JP4616545B2 - Flame retardant composition - Google Patents

Flame retardant composition Download PDF

Info

Publication number
JP4616545B2
JP4616545B2 JP2003125029A JP2003125029A JP4616545B2 JP 4616545 B2 JP4616545 B2 JP 4616545B2 JP 2003125029 A JP2003125029 A JP 2003125029A JP 2003125029 A JP2003125029 A JP 2003125029A JP 4616545 B2 JP4616545 B2 JP 4616545B2
Authority
JP
Japan
Prior art keywords
flame retardant
flame
retardant composition
weight
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003125029A
Other languages
Japanese (ja)
Other versions
JP2004331689A (en
Inventor
卓 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurabe Industrial Co Ltd
Original Assignee
Kurabe Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co Ltd filed Critical Kurabe Industrial Co Ltd
Priority to JP2003125029A priority Critical patent/JP4616545B2/en
Publication of JP2004331689A publication Critical patent/JP2004331689A/en
Application granted granted Critical
Publication of JP4616545B2 publication Critical patent/JP4616545B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば、電線の被覆、絶縁チューブの材料などとして好適な難燃性組成物に係り、特に、埋め立て、焼却など廃棄時に有害なハロゲン系ガスの発生やリン系化合物の放出がなく、優れた機械的特性を具備し、押出などによる成形加工性も良好であり、且つ、UL1581(2001)の垂直難燃性規格VW−1(以下、UL VW−1と記す。)に合格するような高度の難燃性を実現可能なものに関する。
【0002】
【従来の技術】
オレフィン系ポリマーは、優れた機械的特性、耐熱老化性、電気特性を有し、安価で加工性もよいことから、従来から電線の絶縁体、シース材又は絶縁チューブの材料として広く用いられている。しかしながら、オレフィン系ポリマーはそれ自体が可燃性物質であるため、難燃性を必要とされる電気・電子機器の内部及び外部配線や、自動車用ハーネスへの用途には難燃性を付与する必要がある。その方法として、ハロゲン系難燃剤等を混和する方法が広く採用されてきたが、これらは燃焼時に多量のハロゲン系ガスを発生するため、周囲の電子部品への腐食性、人体への有毒性、ダイオキシン類発生の可能性が問題となっている。近年、燃焼時にハロゲン系ガスを発生することのないノンハロゲン難燃性組成物よりなる電線、ケーブル、絶縁チューブが要望されるようになり、難燃剤として水酸化アルミニウムや水酸化マグネシウムのような無機水和物を混和する方法が広く一般的に用いられている。
【0003】
電気・電子機器用の電線、絶縁チューブには火災に対する安全性からUL VW−1に代表される非常に厳しい難燃性が要求されると同時に破断時の伸び100%以上、引張強度10MPa以上の機械的特性が一般に要求される。しかしながら、オレフィン系ポリマーに金属水和物を混和する上記の方法では、十分な難燃性が得られないか、多量の金属水和物の混和により難燃性が得られたとしても、オレフィン系ポリマーが本来有していた優れた機械的特性及び成形加工性を大幅に低下させてしまうという新たな問題を引き起こしていた。
【0004】
これらの問題を解決するためにベース樹脂の極性を調整する他、難燃効率を高め、金属水和物の配合量を減らすことができる難燃助剤の検討が続けられている。例えば、金属水和物に難燃助剤としてリン系難燃剤を併用する方法は固層におけるポリマーの脱水炭化作用、断熱兼分解ガス遮断層(チャー)の形成作用に加え、気層において炭化水素のラジカル酸化反応を停止させる作用があるため、優れた難燃効果が見られる(例えば、特許文献1参照)。しかしながら、最終廃棄物から水系へのリン分放出による湖沼の富栄養化が指摘されているとともに、赤リンを配合した場合には赤リンによる発色のため、白色を始めとする任意の色に着色できない問題がある。又、燃焼時における断熱遮断層の形成を難燃機構に取り入れる方法としては、ポリオレフィン系樹脂に対し、ハロゲン及びリンを含まない無機難燃剤と低融点ガラスを併用することも考えられている(例えば、特許文献2参照)。しかしながら、電気・電子機器用の電線、絶縁チューブへの用途としてはUL VW−1に合格するまでの十分な難燃性が得られないか、難燃性は得られるものの、機械的特性が著しく低下する問題がある。
【0005】
【特許文献1】
特開昭60−88048号公報
【0006】
【特許文献2】
特開平11−181163号公報
【0007】
【発明が解決しようとする課題】
本発明は、かかる従来技術の問題点を解決し、埋め立て、焼却など廃棄時に有害なハロゲン系ガスの発生やリン系化合物の放出がなく、優れた機械的特性を具備し、押出などによる成形加工性も良好であり、且つ、UL1581(2001)の垂直難燃性規格VW−1に合格するような高度の難燃性を実現可能な、例えば、自動車用ハーネスや電気・電子機器内配線用の電線の被覆、絶縁チューブの材料として、好適に使用することができる難燃性組成物を提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために種々の検討を行ったところ、エチレン−不飽和エステル共重合体に対し、耐熱性難燃芳香族高分子粉末を難燃助剤として特定量配合することで難燃効率が高まり、難燃剤の金属水和物の配合量を減らすことができ、優れた機械的特性を具備し、押出などによる成形加工性も良好であり、且つ、UL VW−1に合格するような高度の難燃性を実現可能な難燃性組成物が得られることを見出し、本発明の完成に至った。
【0009】
即ち、本発明の請求項1による難燃性組成物は、不飽和エステル含量が20〜70重量%であるエチレン−不飽和エステル共重合体100重量部と、金属水和物150〜280重量部と、耐熱性難燃芳香族高分子粉末3〜50重量部を含有し、前記耐熱性難燃芳香族高分子粉末が、ポリフェニレンサルファイドであるとともに、前記エチレン−不飽和エステル共重合体が、エチレン−酢酸ビニル共重合体であることを特徴としたものである。
又、本発明の請求項2による難燃性組成物は、請求項1記載の難燃性組成物において、前記金属水和物が、水酸化マグネシウム及び/又は水酸化アルミニウムであることを特徴としたものである。
又、本発明の請求項3による難燃性組成物は、請求項1乃至請求項2記載の難燃性組成物において、前記金属水和物及び/又は前記耐熱性難燃芳香族高分子粉末が、表面処理剤によって表面処理されていることを特徴としたものである。
又、本発明の請求項4による難燃性組成物は、請求項1乃至3記載の難燃性組成物において、架橋されていることを特徴としたものである。
又、本発明の請求項5による被覆電線は、請求項1乃至4記載の難燃性組成物が導体外周に設けられていることを特徴とするものである。
又、本発明の請求項6による絶縁チューブは、請求項1乃至4記載の難燃性組成物からなることを特徴とするものである。
【0010】
【発明の実施の形態】
ベースポリマーの不飽和エステル含量
本発明の組成物において、ベースポリマーとして使用するエチレン−不飽和エステル共重合体中の不飽和エステル含量は20〜70重量%、好ましくは30〜70重量%、更に好ましくは40〜70重量%の範囲である。不飽和エステル含量が20重量%未満であると、後述する金属水和物の配合量を少なくしなければ成形加工が困難になってしまうため、目的とする十分な難燃性が得られない。一方70重量%を超えると、機械的特性(引張強度)が低下するとともに、電線表面の粘着性が上昇して電線を巻いた際に電線同士が粘着してしまう問題が発生する。
【0011】
ベースポリマーの種類
ここで、エチレン−不飽和エステル共重合体としては、例えば、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−メタクリル酸メチル共重合体、エチレン−メタクリル酸エチル共重合体などのポリマーが挙げられる。これらのポリマーは分子中に酸素を含有している点で難燃性に優れるともに、難燃剤などの固形配合物を多量に配合しても、機械的特性(引張強度、伸び)の低下が少ない点で好ましい。又、これらのポリマーは単独で用いてもよいし、2種以上を混合して用いてもよい。
【0012】
金属水和物の配合量
本発明の組成物において、金属水和物の配合量はエチレン−不飽和エステル共重合体100重量部に対して150〜280重量部、好ましくは180〜280重量部、更に好ましくは180〜250重量部であることが好ましい。かかる金属水和物は熱分解時の吸熱作用、水蒸気発生による可燃性ガス及び酸素の希釈作用、あるいはポリマーの炭化促進、断熱層の形成作用により、高度な難燃性を付与することができる。金属水和物の配合量が150重量部未満では目的とする十分な難燃性が得られず、一方280重量部を超えると伸びが実用に耐えず、又成形加工性が悪化する。
【0013】
金属水和物の種類
金属水和物としては、例えば、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、ハイドロタルサイト、ドーソナイト、アルミン酸カルシウム、硼酸亜鉛、硼砂、ヒドロキシ錫酸亜鉛などが挙げられ、これらは単独で用いてもよいし、2種以上を混合して用いてもよい。これらのうちでは、ポリマーの分解温度付近で結晶水を放出し、吸熱量の大きい水酸化マグネシウム及び/又は水酸化アルミニウムが好ましい。金属水和物の粒径としては難燃性、混練り性、成形加工性、機械的特性(引張強度、伸び)の点で0.1〜30μm、好ましくは0.3〜3μmのものが好ましく使用できる。金属水和物の粒径が30μm以上では機械的特性(引張強度、伸び)の低下が起こる可能性があり、0.3μm以下では溶融時の粘度が上昇し、成形加工性が悪化する可能性がある。
【0014】
金属水和物への表面処理
これらの金属水和物は、例えば、ラウリン酸、ステアリン酸、オレイン酸などの高級脂肪酸、これらとアルミニウム、マグネシウム、カルシウムなどとの高級脂肪酸金属塩、シランカップリング剤やチタネート系表面処理剤などの表面処理剤によって表面処理することができる。これら表面処理剤はエチレン−不飽和エステル共重合体と金属水和物の親和性をよくし、混練り性及び分散性をよくするために好ましく用いられる。なかでもシランカップリング剤は難燃組成物に優れた機械的特性を与え、高級脂肪酸及び高級脂肪酸塩に比べてより優れた難燃性を与える点で好ましく使用できる。これら表面処理剤は単独で用いてもよいし、2種以上を併用して用いてもよい。
【0015】
耐熱性難燃芳香族高分子粉末の配合量
本発明において、耐熱性難燃芳香族高分子粉末の配合量は、上記のエチレン−不飽和エステル共重合体100重量部に対して3〜50重量部、好ましくは3〜20重量部である。3重量部未満では難燃性の改善効果が不十分であり、50重量部を超えると機械的特性(引張強度、伸び)、可とう性、成形加工性が著しく低下する。この耐熱性難燃芳香族高分子粉末の粒径は、好ましくは0.3〜30μm、より好ましくは0.3〜10μm、更に好ましくは0.3〜5μmである。粒径が0.3μm未満であると粉末同士が凝集し易く、難燃性組成物中に均等に分散させることが困難となるため、機械的特性(引張強度、伸び)や絶縁性の低下を招く恐れがある。粒径が30μmを超えると、難燃性の改善効果が不十分となり、又、機械的特性(引張強度、伸び)や絶縁性の低下を招く恐れがある。これら耐熱性難燃芳香族高分子粉末は分散性を上げる目的で、上記金属水和物と同様に、高級脂肪酸、高級脂肪酸塩、シランカップリング剤、チタネート系表面処理剤などの表面処理剤により、表面処理を実施してもよい。耐熱性難燃芳香族高分子粉末が難燃助剤として機能する理由としては、難燃組成物中に均一に分散した耐熱性難燃芳香族高分子粉末が燃焼時の熱により溶融するか流動化し、金属水和物及びベースポリマーと複合化し、難燃複合組成物を形成するためと考えられる。つまり、この難燃複合組成物中のベースポリマーは、難燃複合組成物によって酸素が遮断された状態で分解、炭化し、発熱量の少ない燃焼プロセスを採ることとなり、難燃性が向上すると考えられる。
【0016】
耐熱性難燃芳香族高分子粉末の種類
本発明における耐熱性難燃芳香族高分子粉末としては、例えば、エンジニアリングプラスチック材料として広く知られているポリカーボネート、ポリフェニレンオキシド、ポリスルホン、ポリエーテルスルホン、ポリアリレート、ポリエーテルエーテルケトン、ポリフェニレンサルファイド、ポリイミド、ポリエーテルイミドなどの樹脂粉末が挙げられる。これらの中でも、上記した難燃複合組成物の耐熱性と難燃性を向上させるため、UL94の垂直燃焼試験においてV−2以上の難燃性があり、且つ、JIS K 7201 「酸素指数によるプラスチックの燃焼性試験方法」において酸素指数が22以上であり、且つ、熱分解開始温度が350℃以上であることが好ましく、更に、燃焼熱量が35kJ/g以下であり、且つ、引火温度が450℃以上であるものが特に好ましい。これら耐熱性難燃芳香族高分子粉末は熱分解時に液化、流動化するものであれば熱可塑性樹脂、熱硬化性樹脂のいずれであっても使用することができるが、上記した耐熱性難燃芳香族高分子粉末の溶融又は流動化による複合化が、難燃性組成物全体に渡って均一に行われるように、350℃以下の融点を持つ熱可塑性樹脂であり、且つ、メルトフローレートが0.5g/10min以上であることが好ましい。なかでもポリフェニレンサルファイドはUL94の垂直燃焼試験においてV−0、酸素指数が44〜53、熱分解開始温度が500℃の難燃性を有し、融点が280℃であり、溶融時における流動性に優れる(メルトフローレートが5〜5000g/10min)ことから、特に優れた難燃性を得ることができる。
【0017】
その他の添加剤
本発明の難燃性組成物には、機械的特性、難燃性等の特性を損なわない範囲内で一般的に使用される各種の添加剤、例えば、老化防止剤、金属不活性化剤、滑剤、充填剤等を適宜添加することができる。老化防止剤としては着色、汚染性の心配のない老化防止剤、例えば、ペンタエリスリチル−テトラキス〔3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピネート〕、オクタデシル−3−(3,5−t−ブチル−4−ヒドロキシフェニル)プロピオネート、3,9−ビス[2−{3−(3−t−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ}−1,1−ジメチルエチル]−2,4−8,10−テトラオキサスピロ〔5,5〕ウンデカン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−t−ブチル−4−ヒドロキシベンジル)ベンゼンのようなフェノール系酸化防止剤、2−メルカプトベンゾイミダゾール及びその亜鉛塩、2−メルカプトメチルベンゾイミダゾールなどのベンゾイミダゾール系老化防止剤などが挙げられる。
【0018】
その他の添加剤
金属不活性化剤としては、例えば、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、N,N’−ビス〔3−(3,5−ジ−t−ブチル−4ヒドロキシフェニル)プロピオニル〕ヒドラジンなどがあげられる。滑剤としては、例えば、パラフィン、炭化水素樹脂、脂肪酸、金属石鹸、脂肪酸アミド、脂肪酸エステル、高級アルコールなどが挙げられる。
【0019】
架橋方法
本発明の難燃性組成物は架橋を行うことにより、難燃性、機械的特性、耐熱性を向上させることができる。架橋の方法については特に規定はしないが、有機過酸化物を用いた化学架橋法や放射線エネルギーを用いた電子線架橋法を利用することができる。架橋方法として有機過酸化物による化学架橋法を利用する場合、有機過酸化物としてはジクミルパーオキシド、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼンなどが架橋効率、分解開始温度の点で好ましい。電子線架橋を利用する場合、電子線の照射量は5〜20Mradが好ましい。5Mrad未満の照射量では十分な架橋度が得られず、難燃性、機械的特性、耐熱性が不十分となる。20Mrad以上では破断時の伸びが低下してしまう。尚、難燃性組成物には架橋効率を高める目的でエチレングリコールジメタクリレート、1,3−ブチレンジメタクリレート、メタクリル酸亜鉛、トリメチロールプロパントリメタクリレート、トリアリルシアヌレート、トリアリルイソシアヌレートなどの架橋助剤を添加してもよい。
【0020】
【実施例】
以下、本発明の実施例を比較例と併せて説明する。まず、表2に示した各成分を表1に示すように配合して、80〜120℃のオープンロールにより混練りした。次に、こうして得られた難燃性組成物を汎用の電線用押出機を使用して、導体径0.48mmのスズメッキ軟銅撚り線に0.30mmの厚さで被覆した。更に、この被覆電線に10Mradの照射量で電子線を照射し、架橋を行った。
【0021】
このようにして得られた電線を試料として下記の評価方法により評価した。その結果を表1に併せて示す。尚、表1中の各成分の使用量は重量部単位である。
1.機械的特性
電線より取り出した管状の試験片について、JIS C 3005(2000)に準拠して、破断時の引張強度、伸びの測定を行い、機械的特性とした。試験条件は、標線50mm、引張り速度500mm/minとした。
2.難燃性
試験片数を5とし、UL1581(2001) VW−1に準拠して、難燃性の試験を行った。尚、表1の結果には(合格数)/(試験片数)で表わした。
3.成形加工性
押出により成形をした際の押出機の圧力やトルク値、押出速度、試験片の外観により、成形加工性を評価した。尚、表1の結果においては、容易に押出ができ、良好な成形加工性を得たものを◎、やや成形加工性に劣るが、圧力、トルク値を調節することにより押出ができたものを○、著しく圧力、トルク値を高くし、押出速度を遅くしなければ押出ができず、成形加工性に問題があるものを×、とした。
4.電線表面の粘着性
電線表面にタルク等の離型剤をつけることなく、直径約20cmの束として電線を巻いた後、束をほどいて電線表面の粘着性を確認した。尚、表1の結果においては、容易にほどくことができるものを○、電線同士が粘着して容易にほどくことができないものを×、とした。
【0022】
【表1】

Figure 0004616545
【0023】
【表2】
Figure 0004616545
【0024】
表1から明らかなように、本発明の実施例1〜14においては、いずれもULVW−1に合格するとともに、引張強度が10.0MPa以上、伸びが100%以上と良好な機械的特性(引張強度、伸び)を示し、且つ、成形加工性も良好であることが分かる。
【0025】
これに対し、比較例1においては不飽和エステル含量が規定値より少なすぎるため、引張強度と伸びが低下し、難燃性も得られない。又比較例2においては不飽和エステル含量が規定値より多すぎるため、難燃性は得られるが、引張強度が低下し、更に、電線表面に粘着性が生じる問題がある。
【0026】
比較例3は金属水和物の配合量が規定値より少ないため、難燃に必要な吸熱作用、可燃性ガス、酸素の希釈作用が十分でなく、UL VW−1に合格しない。比較例4は金属水和物の配合量が規定値より多すぎるため、伸びの低下が著しく、又、押出時のトルク値、圧力が高くしなければならず、成形加工性が悪い。
【0027】
比較例5は耐熱性難燃芳香族高分子粉末の配合量が少ないため、難燃性は得られず、更に、比較例6は配合量が多すぎるため、引張強度、伸びの低下が著しく、成形加工性も悪い。
【0028】
比較例7は耐熱性難燃芳香族高分子粉末の替わりに高密度ポリエチレン粉末を添加した例であるが、これは酸素指数が18と低い可燃性ポリマーの粉末であるため、難燃助剤としての効果が見られず、UL VW−1に合格しない。比較例8は燃焼することのない低融点ガラスを添加した例であるが、低融点ガラスの溶融時における流動性が低いため、燃焼時の熱で金属水和物及びベースポリマーと複合化することができず、UL VW−1に合格するだけの難燃性が得られていない。
【0029】
【発明の効果】
以上説明したように、本発明によれば、ベースポリマー中の不飽和エステル含量を規定範囲とし、且つベースポリマーに対する金属水和物配合量及び耐熱性難燃芳香族高分子粉末配合量を規定範囲とする組成物を用いることにより、埋め立て、焼却など廃棄時に有害なハロゲン系ガスの発生やリン系化合物の放出がなく、優れた機械的特性を具備し、押出などによる成形加工性も良好であり、且つ、UL1581(2001)の垂直難燃性規格VW−1に合格するような高度の難燃性を実現可能となる。従って、本発明による難燃性組成物は、例えば、自動車用ハーネスや電気・電子機器内配線用の電線の被覆、絶縁チューブの材料として、好適に使用することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flame retardant composition suitable as a material for, for example, an electric wire coating or an insulating tube, and in particular, there is no generation of halogen-based gas harmful to disposal such as landfill or incineration or release of a phosphorus compound, It has excellent mechanical properties, has good moldability by extrusion and the like, and passes the vertical flame retardant standard VW-1 (hereinafter referred to as UL VW-1) of UL1581 (2001). It relates to a material capable of realizing a high degree of flame retardancy.
[0002]
[Prior art]
Olefin-based polymers have excellent mechanical properties, heat aging resistance, electrical properties, are inexpensive and have good workability, and have been widely used as materials for electric wire insulators, sheath materials, or insulating tubes. . However, since the olefin polymer itself is a flammable substance, it is necessary to impart flame retardancy to the internal and external wiring of electrical and electronic devices that require flame retardancy and for use in automotive harnesses. There is. As a method, a method of mixing a halogen-based flame retardant has been widely adopted, but since these generate a large amount of halogen-based gas during combustion, corrosiveness to surrounding electronic parts, toxicity to the human body, The possibility of the generation of dioxins is a problem. In recent years, there has been a demand for electric wires, cables, and insulating tubes made of a non-halogen flame retardant composition that does not generate a halogen-based gas during combustion. Inorganic water such as aluminum hydroxide and magnesium hydroxide is used as a flame retardant. A method of mixing Japanese products is widely used.
[0003]
Electric wires and insulation tubes for electrical and electronic equipment are required to have extremely severe flame resistance as typified by UL VW-1 for fire safety, and at the same time, the elongation at break is 100% or more and the tensile strength is 10 MPa or more. Mechanical properties are generally required. However, the above-mentioned method of mixing metal hydrate with an olefin polymer does not provide sufficient flame retardancy, or even if flame retardancy is obtained by mixing a large amount of metal hydrate, This caused a new problem that the excellent mechanical properties and molding processability inherent to the polymer were greatly reduced.
[0004]
In order to solve these problems, in addition to adjusting the polarity of the base resin, the investigation of flame retardant aids that can increase the flame retardant efficiency and reduce the amount of metal hydrates continues. For example, the method of using a phosphorus-based flame retardant together with a metal hydrate as a flame retardant aid is in addition to the dehydration and carbonization action of the polymer in the solid layer and the formation of the heat insulating and cracking gas barrier layer (char), and the hydrocarbon in the gas layer Since it has the effect | action which stops the radical oxidation reaction of this, the outstanding flame-retardant effect is seen (for example, refer patent document 1). However, it has been pointed out that the eutrophication of lakes and marshes by releasing phosphorus from the final waste to the water system has been pointed out, and when red phosphorus is added, it is colored by red phosphorus, so it can be colored in any color, including white There is a problem that cannot be done. In addition, as a method of incorporating the formation of a heat insulation barrier layer during combustion into a flame retardant mechanism, it is also considered that an inorganic flame retardant containing no halogen and phosphorus and a low melting glass are used in combination with a polyolefin resin (for example, , See Patent Document 2). However, as a use for electric wires and insulation tubes for electric and electronic devices, sufficient flame retardancy until passing UL VW-1 is not obtained or flame retardancy is obtained, but mechanical properties are remarkably high. There is a problem that decreases.
[0005]
[Patent Document 1]
JP 60-88048 A [0006]
[Patent Document 2]
Japanese Patent Laid-Open No. 11-181163
[Problems to be solved by the invention]
The present invention solves such problems of the prior art, does not generate harmful halogen-based gases or release phosphorus compounds during disposal such as landfill and incineration, has excellent mechanical properties, and is formed by extrusion or the like. And can achieve high flame retardance that passes the vertical flame retardant standard VW-1 of UL1581 (2001). For example, for wiring in automobile harnesses and electrical / electronic equipment. An object of the present invention is to provide a flame retardant composition that can be suitably used as a material for covering electric wires and insulating tubes.
[0008]
[Means for Solving the Problems]
Various studies have been conducted to solve the above problems, and flame retardant efficiency is obtained by blending ethylene-unsaturated ester copolymer with a specific amount of heat-resistant flame retardant aromatic polymer powder as a flame retardant aid. The amount of flame retardant metal hydrate can be reduced, it has excellent mechanical properties, has good moldability by extrusion, etc., and passes UL VW-1. It has been found that a flame retardant composition capable of realizing a high degree of flame retardancy can be obtained, and the present invention has been completed.
[0009]
That is, the flame retardant composition according to claim 1 of the present invention comprises 100 parts by weight of an ethylene-unsaturated ester copolymer having an unsaturated ester content of 20 to 70% by weight and 150 to 280 parts by weight of a metal hydrate. And 3-50 parts by weight of heat-resistant flame-retardant aromatic polymer powder, the heat-resistant flame-retardant aromatic polymer powder is polyphenylene sulfide, and the ethylene-unsaturated ester copolymer is ethylene -Vinyl acetate copolymer .
The flame retardant composition according to claim 2 of the present invention is characterized in that in the flame retardant composition according to claim 1, the metal hydrate is magnesium hydroxide and / or aluminum hydroxide. It is a thing.
The flame retardant composition according to claim 3 of the present invention is the flame retardant composition according to claim 1 or 2, wherein the metal hydrate and / or the heat resistant flame retardant aromatic polymer powder. Is characterized by being surface treated with a surface treating agent.
The flame retardant composition according to claim 4 of the present invention is the flame retardant composition according to claims 1 to 3, which is crosslinked.
The covered electric wire according to claim 5 of the present invention is characterized in that the flame retardant composition according to claims 1 to 4 is provided on the outer periphery of the conductor.
An insulating tube according to a sixth aspect of the present invention is characterized by comprising the flame retardant composition according to the first to fourth aspects.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Unsaturated ester content of base polymer In the composition of the present invention, the unsaturated ester content in the ethylene-unsaturated ester copolymer used as the base polymer is 20 to 70% by weight, preferably 30 to 70% by weight, more preferably. Is in the range of 40-70% by weight. When the unsaturated ester content is less than 20% by weight, the molding process becomes difficult unless the blending amount of the metal hydrate described later is reduced, and thus the intended sufficient flame retardancy cannot be obtained. On the other hand, when it exceeds 70% by weight, the mechanical properties (tensile strength) are lowered, and the adhesiveness of the surface of the electric wire is increased so that when the electric wire is wound, the electric wires stick to each other.
[0011]
Kind of base polymer Here, as the ethylene-unsaturated ester copolymer, for example, ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid Polymers such as methyl copolymer and ethylene-ethyl methacrylate copolymer may be mentioned. These polymers have excellent flame retardancy in that they contain oxygen in the molecule, and even when a large amount of a solid compound such as a flame retardant is blended, there is little decrease in mechanical properties (tensile strength, elongation). This is preferable. Moreover, these polymers may be used independently and may be used in mixture of 2 or more types.
[0012]
Compounding amount of metal hydrate In the composition of the present invention, the compounding amount of metal hydrate is 150 to 280 parts by weight, preferably 180 to 280 parts by weight, based on 100 parts by weight of the ethylene-unsaturated ester copolymer. More preferably, the amount is 180 to 250 parts by weight. Such a metal hydrate can impart high flame retardance by an endothermic action during pyrolysis, a diluting action of flammable gas and oxygen due to the generation of water vapor, a carbonization promotion of a polymer, and an action of forming a heat insulating layer. If the blending amount of the metal hydrate is less than 150 parts by weight, the desired sufficient flame retardancy cannot be obtained. On the other hand, if it exceeds 280 parts by weight, the elongation cannot be practically used, and the moldability is deteriorated.
[0013]
Types of metal hydrates Examples of metal hydrates include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, hydrotalcite, dosonite, calcium aluminate, zinc borate, borax, and zinc hydroxystannate. These may be used alone or in admixture of two or more. Of these, magnesium hydroxide and / or aluminum hydroxide that release crystal water near the decomposition temperature of the polymer and have a large endothermic amount are preferable. The particle size of the metal hydrate is 0.1 to 30 μm, preferably 0.3 to 3 μm in terms of flame retardancy, kneadability, moldability, and mechanical properties (tensile strength, elongation). Can be used. If the particle size of the metal hydrate is 30 μm or more, the mechanical properties (tensile strength, elongation) may decrease, and if it is 0.3 μm or less, the viscosity at the time of melting may increase and the molding processability may deteriorate. There is.
[0014]
Surface treatment to metal hydrates These metal hydrates include, for example, higher fatty acids such as lauric acid, stearic acid, oleic acid, higher fatty acid metal salts of these with aluminum, magnesium, calcium, etc., silane coupling agents And surface treatment with a surface treatment agent such as titanate surface treatment agent. These surface treatment agents are preferably used in order to improve the affinity between the ethylene-unsaturated ester copolymer and the metal hydrate, and to improve the kneadability and dispersibility. Among them, the silane coupling agent can be preferably used in that it provides excellent mechanical properties to the flame retardant composition and more excellent flame retardancy than higher fatty acids and higher fatty acid salts. These surface treatment agents may be used alone or in combination of two or more.
[0015]
In the present invention, the blending amount of the heat-resistant flame-retardant aromatic polymer powder is 3 to 50 weights per 100 parts by weight of the ethylene-unsaturated ester copolymer. Parts, preferably 3 to 20 parts by weight. If the amount is less than 3 parts by weight, the effect of improving the flame retardancy is insufficient. If the amount exceeds 50 parts by weight, mechanical properties (tensile strength, elongation), flexibility, and moldability are remarkably deteriorated. The particle size of the heat resistant flame retardant aromatic polymer powder is preferably 0.3 to 30 μm, more preferably 0.3 to 10 μm, and still more preferably 0.3 to 5 μm. If the particle size is less than 0.3 μm, the powders tend to aggregate and it is difficult to uniformly disperse them in the flame retardant composition. Therefore, the mechanical properties (tensile strength, elongation) and insulation are reduced. There is a risk of inviting. When the particle diameter exceeds 30 μm, the effect of improving flame retardancy is insufficient, and mechanical properties (tensile strength, elongation) and insulation may be deteriorated. These heat-resistant flame-retardant aromatic polymer powders are made with a surface treatment agent such as higher fatty acid, higher fatty acid salt, silane coupling agent, titanate-based surface treatment agent, etc. Surface treatment may be performed. The reason why the heat resistant flame retardant aromatic polymer powder functions as a flame retardant aid is that the heat resistant flame retardant aromatic polymer powder uniformly dispersed in the flame retardant composition melts or flows due to heat during combustion. This is thought to be due to the formation of a flame retardant composite composition by combining with a metal hydrate and a base polymer. In other words, the base polymer in this flame retardant composite composition decomposes and carbonizes in a state where oxygen is blocked by the flame retardant composite composition, and adopts a combustion process with a small calorific value, thereby improving the flame retardancy. It is done.
[0016]
Types of heat resistant flame retardant aromatic polymer powder Examples of the heat resistant flame retardant aromatic polymer powder in the present invention include polycarbonate, polyphenylene oxide, polysulfone, polyethersulfone, and polyarylate widely known as engineering plastic materials. , Resin powders such as polyetheretherketone, polyphenylene sulfide, polyimide, and polyetherimide. Among these, in order to improve the heat resistance and flame retardancy of the above-mentioned flame retardant composite composition, it has flame retardancy of V-2 or higher in the UL94 vertical combustion test, and JIS K 7201 “Plastic by Oxygen Index” In the “flammability test method”, the oxygen index is preferably 22 or more, the thermal decomposition starting temperature is preferably 350 ° C. or more, the combustion heat is 35 kJ / g or less, and the ignition temperature is 450 ° C. The above is particularly preferable. These heat-resistant flame-retardant aromatic polymer powders can be used as either thermoplastic resins or thermosetting resins as long as they are liquefied and fluidized during thermal decomposition. It is a thermoplastic resin having a melting point of 350 ° C. or lower so that the composite of the aromatic polymer powder by melting or fluidizing is uniformly performed throughout the flame retardant composition, and the melt flow rate is It is preferably 0.5 g / 10 min or more. In particular, polyphenylene sulfide has flame retardancy of V-0, an oxygen index of 44 to 53, a thermal decomposition start temperature of 500 ° C., a melting point of 280 ° C., and a fluidity at the time of melting in a vertical combustion test of UL94. Since it is excellent (melt flow rate is 5 to 5000 g / 10 min), particularly excellent flame retardancy can be obtained.
[0017]
Other Additives The flame retardant composition of the present invention has various additives that are generally used within the range that does not impair mechanical properties, flame retardant properties, etc. An activator, a lubricant, a filler and the like can be appropriately added. Anti-aging agents that do not worry about coloring and contamination, such as pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propinate], octadecyl-3- (3,5-t-butyl-4-hydroxyphenyl) propionate, 3,9-bis [2- {3- (3-t-butyl-4-hydroxy-5-methylphenyl) propionyloxy} -1,1 -Dimethylethyl] -2,4-8,10-tetraoxaspiro [5,5] undecane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4 -Hydroxybenzyl) phenolic antioxidants such as benzene, 2-mercaptobenzimidazole and its zinc salt, benzimidazoles such as 2-mercaptomethylbenzimidazole Examples include anti-aging agents.
[0018]
Other additive metal deactivators include, for example, 3- (N-salicyloyl) amino-1,2,4-triazole, N, N′-bis [3- (3,5-di-t-butyl). -4 hydroxyphenyl) propionyl] hydrazine and the like. Examples of the lubricant include paraffin, hydrocarbon resin, fatty acid, metal soap, fatty acid amide, fatty acid ester, and higher alcohol.
[0019]
Crosslinking method The flame retardant composition of the present invention can be improved in flame retardancy, mechanical properties and heat resistance by crosslinking. The crosslinking method is not particularly defined, but a chemical crosslinking method using an organic peroxide or an electron beam crosslinking method using radiation energy can be used. When a chemical crosslinking method using an organic peroxide is used as the crosslinking method, dicumyl peroxide, α, α'-bis (t-butylperoxy-m-isopropyl) benzene or the like is used as the organic peroxide. It is preferable in terms of decomposition start temperature. When using electron beam crosslinking, the irradiation amount of the electron beam is preferably 5 to 20 Mrad. When the irradiation dose is less than 5 Mrad, a sufficient degree of crosslinking cannot be obtained, resulting in insufficient flame retardancy, mechanical properties, and heat resistance. If it is 20 Mrad or more, the elongation at break will decrease. For flame retardant compositions, crosslinking of ethylene glycol dimethacrylate, 1,3-butylene dimethacrylate, zinc methacrylate, trimethylolpropane trimethacrylate, triallyl cyanurate, triallyl isocyanurate, etc. for the purpose of increasing the crosslinking efficiency. An auxiliary agent may be added.
[0020]
【Example】
Examples of the present invention will be described below together with comparative examples. First, the components shown in Table 2 were blended as shown in Table 1 and kneaded with an open roll at 80 to 120 ° C. Next, the flame retardant composition thus obtained was coated on a tin-plated annealed copper stranded wire having a conductor diameter of 0.48 mm with a thickness of 0.30 mm using a general-purpose extruder for electric wires. Furthermore, this coated electric wire was irradiated with an electron beam at an irradiation amount of 10 Mrad to perform crosslinking.
[0021]
The electric wire thus obtained was used as a sample and evaluated by the following evaluation method. The results are also shown in Table 1. In addition, the usage-amount of each component in Table 1 is a weight part unit.
1. Mechanical properties The tubular test pieces taken out from the electric wires were measured for tensile strength and elongation at break according to JIS C 3005 (2000) to obtain mechanical properties. The test conditions were a marked line of 50 mm and a tensile speed of 500 mm / min.
2. The number of flame retardant test pieces was set to 5, and a flame retardant test was performed in accordance with UL1581 (2001) VW-1. The results shown in Table 1 are expressed as (passed number) / (number of test pieces).
3. Molding processability The molding processability was evaluated based on the pressure and torque value of the extruder, the extrusion speed, and the appearance of the test piece when molded by extrusion. In addition, in the results of Table 1, those that can be easily extruded and obtained good molding processability are ◎, which are slightly inferior to molding processability, but those that can be extruded by adjusting the pressure and torque values. ○: Except when the pressure and torque values were remarkably increased and the extrusion speed was slowed down, extrusion was not possible and there was a problem in molding processability.
4). Adhesiveness on the surface of the electric wire The wire surface was wound as a bundle having a diameter of about 20 cm without attaching a release agent such as talc to the surface of the electric wire. In addition, in the result of Table 1, the thing which can be easily unwound was made into (circle), and the thing which electric wires adhere | attached and cannot be easily unwound was made into x.
[0022]
[Table 1]
Figure 0004616545
[0023]
[Table 2]
Figure 0004616545
[0024]
As is clear from Table 1, in Examples 1 to 14 of the present invention, all passed ULVW-1, good tensile properties of 10.0 MPa or more, elongation of 100% or more, and good mechanical properties (tensile (Strength, elongation), and good moldability.
[0025]
On the other hand, in Comparative Example 1, since the unsaturated ester content is too small from the specified value, the tensile strength and elongation are lowered, and flame retardancy is not obtained. In Comparative Example 2, since the unsaturated ester content is too much than the specified value, flame retardancy is obtained, but there is a problem that the tensile strength is lowered and the electric wire surface becomes sticky.
[0026]
Since the compounding quantity of the metal hydrate is less than the specified value in Comparative Example 3, the endothermic action, the combustible gas, and the oxygen diluting action necessary for flame retardance are not sufficient, and do not pass UL VW-1. In Comparative Example 4, the compounded amount of the metal hydrate is too much than the prescribed value, so that the elongation is remarkably reduced, and the torque value and pressure during extrusion must be increased, resulting in poor moldability.
[0027]
Since Comparative Example 5 has a small amount of heat-resistant flame-retardant aromatic polymer powder, flame retardancy cannot be obtained, and since Comparative Example 6 has too much content, the tensile strength and elongation are significantly reduced. Molding processability is also poor.
[0028]
Comparative Example 7 is an example in which high-density polyethylene powder is added instead of the heat-resistant flame-retardant aromatic polymer powder, but this is a flammable polymer powder having an oxygen index as low as 18, so as a flame retardant aid The effect of is not seen and does not pass UL VW-1. Comparative Example 8 is an example in which a low melting point glass that does not burn is added, but the low melting point glass has low fluidity at the time of melting, so it is combined with the metal hydrate and the base polymer by the heat at the time of burning. The flame retardance sufficient to pass UL VW-1 is not obtained.
[0029]
【The invention's effect】
As described above, according to the present invention, the unsaturated ester content in the base polymer is within the specified range, and the metal hydrate content and the heat-resistant flame retardant aromatic polymer powder content with respect to the base polymer are within the specified range. By using this composition, there is no generation of harmful halogen-based gases and release of phosphorus compounds during disposal such as landfilling and incineration, and it has excellent mechanical properties and good moldability by extrusion. And high flame retardance which passes the vertical flame-retardant specification VW-1 of UL1581 (2001) is realizable. Therefore, the flame retardant composition according to the present invention can be suitably used, for example, as a material for an automotive harness, an electric wire for electric / electronic equipment wiring, and an insulating tube.

Claims (6)

不飽和エステル含量が20〜70重量%であるエチレン−不飽和エステル共重合体100重量部と、金属水和物150〜280重量部と、耐熱性難燃芳香族高分子粉末3〜50重量部を含有し、前記耐熱性難燃芳香族高分子粉末が、ポリフェニレンサルファイドであるとともに、前記エチレン−不飽和エステル共重合体が、エチレン−酢酸ビニル共重合体であることを特徴とする難燃性組成物。  100 parts by weight of an ethylene-unsaturated ester copolymer having an unsaturated ester content of 20 to 70% by weight, 150 to 280 parts by weight of a metal hydrate, and 3 to 50 parts by weight of a heat-resistant flame-retardant aromatic polymer powder And the heat-resistant flame-retardant aromatic polymer powder is polyphenylene sulfide, and the ethylene-unsaturated ester copolymer is an ethylene-vinyl acetate copolymer. Composition. 前記金属水和物が、水酸化マグネシウム及び/又は水酸化アルミニウムであることを特徴とする請求項1記載の難燃性組成物。  The flame retardant composition according to claim 1, wherein the metal hydrate is magnesium hydroxide and / or aluminum hydroxide. 前記金属水和物及び/又は前記耐熱性難燃芳香族高分子粉末が、表面処理剤によって表面処理されていることを特徴とする請求項1乃至2のいずれか一項記載の難燃性組成物。The flame retardant composition according to any one of claims 1 to 2 , wherein the metal hydrate and / or the heat-resistant flame-retardant aromatic polymer powder is surface-treated with a surface treatment agent. object. 架橋されていることを特徴とする請求項1乃至3のいずれか一項記載の難燃性組成物。The flame retardant composition according to any one of claims 1 to 3 , wherein the flame retardant composition is crosslinked. 請求項1乃至4のいずれか一項記載の難燃性組成物が導体外周に設けられていることを特徴とする被覆電線。A covered electric wire, wherein the flame retardant composition according to any one of claims 1 to 4 is provided on an outer periphery of a conductor. 請求項1乃至4のいずれか一項記載の難燃性組成物からなることを特徴とする絶縁チューブ。An insulating tube comprising the flame retardant composition according to any one of claims 1 to 4.
JP2003125029A 2003-04-30 2003-04-30 Flame retardant composition Expired - Fee Related JP4616545B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003125029A JP4616545B2 (en) 2003-04-30 2003-04-30 Flame retardant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003125029A JP4616545B2 (en) 2003-04-30 2003-04-30 Flame retardant composition

Publications (2)

Publication Number Publication Date
JP2004331689A JP2004331689A (en) 2004-11-25
JP4616545B2 true JP4616545B2 (en) 2011-01-19

Family

ID=33502415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003125029A Expired - Fee Related JP4616545B2 (en) 2003-04-30 2003-04-30 Flame retardant composition

Country Status (1)

Country Link
JP (1) JP4616545B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009120680A (en) * 2007-11-13 2009-06-04 Shin Etsu Chem Co Ltd Flame-retardant resin composition
US20120037397A1 (en) * 2010-08-10 2012-02-16 General Cable Technologies Corporation Polymer compositions and their use as cable coverings
JP2016141728A (en) 2015-02-02 2016-08-08 日東電工株式会社 Flame-retardant material, flame-retardant film formed with flame-retardant material, flame-retardant article and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146037A (en) * 2000-11-09 2002-05-22 Ge Plastics Japan Ltd Method for producing flame-retardant thermoplastic resin blended product
JP2002146120A (en) * 2000-11-10 2002-05-22 Sumitomo Wiring Syst Ltd Flame retardant resin composition and flame retardant insulated electric wire using the resin composition as coating material

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439856B2 (en) * 1973-01-25 1979-11-30
JPH02258848A (en) * 1989-03-31 1990-10-19 Fujikura Ltd Flame-retardant composition and flame-retardant cable
JPH02258847A (en) * 1989-03-31 1990-10-19 Fujikura Ltd Flame-retardant composition and flame-retardant cable
JPH0625483A (en) * 1992-07-09 1994-02-01 Kurabe Ind Co Ltd Flame-retardant composition and flame-retardant covered electric wire
JPH11181163A (en) * 1997-12-18 1999-07-06 Sumitomo Bakelite Co Ltd Flame-retardant polyolefin resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146037A (en) * 2000-11-09 2002-05-22 Ge Plastics Japan Ltd Method for producing flame-retardant thermoplastic resin blended product
JP2002146120A (en) * 2000-11-10 2002-05-22 Sumitomo Wiring Syst Ltd Flame retardant resin composition and flame retardant insulated electric wire using the resin composition as coating material

Also Published As

Publication number Publication date
JP2004331689A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
US8173255B2 (en) Clean flame retardant insulation composition to enhance mechanical properties and flame retardancy for wire and cable
JP2015021120A (en) Insulated electric wire for vehicle and cable for vehicle each using non-halogen crosslinkable resin composition
JP2525968B2 (en) Process for producing flame-retardant resin composition, flame-retardant resin composition produced therefrom and insulating tube using the same
JP6295886B2 (en) Wire covering material composition, insulated wire and wire harness
WO1999063004A1 (en) Flame-retardant resin composition, and insulating electric wire, tube, heat-shrinkable tube, flat cable, and dc high-tension electric wire all made of the composition
JP2015072743A (en) Wire and cable
JP2007238845A (en) Flame-retardant composition and electric wire
JP4379947B2 (en) Flame-retardant resin composition and its insulated wires, tubes, heat-shrinkable tubes, flat cables, and high-voltage wires for direct current
JP3966632B2 (en) Wire covering resin composition and insulated wire
JP4616545B2 (en) Flame retardant composition
JPH10245456A (en) Flame retardant polyolefin composition, and power cable using the composition
EP3635072B1 (en) Fire retardant cables formed from halogen-free and heavy metal-free compositions
JP4920901B2 (en) Flame retardant electrical insulation composition and electric wire
JPH07179675A (en) Crosslinkable. highly flame-retardant composition
JP2012246349A (en) Flame-retardant electrically insulating composition
JP2011111567A (en) Flame-retardant resin composition, molding and electric insulated wire
JP2001206993A (en) Heat-resistant flame-retardant composition
JP2021155592A (en) Heat-resistant flame-retardant crosslinked fluororubber molding, method for producing the same, and heat-resistant product
JP7064697B2 (en) Flame-retardant electrical insulation composition and electric wire
JP2010084103A (en) Flame-retardant composition and electric wire
JP2525982B2 (en) Thin high-strength non-halogen insulated wire and method of manufacturing the same
JP2010126649A (en) Thermoplastic resin composition and molded article produced by using the same
JP4495130B2 (en) Wire covering resin composition and insulated wire
JPH07173339A (en) Cross-linkable highly flame retardant composition
JP6860833B2 (en) Flame-retardant insulated wires and flame-retardant cables

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101012

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees