JP4646368B2 - 液晶表示装置の作製方法 - Google Patents

液晶表示装置の作製方法 Download PDF

Info

Publication number
JP4646368B2
JP4646368B2 JP2000260550A JP2000260550A JP4646368B2 JP 4646368 B2 JP4646368 B2 JP 4646368B2 JP 2000260550 A JP2000260550 A JP 2000260550A JP 2000260550 A JP2000260550 A JP 2000260550A JP 4646368 B2 JP4646368 B2 JP 4646368B2
Authority
JP
Japan
Prior art keywords
island
film
shaped semiconductor
semiconductor layer
semiconductor film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000260550A
Other languages
English (en)
Other versions
JP2001144302A (ja
JP2001144302A5 (ja
Inventor
律子 河崎
健司 笠原
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2000260550A priority Critical patent/JP4646368B2/ja
Publication of JP2001144302A publication Critical patent/JP2001144302A/ja
Publication of JP2001144302A5 publication Critical patent/JP2001144302A5/ja
Application granted granted Critical
Publication of JP4646368B2 publication Critical patent/JP4646368B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は活性層として半導体膜を用いた薄膜トランジスタ(以下、TFTという)で形成された半導体装置及びその作製方法に関する。具体的には、レーザーアニールによる半導体膜の結晶化に関する。
【0002】
【従来の技術】
近年、活性層として半導体膜を用いたTFTの開発が進められ、結晶質半導体膜として多結晶シリコン膜(ポリシリコン膜)を用いたTFTが注目されている。特に、液晶表示装置(液晶ディスプレイ)やEL(エレクトロルミネッセンス)表示装置(ELディスプレイ)においては、画素をスイッチングする素子やその画素を制御するための駆動回路を形成する素子として用いられる。
【0003】
ポリシリコン膜を得る手段としては、非晶質シリコン膜(アモルファスシリコン膜)を結晶化させてポリシリコン膜とする技術が一般的である。特に、最近ではレーザー光を用いてアモルファスシリコン膜を結晶化する方法が注目されている。本明細書中では、非晶質半導体膜をレーザー光で結晶化し、結晶質半導体膜を得る手段をレーザー結晶化という。
【0004】
レーザー結晶化は、半導体膜の瞬間的な加熱が可能であり、ガラス基板やプラスチック基板等の耐熱性の低い基板上に形成された半導体膜のアニール手段として有効な技術である。また、従来の電熱炉を用いた加熱手段(以下、ファーネスアニールという)に比べて格段にスループットが高い。
【0005】
レーザー光にも様々な種類があるが、一般的にはパルス発振型のエキシマレーザーを発振源とするレーザー光(以下、エキシマレーザー光という)を用いたレーザー結晶化が用いられている。エキシマレーザーは出力が大きく、高周波数での繰り返し照射が可能であるという利点を有し、さらにエキシマレーザー光はシリコン膜に対しての吸収係数が高いという利点を有する。
【0006】
現在、最も注目されている問題はレーザー光で結晶化された結晶質半導体膜の結晶粒径を如何に大きくするかである。当然のことながら、一つの結晶粒(グレインともいう)が大きくなれば、TFTの特にチャネル形成領域を横切る結晶粒界の数が減る。そのため、電界効果移動度やしきい値電圧といったTFTの代表的な電気特性のばらつきを改善することが可能となる。
【0007】
また、各結晶粒の内部は、比較的きれいな結晶性を維持しており、上述のTFTの諸特性を向上させるためには、一つの結晶粒の内部に完全にチャネル形成領域が収まるようにしてTFTを形成することが望ましい。
【0008】
しかしながら、現在の技術では結晶粒径の十分に大きな結晶質半導体膜を得ることは困難であり、実験的に得られたという報告はあるものの、実用化レベルには達していないのが現状である。
【0009】
【発明が解決しようとする課題】
本発明は、上記問題点を解決するための技術であり、結晶粒径の大きい結晶質半導体膜を得るためのレーザーアニール方法を提供し、そのようなレーザーアニール方法を用いた半導体装置の作製方法を提供することを課題とする。
【0010】
【課題を解決するための手段】
本発明の要旨は、非晶質半導体膜をレーザー結晶化する際に非晶質半導体膜の形状変化を用い、結晶質半導体膜の結晶粒径を従来の結晶質半導体膜の結晶粒径よりも大きくする点にある。そして、結晶粒径を大きくすることで、理想的にはその中にチャネル形成領域が収まるようにTFTを形成する。
【0011】
非晶質半導体膜の形状変化とは、非晶質半導体膜に設けられた凸部(突起部)、凹部もしくは孔部を指す場合もあるし、非晶質半導体膜の形状が連続的もしくは段階的に変化する領域を指す場合もある。勿論、凹部や凸部は矩形状、半円状、楕円状または三角形状であっても良い。
【0012】
また、本発明を実施する際、非晶質半導体膜をパターニングして島状に加工された半導体膜(以下、島状半導体膜という)とした後で結晶化することが好ましい。パターニングする前の状態(成膜直後の状態)の非晶質半導体膜は凸部、凹部もしくは孔部のいずれを形成するにおいてもパターニングが必要である。その点、島状にパターニングした後であれば、後に活性層となる島状半導体膜を形成すると同時に凸部、凹部もしくは孔部を形成することが可能である。
【0013】
また、非晶質半導体膜の結晶化に用いるレーザー光の発振源となるレーザーとしては、エキシマレーザー(代表的にはKrFレーザーもしくはXeClレーザー)、固体レーザー(代表的にはNd:YAGレーザーもしくはルビーレーザー)、ガスレーザー(代表的にはアルゴンレーザーもしくはヘリウム・ネオンレーザー)、金属蒸気レーザー(代表的には銅蒸気レーザーもしくはヘリウム・カドミウムレーザー)または半導体レーザーを用いることができる。
【0014】
また、これらのレーザーから発するレーザー光はパルス発振または連続発振のどちらの手段で発生させたものであっても良い。
【0015】
なお、Nd:YAGレーザーのように基本波(第1高調波:波長1064nm)の波長が長いレーザー光を用いる場合は、第2高調波(波長532nm)、第3高調波(波長355nm)もしくは第4高調波(266nm)を用いるのが好ましい。これらの高調波は非線形結晶(非線形素子)を用いて得ることができる。また、公知のQスイッチ方式を用いても良い。
【0016】
【発明の実施の形態】
本発明の実施の形態について図1を用いて説明する。図1(A)において、101は非晶質半導体膜をパターニングして得た島状半導体膜である。島状半導体膜101は、「TFT完成後のチャネル形成領域」を含む領域102が設けられている。この領域102は島状半導体膜101に凸部103を形成するような形状で形成される。即ち、完成したTFTの活性層には、チャネル形成領域またはチャネル形成領域の近傍に凸部(凹部であっても良い)が形成されることになる。ここで近傍とは、チャネル形成領域の端部から1μm以内の範囲を指す。
【0017】
図1(B)は、図1(A)の状態に対してエキシマレーザー光104を照射している様子である。エキシマレーザー光104は、被照射面における断面形状が線状(厳密には細長い長方形状)となるように光学系で加工されている。勿論、断面形状は矩形であっても構わないが、線状にした方がスループットは向上する。図1(B)では矢印で示す方向に線状のエキシマレーザー光104が走査され、島状半導体膜101の結晶化が行われる。
【0018】
このとき、前述の凸部103がレーザー結晶化の際に結晶成長の起点となって(結晶核となって)結晶粒の拡大に寄与する。理論的にどのような機構で結晶化が進行するのかは現状では不明であるが、結晶核が規定されることにより結晶成長を阻害する原因となる不規則な核発生が抑制された結果と考えられる。
【0019】
図1(C)において、105で示されるのはレーザー結晶化により形成された結晶質半導体膜でなる島状半導体膜である。このとき、102で囲まれた領域は凸部103によって結晶核の位置が規定されているため、他の領域(島状半導体膜105の領域102以外の領域)に比べて結晶粒径の大きい領域となる。
【0020】
即ち、凸部103を意図的に設けることで、結晶核の位置を任意に規定することができるため、所望の位置に結晶粒径の大きい結晶粒を形成することが可能となる。この現象を用いれば、TFT形成後にチャネル形成領域となる領域の結晶粒径を十分に大きくすることが可能となり、チャネル形成領域に含まれる結晶粒界の数を制御することができる。
【0021】
理想的には一つの結晶粒内に一つのチャネル形成領域を形成しうるように設計し、チャネル形成領域内の結晶粒界の数を0本にすることも可能である。個々の結晶粒の内部は実質的に単結晶と見なせる程に結晶性が高いため、TFTの電気特性を改善することが可能である。具体的には、サブスレッショルド係数(S値)を従来以上に小さくでき、電界効果移動度(モビリティ)を従来以上に高めることが可能である。
【0022】
【実施例】
〔実施例1〕
本実施例では具体的に画素部の画素TFTおよび保持容量と、画素部の周辺に設けられる駆動回路のnチャネル型TFTとpチャネル型TFTとを同時に作製する方法について説明する。説明には図2〜図6を用いる。
【0023】
図2(A)において、基板201にはコーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板の他に、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリエーテルサルフォン(PES)など光学的異方性を有しないプラスチック基板を用いることができる。また、石英基板や結晶化ガラス基板を用いても良い。
【0024】
そして、基板201のTFTを形成する表面に、基板201からの不純物拡散を防ぐために、酸化シリコン膜、窒化シリコン膜または酸化窒化シリコン膜などの下地膜202を形成する。本実施例ではプラズマCVD法でSiH4、NH3、N2Oから作製される酸化窒化シリコン膜202aを10〜200nm(好ましくは50〜100nm)、同様にSiH4、N2Oから作製される酸化窒化水素化シリコン膜202bを50〜200nm(好ましくは100〜150nm)の厚さに積層形成する。
【0025】
酸化窒化シリコン膜は従来の平行平板型のプラズマCVD法を用いて形成する。酸化窒化シリコン膜202aは、SiH4を10SCCM、NH3を100SCCM、N2Oを20SCCMとして反応室に導入し、基板温度325℃、反応圧力40Pa、放電電力密度0.41W/cm2、放電周波数60MHzとする。一方、酸化窒化水素化シリコン膜202bは、SiH4を5SCCM、N2Oを120SCCM、H2を125SCCMとして反応室に導入し、基板温度400℃、反応圧力20Pa、放電電力密度0.41W/cm2、放電周波数60MHzとする。これらの膜は、基板温度を変化させ、反応ガスの切り替えのみで連続して形成することもできる。
【0026】
また、酸化窒化シリコン膜202aは基板を中心に考えて、その内部応力が引張り応力となるように形成する。酸化窒化水素化シリコン膜202bも同様な方向に内部応力を持たせるが、酸化窒化シリコン膜202aよりも絶対値で比較して小さい応力となるようにする。
【0027】
次に、25〜80nm(好ましくは30〜60nm)の厚さで非晶質半導体膜203を、プラズマCVD法やスパッタ法などの公知の方法で形成する。例えば、プラズマCVD法で非晶質シリコン膜を55nmの厚さに形成する。このとき、下地膜202と非晶質半導体膜203とは両者を連続形成することも可能である。例えば、前述のように酸化窒化シリコン膜202aと酸化窒化水素化シリコン膜202bをプラズマCVD法で連続して成膜後、反応ガスをSiH4、N2O、H2からSiH4とH2或いはSiH4のみに切り替えれば、一旦大気雰囲気に晒すことなく連続形成できる。その結果、酸化窒化水素化シリコン膜202bの表面の汚染を防ぐことが可能となり、作製するTFTの特性バラツキやしきい値電圧の変動を低減させることができる。
【0028】
そして、まず非晶質構造を有する半導体層203から、図2(B)で示すように島状半導体膜204〜208を形成する。図5(A)はこの状態における島状半導体膜204、205の上面図であり、同様に図6(A)は島状半導体膜208の上面図を示す。
【0029】
このとき図5(A)に示すように島状半導体膜204、205の各々の「TFT完成後のチャネル形成領域」を含む領域501、502には、レーザー結晶化時の結晶成長の起点となる凸部503、504が形成される。また同様に、図6(A)に示すように島状半導体膜208の「TFT完成後のチャネル形成領域」を含む領域601a、601bには、レーザー結晶化時の結晶成長の起点となる凸部602a、602bが形成される。
【0030】
勿論、島状半導体膜206、207においても図5(A)と同様にして凸部が形成されているが説明は省略する。
【0031】
次に、このような島状半導体膜204〜208に対して結晶化の工程を行う。
本実施例ではXeClを励起ガスとして用いたエキシマレーザー光(波長308nm)によって島状半導体膜204〜208のレーザー結晶化を行う。本実施例では、島状半導体膜204〜208のレーザー結晶化に際し、図7に示すレーザー装置を用いる。特徴的な点は、レーザー光を島状半導体膜の表面及び裏面に対して照射する点にある。
【0032】
図7(A)に示すレーザー装置は、レーザー701、レーザー701を発振源とするレーザー光を線状に加工する光学系801、透光性基板を固定するステージ702を有し、ステージ702にはヒータ703とヒータコントローラー704が具備されて、基板を室温〜550℃の範囲の温度に保持することができる。また、ステージ702上には反射体705が設けられ、その上に島状半導体膜が形成された基板706が設置される。
【0033】
また、図7(B)に示すようにステージ702に設置された基板706は、反応室707に設置され、レーザー701を発振源とする線状のレーザー光が照射される。反応室内は図示されていない排気系またはガス系により減圧状態または不活性ガス雰囲気とすることができ、半導体膜を汚染させることなく100〜550℃まで加熱することができる。
【0034】
また、ステージ702はガイドレール708に沿って反応室内を移動することができ、基板の全面に線状のレーザー光を照射することができる。レーザー光は基板706の上面に設けられた図示されていない石英製の窓から入射する。また、図7(B)ではこの反応室707にトランスファー室709、中間室710、ロード・アンロード室711が接続され、各部屋(室)は仕切弁712、713で分離されている。
【0035】
ロード・アンロード室711には複数の基板を保持することが可能なカセット714が設置され、トランスファー室709に設けられた搬送ロボット715により基板が搬送される。基板706'は搬送中の基板を表す。このような構成とすることによりレーザーアニールを減圧下または不活性ガス雰囲気中で連続して処理することができる。
【0036】
次に、レーザー光を線状にする光学系801の構成について図8を用いて説明する。図8(A)は光学系801を側面から見た図であり、図8(B)は光学系801を上面から見た図である。
【0037】
レーザー701を発振源とするレーザー光はシリンドリカルレンズアレイ802により縦方向に分割される。この分割されたレーザー光はシリンドリカルレンズ803によりさらに横方向に分割される。即ち、レーザー光はシリンドリカルレンズアレイ802、803によって最終的にはマトリクス状に分割されることになる。
【0038】
そして、レーザー光はシリンドリカルレンズ804により一旦集光される。その際、シリンドリカルレンズ804の直後にシリンドリカルレンズ805を通る。その後、ミラー806で反射され、シリンドリカルレンズ807を通った後、照射面808に達する。
【0039】
このとき、照射面808に投影されたレーザー光は線状の照射面を示す。即ち、シリンドリカルレンズ807を透過したレーザー光の断面形状は線状になっていることを意味する。この線状に加工されたレーザー光の幅方向(短い方向)の均質化は、シリンドリカルレンズアレイ802、シリンドリカルレンズ804及びシリンドリカルレンズ807で行われる。また、上記レーザー光の長手方向(長い方向)の均質化は、シリンドリカルレンズアレイ803及びシリンドリカルレンズ805で行われる。
【0040】
また、ここで説明した光学系以外にも、特開平10−064842号公報に記載された光学系を用いても良い。
【0041】
次に、基板上に形成された被処理膜の表面及び裏面からレーザー光を照射するための構成について図9を用いて説明する。図9に示したのは、図7における基板706と反射体705との位置関係を示す図である。901は透光性基板であり、その表面(薄膜または素子が形成される側の面)には絶縁膜902、非晶質半導体膜(または微結晶半導体膜)903が形成されている。また、透光性基板901の下にはレーザー光を反射させるための反射体904が配置される。
【0042】
本実施例では非晶質半導体膜を結晶化するにあたって、レーザー光を非晶質半導体膜の表面(上に薄膜が重ねられていく面)及び裏面(表面とは反対側の面)に同時に照射し、且つ、その表面に照射されたレーザー光(以下、第一次レーザー光という)の実効エネルギー強度と裏面に照射されるレーザー光(以下、第二次レーザー光という)の実効エネルギー強度とを異なるものとする。
【0043】
即ち、第一次レーザー光の実効エネルギー強度を(I0)とし、第二次レーザー光の実効エネルギー強度を(I0')とした時、実効エネルギー強度比(I0'/I0)に「0<I0'/I0<1」または「1<I0'/I0」の関係が成り立つようにレーザー光を照射する。勿論、I0・I0'≠0である。このとき、実効エネルギー強度比(I0'/I0)は0.2〜0.9(好ましくは0.3〜0.7)とすることが好ましい。
【0044】
なお、本明細書中において、「実効エネルギー強度」とはレーザー光が非晶質半導体膜の表面または裏面に達した時に有するエネルギー強度であり、透過時や反射時のエネルギー損失(エネルギーの減衰)を考慮したエネルギー強度(ここでは、単位は密度:mJ/cm2で表す)と定義する。測定することはできないが、レーザー光の経路に存在する媒質が判れば反射率や透過率の計算から容易に求めることができる。
【0045】
透光性基板901はガラス基板、石英基板、結晶化ガラス基板若しくはプラスチック基板が用いられる。この透光性基板901自体で第二次レーザー光の実効エネルギー強度を調節することが可能である。また、絶縁膜902は酸化シリコン膜や窒化酸化シリコン膜(SiOxNy)などの珪素を含む絶縁膜を用いれば良く、この絶縁膜902で第二次レーザー光の実効エネルギー強度を調節しても良い。また、非晶質半導体膜903はアモルファスシリコン膜の他に、アモルファスシリコンゲルマニウム膜などの化合物半導体膜も含む。
【0046】
また、反射体904は表面(レーザー光の反射面)に金属膜を形成した基板であっても良いし、金属元素でなる基板であっても良い。この場合、金属膜としては如何なる材料を用いても良い。代表的には、シリコン(Si)、アルミニウム(Al)、銀(Ag)、タングステン(W)、チタン(Ti)、タンタル(Ta)のいずれかの元素を含む金属膜を用いる。例えば、窒化タングステン(WN)、窒化チタン(TiN)、窒化タンタル(TaN)を用いても良い。
【0047】
さらに、この反射体904は透光性基板901に接して設けても良いし、離して設けても良い。また、反射体904を配置する代わりに、基板901の裏面(表面の反対側の面)に直接上述のような金属膜を形成し、そこでレーザー光を反射させることも可能である。いずれにしても、この反射体904の反射率で第二次レーザー光の実効エネルギー強度を調節することができる。また、反射体904を透光性基板901と離して設置する場合、その隙間に充填する気体(ガス)や離した距離で第二次レーザー光の実効エネルギー強度を制御することも可能である。
【0048】
そして、図8で説明した光学系801を経由して線状に加工されたレーザー光が、非晶質半導体膜903に照射される。この線状に加工されたレーザー光の照射はレーザー光を走査することによって行われる。
【0049】
いずれにしても、シリンドリカルレンズ807を透過して非晶質半導体膜903の表面に照射される第一次レーザー光905と、反射体904で一旦反射されて非晶質半導体膜903の裏面に照射される第二次レーザー光906との実効エネルギー強度比(I0'/I0)が、0<I0'/I0<1または1<I0'/I0の関係を満たす。このためには、反射体904のレーザー光に対する反射率は20〜80%であることが好ましい。
【0050】
また、シリンドリカルレンズ807を透過したレーザー光は、集光される過程で基板表面に対して45〜90°の入射角を持つ。そのため、第二次レーザー光906は非晶質半導体膜903の裏面側にも回り込んで照射される。また、反射体904の反射面に起伏部を設けてレーザー光を乱反射させることで、第二次レーザー光906をさらに効率良く得ることができる。
【0051】
以上のような構成のレーザー装置及びレーザー照射方法を用いて非晶質半導体膜204〜208の結晶化を行い、結晶質半導体膜でなる島状半導体膜209〜213が形成される。このとき、図5(B)において、505、506で示された領域は、本発明の効果により他の領域に比べて結晶粒径の大きな領域となる。また、図6(B)においても同様に、603a、603bで示された領域は、本発明の効果により他の領域に比べて結晶粒径の大きな領域となる。
【0052】
また、照射するレーザーエネルギー密度が高い場合、島状半導体膜全体が内側に向かって0.1〜0.5μm程小さくなる現象が見られる。これはレーザー光の照射により島状半導体膜が溶融した際、膜の緻密化もしくは表面張力により収縮したためと予測される。この現象を積極的に用いれば、島状半導体膜204〜208に結晶成長の起点として設けられていた凸部を島状半導体膜209〜213の形成と同時に除去することも可能である。
【0053】
次に、この島状半導体膜209〜213を覆って、プラズマCVD法またはスパッタ法により50〜100nmの厚さの酸化シリコン膜によるマスク層214を形成する。この状態で島状半導体膜に対し、TFTのしきい値電圧(Vth)を制御する目的でp型を付与する不純物元素を1×1016〜5×1017atoms/cm3程度の濃度で島状半導体膜の全面に添加しても良い。
【0054】
半導体に対してp型を付与する不純物元素には、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)など周期表の第13族の元素が知られている。その方法として、イオン注入法やイオンドープ法を用いることができるが、大面積基板を処理するにはイオンドープ法が適している。イオンドープ法ではジボラン(B26)をソースガスとして用いホウ素(B)を添加する。このような不純物元素の注入は必ずしも必要でなく省略しても差し支えないが、特にnチャネル型TFTのしきい値電圧を所定の範囲内に収めるためには有効である。
【0055】
次に、レジストマスク215a〜215eを形成し、n型を付与する不純物元素を島状半導体膜210、212、213に選択的に添加する。n型を付与する不純物元素としては、周期表の15族に属する元素、代表的にはリン(P)や砒素(As)を用いれば良く、ここではリン(P)を添加すべく、フォスフィン(PH3)を用いたイオンドープ法を用いる。
【0056】
形成された不純物領域は低濃度n型不純物領域216、217として、このリン(P)濃度は2×1016〜5×1019atoms/cm3の範囲とすれば良い。本明細書中では、ここで形成された不純物領域216、217に含まれるn型を付与する不純物元素の濃度を(n-)と表す。また、不純物領域218は、画素部の保持容量を形成するための半導体層であり、この領域にも同じ濃度でリン(P)が添加される(図2(D))。
【0057】
次に、添加した不純物元素を活性化させる工程を行う。活性化は、窒素雰囲気中で500〜600℃で1〜4時間の熱処理や、レーザー活性化の方法により行うことができる。また、両者を併用して行っても良い。レーザー活性化の方法による場合、エキシマレーザー光を用いれば良い。尚、レーザー光の照射条件には何ら限定される事項はなく、実施者が適宣決定すれば良い。この工程は、マスク層214を残して行っても良いし、除去してから行っても良い。
【0058】
図2(E)において、ゲート絶縁膜219はプラズマCVD法またはスパッタ法を用い、膜厚を40〜150nmとしてシリコンを含む絶縁膜で形成する。例えば、120nmの厚さで酸化窒化シリコン膜から形成すると良い。また、SiH4とN2OにO2を添加させて作製された酸化窒化シリコン膜は、膜中の固定電荷密度が低減されているのでこの用途に対して好ましい材料となる。勿論、ゲート絶縁膜219はこのような酸化窒化シリコン膜に限定されるものでなく、他のシリコンを含む絶縁膜を単層または積層構造として用いても良い。
【0059】
そして、図2(E)に示すように、ゲート絶縁膜219上にゲート電極を形成するための耐熱性導電層を形成する。耐熱性導電層は単層で形成しても良いが、必要に応じて二層あるいは三層といった複数の層から成る積層構造としても良い。このような耐熱性導電性材料を用い、例えば、導電性の窒化物金属膜から成る導電層(A)220と金属膜から成る導電層(B)221とを積層した構造とすると良い。
【0060】
導電層(B)221はタンタル(Ta)、チタン(Ti)、モリブデン(Mo)、タングステン(W)から選ばれた元素、または前記元素を主成分とする合金か、前記元素を組み合わせた合金膜(代表的にはMo−W合金膜、Mo−Ta合金膜)で形成すれば良く、導電層(A)220は窒化タンタル(TaN)、窒化タングステン(WN)、窒化チタン(TiN)膜、窒化モリブデン(MoN)などで形成する。また、導電層(A)220はタングステンシリサイド、チタンシリサイド、モリブデンシリサイドを適用しても良い。
【0061】
また、導電層(B)221は低抵抗化を図るために含有する不純物濃度を低減させることが好ましく、特に酸素濃度に関しては30ppm以下とすることが好ましい。例えば、タングステン(W)は酸素濃度を30ppm以下とすることで20μΩcm以下の比抵抗値を実現することができる。
【0062】
導電層(A)220は10〜50nm(好ましくは20〜30nm)とし、導電層(B)221は200〜400nm(好ましくは250〜350nm)とすれば良い。Wをゲート電極とする場合には、Wをターゲットとしたスパッタ法で、アルゴン(Ar)ガスと窒素(N2)ガスを導入して導電層(A)220を窒化タングステン(WN)で50nmの厚さに形成し、導電層(B)221をWで250nmの厚さに形成する。その他の方法として、W膜は6フッ化タングステン(WF6)を用いて熱CVD法で形成することもできる。
【0063】
いずれにしてもゲート電極として使用するためには低抵抗化を図る必要があり、W膜の抵抗率は20μΩcm以下にすることが望ましい。W膜は結晶粒を大きくすることで低抵抗率化を図ることができるが、W中に酸素などの不純物元素が多い場合には結晶化が阻害され高抵抗化する。このことより、スパッタ法による場合、純度99.9999%のWターゲットを用い、さらに成膜時に気相中からの不純物の混入がないように十分配慮してW膜を形成することにより、抵抗率9〜20μΩcmを実現することができる。
【0064】
一方、導電層(A)220にTaN膜を、導電層(B)221にTa膜を用いる場合には、同様にスパッタ法で形成することが可能である。TaN膜はTaをターゲットとしてスパッタガスにArと窒素との混合ガスを用いて形成し、Ta膜はスパッタガスにArを用いる。また、これらのスパッタガス中に適量のXeやKrを加えておくと、形成する膜の内部応力を緩和して膜の剥離を防止することができる。α相のTa膜の抵抗率は20μΩcm程度でありゲート電極に使用することができるが、β相のTa膜の抵抗率は180μΩcm程度でありゲート電極とするには不向きである。TaN膜はα相に近い結晶構造を持つので、この上にTa膜を形成すればα相のTa膜が容易に得られる。
【0065】
なお、図示しないが、導電層(A)220の下に2〜20nm程度の厚さでリン(P)をドープしたシリコン膜を形成しておくことは有効である。これにより、その上に形成される導電膜の密着性向上と酸化防止を図ると同時に、導電層(A)220または導電層(B)221が微量に含有するアルカリ金属元素がゲート絶縁膜219に拡散するのを防ぐことができる。いずれにしても、導電層(B)221は抵抗率を10〜50μΩcmの範囲とすることが好ましい。
【0066】
次に、フォトマスクを用い、フォトリソグラフィーの技術を使用してレジストマスク222a〜222fを形成し、導電層(A)220と導電層(B)221とを一括でエッチングしてゲート電極223〜227と容量配線228を形成する。ゲート電極223〜227と容量配線228は、導電層(A)から成る223a〜227aと、導電層(B)から成る223b〜227bとが一体として形成されている(図3(A))。
【0067】
また、この状態における島状半導体膜209、210とゲート電極223、224との位置関係を図5(C)に示す。同様に島状半導体膜213とゲート電極227、容量配線228の関係を図6(C)に示す。図5(C)および図6(C)において、ゲート絶縁膜219は省略する。
【0068】
導電層(A)および導電層(B)をエッチングする方法は実施者が適宣選択すれば良いが、前述のようにWを主成分とする材料で形成されている場合には、高速でかつ精度良くエッチングを実施するために高密度プラズマを用いたドライエッチング法を適用することが望ましい。高密度プラズマを得る方法として、マイクロ波プラズマや誘導結合プラズマ(Inductively Coupled Plasma:ICP)エッチング装置を用いると良い。
【0069】
例えば、ICPエッチング装置を用いたWのエッチング法は、エッチングガスにCF4とCl2の2種のガスを反応室に導入し、圧力0.5〜1.5Pa(好ましくは1Pa)とし、誘導結合部に200〜1000Wの高周波(13.56MHz)電力を印加する。この時、基板が置かれたステージには20Wの高周波電力が印加され、自己バイアスで負電位に帯電することにより、正イオンが加速されて異方性のエッチングを行うことができる。ICPエッチング装置を使用することにより、Wなどの硬い金属膜も2〜5nm/秒のエッチング速度を得ることができる。また、残渣を残すことなくエッチングするためには、10〜20%程度の割合でエッチング時間を増しオーバーエッチングをすると良い。しかし、この時に下地とのエッチングの選択比に注意する必要がある。例えば、W膜に対する酸化窒化シリコン膜(ゲート絶縁膜219)の選択比は2.5〜3であるので、このようなオーバーエッチング処理により、酸化窒化シリコン膜が露出した面は20〜50nm程度エッチングされて実質的に薄くなる。
【0070】
そして、画素TFTのnチャネル型TFTにLDD領域を形成するために、n型を付与する不純物元素添加の工程(n--ドープ工程)を行う。ゲート電極223〜227をマスクとして自己整合的にn型を付与する不純物元素をイオンドープ法で添加すればよい。n型を付与する不純物元素として添加するリン(P)の濃度は1×1016〜5×1019atoms/cm3の濃度範囲で添加する。このようにして、図3(B)に示すように島状半導体膜に低濃度n型不純物領域229〜233を形成する。
【0071】
次に、nチャネル型TFTにおいて、ソース領域またはドレイン領域として機能する高濃度n型不純物領域の形成を行う(n+ドープ工程)。まず、フォトマスクを用い、レジストマスク234a〜234dを形成し、n型を付与する不純物元素を添加して高濃度n型不純物領域235〜240を形成する。n型を付与する不純物元素にはリン(P)を用い、その濃度が1×1020〜1×1021atoms/cm3の濃度範囲となるようにフォスフィン(PH3)を用いたイオンドープ法で行う(図3(C))。
【0072】
次に、pチャネル型TFTを形成する島状半導体膜209、211にソース領域およびドレイン領域とする高濃度p型不純物領域242、243を形成する。ここでは、ゲート電極223、225をマスクとしてp型を付与する不純物元素を添加し、自己整合的に高濃度p型不純物領域を形成する。このとき、nチャネル型TFTを形成する島状半導体膜210、212、213は、レジストマスク241a〜241cによって全面を被覆しておく。
【0073】
高濃度p型不純物領域242、243はジボラン(B26)を用いたイオンドープ法で形成する。この領域のボロン(B)濃度は3×1020〜3×1021atoms/cm3となるようにする(図3(D))。
【0074】
この高濃度p型不純物領域242、243には、前工程においてリン(P)が添加されていて、高濃度p型不純物領域242a、243aには1×1020〜1×1021atoms/cm3の濃度で、高濃度p型不純物領域242b、243bには1×1016〜5×1019atoms/cm3の濃度でリンが含まれるが、この工程で添加するボロン(B)の濃度を、含まれるリンの濃度の1.5から3倍とすることでpチャネル型TFTのソース領域およびドレイン領域として問題なく機能させることができる。
【0075】
その後、図4(A)に示すように、ゲート電極およびゲート絶縁膜上から保護絶縁膜244を形成する。保護絶縁膜は酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜、またはこれらを組み合わせた積層膜で形成すれば良い。いずれにしても保護絶縁膜244は無機絶縁物材料から形成する。また、保護絶縁膜244の膜厚は100〜200nmとする。
【0076】
ここで、酸化シリコン膜を用いる場合には、プラズマCVD法で、オルトケイ酸テトラエチル(Tetraethyl Orthosilicate:TEOS)とO2とを混合し、反応圧力40Pa、基板温度300〜400℃とし、高周波(13.56MHz)電力密度0.5〜0.8W/cm2で放電させて形成することができる。酸化窒化シリコン膜を用いる場合には、プラズマCVD法でSiH4、N2O、NH3から作製される酸化窒化シリコン膜、またはSiH4、N2Oから作製される酸化窒化シリコン膜で形成すれば良い。この場合の作製条件は反応圧力20〜200Pa、基板温度300〜400℃とし、高周波(60MHz)電力密度0.1〜1.0W/cm2で形成することができる。また、SiH4、N2O、H2から作製される酸化窒化水素化シリコン膜を適用しても良い。窒化シリコン膜も同様にプラズマCVD法でSiH4、NH3から作製することが可能である。
【0077】
その後、それぞれの濃度で添加されたn型またはp型を付与する不純物元素を活性化する工程を行う。この工程は電熱炉を用いるファーネスアニール法で行う。その他に、レーザーアニール法、またはラピッドサーマルアニール法(RTA法)を適用することができる。ファーネスアニール法では酸素濃度が1ppm以下、好ましくは0.1ppm以下の窒素雰囲気中で400〜700℃、代表的には500〜600℃で行うことが好ましく、本実施例では550℃で4時間の熱処理を行う。また、基板201に耐熱温度が低いプラスチック基板を用いる場合にはレーザーアニール法を用いる(図4(B))。
【0078】
活性化の工程の後、さらに、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行い、島状半導体膜を水素化する工程を行う。この工程は熱的に励起された水素により島状半導体膜のダングリングボンドを終端する工程である。水素化の他の手段として、プラズマ水素化(プラズマにより励起された水素を用いる)を行っても良い。また、基板201の耐熱性が許せば300〜450℃の加熱処理により下地膜202の酸化窒化水素化シリコン膜202b、保護絶縁膜244の酸化窒化シリコン膜の水素をに拡散させて島状半導体膜を水素化しても良い。
【0079】
活性化および水素化の工程が終了したら、有機絶縁物からなる層間絶縁膜245を1.0〜2.0μmの平均厚を有して形成する。有機絶縁物としては、ポリイミド、アクリル樹脂、ポリアミド、ポリイミドアミド、BCB(ベンゾシクロブテン)等を使用することができる。例えば、基板に塗布後、熱重合するタイプのポリイミドを用いる場合には、クリーンオーブンで300℃で焼成して形成する。また、アクリルを用いる場合には、2液性のものを用い、主材と硬化剤を混合した後、スピナーを用いて基板全面に塗布した後、ホットプレートで80℃で60秒の予備加熱を行い、さらにクリーンオーブンで250℃で60分焼成して形成することができる。
【0080】
層間絶縁膜を有機絶縁物で形成することにより、表面を良好に平坦化させることができる。また、有機絶縁物は一般に誘電率が低いので、寄生容量を低減するできる。しかし、吸湿性があり保護膜としての効果は弱いので、本実施例のように、保護絶縁膜244として形成した酸化シリコン膜、酸化窒化シリコン膜、窒化シリコン膜などと組み合わせて用いることが好ましい。
【0081】
その後、フォトマスクを用い、所定のパターンのレジストマスクを形成し、それぞれの島状半導体膜に形成されたソース領域またはドレイン領域に達するコンタクトホールを形成する。コンタクトホールの形成はドライエッチング法により行う。この場合、エッチングガスにCF4、O2、Heの混合ガスを用い有機絶縁物から成る層間絶縁膜245をまずエッチングし、その後、続いてエッチングガスをCF4、O2として保護絶縁膜244をエッチングする。さらに、島状半導体膜との選択比を高めるために、エッチングガスをCHF3に切り替えてゲート絶縁膜219をエッチングすることにより、良好にコンタクトホールを形成することができる。
【0082】
そして、導電性の金属膜をスパッタ法や真空蒸着法で形成し、フォトマスクによりレジストマスクを形成し、エッチングによってソース配線246〜250とドレイン配線251〜253を形成する。ドレイン配線254は隣接する画素のドレイン配線を示す。ここで、ドレイン配線253は画素電極として機能するものである。図示していないが、本実施例ではこの電極を、Ti膜を50〜150nmの厚さで形成し、島状半導体膜のソースまたはドレイン領域を形成する半導体膜とコンタクトを形成し、そのTi膜上に重ねてアルミニウム(Al)を300〜400nmの厚さで形成して配線とする。
【0083】
図5(D)はこの状態における島状半導体膜209、210、ゲート電極223、224、ソース配線246、247およびドレイン配線251の上面図を示す。ソース配線246、247は図示されていない層間絶縁膜および保護絶縁膜に設けられたコンタクトホールによって、島状半導体膜209、210と各々507、508で接続している。また、ドレイン配線251は508、509で島状半導体膜209、210と接続している。
【0084】
同様に、図6(D)では島状半導体膜213、ゲート電極227、容量配線228、ソース配線250およびドレイン配線(画素電極)253の上面図を示し、ソース配線250はコンタクト部604で、ドレイン配線253はコンタクト部605で各々島状半導体膜213と接続している。
【0085】
この状態で水素化処理を行うとTFTの特性向上に対して好ましい結果が得られる。例えば、3〜100%の水素を含む雰囲気中で、300〜450℃で1〜12時間の熱処理を行うと良く、あるいはプラズマ水素化法を用いても同様の効果が得られる。また、このような熱処理により保護絶縁膜244や、下地膜202に存在する水素を島状半導体膜209〜213に拡散させ水素化をすることもできる。いずれにしても、島状半導体膜209〜213中の欠陥密度を1016/cm3以下とすることが望ましく、そのためには水素を5×1018〜5×1019atoms/cm3程度付与することが好ましい。(図4(C))。
【0086】
こうして同一の基板上に、駆動回路のTFTと画素部の画素TFTとを有した基板を完成させることができる。駆動回路には第1のpチャネル型TFT300、第1のnチャネル型TFT301、第2のpチャネル型TFT302、第2のnチャネル型TFT303、画素部には画素TFT304、保持容量305が形成されている。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。
【0087】
駆動回路の第1のpチャネル型TFT300には、島状半導体膜209にチャネル形成領域306、高濃度p型不純物領域から成るソース領域307a、307b、ドレイン領域308a、308bを有した構造となっている。
【0088】
第1のnチャネル型TFT301には、島状半導体膜210にチャネル形成領域309、ゲート電極224と重なるLDD領域310、ソース領域312、ドレイン領域311を有している。このLDD領域において、ゲート電極224と重なるLDD領域のチャネル長方向の長さは0.5〜3.0μm、好ましくは1.0〜2.0μmとする。nチャネル型TFTにおけるLDD領域の長さをこのようにすることにより、ドレイン領域近傍に発生する高電界を緩和して、ホットキャリアの発生を防ぎ、TFTの劣化を防止することができる。
【0089】
駆動回路の第2のpチャネル型TFT302は同様に、島状半導体膜211にチャネル形成領域313、高濃度p型不純物領域から成るソース領域314a、314b、ドレイン領域315a、315bを有した構造となっている。
【0090】
第2のnチャネル型TFT303には、島状半導体膜212にチャネル形成領域316、ゲート電極226と一部が重なるLDD領域317、318、ソース領域320、ドレイン領域319が形成されている。このTFTのゲート電極226と重なるLDD領域の長さも0.5〜3.0μm、好ましくは1.0〜2.0μmとする。また、ゲート電極と重ならないLDD領域のチャネル長方向の長さは0.5〜4.0μm、好ましくは1.0〜2.0μmとする。
【0091】
画素TFT304には、島状半導体膜213にチャネル形成領域321、322、LDD領域323〜325、ソースまたはドレイン領域326〜328を有している。LDD領域のチャネル長方向の長さは0.5〜4.0μm、好ましくは1.5〜2.5μmである。さらに、容量配線228と、ゲート絶縁膜と同じ層に形成された絶縁膜と、画素TFT304のドレイン領域328に接続する半導体層329とから保持容量305が形成されている。図4(C)では画素TFT304をダブルゲート構造としたが、シングルゲート構造でも良いし、複数のゲート電極を設けたマルチゲート構造としても差し支えない。
【0092】
図10は画素部のほぼ一画素分を示す上面図である。図中に示すA−A'断面が図4(C)に示す画素部の断面図に対応している。画素TFT304のゲート電極227は、図示されていないゲート絶縁膜を介してその下の島状半導体膜213と交差している。図示はしていないが、島状半導体膜には、ソース領域、ドレイン領域、LDD領域が形成されている。また、604はソース配線250とソース領域326とのコンタクト部、605はドレイン配線253とドレイン領域328とのコンタクト部である。保持容量305は、画素TFT304のドレイン領域328と電気的に接続された半導体層329がゲート絶縁膜を介して容量配線228と重なる領域で形成されている。
【0093】
以上のようにしてアクティブマトリクス基板が完成する。本実施例に従って作製されたアクティブマトリクス基板は、画素部および駆動回路の仕様に応じて適切な構造のTFTを配置している。そのため、このアクティブマトリクス基板を用いた電気光学装置の動作性能と信頼性を向上させることを可能としている。
【0094】
なお、本実施例では画素TFT304に電気的に接続されたドレイン配線253をそのまま画素電極として用いており、反射型液晶表示装置に対応した構造となっている。しかし、ドレイン配線253に電気的に接続されるように透明導電膜でなる画素電極を形成することで透過型液晶表示装置にも対応できる。
【0095】
また、本実施例は本発明を用いた半導体装置の作製工程の一例であり、本実施例に示した材料や数値範囲に限定する必要はない。さらに、LDD領域の配置なども実施者が適宜決定すれば良い。
【0096】
〔実施例2〕
本実施例では実施例1に従って作製したアクティブマトリクス基板から、アクティブマトリクス型液晶表示装置を作製する工程を説明する。まず、図11(A)に示すように、図4(C)の状態のアクティブマトリクス基板にパターニングにより樹脂材料でなるスペーサ401a〜401fを形成する。なお、スペーサとして公知の球状シリカ等を散布して用いることもできる。
【0097】
本実施例では、樹脂材料でなるスペーサ401a〜401fとしてJSR社製のNN700を用い、スピナーで塗布した後、露光と現像処理によって所定のパターンに形成する。さらにクリーンオーブンなどで150〜200℃で加熱して硬化させる。このようにして作製されるスペーサは露光と現像処理の条件によって形状を異ならせることができるが、好ましくは、柱状で頂部が平坦な形状となるようにすると、対向側の基板を合わせたときに液晶表示パネルとしての機械的な強度を確保することができる。
【0098】
また、形状は円錐状、角錐状など特別の限定はないが、例えば円錐状としたときに具体的には、高さHを1.2〜5μmとし、平均半径L1を5〜7μm、平均半径L1と底部の半径L2との比を1対1.5とする。このとき側面のテーパー角は±15°以下とする。
【0099】
スペーサ401a〜401fの配置は任意に決定しても良いが、好ましくは、図11(A)で示すように、画素部においてはドレイン配線253(画素電極)のコンタクト部605と重ねてその部分を覆うように形成すると良い。コンタクト部605は平坦性が損なわれこの部分では液晶がうまく配向しなくなるので、コンタクト部605にスペーサ用の樹脂を充填することでディスクリネーションなどを防止することができる。
【0100】
その後、配向膜402を形成する。通常液晶表示素子の配向膜にはポリイミド樹脂を用いる。配向膜を形成した後、ラビング処理を施して液晶分子がある一定のプレチルト角を持って配向するようにする。画素部に設けたスペーサ401a〜401fの端部からラビング方向に対してラビングされない領域が2μm以下となるようにすることが好ましい。また、ラビング処理では静電気の発生がしばしば問題となるが、駆動回路のTFT上において、少なくともソース配線およびドレイン配線上にもスペーサ401a〜401eを形成しておくと、ラビング工程におけるスペーサとしての本来の役割と、静電気からTFTを保護する効果を得ることができる。
【0101】
対向基板403には、遮光膜404、透明導電膜でなる対向電極405および配向膜406を形成する。遮光膜404はTi、Cr、Alなどを150〜300nmの厚さで形成する。そして、画素部と駆動回路が形成されたアクティブマトリクス基板と対向基板とをシール材407で貼り合わせる。シール材407にはフィラー408が混合されていて、このフィラー408とスペーサ401a〜401fによって均一な間隔を持って対向基板とアクティブマトリクス基板とが貼り合わせられる。
【0102】
その後、両基板の間に液晶409を注入し、封止剤(図示せず)によって完全に封止する。液晶には公知の液晶を用いれば良い。例えば、TN液晶の他に、電場に対して透過率が連続的に変化する電気光学応答性を示す無しきい値反強誘電性混合液晶を用いることもできる。無しきい値反強誘電性混合液晶にはV字型の電気光学応答特性を示すものもある。詳細は「H.Furue et al.;Charakteristics and Drivng Scheme of Polymer-Stabilized Monostable FLCD Exhibiting Fast Response Time and High Contrast Ratio with Gray-Scale Capability,SID,1998」、「T.Yoshida et al.;A Full-Color Thresholdless Antiferroelectric LCD Exhibiting Wide Viewing Angle with Fast Response Time,841,SID97DIGEST,1997」、「S.Inui et al.;Thresholdless antiferroelectricity in liquid crystals and its application to displays,671-673,J.Mater.Chem.6(4),1996」、または米国特許第5,594,569号を参照すれば良い。
【0103】
このようにして図11(B)に示すアクティブマトリクス型液晶表示装置が完成する。図11ではスペーサ401a〜401eを駆動回路のTFT上の少なくともソース配線およびドレイン配線上にに分割して形成したが、その他に、駆動回路の全面を覆って形成しても差し支えない。
【0104】
図12はアクティブマトリクス基板の上面図を示し、画素部および駆動回路部とスペーサおよびシール剤の位置関係を示す上面図である。画素部1200の周辺に駆動回路として走査信号駆動回路1201と画像信号駆動回路1202が設けられている。さらに、その他CPUやメモリなどの信号処理回路1203も付加されていても良い。
【0105】
そして、これらの駆動回路は接続配線1211によって外部入出力端子1210と接続されている。画素部1200では走査信号駆動回路1201から延在するゲート配線群1204と画像信号駆動回路1202から延在するソース配線群1205がマトリクス状に交差して画素を形成し、各画素にはそれぞれ画素TFT304と保持容量305が設けられている。
【0106】
画素部において設けられるスペーサ1206は、図11で示したスペーサ401fに対応するもので、すべての画素に対して設けても良いが、マトリクス状に配列した画素の数個から数十個おきに設けても良い。即ち、画素部を構成する画素の全数に対するスペーサの数の割合は20〜100%とすると良い。また、駆動回路部に設けるスペーサ1207〜1209はその全面を覆うように設けても良いし、図11で示したように各TFTのソースおよびドレイン配線の位置にあわせて複数個に分割して設けても良い。
【0107】
シール材407は、基板201上の画素部1200および走査信号制御回路1201、画像信号制御回路1202、その他の信号処理回路1203の外側であって、外部入出力端子1210よりも内側に形成する。
【0108】
このようなアクティブマトリクス型液晶表示装置の構成を図13の斜視図を用いて説明する。図13においてアクティブマトリクス基板は、ガラス基板201上に形成された、画素部1200と、走査信号駆動回路1201と、画像信号駆動回路1202とその他の信号処理回路1203とで構成される。
【0109】
画素部1200には画素TFT304と保持容量305が設けられ、画素部の周辺に設けられる駆動回路はCMOS回路を基本として構成されている。走査信号駆動回路1201と、画像信号駆動回路1202はそれぞれゲート配線227とソース配線250で画素TFT304に接続している。また、フレキシブルプリントサーキット(Flexible Printed Circuit:FPC)1213が外部入力端子1210に接続していて画像信号などを入力するのに用いる。フレキシブルプリントサーキット1213は補強用樹脂剤1212で接着強度を高めて固定されている。そして接続配線1211でそれぞれの駆動回路に接続している。また、対向基板403には図示していないが、遮光膜、カラーフィルター、透明電極等が設けられている。
【0110】
このような構成の液晶表示装置は、実施例1で示したアクティブマトリクス基板を用いて形成することができる。例えば、図4(C)の構造のアクティブマトリクス基板を用いれば反射型の液晶表示装置が得られ、実施例1で述べたように画素電極として透明導電膜を用いたアクティブマトリクス基板を用いれば透過型の液晶表示装置を得ることができる。
【0111】
〔実施例3〕
本実施例では、実施例1と異なる光学系を有するレーザー装置によって島状半導体膜のレーザー結晶化工程を行う例について説明する。具体的には実施例1で用いた光学系のように反射体を用いず、光学系の途中で分光した二系統のレーザー光を非晶質半導体膜の表面及び裏面から照射する例を示す。なお、レーザー装置の基本的な構成は図7とほぼ同様であるが、ステージ702に少なくともレーザー光を透過する窓がついていることが必要である。
【0112】
本実施例で用いる光学系の構成について図14を用いて説明する。図14(A)は光学系を側面から見た図である。レーザー1401を発振源とするレーザー光はシリンドリカルレンズアレイ1402により縦方向に分割される。この分割されたレーザー光はシリンドリカルレンズ1403によりさらに横方向に分割される。こうしてレーザー光はシリンドリカルレンズアレイ1402、1403によってマトリクス状に分割される。
【0113】
そして、レーザー光はシリンドリカルレンズ1404により一旦集光される。
その際、シリンドリカルレンズ1404の直後にシリンドリカルレンズ1405を通る。ここまでは図8に示した光学系と同様である。
【0114】
その後、レーザー光はハーフミラー1406に入射し、ここでレーザー光は第一次レーザー光1407と第二次レーザー光1408とに分光される。そして、第一次レーザー光1407はミラー1409、1410で反射され、シリンドリカルレンズ1411を通った後、非晶質半導体膜1416bの表面に達する。
【0115】
また、ハーフミラー1406で分光された第二次レーザー光1408はミラー1412、1413、1414で反射され、シリンドリカルレンズ1415を通った後、基板1416aを透過して非晶質半導体膜1416bの裏面に達する。
【0116】
このとき、実施形態1と同様に基板の照射面に投影されたレーザー光は線状の照射面を示す。また、この線状に加工されたレーザー光の幅方向(短い方向)の均質化は、シリンドリカルレンズアレイ1402、シリンドリカルレンズ1404及びシリンドリカルレンズ1415で行われる。また、上記レーザー光の長手方向(長い方向)の均質化は、シリンドリカルレンズアレイ1403、シリンドリカルレンズ1405及びシリンドリカルレンズ1409で行われる。
【0117】
いずれにしても、シリンドリカルレンズ1411を透過して非晶質半導体膜1416bの表面に照射される第一次レーザー光と、シリンドリカルレンズ1415を透過して非晶質半導体膜1416bの裏面に照射される第二次レーザー光との実効エネルギー強度比(I0'/I0)が、0<I0'/I0<1または1<I0'/I0の関係を満たすことが好ましい。
【0118】
本実施例では基板1416aとしてガラス基板(ここで用いるレーザー光の透過率が約50%の材料でなるもの)を用いることで、上述の関係式を満たすようにしている。勿論、基板以外にも基板1416a上に設けた絶縁膜(図示せず)や、基板1416aを設置するステージ(図示せず)の透過率や界面の反射率を調節して第二次レーザー光の実効エネルギー強度を減衰させても良い。
【0119】
また、第二次レーザー光1408の光路において、任意の場所にバリアブルアッテネーター等の減光フィルターを設けて、第二次レーザー光1408の実効エネルギー強度を減衰させることも可能であるし、逆に第一次レーザー光1407の光路において、任意の場所に減光フィルターを設けて、第一次レーザー光1407の実効エネルギー強度を減衰させることも可能である。
【0120】
以上のように本実施例の光学系を実施例1の図7で示したようなレーザー装置に組み込んで、島状半導体膜の結晶化を行えば良い。こうして形成されたアクティブマトリクス基板は、実施例2に従って液晶表示装置とすることができる。
【0121】
〔実施例4〕
本実施例では、非晶質半導体膜をレーザー結晶化する際の島状半導体膜の形状について図15を用いて説明する。
【0122】
図15(A)に示す島状半導体膜1501の形状は、「TFT完成後のチャネル形成領域」を含む領域1502が最も細くなるように、段階的に形状が変化するように形成された場合である。この場合、1503で示される凸部が結晶成長の起点となる。
【0123】
また、図15(B)に示す島状半導体膜1504の形状は、「TFT完成後のチャネル形成領域」を含む領域1502が最も細くなるように、連続的に形状が変化するように形成された場合である。
【0124】
なお、本実施例に示す島状半導体膜の形状は、実施例1に示した島状半導体膜の変形例であり、その他の構成に関しては実施例1に従えば良い。従って、実施例2の液晶表示装置を作製する際にも本実施例は実施することができる。また、実施例3の光学系を用いたレーザー結晶化を行うこともできる。
【0125】
〔実施例5〕
本実施例では、非晶質半導体膜をレーザー結晶化する際の島状半導体膜の形状について図16を用いて説明する。
【0126】
図16(A)に示す島状半導体膜1601の形状は、「TFT完成後のチャネル形成領域」を含む領域1602内に凸部1603が形成された場合である。この凸部1603は島状半導体膜1601の形成と同時に形成すれば良い。この場合、凸部1603が結晶成長の起点となる。
【0127】
なお、凸部1603は島状半導体膜1601を挟んで二カ所に設けられているが、位置や個数に制限はない。但し、多く設けると、チャネル形成領域内の結晶粒界の本数が増えてしまうため、できるだけ少なくすることが望ましい。
【0128】
図16(A)の場合、二つの凸部を起点として成長した結晶粒がぶつかりあって、チャネル形成領域内に一本の結晶粒界1604が形成される。しかしながら、キャリアが流れる方向とほぼ同じ方向に形成されるため、実質的にキャリアの移動の妨げとはなりにくい。
【0129】
次に、図16(B)に示す島状半導体膜1605の形状は、「TFT完成後のチャネル形成領域」を含む領域1606内に一カ所だけ凸部1607が形成された場合である。この凸部1607は島状半導体膜1605の形成と同時に形成すれば良い。この場合、凸部1607を結晶成長の起点とする結晶粒の面積がチャネル形成領域の面積よりも大きければ、結晶粒界の存在しないチャネル形成領域を形成することが可能である。
【0130】
次に、図16(C)に示す島状半導体膜1608の形状は、「TFT完成後のチャネル形成領域」を含む領域1609の外に凸部1610が形成された場合である。この凸部1610は島状半導体膜1608の形成と同時に形成すれば良い。なお、凸部1610は領域1608を囲むように四カ所に設けられているが、位置や個数に制限はない。
【0131】
また、図16(C)の場合、四つの凸部を起点として成長した結晶粒がぶつかりあって、チャネル形成領域内に十字型の結晶粒界1611が形成される。しかしながら、キャリアが流れる方向とほぼ垂直な方向に形成される結晶粒界(チャネル幅方向に形成される結晶粒界)は一本であるため、隣接するTFT間の電気特性(特にしきい値電圧または電界効果移動度)におけるバラツキの要因とはなりにくい。
【0132】
なお、本明細書中においてチャネル幅方向とは、図16(C)において領域1609内で島状半導体膜1608を横切るように結晶粒界が形成されている方向を指す。即ち、紙面において上から下(または下から上)に向かう方向を指す。
【0133】
次に、図16(D)に示す島状半導体膜1612の形状は、「TFT完成後のチャネル形成領域」を含む領域1613の外に二つの凸部1614が形成された場合である。この場合、二つの凸部を起点として成長した結晶粒がぶつかりあって、チャネル形成領域内を斜めに横切る結晶粒界1615が形成される。しかしながら、キャリアの流れを妨げる結晶粒界は一本であるため、隣接するTFT間の電気特性におけるバラツキの要因とはなりにくい。
【0134】
次に、図16(E)に示す島状半導体膜1616の形状は、「TFT完成後のチャネル形成領域」を含む領域1617の外に一カ所だけ凸部1618が形成された場合である。この凸部1618は島状半導体膜1616の形成と同時に形成すれば良い。この場合、凸部1618を結晶成長の起点とする結晶粒の面積がチャネル形成領域の面積よりも大きければ、結晶粒界の存在しないチャネル形成領域を形成することが可能である。
【0135】
本実施例に示す島状半導体膜の形状は、実施例1に示した島状半導体膜の変形例であり、その他の構成に関しては実施例1に従えば良い。従って、実施例2の液晶表示装置を作製する際にも本実施例は実施することができる。また、実施例3の光学系を用いたレーザー結晶化を行うこともできる。
【0136】
〔実施例6〕
本実施例では、非晶質半導体膜をレーザー結晶化する際の島状半導体膜の形状について図17を用いて説明する。
【0137】
図17(A)に示す島状半導体膜1701の形状は、「TFT完成後のチャネル形成領域」を含む領域1702内に凹部1703が形成された場合である。この凹部1703は島状半導体膜1701の形成と同時に形成すれば良い。この場合、凹部1703が結晶成長の起点となる。
【0138】
なお、凹部1703は島状半導体膜1701を挟んで二カ所に設けられているが、位置や個数に制限はない。但し、多く設けると、チャネル形成領域内の結晶粒界の本数が増えてしまうため、できるだけ少なくすることが望ましい。
【0139】
図17(A)の場合、二つの凹部を起点として成長した結晶粒がぶつかりあって、チャネル形成領域内に一本の結晶粒界1704が形成される。しかしながら、キャリアが流れる方向とほぼ平行に形成されるため、実質的にキャリアの移動の妨げとはなりにくい。
【0140】
次に、図17(B)に示す島状半導体膜1705の形状は、「TFT完成後のチャネル形成領域」を含む領域1706内に一カ所だけ凹部1707が形成された場合である。この凹部1707は島状半導体膜1705の形成と同時に形成すれば良い。この場合、凹部1707を結晶成長の起点とする結晶粒の面積がチャネル形成領域の面積よりも大きければ、結晶粒界の存在しないチャネル形成領域を形成することが可能である。
【0141】
次に、図17(C)に示す島状半導体膜1708の形状は、「TFT完成後のチャネル形成領域」を含む領域1709の外に凹部1710が形成された場合である。この凹部1710は島状半導体膜1708の形成と同時に形成すれば良い。なお、凹部1710は領域1708を囲むように四カ所に設けられているが、位置や個数に制限はない。
【0142】
また、図17(C)の場合、四つの凹部を起点として成長した結晶粒がぶつかりあって、チャネル形成領域内に十字型の結晶粒界1711が形成される。しかしながら、キャリアが流れる方向とほぼ垂直に形成される結晶粒界は一本であるため、隣接するTFT間の電気特性(特にしきい値電圧または電界効果移動度)におけるバラツキの要因とはなりにくい。
【0143】
次に、図17(D)に示す島状半導体膜1712の形状は、「TFT完成後のチャネル形成領域」を含む領域1713の外に二つの凹部1714が形成された場合である。この場合、二つの凹部を起点として成長した結晶粒がぶつかりあって、チャネル形成領域内を斜めに横切る結晶粒界1715が形成される。しかしながら、キャリアの流れを妨げる結晶粒界は一本であるため、隣接するTFT間の電気特性におけるバラツキの要因とはなりにくい。
【0144】
次に、図17(E)に示す島状半導体膜1716の形状は、「TFT完成後のチャネル形成領域」を含む領域1717の外に一カ所だけ凹部1718が形成された場合である。この凹部1718は島状半導体膜1716の形成と同時に形成すれば良い。この場合、凹部1718を結晶成長の起点とする結晶粒の面積がチャネル形成領域の面積よりも大きければ、結晶粒界の存在しないチャネル形成領域を形成することが可能である。
【0145】
本実施例に示す島状半導体膜の形状は、実施例1に示した島状半導体膜の変形例であり、その他の構成に関しては実施例1に従えば良い。従って、実施例2の液晶表示装置を作製する際にも本実施例は実施することができる。また、実施例3の光学系を用いたレーザー結晶化を行うこともできる。
【0146】
〔実施例7〕
実施例1〜6では、本発明を液晶表示装置に対して用いた例を示しているが、本発明はTFTを用いる半導体装置であれば如何なるものにも実施することが可能である。
【0147】
具体的には、アクティブマトリクス型のEL(エレクトロルミネッセンス)表示装置やアクティブマトリクス型のEC(エレクトロクロミクス)表示装置を作製する場合に、活性層となる半導体膜のレーザー結晶化工程において本発明を実施することが可能である。
【0148】
さらに、ICやLSIに使われるSRAMの負荷トランジスタを形成する際に本発明を実施することもできるし、ICやLSIの上に三次元構造でTFTを形成する場合においても本発明は有効である。
【0149】
本発明はレーザー結晶化工程の部分の発明であるので、その他の部分は公知のTFT作製プロセスが適用できる。従って、アクティブマトリクス型EL表示装置やアクティブマトリクス型EC表示装置を作製する場合には、公知の技術に本発明を用いれば良い。勿論、図2〜4で説明した作製工程を参考にして作製することも可能である。
【0150】
ここで、本発明を用いてEL表示装置を作製した場合について図18を用いて説明する。図18(A)は本発明を用いたEL表示装置の上面図である。図18(A)において、10は基板、11は画素部、12はソース側駆動回路、13はゲート側駆動回路であり、それぞれの駆動回路は配線14〜16を経てFPC17に至り、外部機器へと接続される。
【0151】
このとき少なくとも画素部、好ましくは駆動回路及び画素部を囲むようにしてシーリング材(ハウジング材ともいう)18を設ける。なお、シーリング材18は素子部を囲めるような凹部を持つ金属板やガラス板を用いても良いし、紫外線硬化樹脂を用いても良い。シーリング材18として素子部を囲めるような凹部を持つ金属板を用いた場合、接着剤19によって基板10に固着させ、基板10との間に密閉空間を形成する。このとき、EL素子は完全に前記密閉空間に封入された状態となり、外気から完全に遮断される。
【0152】
さらに、シーリング材18と基板10との間の空隙20には不活性ガス(アルゴン、ヘリウム、窒素等)を充填しておいたり、酸化バリウム等の乾燥剤を設けておくことが望ましい。これによりEL素子の水分等による劣化を抑制することが可能である。
【0153】
また、図18(B)は本実施例のEL表示装置の断面構造であり、基板10、下地膜21の上に駆動回路用TFT(但し、ここではnチャネル型TFTとpチャネル型TFTを組み合わせたCMOS回路を図示している。)22及び画素部用TFT23(但し、ここではEL素子への電流を制御するTFTだけ図示している。)が形成されている。これらのTFTは公知の構造(トップゲート構造またはボトムゲート構造)を用いれば良い。
【0154】
本発明は、駆動回路用TFT22の活性層24、画素部用TFT23の活性層25となる半導体層の形成に際して用いることができる。また、半導体層の形成以外のプロセスについては公知の技術を用いれば良い。
【0155】
本発明を用いて半導体層を形成し、それを活性層とする駆動回路用TFT22、画素部用TFT23が完成したら、樹脂材料でなる層間絶縁膜(平坦化膜)26の上に画素部用TFT23のドレインと電気的に接続する透明導電膜でなる画素電極27を形成する。透明導電膜としては、酸化インジウムと酸化スズとの化合物(ITOと呼ばれる)または酸化インジウムと酸化亜鉛との化合物を用いることができる。そして、画素電極27を形成したら、絶縁膜28を形成し、画素電極27上に開口部を形成する。
【0156】
次に、EL層29を形成する。EL層29は公知のEL材料(正孔注入層、正孔輸送層、発光層、電子輸送層または電子注入層)を自由に組み合わせて積層構造または単層構造とすれば良い。どのような構造とするかは公知の技術を用いれば良い。また、EL材料には低分子系材料と高分子系(ポリマー系)材料がある。低分子系材料を用いる場合は蒸着法を用いるが、高分子系材料を用いる場合には、スピンコート法、印刷法またはインクジェット法等の簡易な方法を用いることが可能である。
【0157】
本実施例では、シャドーマスクを用いて蒸着法によりEL層を形成する。シャドーマスクを用いて画素毎に波長の異なる発光が可能な発光層(赤色発光層、緑色発光層及び青色発光層)を形成することで、カラー表示が可能となる。その他にも、色変換層(CCM)とカラーフィルターを組み合わせた方式、白色発光層とカラーフィルターを組み合わせた方式があるがいずれの方法を用いても良い。
勿論、単色発光のEL表示装置とすることもできる。
【0158】
EL層29を形成したら、その上に陰極30を形成する。陰極30とEL層29の界面に存在する水分や酸素は極力排除しておくことが望ましい。従って、真空中でEL層29と陰極30を連続成膜するか、EL層29を不活性雰囲気で形成し、大気解放しないで陰極30を形成するといった工夫が必要である。本実施例ではマルチチャンバー方式(クラスターツール方式)の成膜装置を用いることで上述のような成膜を可能とする。
【0159】
なお、本実施例では陰極30として、LiF(フッ化リチウム)膜とAl(アルミニウム)膜の積層構造を用いる。具体的にはEL層29上に蒸着法で1nm厚のLiF(フッ化リチウム)膜を形成し、その上に300nm厚のアルミニウム膜を形成する。勿論、公知の陰極材料であるMgAg電極を用いても良い。そして陰極30は31で示される領域において配線16に接続される。配線16は陰極30に所定の電圧を与えるための電源供給線であり、導電性ペースト材料32を介してFPC17に接続される。
【0160】
31に示された領域において陰極30と配線16とを電気的に接続するために、層間絶縁膜26及び絶縁膜28にコンタクトホールを形成する必要がある。これらは層間絶縁膜26のエッチング時(画素電極用コンタクトホールの形成時)や絶縁膜28のエッチング時(EL層形成前の開口部の形成時)に形成しておけば良い。また、絶縁膜28をエッチングする際に、層間絶縁膜26まで一括でエッチングしても良い。この場合、層間絶縁膜26と絶縁膜28が同じ樹脂材料であれば、コンタクトホールの形状を良好なものとすることができる。
【0161】
また、配線16はシーリング材18と基板10との間を隙間(但し接着剤19で塞がれている。)を通ってFPC17に電気的に接続される。なお、ここでは配線16について説明したが、他の配線14、15も同様にしてシーリング材18の下を通ってFPC17に電気的に接続される。
【0162】
以上のような構成でなるEL表示装置において、本発明を用いることができる。本発明を用いることで、TFTの活性層となる半導体層の結晶性が向上するため、TFTの電気特性(特にサブスレッショルド係数または電界効果移動度)が向上する。そのため、画質の良好な画像を表示することが可能となる。
【0163】
〔実施例8〕
本発明は、アクティブマトリクス型液晶表示装置やアクティブマトリクス型EL表示装置などの電気光学装置を表示ディスプレイとして有する電子装置(電子機器ともいう)に対して実施することが可能である。電子装置としては、パーソナルコンピュータ、プロジェクター、デジタルカメラ、ビデオカメラ、ヘッドマウントディスプレイ(ゴーグル型ディスプレイ)、携帯情報端末(モバイルコンピュータ、携帯電話、電子書籍など)、ナビゲーションシステム、ゲーム機、画像再生装置(DVDプレーヤー等)、音楽再生装置(CDプレーヤー、MDプレーヤー等)などが上げられる。
【0164】
図19(A)はパーソナルコンピュータであり、マイクロプロセッサやメモリーなどを備えた本体2001、画像入力部2002、表示部2003、キーボード2004で構成される。本発明は表示部2003の作製に際して実施することができる。
【0165】
図19(B)はビデオカメラであり、本体2101、表示部2102、音声入力部2103、操作スイッチ2104、バッテリー2105、受像部2106で構成される。本発明は表示部2102の作製に際して実施することができる。
【0166】
図19(B)はゴーグル型ディスプレイであり、本体2201、表示部2202、アーム部2203から成っている。本発明は表示部2202の作製に際して実施することができる。。
【0167】
図19(D)はテレビゲームまたはビデオゲームなどの電子遊技機器であり、CPU等の電気回路2308、記録媒体2304などが搭載された本体2301、コントローラ2305、表示部2303、本体2301に組み込まれた表示部2302で構成される。表示部2303と本体2301に組み込まれた表示部2302とは、同じ情報を表示しても良いし、前者を主表示装置とし、後者を副表示装置として記録媒体2304の情報を表示したり、機器の動作状態を表示したり、或いはタッチセンサーの機能を付加して操作盤とすることもできる。また、本体2301とコントローラ2305と表示部2303とは、相互に信号を伝達するために有線通信としても良いし、センサ部2306、2307を設けて無線通信または光通信としても良い。本発明は、表示部2302、2303の作製に際して実施することができる。また、表示部2303は従来のCRTを用いることもできる。
【0168】
図19(D)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いる画像再生装置であり、本体2401、表示部2402、スピーカー部2403、記録媒体2404、操作スイッチ2405で構成される。なお、記録媒体にはDVD(Digital Versatile Disc)やコンパクトディスク(CD)などを用い、音楽プログラムの再生や映像表示、ビデオゲーム(またはテレビゲーム)やインターネットを介した情報表示などを行うことができる。本発明は表示部2402の作製に際して実施することができる。
【0169】
図19(E)はデジタルカメラであり、本体2501、表示部2502、接眼部2503、操作スイッチ2504、受像部(図示しない)で構成される。本発明は表示部2502の作製に際して実施することができる。
【0170】
次に、本発明を実施して作製した液晶表示装置を用いたプロジェクターの例を図20に示す。
【0171】
図20(A)はフロント型プロジェクターであり、光学エンジン(光源光学系および表示装置を含むシステム)2601、スクリーン2602で構成される。
また、図20(B)はリア型プロジェクターであり、本体2701、光学エンジン2702、ミラー2703、スクリーン2704で構成される。
【0172】
なお、図20(C)に、図20(A)および図20(B)における光学エンジン2601、2702の構造の一例を示す。光学エンジン2601、2702は光源光学系2801、ミラー2802、2804〜2806、ダイクロイックミラー2803、ビームスプリッター2807、液晶表示装置2808、位相差板2809、投射光学系2810で構成される。投射光学系2810は複数の光学レンズで構成される。本発明は液晶表示装置2808に用いることができる。
【0173】
図20(C)では液晶表示装置2808を三つ使用する三板式の例を示したが、このような方式に限定されず、単板式の光学系で構成しても良い。また、図20(C)中で矢印で示した光路には適宣光学レンズや偏光機能を有するフィルムや位相を調節するためのフィルムや、IRフィルムなどを設けても良い。
【0174】
また、図20(D)は図20(C)における光源光学系2801の構造の一例を示した図である。本実施例では、光源光学系2801はリフレクター2811、光源2812、レンズアレイ2813、2814、偏光変換素子2815、集光レンズ2816で構成される。なお、図20(D)に示した光源光学系は一例であって図示した構成に限定されるものではない。
【0175】
また、ここでは図示しなかったが、本発明はその他にも、ナビゲーションシステムやイメージセンサの読み取り回路などの作製に際して実施することもできる。。このように本発明の適用範囲はきわめて広く、あらゆる分野の電子装置の作製に際して実施することができる。
【0176】
〔実施例9〕
本発明の効果について実験結果に基づいて説明する。まず基板として1.1mm厚の石英基板を用意し、200nm厚の窒化酸化シリコン膜(SiON膜)を設け、その上にアモルファスシリコン膜を成膜した。さらに、アモルファスシリコン膜をパターニングして島状半導体膜とした。このとき、島状半導体膜は図15(B)に示すように連続的に形状が変化する部分を有するように形成した。
【0177】
次に、実施例1において図9を用いて説明した構成に従って島状半導体膜のレーザー結晶化を行った。このとき、反射体としては、シリコン基板上に窒化タングステン膜を形成したものを用いた。また、反射体と石英基板との間には150μmの隙間を空けた。
【0178】
この状態で島状半導体膜に対して室温、大気雰囲気中でエキシマレーザー光を照射した。エキシマレーザー光は光学系により断面形状を線状(0.4mm×160mm)に変形し、基板の一端から他端まで走査した。また、走査速度は1mm/sとし、エネルギー密度は353mJ/cm2、パルス幅は30ns、繰り返し周波数は30Hz、重ね合わせ率は90%とした。これにより一カ所に20ショットのレーザー光を照射することができた。
【0179】
ここで本実施例に従って結晶化させたポリシリコン膜のSEM写真を図21に示す。なお、図21はセコ・エッチング後の状態である。このセコ・エッチングはフッ化水素酸溶液50ccと水25ccと1.14gのクロム酸カリウム(二価)とを加えた室温のエッチャントを用いた。
【0180】
その結果、図21のSEM(Scanning Electron Microscopy)により観察した写真に示すように、島状半導体膜の形状が連続的に変化する部分において、大きな粒径の結晶が確認された。この結果は本発明の効果を立証するものと考える。
【0181】
【発明の効果】
本発明によれば、非晶質半導体膜をレーザー光により結晶化する際、結晶成長の起点となる結晶核の位置を制御することが可能となり、所望の位置に結晶粒径の十分に大きい結晶粒を形成することができる。
【0182】
その結果、TFTの活性層(島状半導体膜)のうち、少なくともチャネル形成領域の内部に含まれる結晶粒界の本数を1本、望ましくは0本とすることが可能となり、結晶粒界に起因するTFTの電気特性の低下やバラツキを改善することが可能である。
【0183】
さらに、TFTで形成された半導体装置及びその半導体装置を用いた電子装置の性能を大幅に向上させうる。
【図面の簡単な説明】
【図1】 レーザー結晶化の様子を示す図。
【図2】 アクティブマトリクス型液晶表示装置の作製工程を示す図。
【図3】 アクティブマトリクス型液晶表示装置の作製工程を示す図。
【図4】 アクティブマトリクス型液晶表示装置の作製工程を示す図。
【図5】 CMOS回路の作製工程を示す図。
【図6】 画素TFTの作製工程を示す図。
【図7】 レーザー装置の構成を示す図。
【図8】 レーザー装置の光学系の構成を示す図。
【図9】 レーザーアニールの方法を示す図。
【図10】 画素構造を示す図。
【図11】 アクティブマトリクス型液晶表示装置の断面構造を示す図。
【図12】 アクティブマトリクス型液晶表示装置の上面構造を示す図。
【図13】 アクティブマトリクス型液晶表示装置の斜視図。
【図14】 レーザー装置の光学系の構成を示す図。
【図15】 島状半導体膜の形状を示す図。
【図16】 島状半導体膜の形状を示す図。
【図17】 島状半導体膜の形状を示す図。
【図18】 アクティブマトリクス型EL表示装置の構造を示す図。
【図19】 電子装置の一例を示す図。
【図20】 プロジェクターの一例を示す図。
【図21】 島状半導体膜の結晶粒を示すSEM写真。

Claims (5)

  1. 半導体膜をパターニングして、平面形状に凸部または凹部を有する島状半導体層を形成し、
    前記島状半導体層に、レーザーを照射して前記島状半導体層を結晶化し、
    前記島状半導体層上に、ゲート絶縁層を形成し、
    前記ゲート絶縁層上に、ゲート電極を形成し、
    前記ゲート電極上に、絶縁層を形成し、
    前記絶縁層に、前記島状半導体層に達するコンタクトホールを形成し、
    前記絶縁層上に、前記コンタクトホールを介して前記島状半導体層と電気的に接続する配線を形成し、
    前記配線上に、樹脂スペーサを形成し、
    前記凸部または前記凹部は、前記島状半導体層のソース領域となる部分とドレイン領域となる部分との間の領域に形成され、
    前記配線と前記コンタクトホールとが重なる領域であるコンタクト部において、前記樹脂スペーサは前記コンタクト部を充填していることを特徴とする液晶表示装置の作製方法。
  2. 半導体膜をパターニングして、チャネル形成領域となる部分が最も細くなるように連続的に形状が変化する平面形状を有する島状半導体層を形成し、
    前記島状半導体層に、レーザーを照射して前記島状半導体層を結晶化し、
    前記島状半導体層上に、ゲート絶縁層を形成し、
    前記ゲート絶縁層上に、ゲート電極を形成し、
    前記ゲート電極上に、絶縁層を形成し、
    前記絶縁層に、前記島状半導体層に達するコンタクトホールを形成し、
    前記絶縁層上に、前記コンタクトホールを介して前記島状半導体層と電気的に接続する配線を形成し、
    前記配線上に、樹脂スペーサを形成し、
    前記配線と前記コンタクトホールとが重なる領域であるコンタクト部において、前記樹脂スペーサは前記コンタクト部を充填していることを特徴とする液晶表示装置の作製方法。
  3. 請求項1又は請求項2において、
    前記島状半導体層、前記ゲート絶縁層、及び前記ゲート電極からなる構造体はトランジスタであり、
    前記トランジスタ、前記樹脂スペーサ、及び前記配線は、画素部及び駆動回路部に複数形成され、
    前記樹脂スペーサを形成した後に、前記樹脂スペーサ上に配向膜を形成し、
    前記配向膜にラビング処理を施すことを特徴とする液晶表示装置の作製方法。
  4. 請求項1乃至請求項3のいずれか一において、
    前記半導体膜は透光性基板上に形成され、
    前記レーザーの照射の際、前記透光性基板の下側に反射体を設け、前記島状半導体層の上側から前記レーザーを照射するとともに、前記島状半導体層の上側から照射する前記レーザーの一部を前記反射体に反射させて前記島状半導体層の下側からも前記レーザーを照射することを特徴とする液晶表示装置の作製方法。
  5. 請求項4において、
    前記反射体は、前記透光性基板の下側に直接形成された金属膜であることを特徴とする液晶表示装置の作製方法。
JP2000260550A 1999-08-31 2000-08-30 液晶表示装置の作製方法 Expired - Fee Related JP4646368B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000260550A JP4646368B2 (ja) 1999-08-31 2000-08-30 液晶表示装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-244251 1999-08-31
JP24425199 1999-08-31
JP2000260550A JP4646368B2 (ja) 1999-08-31 2000-08-30 液晶表示装置の作製方法

Publications (3)

Publication Number Publication Date
JP2001144302A JP2001144302A (ja) 2001-05-25
JP2001144302A5 JP2001144302A5 (ja) 2007-10-25
JP4646368B2 true JP4646368B2 (ja) 2011-03-09

Family

ID=26536642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000260550A Expired - Fee Related JP4646368B2 (ja) 1999-08-31 2000-08-30 液晶表示装置の作製方法

Country Status (1)

Country Link
JP (1) JP4646368B2 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6897477B2 (en) 2001-06-01 2005-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device
US6692999B2 (en) * 2001-06-26 2004-02-17 Fujitsu Limited Polysilicon film forming method
JP5201614B2 (ja) * 2001-07-23 2013-06-05 株式会社日本製鋼所 レーザ光の照射方法及びその装置
TW552645B (en) 2001-08-03 2003-09-11 Semiconductor Energy Lab Laser irradiating device, laser irradiating method and manufacturing method of semiconductor device
US7351300B2 (en) * 2001-08-22 2008-04-01 Semiconductor Energy Laboratory Co., Ltd. Peeling method and method of manufacturing semiconductor device
JP4584953B2 (ja) * 2001-08-30 2010-11-24 シャープ株式会社 半導体装置の製造方法
JP4663615B2 (ja) * 2001-08-30 2011-04-06 シャープ株式会社 半導体装置
US6700096B2 (en) * 2001-10-30 2004-03-02 Semiconductor Energy Laboratory Co., Ltd. Laser apparatus, laser irradiation method, manufacturing method for semiconductor device, semiconductor device, production system for semiconductor device using the laser apparatus, and electronic equipment
US7749818B2 (en) * 2002-01-28 2010-07-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
TWI272666B (en) * 2002-01-28 2007-02-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
TWI261358B (en) * 2002-01-28 2006-09-01 Semiconductor Energy Lab Semiconductor device and method of manufacturing the same
KR100979926B1 (ko) 2002-03-05 2010-09-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체소자 및 그것을 사용한 반도체장치
JP2006100661A (ja) * 2004-09-30 2006-04-13 Sony Corp 薄膜半導体装置の製造方法
JP4896588B2 (ja) * 2005-05-31 2012-03-14 株式会社半導体エネルギー研究所 半導体装置
WO2006129816A1 (en) 2005-05-31 2006-12-07 Semiconductor Energy Laboratory Co., Ltd. Communication system and authentication card
US9312156B2 (en) 2009-03-27 2016-04-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor
TW201919130A (zh) * 2017-11-13 2019-05-16 友達光電股份有限公司 畫素結構、半導體結構的製造方法及半導體元件的製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045827A1 (en) * 1996-05-28 1997-12-04 The Trustees Of Columbia University In The City Of New York Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
JP2000068520A (ja) * 1997-12-17 2000-03-03 Matsushita Electric Ind Co Ltd 半導体薄膜、その製造方法、および製造装置、ならびに半導体素子、およびその製造方法
JP2000122071A (ja) * 1998-10-13 2000-04-28 Toshiba Corp 液晶表示素子及び液晶表示素子の製造方法
JP2001005006A (ja) * 1999-06-17 2001-01-12 Nec Corp 液晶表示パネル及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0334576A (ja) * 1989-06-30 1991-02-14 Matsushita Electric Ind Co Ltd 半導体装置の製造方法
JPH10289876A (ja) * 1997-04-16 1998-10-27 Hitachi Ltd レーザ結晶化方法及びそれを用いた半導体装置並びに応用機器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997045827A1 (en) * 1996-05-28 1997-12-04 The Trustees Of Columbia University In The City Of New York Crystallization processing of semiconductor film regions on a substrate, and devices made therewith
JP2000068520A (ja) * 1997-12-17 2000-03-03 Matsushita Electric Ind Co Ltd 半導体薄膜、その製造方法、および製造装置、ならびに半導体素子、およびその製造方法
JP2000122071A (ja) * 1998-10-13 2000-04-28 Toshiba Corp 液晶表示素子及び液晶表示素子の製造方法
JP2001005006A (ja) * 1999-06-17 2001-01-12 Nec Corp 液晶表示パネル及びその製造方法

Also Published As

Publication number Publication date
JP2001144302A (ja) 2001-05-25

Similar Documents

Publication Publication Date Title
JP3897965B2 (ja) レーザー装置及びレーザーアニール方法
US7179698B2 (en) Laser apparatus, laser annealing method, and manufacturing method of a semiconductor device
US6624013B2 (en) Method for manufacturing a semiconductor device
US7476937B2 (en) Semiconductor device and method of fabricating the same
US7498212B2 (en) Laser annealing method and semiconductor device fabricating method
US8859353B2 (en) Semiconductor device and fabrication method thereof
US8227806B2 (en) Active matrix display in which LDD regions in the driver circuit and the storage capacitor in the pixel section have the same dopant concentration
JP4646368B2 (ja) 液晶表示装置の作製方法
JP2001085703A (ja) 半導体装置の作製方法
JP5046439B2 (ja) 半導体装置の作製方法
JP4558748B2 (ja) 半導体装置の作製方法及び表示装置の作製方法
US7679131B1 (en) Semiconductor device, manufacturing method thereof, and electronic device
JP5292453B2 (ja) 半導体装置の作製方法
JP4637333B2 (ja) 半導体装置の作製方法
JP4919530B2 (ja) 半導体装置の作製方法
JP3920065B2 (ja) 薄膜トランジスタの作製方法
JP3902101B2 (ja) 半導体装置の作製方法
JP3920066B2 (ja) 薄膜トランジスタの作製方法
JP4776746B2 (ja) 半導体装置の作製方法
JP3942855B2 (ja) 薄膜トランジスタの作製方法
JP2002203863A (ja) 薄膜トランジスタ及びその作製方法

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070820

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4646368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131217

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees