装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の半導体素子収納用パッケージおよびこれを用いた本発明の半導体装置の実施の形態の一例を示す断面図である。
【図2】(a)〜(c)はそれぞれ本発明の半導体装置の実施例および比較例について金属枠体の熱膨張係数と樹脂基板のそり量をシミュレーションにより比較した結果を示す線図である。
【符号の説明】
1:樹脂基板
2:金属枠体
3:金属蓋体
4:半導体素子
10:伝熱性部材
[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is applied to a semiconductor element storage package in which a semiconductor element is mounted by flip-chip connection and a semiconductor device using the semiconductor element storage package to achieve excellent use durability and reliability. It is about effective technology.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in a semiconductor device on which a semiconductor element typified by a microprocessor or an ASIC (Application Specific Integrated Circuit) or the like is mounted, along with the high integration of the semiconductor element, the mounting method of the semiconductor element includes the element and this element. The shift to flip-chip mounting, which can accommodate the downsizing of semiconductor device storage packages to be mounted, has been made.
[0003]
In this mounting method, first, a BLM (Ball Limiting Metallurgy) laminated film is deposited on a surface of an electrode pad of a semiconductor element by a sputtering method or the like, and then the BLM laminated film is patterned by an etching method using a photolithography technique. A BLM electrode is formed on the electrode pad.
[0004]
Next, after forming a truncated cone-shaped solder on the BLM electrode by a lift-off method using a photoresist, the solder is melted to form a spherical solder ball.
[0005]
Next, the semiconductor element is mounted on the container body of the semiconductor element storage package so that the solder ball contacts an electrode formed on the container body of the semiconductor element storage package, and the solder ball is melted to form the semiconductor element. Are connected to the electrodes of the container body of the package for housing semiconductor elements via solder.
[0006]
Finally, the metal lid is positioned at the sealing portion of the container body with the container body of the semiconductor element storage package on which the semiconductor element is mounted, and the semiconductor device is sealed with a sealing material such as a resin. Complete.
[0007]
Here, a ceramic substrate or a resin substrate is used as a substrate serving as a container body of the semiconductor element storage package. In particular, when the substrate serving as the semiconductor device housing package container body is a resin substrate, in order to increase the rigidity of the resin substrate, a metal frame body having an opening for housing the semiconductor element therein is formed of a resin substrate. A metal lid is bonded on the metal frame via an adhesive.
[0008]
Further, the metal lid has not only the function of protecting the semiconductor element but also the function as a heat radiating plate for radiating heat generated in the semiconductor element to the outside. For this reason, a member such as a copper (Cu) material or an aluminum (Al) material having a high thermal conductivity is used for the metal cover, and the thickness of the metal cover is set to function as a radiator for releasing heat generated in the semiconductor element. Is usually 0.5 mm to 1.0 mm.
[0009]
Furthermore, in recent years, semiconductor devices that operate at high speed and have a complicated structure have been mounted, and when heat is repeatedly applied in accordance with changes in the operation of the semiconductor device and the use environment, the semiconductor device may be destroyed. It is required to adopt a structure or material that does not apply a load to the semiconductor element so as not to cause the generation. In order to meet such a demand, it is effective to reduce the thermal expansion coefficient of the resin substrate so as to be as close as possible to the thermal expansion coefficient of the semiconductor element.
[0010]
[Patent Document 1]
JP 2001-110926 A
[Problems to be solved by the invention]
However, as described above, a semiconductor device in which a semiconductor element is housed in a semiconductor element housing package using a resin substrate to which a metal frame is bonded is externally mounted in a so-called BGA (Ball Grid Array) structure or LGA (Land Grid Array) structure. When mounted on a printed wiring board, which is an electric circuit board, if the coefficient of thermal expansion of the resin substrate is the same as the coefficient of thermal expansion of the semiconductor element (2 × 10 −6 to 4 × 10 −6 / ° C.), When heat is repeatedly applied in accordance with a change in the operation and use environment of the semiconductor element, in the low temperature range, the resin substrate and the metal frame (coefficient of thermal expansion: 16 × 10 −6 to 25 × 10 −6 / ° C.) ), metal lid (thermal expansion coefficient: 16 × 10 -6 ~25 × 10 -6 / ℃) and the printed wiring board (thermal expansion coefficient: 16 × 10 -6 / ℃ higher) Netsu膨of Due to the difference in the coefficients, a stress occurs in which the metal lid and the metal frame having a large thermal expansion coefficient raise the outer side of the resin substrate having a small thermal expansion coefficient to the metal lid side, while a printed wiring board having a large thermal expansion coefficient is generated. A stress that causes the outer side of the resin substrate having a small coefficient of thermal expansion to warp toward the printed wiring board is also generated, and the resin substrate and the metal frame are peeled off, or the connection terminal between the semiconductor device and an external electric circuit of the printed wiring board is removed. Among the certain solder balls, stress concentrates on the solder balls located on the outer side of the resin substrate, and as a result, the solder balls are broken and a problem that the semiconductor device does not function properly occurs.
[0012]
Therefore, when heat is repeatedly applied in accordance with the operation of the semiconductor element and a change in the use environment, the heat is applied between the metal lid and the semiconductor element, between the metal lid and the metal frame, between the metal frame and the resin substrate. A structure that satisfies the joint reliability of the solder ball, which is a connection terminal between the semiconductor device and the external electric circuit of the printed wiring board, is required.
[0013]
The present invention has been devised in view of the above problems, and its object is to provide a semiconductor device and a printed wiring board even under an environment where a temperature load is repeated such as a change in operation and use environment of a semiconductor element. A semiconductor element storage package capable of securing the bonding reliability between the metal lid and the metal frame and between the metal frame and the resin substrate while maintaining the bonding reliability of the solder balls for bonding An object of the present invention is to provide a semiconductor device using the semiconductor element storage package.
[0014]
[Means for Solving the Problems]
The package for accommodating a semiconductor element of the present invention includes a resin substrate having a mounting portion for a semiconductor element in a central portion of an upper surface, a metal frame attached to the upper surface of the resin substrate so as to surround the mounting portion, A metal lid body having a lower peripheral portion attached to the upper surface of the metal frame so as to cover the metal frame, wherein the resin substrate has a thermal expansion coefficient of the semiconductor element. A coefficient of thermal expansion larger than the coefficient of thermal expansion of the semiconductor element and the coefficient of thermal expansion of the metal frame, and the coefficient of thermal expansion of the metal frame is larger than the coefficient of thermal expansion of the metal lid. It is characterized by the following.
[0015]
Further, in the semiconductor device of the present invention, a semiconductor element is mounted on the mounting part of the semiconductor element housing package, and the peripheral part of the metal lid is attached to an upper surface of the metal frame. It is characterized by the following.
[0016]
Further, a semiconductor element is mounted on the mounting portion of the semiconductor element housing package, and an upper surface of the semiconductor element and a central portion of a lower surface of the metal lid are joined via a heat conductive member. Semiconductor device.
[0017]
According to the semiconductor element housing package of the present invention, a resin substrate having a semiconductor element mounting portion in the center of the upper surface, a metal frame body surrounding the mounting portion on the upper surface of the resin substrate, and a mounting portion A metal lid body having a lower peripheral portion attached to an upper surface of the metal frame so as to cover the metal frame, wherein a thermal expansion coefficient of the resin substrate is larger than a thermal expansion coefficient of the semiconductor element and a thermal expansion coefficient of the semiconductor element is increased. Since the value is between the coefficient and the coefficient of thermal expansion of the metal frame, the semiconductor device using this semiconductor element storage package is mounted on a printed wiring board, and changes in the operation and operating environment of the mounted semiconductor element. When heat is repeatedly applied, the stress generated between the semiconductor element and the resin substrate can be reduced, and the coefficient of thermal expansion of the metal frame is larger than the coefficient of thermal expansion of the metal lid. The force between the resin substrate and the metal frame that tends to warp due to the difference in the coefficient of thermal expansion between them, and the force between the metal lid and the metal frame that tends to warp due to the difference in the coefficient of thermal expansion between the two Acts so as to cancel each other out, so that the resin substrate does not warp significantly. Therefore, stress concentrates on the solder balls arranged at the outer edge of the semiconductor element housing package, and the solder balls are broken. As a result, it is possible to effectively prevent a problem that the semiconductor device does not perform a normal function. As a result, it is possible to provide a semiconductor device suitable for joining the semiconductor device and the printed wiring board.
[0018]
Further, according to the semiconductor device of the present invention, the semiconductor element is mounted on the mounting portion of the semiconductor element housing package of the present invention having each of the above configurations, and the peripheral portion of the lower surface of the metal lid is formed on the upper surface of the metal frame. Since the semiconductor device is attached, high reliability can be obtained with respect to the junction between the semiconductor device and the printed wiring board by the above-described operation and effect of the semiconductor element housing package of the present invention.
[0019]
Further, according to the semiconductor device of the present invention, when the upper surface of the semiconductor element and the lower surface of the central portion of the metal lid are joined via the heat conductive member, heat from the semiconductor element is transferred to the metal lid, or It is possible to efficiently escape to the radiator made of a high heat conductive material attached to the outside of the metal lid, and it is possible to provide a semiconductor device having high heat radiation characteristics that is stable over a long period of time.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a semiconductor element storage package and a semiconductor device according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a sectional view showing an example of an embodiment of a semiconductor element housing package of the present invention and a semiconductor device of the present invention using the same.
[0021]
FIG. 1 shows an example in which the present invention is applied to a BGA type semiconductor element housing package. In this figure, 1 is a resin substrate, 2 is a metal frame, 3 is a metal lid, and 4 is a semiconductor. Element.
[0022]
In the example shown in FIG. 1, a semiconductor element housing package includes a resin substrate 3 in which a solder ball 5 serving as an external connection terminal is connected to an external connection electrode (not shown) on a lower surface, and a resin substrate 3 A metal frame 2 having an opening formed therein for receiving the semiconductor element 4 therein, which is attached to the upper surface by the first joining member 6 so as to surround the mounting part of the semiconductor element 4 at the center of the upper surface; And a metal lid 3 attached to the upper surface of the metal frame 2 by a second joining member 7 so as to cover the opening of the metal frame 2.
[0023]
For example, as shown in FIG. 1, the semiconductor device of the present invention has a semiconductor element connection pad (not shown) formed on the mounting portion of the semiconductor element 4 of the semiconductor element housing package of the present invention. The semiconductor element 4 is flip-chip mounted by the conductor bumps 8 made of solder or the like, and a filler containing a thermosetting resin for reinforcing the mounting portion, that is, a so-called under The fill 9 is filled, and the metal lid 3 is completed by being attached to the upper surface of the metal frame 2 by the second bonding member 7 so as to cover the mounting portion of the resin substrate 1 on which the semiconductor element 4 is mounted. . In this example, the upper surface of the semiconductor element 4 and the lower surface of the metal lid 3 are connected by a third bonding member 10 which is a heat conductive member.
[0024]
The resin substrate 1 is, for example, a substrate made of a material such as polyphenol ether, or an organic insulating material such as polyimide, epoxy resin, fluororesin, polynorbornene or benzocyclobutene, or ceramics. A multilayer substrate structure having internal wiring formed by using an electrical insulating material such as a composite insulating material formed by bonding an inorganic insulating powder such as a powder with a thermosetting resin such as an epoxy resin.
[0025]
This resin substrate 1 is manufactured as follows. For example, in the case of a polyphenol ether resin, an organic resin precursor is generally formed by impregnating a cloth woven with glass fibers with the polyphenol ether resin, and an organic resin precursor is coated on the upper surface of the insulating layer by a spin coating method or a curtain coating method. And an insulating layer (not shown) made of an organic resin such as an epoxy resin formed by performing a thermosetting treatment, and copper is applied by a thin film forming technique such as an electroless plating method or a vapor deposition method. It is manufactured by alternately stacking thin film wiring conductor layers (not shown) formed by adopting the photolithography technique.
[0026]
Each thin-film wiring conductor layer is made of, for example, copper (Cu), silver (Ag), nickel (Ni), chromium (Cr), titanium (Ti), gold (Au), niobium (Nb), or an alloy thereof. It may be formed of a thin film of a metal material or the like. Specifically, for example, in the case of forming a thin film of a metal material, a metal film may be formed by a sputtering method, a vacuum evaporation method, or a plating method, and then formed into a predetermined wiring pattern by a photolithography method. An element connection conductor bump 8 to which the semiconductor element 4 is connected is formed on the mounting portion at the center of the upper surface of the resin substrate 1, and a solder ball 5 serving as an external connection terminal is connected on the lower surface thereof. Electrodes (not shown) are formed. The thermal expansion coefficient of the resin substrate 1 is, for example, 5 × 10 −6 to 15 × 10 −6 / ° C.
[0027]
The metal frame 2 is generally made of a metal material, and has a shape surrounding the mounting portion of the resin substrate 1 and having an opening for accommodating the semiconductor element 4 therein by pressing, cutting, or grinding. And is joined to the resin substrate 1 by a first joining member 6 made of a thermosetting resin or a brazing metal having excellent heat resistance.
[0028]
Like the metal frame 2, the metal lid 3 is generally made of a metal material, is formed into an arbitrary shape by pressing, cutting, or grinding, and is made of a thermosetting resin or metal having heat resistance. A thermally conductive grease or gel resin that is joined to the upper surface of the metal frame 2 via a second joining member 7 made of brazing material and contains a powder of a highly thermally conductive material such as aluminum, copper, or aluminum nitride. And is thermally joined to the semiconductor element 4 via a heat conductive member 10 made of. Here, the metal cover 3 is made of a high heat conductive material such as copper (thermal conductivity) so as to function as a medium for efficiently transmitting heat to a radiator (not shown) attached to the outside of the metal cover 3. : 400 W / (m · K)), the metal lid 3 can efficiently release heat from the semiconductor element 5 to a radiator made of a high heat conductive material, and can be used for a long time. It is possible to provide a semiconductor device with stable and high heat radiation characteristics.
[0029]
The semiconductor element 4 is of a flip-chip type and is made of a semiconductor material such as silicon (Si), and has a large number of connection bumps formed on the lower surface (the surface facing the resin substrate 1). The thermal expansion coefficient of the semiconductor element 4 is, for example, 2 × 10 −6 to 4 × 10 −6 / ° C.
[0030]
The semiconductor element 4 is mounted on the mounting portion on the upper surface of the resin substrate 1, and the connection bump is placed and abutted on the conductor bump 8 for connecting the semiconductor element of the resin substrate 1. By heating at a temperature of ° C. and welding the connection bumps, the connection bumps are electrically connected to the thin film wiring conductor layer of the resin substrate 1. The portion where the semiconductor element 4 is mounted on the resin substrate 1 is filled with a filler containing a thermosetting resin, that is, a so-called underfill 9 for reinforcing the mounting portion.
[0031]
In the semiconductor device storage package and the semiconductor device using the same according to the present invention, in the above-described configuration, the semiconductor device is mounted on a printed wiring board (not shown), and the operation of the semiconductor device 4 and a change in the use environment are changed. When the heat is repeatedly applied, the thermal expansion coefficient of the resin substrate 1 is reduced in order to reduce the stress generated in the semiconductor element 4 and the connection between the semiconductor element 4 and the resin substrate 1. It is larger than the coefficient and is a value between the coefficient of thermal expansion of the semiconductor element 4 and the coefficient of thermal expansion of the metal frame 2.
[0032]
Furthermore, when heat is repeatedly applied in accordance with a change in the operation and use environment of the semiconductor element 4, the resin substrate 1 and the metal frame 2 are peeled off, or the semiconductor element 4 and the external electric circuit of the printed wiring board are not connected to each other. The thermal expansion coefficient of the metal frame 2 is larger than the thermal expansion coefficient of the metal lid 3 in order to prevent the semiconductor device from functioning normally due to breakage of the solder balls 5 serving as connection terminals. It has become something.
[0033]
According to this, the resin substrate 1 having the mounting portion of the semiconductor element 4 in the center of the upper surface, the metal frame 2 attached on the upper surface of the resin substrate 1 so as to surround the mounting portion of the semiconductor element 4, and the mounting portion And a metal lid 3 having a lower peripheral portion attached to an upper surface of the metal frame 2 so as to cover the metal frame 2. The resin substrate 1 has a thermal expansion coefficient larger than that of the semiconductor element 4 and Since the coefficient of thermal expansion is a value between the coefficient of thermal expansion of the semiconductor element 4 and the coefficient of thermal expansion of the metal frame 2 and the coefficient of thermal expansion of the metal frame 2 is larger than the coefficient of thermal expansion of the metal lid 3, When the semiconductor device 4 is mounted on a printed wiring board and heat is repeatedly applied in accordance with a change in the operation of the semiconductor device 4 and the use environment, the semiconductor device 4 and the conductor bumps 8 for device connection between the semiconductor device 4 and the resin substrate 1 are formed. It is possible to reduce the generated stress . Here, when the coefficient of thermal expansion of the resin substrate 1 is equal to or less than the coefficient of thermal expansion of the semiconductor element 4 (2 × 10 −6 to 4 × 10 −6 / ° C.), the metal cover 3 having a large coefficient of thermal expansion and The stress by which the metal frame 2 tends to lift the outer side of the resin substrate 1 toward the metal lid 3 increases, causing a problem that the resin substrate 1 and the metal frame 2 are separated. When the coefficient of thermal expansion of the resin substrate 1 is equal to or more than the coefficient of thermal expansion of the metal frame 2 (16 × 10 −6 to 25 × 10 −6 / ° C.), the difference in the coefficient of thermal expansion between the semiconductor element 4 and As a result, stress concentrates on the conductor bumps 8 for connecting the semiconductor element 4 and the resin substrate 1 to connect elements, and the conductor bumps 8 are destroyed, thereby causing a problem that the semiconductor device cannot function properly. .
[0034]
Further, if the coefficient of thermal expansion of the metal frame 2 is set to be larger than the coefficient of thermal expansion of the metal cover 3, the coefficient of thermal expansion between the resin substrate 1 and the metal frame 2 is changed due to the difference between the coefficients of thermal expansion of the two. Since the force to warp and the force to warp the metal lid 3 and the metal frame 2 due to the difference in the thermal expansion coefficient of the two act so as to cancel each other out, the resin substrate is greatly warped. This effectively eliminates the problem that stress concentrates on the solder balls 5 arranged on the outer side of the package for storing semiconductor elements and the solder balls 5 are destroyed, thereby preventing the semiconductor device from functioning normally. It can be prevented. As a result, it is possible to provide a semiconductor element housing package suitable for bonding a semiconductor device to a printed wiring board and a semiconductor device using the same.
[0035]
As a preferred example of the present invention, if the metal lid is made of copper and its size is 20 × 20 to 100 × 100 mm, the metal frame has a thermal expansion coefficient of 24 × 10 −6 / If it is made of aluminum at 23 ° C. or tin at 23 × 10 −6 / ° C., the stress for lifting the outer peripheral portion of the resin substrate 1 is reduced.
[0036]
Here, the outer dimensions are 45 × 45 mm, the thickness is 0.68 mm, and the coefficient of thermal expansion is 15 × 10 −6 / ° C. On the resin substrate 1, the outer dimensions are the same as the resin substrate 1, and the size of the opening is A metal frame 2 having a thickness of 33 mm and a thickness of 0.66 mm is joined, and an outer size of 17 × 17 mm, a thickness of 0.725 mm, and a coefficient of thermal expansion of 3 × 10 −6 / ° C. is formed on the resin substrate in the opening. The semiconductor element 4 is mounted, and a metal lid 3 having the same outer dimensions as the metal frame 2, a thickness of 0.5 mm, and a thermal expansion coefficient of 16 × 10 −6 / ° C. is joined to the upper surface of the metal frame 2. When the thermal expansion coefficients of the metal frame 2 were set to 11 × 10 −6 / ° C., 16 × 10 −6 / ° C., and 24 × 10 −6 / ° C., respectively, when cooling from + 150 ° C. to −55 ° C. Of the resin substrate 1 by the thermal stress analysis using the finite element method FIG. 2 shows the results of comparison by simulation. In FIG. 2, the horizontal axis represents the distance from the center of the semiconductor element 4 to the outer edge of the resin substrate 1 as 1, and the vertical axis represents the amount of warpage of the resin substrate 1 at −55 ° C.
[0037]
From the results shown in FIG. 2, it is understood that the warpage of the resin substrate 1 can be reduced by making the coefficient of thermal expansion of the metal frame 2 larger than the coefficient of thermal expansion of the metal lid 3.
[0038]
According to the semiconductor element storage package and the semiconductor device of the present invention, as described above, the coefficient of thermal expansion of the resin substrate 1 is between the coefficient of thermal expansion of the semiconductor element 4 and the coefficient of thermal expansion of the metal frame 2. Value and the coefficient of thermal expansion of the metal frame 2 is larger than the coefficient of thermal expansion of the metal lid 3, so that it is possible to obtain high reliability in joining the semiconductor device and the printed wiring board.
[0039]
When the upper surface of the semiconductor element 4 and the lower surface of the central portion of the metal lid 3 are joined by the heat conductive member 10, the heat from the semiconductor element 4 is efficiently transmitted to the metal lid 3 via the heat conductive member 10. Since heat can be transmitted well, heat can be efficiently dissipated to a radiator made of a high heat conductive material attached to the outside of the metal lid 3, and a semiconductor device with high heat radiation characteristics that is stable for a long period of time is provided. It is possible to do. On the other hand, when the upper surface of the semiconductor element 4 and the lower surface of the central portion of the metal lid 3 are connected by a heat insulating member, the heat generated in the semiconductor element 4 is effectively transmitted through the metal lid 3. There is a possibility that heat may not be dissipated and the semiconductor element 4 may be broken by heat.
[0040]
Suitable materials for the heat conductive member 10 include, for example, an epoxy resin containing a high thermal conductive metal filler such as aluminum or copper, or a high thermal conductive ceramic filler such as aluminum nitride or silicon nitride, or the like. Silicone resin containing the above filler may be used. The upper surface of the semiconductor element 4 and the lower surface of the metal lid 3 do not necessarily need to be firmly joined by the heat conductive member 10 as long as they are thermally connected by the heat conductive member 10.
[0041]
It should be noted that the present invention is not limited to the above-described embodiments, and various changes may be made without departing from the spirit of the present invention. For example, in the above example, an example is shown in which the semiconductor device housing package of the present invention is applied to a BGA type semiconductor device housing package, but an LGA type semiconductor device housing package may be applied.
[0042]
【The invention's effect】
The package for accommodating a semiconductor element of the present invention includes a resin substrate having a mounting portion for a semiconductor element in a central portion of an upper surface, a metal frame attached to the upper surface of the resin substrate so as to surround the mounting portion, A metal lid body having a lower peripheral portion attached to the upper surface of the metal frame so as to cover the metal frame, wherein the resin substrate has a thermal expansion coefficient of the semiconductor element. A coefficient of thermal expansion larger than the coefficient of thermal expansion of the semiconductor element and the coefficient of thermal expansion of the metal frame, and the coefficient of thermal expansion of the metal frame is larger than the coefficient of thermal expansion of the metal lid. In the semiconductor device of the present invention, a semiconductor element is mounted on the mounting portion of the semiconductor element housing package, and the peripheral portion of the metal lid is provided on an upper surface of the metal frame. Is attached Is characterized in that the made.
[0043]
Further, a semiconductor element is mounted on the mounting portion of the semiconductor element housing package, and an upper surface of the semiconductor element and a central portion of a lower surface of the metal lid are joined via a heat conductive member. Semiconductor device.
[0044]
According to the semiconductor element housing package of the present invention, a resin substrate having a semiconductor element mounting portion in the center of the upper surface, a metal frame body surrounding the mounting portion on the upper surface of the resin substrate, and a mounting portion A metal lid body having a lower peripheral portion attached to an upper surface of the metal frame so as to cover the metal frame, wherein a thermal expansion coefficient of the resin substrate is larger than a thermal expansion coefficient of the semiconductor element and a thermal expansion coefficient of the semiconductor element is increased. Since the value is between the coefficient and the coefficient of thermal expansion of the metal frame, the semiconductor device using this semiconductor element storage package is mounted on a printed wiring board, and changes in the operation and operating environment of the mounted semiconductor element. When heat is repeatedly applied, the stress generated between the semiconductor element and the resin substrate can be reduced, and the coefficient of thermal expansion of the metal frame is larger than the coefficient of thermal expansion of the metal lid. The force between the resin substrate and the metal frame that tends to warp due to the difference in the coefficient of thermal expansion between them, and the force between the metal lid and the metal frame that tends to warp due to the difference in the coefficient of thermal expansion between the two Act so as to cancel each other out, so that the resin substrate does not warp significantly. Therefore, stress concentrates on the solder balls arranged at the outer edge of the semiconductor element housing package, and the solder balls are broken. As a result, it is possible to effectively prevent the problem that the semiconductor device does not perform a normal function. As a result, it is possible to provide a semiconductor device suitable for bonding the semiconductor device and the printed wiring board.
[0045]
Further, according to the semiconductor device of the present invention, the semiconductor element is mounted on the mounting portion of the semiconductor element housing package of the present invention having each of the above configurations, and the peripheral portion of the lower surface of the metal lid is formed on the upper surface of the metal frame. Since the semiconductor device is mounted, the semiconductor device housing package of the present invention as described above can achieve high reliability in joining the semiconductor device and the printed wiring board by the operation and effect.
[0046]
Further, according to the semiconductor device of the present invention, when the upper surface of the semiconductor element and the lower surface of the central portion of the metal lid are joined via the heat conductive member, heat from the semiconductor element is transferred to the metal lid, or It is possible to efficiently escape to the radiator made of a high heat conductive material attached to the outside of the metal lid, and it is possible to provide a semiconductor device having high heat radiation characteristics that is stable over a long period of time.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of an embodiment of a semiconductor device housing package of the present invention and a semiconductor device of the present invention using the same.
FIGS. 2A to 2C are diagrams showing the results of comparing the thermal expansion coefficient of a metal frame and the amount of warpage of a resin substrate by simulation with respect to Examples and Comparative Examples of the semiconductor device of the present invention, respectively. .
[Explanation of symbols]
1: resin substrate 2: metal frame 3: metal lid 4: semiconductor element 10: heat conductive member

Claims (3)

上面の中央部に半導体素子の搭載部を有する樹脂基板と、該樹脂基板の上面に前記搭載部を取り囲んで取着された金属枠体と、前記搭載部を覆うようにして前記金属枠体の上面に下面の周辺部が取着される金属蓋体とを具備する半導体素子収納用パッケージであって、前記樹脂基板の熱膨張係数が前記半導体素子の熱膨張係数より大きくかつ前記半導体素子の熱膨張係数と前記金属枠体の熱膨張係数との間の値であるとともに、前記金属枠体の熱膨張係数が前記金属蓋体の熱膨張係数より大きいことを特徴とする半導体素子収納用パッケージ。A resin substrate having a mounting portion for a semiconductor element in the center of the upper surface, a metal frame surrounding the mounting portion on the upper surface of the resin substrate, and a metal frame body covering the mounting portion; A semiconductor element housing package comprising: a metal lid body having a lower surface attached to an upper surface thereof, wherein a thermal expansion coefficient of the resin substrate is larger than a thermal expansion coefficient of the semiconductor element and a thermal expansion coefficient of the semiconductor element. A package for housing a semiconductor element, wherein the package has a value between an expansion coefficient and a coefficient of thermal expansion of the metal frame, and a coefficient of thermal expansion of the metal frame is larger than a coefficient of thermal expansion of the metal lid. 請求項1記載の半導体素子収納用パッケージの前記搭載部に半導体素子が搭載されるとともに、前記金属枠体の上面に前記金属蓋体の前記周辺部が取着されて成ることを特徴とする半導体装置。2. A semiconductor, wherein a semiconductor element is mounted on the mounting part of the package for housing a semiconductor element according to claim 1, and the peripheral part of the metal lid is attached to an upper surface of the metal frame. apparatus. 前記半導体素子の上面と前記金属蓋体の下面の中央部とが伝熱性部材を介して接合されていることを特徴とする請求項2記載の半導体装置。3. The semiconductor device according to claim 2, wherein an upper surface of said semiconductor element and a central portion of a lower surface of said metal lid are joined via a heat conductive member.
JP2003149526A 2003-05-27 2003-05-27 Semiconductor element housing package and semiconductor device Pending JP2004356218A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003149526A JP2004356218A (en) 2003-05-27 2003-05-27 Semiconductor element housing package and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003149526A JP2004356218A (en) 2003-05-27 2003-05-27 Semiconductor element housing package and semiconductor device

Publications (1)

Publication Number Publication Date
JP2004356218A true JP2004356218A (en) 2004-12-16

Family

ID=34045611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149526A Pending JP2004356218A (en) 2003-05-27 2003-05-27 Semiconductor element housing package and semiconductor device

Country Status (1)

Country Link
JP (1) JP2004356218A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210575A (en) * 2005-01-27 2006-08-10 Kyocera Corp Package for semiconductor device
WO2018113356A1 (en) * 2016-12-21 2018-06-28 苏州迈瑞微电子有限公司 Chip package structure and manufacturing method therefor
US10381314B2 (en) 2013-02-28 2019-08-13 Canon Kabushiki Kaisha Method of manufacturing mounting member and method of manufacturing electronic component

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210575A (en) * 2005-01-27 2006-08-10 Kyocera Corp Package for semiconductor device
JP4646642B2 (en) * 2005-01-27 2011-03-09 京セラ株式会社 Package for semiconductor devices
US10381314B2 (en) 2013-02-28 2019-08-13 Canon Kabushiki Kaisha Method of manufacturing mounting member and method of manufacturing electronic component
WO2018113356A1 (en) * 2016-12-21 2018-06-28 苏州迈瑞微电子有限公司 Chip package structure and manufacturing method therefor

Similar Documents

Publication Publication Date Title
US6621172B2 (en) Semiconductor device and method of fabricating the same, circuit board, and electronic equipment
US6159837A (en) Manufacturing method of semiconductor device
US6952050B2 (en) Semiconductor package
TWI628750B (en) Power overlay structure and method of making same
US6900548B2 (en) Semiconductor device and method of manufacturing the same, circuit board, and electronic instrument
JP3973340B2 (en) Semiconductor device, wiring board, and manufacturing method thereof
US7348263B2 (en) Manufacturing method for electronic component, electronic component, and electronic equipment
US7005320B2 (en) Method for manufacturing flip chip package devices with a heat spreader
KR100371282B1 (en) Semiconductor device and method of manufacturing the same
TW200834853A (en) Wiring board and semiconductor device
TWI688015B (en) Semiconductor package and manufacturing method thereof
TW200843055A (en) Semiconductor device package to improve functions of heat sink and ground shield
JP2001257288A (en) Flip-chip semiconductor device and method of manufacturing the same
JP2001144204A (en) Semiconductor device and manufacture thereof
JP2001298115A (en) Semiconductor device, manufacturing method for the same, circuit board as well as electronic equipment
JP2001135663A (en) Semiconductor device and its manufacturing method
JP2000323516A (en) Manufacture of wiring substrate, wiring substrate, and semiconductor device
JP4828261B2 (en) Semiconductor device and manufacturing method thereof
KR100888712B1 (en) Semiconductor device with compliant electrical terminals, apparatus including the semiconductor device, and methods for forming same
JP3569585B2 (en) Semiconductor device
JP2004356218A (en) Semiconductor element housing package and semiconductor device
JP2004063532A (en) Package for housing semiconductor element, and semiconductor device
JP3666462B2 (en) Manufacturing method of semiconductor device
JP2003218253A (en) Package for storing semiconductor element, and semiconductor device
JP2007150346A (en) Semiconductor device and method of manufacturing same, circuit board, and electronic apparatus