JP6860833B2 - Flame-retardant insulated wires and flame-retardant cables - Google Patents

Flame-retardant insulated wires and flame-retardant cables Download PDF

Info

Publication number
JP6860833B2
JP6860833B2 JP2019199476A JP2019199476A JP6860833B2 JP 6860833 B2 JP6860833 B2 JP 6860833B2 JP 2019199476 A JP2019199476 A JP 2019199476A JP 2019199476 A JP2019199476 A JP 2019199476A JP 6860833 B2 JP6860833 B2 JP 6860833B2
Authority
JP
Japan
Prior art keywords
flame
retardant
parts
mass
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019199476A
Other languages
Japanese (ja)
Other versions
JP2020077634A (en
Inventor
明成 中山
明成 中山
剛真 牛渡
剛真 牛渡
正智 遠藤
正智 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN201911071256.0A priority Critical patent/CN111138746B/en
Priority to DE102020102416.9A priority patent/DE102020102416A1/en
Publication of JP2020077634A publication Critical patent/JP2020077634A/en
Application granted granted Critical
Publication of JP6860833B2 publication Critical patent/JP6860833B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds

Description

本発明は、難燃性絶縁電線および難燃性ケーブルに関するものである。 The present invention relates to a flame-retardant insulated electric wire and a flame-retardant cable.

絶縁電線は、導体と、前記導体の周囲に設けられる被覆材としての絶縁層とを有している。また、ケーブルは、例えば前述の電線を撚り合わせた撚り線と、前記撚り線の周囲に設けられたシースとを備えている。前記絶縁電線の絶縁層および前記ケーブルのシースは、ゴムや樹脂を主原料とした電気絶縁性材料からなる。このような絶縁電線およびケーブルは、用途に応じて必要な特性が異なる。例えば、電子機器または鉄道車両用の電線には、高い難燃性が要求され、具体的には、難燃性規格UL1581に規定される垂直燃焼試験VW−1に合格することが要求される。 The insulated wire has a conductor and an insulating layer as a coating material provided around the conductor. Further, the cable includes, for example, a stranded wire obtained by twisting the above-mentioned electric wires and a sheath provided around the stranded wire. The insulating layer of the insulated wire and the sheath of the cable are made of an electrically insulating material mainly made of rubber or resin. Such insulated wires and cables have different required characteristics depending on the application. For example, electric wires for electronic devices or railway vehicles are required to have high flame retardancy, and specifically, they are required to pass the vertical combustion test VW-1 specified in the flame retardancy standard UL1581.

このような電線の例として、特許文献1には、導体と、前記導体の周りに被覆された絶縁層とを備える難燃性絶縁電線において、前記絶縁層がエチレン系ポリマを主体とする樹脂成分に金属水酸化物を添加した樹脂組成物からなる難燃性絶縁電線が記載されている。 As an example of such an electric wire, Patent Document 1 describes a flame-retardant insulated electric wire including a conductor and an insulating layer coated around the conductor, wherein the insulating layer is a resin component mainly composed of an ethylene-based polymer. A flame-retardant insulated electric wire made of a resin composition to which a metal hydroxide is added is described.

特開2015−2062号公報Japanese Unexamined Patent Publication No. 2015-2062

しかし、本発明者の検討によれば、前記難燃性絶縁電線の絶縁層を形成する際に、樹脂組成物の流動性が低下し、押出加工性が損なわれる場合があることを確認した。 However, according to the study of the present inventor, it has been confirmed that when the insulating layer of the flame-retardant insulated wire is formed, the fluidity of the resin composition may decrease and the extrusion processability may be impaired.

本発明は、このような課題に鑑みてなされたものであり、難燃性および押出加工性を備えた難燃性絶縁電線および難燃性ケーブルを提供することを目的とする。 The present invention has been made in view of such problems, and an object of the present invention is to provide a flame-retardant insulated electric wire and a flame-retardant cable having flame retardancy and extrusion processability.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 A brief description of typical inventions disclosed in the present application is as follows.

[1]難燃性絶縁電線は、導体と、前記導体の周囲に被覆される絶縁層とを有し、前記絶縁層は、エチレン系ポリマと、金属水酸化物と、分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物からなる。前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記金属水酸化物を100質量部以上180質量部以下含み、前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記化合物を2質量部以上含む。 [1] The flame-retardant insulated wire has a conductor and an insulating layer coated around the conductor, and the insulating layer includes an ethylene-based polymer, a metal hydroxide, and a plurality of phenols in the molecule. It comprises a flame-retardant resin composition containing a compound having a sex hydroxyl group and no carboxyl group. The flame-retardant resin composition contains 100 parts by mass or more and 180 parts by mass or less of the metal hydroxide with respect to 100 parts by mass of the ethylene-based polymer, and the flame-retardant resin composition is the ethylene-based polymer 100. It contains 2 parts by mass or more of the compound with respect to parts by mass.

[2][1]記載の難燃性絶縁電線において、前記化合物は、没食子酸のエステル誘導体である。 [2] In the flame-retardant insulated wire according to [1], the compound is an ester derivative of gallic acid.

[3][1]記載の難燃性絶縁電線において、前記化合物は、没食子酸メチル、没食子酸プロピル、2,3,4−トリヒドロキシベンゾフェノン、および、ビスフェノールAからなる群から選択される少なくとも1つの化合物である。 [3] In the flame-retardant insulated wire according to [1], the compound is at least one selected from the group consisting of methyl gallate, propyl gallate, 2,3,4-trihydroxybenzophenone, and bisphenol A. Two compounds.

[4]難燃性ケーブルは、導体と、前記導体の周囲に被覆される絶縁層とからなる絶縁電線を含むコアと、前記コアの周囲に設けられるシースとを有し、前記シースは、エチレン系ポリマと、金属水酸化物と、分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物からなる。前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記金属水酸化物を100質量部以上180質量部以下含み、前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記化合物を2質量部以上含む。 [4] The flame-retardant cable has a core including an insulated wire composed of a conductor and an insulating layer coated around the conductor, and a sheath provided around the core, and the sheath is made of ethylene. It comprises a flame-retardant resin composition containing a based polymer, a metal hydroxide, and a compound having a plurality of phenolic hydroxyl groups in the molecule and having no carboxyl group. The flame-retardant resin composition contains 100 parts by mass or more and 180 parts by mass or less of the metal hydroxide with respect to 100 parts by mass of the ethylene-based polymer, and the flame-retardant resin composition is the ethylene-based polymer 100. It contains 2 parts by mass or more of the compound with respect to parts by mass.

[5][4]記載の難燃性ケーブルにおいて、前記化合物は、没食子酸のエステル誘導体である。 [5] In the flame-retardant cable according to [4], the compound is an ester derivative of gallic acid.

[6][4]記載の難燃性ケーブルにおいて、前記化合物は、没食子酸メチル、没食子酸プロピル、2,3,4−トリヒドロキシベンゾフェノン、および、ビスフェノールAからなる群から選択される少なくとも1つの化合物である。 [6] In the flame-retardant cable according to [4], the compound is at least one selected from the group consisting of methyl gallate, propyl gallate, 2,3,4-trihydroxybenzophenone, and bisphenol A. It is a compound.

本発明によれば、難燃性および押出加工性を備えた難燃性絶縁電線および難燃性ケーブルを提供することができる。 According to the present invention, it is possible to provide a flame-retardant insulated electric wire and a flame-retardant cable having flame retardancy and extrusion processability.

一実施の形態の電線の構造を示す横断面図である。It is sectional drawing which shows the structure of the electric wire of one Embodiment. 第2の実施の形態の電線の構造を示す横断面図である。It is sectional drawing which shows the structure of the electric wire of 2nd Embodiment. 一実施の形態のケーブルの構造を示す横断面図である。It is sectional drawing which shows the structure of the cable of one Embodiment.

(検討事項)
まず、実施の形態を説明する前に、本発明者が検討した事項について説明する。
(Consideration)
First, before explaining the embodiment, the matters examined by the present inventor will be described.

従来、樹脂組成物の難燃性を向上させるため、難燃剤である水酸化マグネシウムなどの金属水酸化物を樹脂組成物に添加することが知られている。そのため、このような電線の例として、本発明者は、導体と、前記導体の周りに被覆された絶縁層とを備える難燃性絶縁電線において、前記絶縁層が(A)エチレン系ポリマを主体とする樹脂成分に対して、(B)金属水酸化物を添加した樹脂組成物からなる難燃性絶縁電線を検討した(以下、検討例の難燃性絶縁電線と称する)。 Conventionally, in order to improve the flame retardancy of a resin composition, it is known to add a metal hydroxide such as magnesium hydroxide, which is a flame retardant, to the resin composition. Therefore, as an example of such an electric wire, the present inventor has found that in a flame-retardant insulated electric wire including a conductor and an insulating layer coated around the conductor, the insulating layer is mainly composed of (A) ethylene-based polymer. A flame-retardant insulated wire made of a resin composition to which (B) a metal hydroxide was added to the resin component to be used was examined (hereinafter, referred to as a flame-retardant insulated wire in the study example).

検討例の難燃性絶縁電線にあっては、前述したように、難燃性規格UL1581に規定される垂直燃焼試験VW−1に合格する難燃性を有することが要求される。本発明者は、後述の実施例に示すように、前記絶縁層を構成する樹脂組成物は、(A)エチレン系ポリマを主体とする樹脂成分100質量部に対して、(B)金属水酸化物の一種である(B1)水酸化マグネシウムを220質量部以上添加したものでないと、VW−1に合格しないことを確認した。ここで、金属水酸化物の難燃作用は、吸熱反応を利用した樹脂の熱分解抑制によるものである。樹脂の熱分解によって発生する可燃ガスを完全に抑え切れないと、可燃ガスと酸素との反応が継続してしまい、VW−1に合格することができない。そのため、樹脂の熱分解を完全に抑制できるように、樹脂成分に対して比較的高い比率で金属水酸化物を配合する必要があるものと考えられる。 As described above, the flame-retardant insulated wire of the study example is required to have flame retardancy that passes the vertical combustion test VW-1 specified in the flame-retardant standard UL1581. As shown in Examples described later, the present inventor has prepared (A) metal hydroxide with respect to 100 parts by mass of a resin component mainly composed of an ethylene polymer in the resin composition constituting the insulating layer. It was confirmed that VW-1 was not passed unless 220 parts by mass or more of magnesium hydroxide (B1), which is a kind of product, was added. Here, the flame-retardant action of the metal hydroxide is due to the suppression of thermal decomposition of the resin utilizing the endothermic reaction. If the combustible gas generated by the thermal decomposition of the resin cannot be completely suppressed, the reaction between the combustible gas and oxygen will continue, and VW-1 cannot be passed. Therefore, it is considered necessary to mix the metal hydroxide in a relatively high ratio with respect to the resin component so that the thermal decomposition of the resin can be completely suppressed.

一方、本発明者は、後述の実施例に示すように、検討例の難燃性絶縁電線において、前記絶縁層を構成する樹脂組成物が、(A)エチレン系ポリマを主体とする樹脂成分100質量部に対して、(B)金属水酸化物の一種である(B1)水酸化マグネシウムを165質量部以上添加したものであると、樹脂組成物中の材料成分同士が衝突・摩擦・密着・凝集して、樹脂組成物の流動性が低下し、押出加工性が損なわれることを確認した。すなわち、樹脂組成物の流動性が低下すると、電線の絶縁層を押出被覆する際に、押出機の押出速度を低下させる必要があるため、電線の製造効率が低下してしまうという問題が生じる。 On the other hand, according to the present inventor, as shown in Examples described later, in the flame-retardant insulated wire of the study example, the resin composition constituting the insulating layer is (A) a resin component 100 mainly composed of an ethylene polymer. When 165 parts by mass or more of (B1) magnesium hydroxide, which is a kind of (B) metal hydroxide, is added to parts by mass, the material components in the resin composition collide with each other, rub against each other, adhere to each other, and adhere to each other. It was confirmed that the resin composition aggregated to reduce the fluidity of the resin composition and impair the extrudability. That is, when the fluidity of the resin composition is lowered, it is necessary to reduce the extrusion speed of the extruder when the insulating layer of the electric wire is extruded and coated, which causes a problem that the manufacturing efficiency of the electric wire is lowered.

すなわち、絶縁電線の絶縁層を構成する樹脂組成物において、(A)エチレン系ポリマを主体とする樹脂成分に対して、(B)金属水酸化物の比率が低すぎると、難燃性が維持できなくなり、一方で(B)金属水酸化物の比率が高すぎると、押出加工性が損なわれてしまうという課題が明らかになった。 That is, in the resin composition constituting the insulating layer of the insulated wire, if the ratio of (B) metal hydroxide to the resin component mainly composed of (A) ethylene polymer is too low, flame retardancy is maintained. On the other hand, if the ratio of (B) metal hydroxide is too high, the problem of extrudability is impaired.

なお、このような課題は、絶縁電線の絶縁層に限らず、同様に押出被覆により形成するケーブルのシースにおいても発生するものである。 It should be noted that such a problem occurs not only in the insulating layer of the insulated wire but also in the sheath of the cable formed by the extrusion coating.

以上より、難燃性絶縁電線および難燃性ケーブルにおいて、その構成を工夫することにより、難燃性および押出加工性を備えた難燃性絶縁電線および難燃性ケーブルを提供することが望まれる。 From the above, it is desired to provide a flame-retardant insulated wire and a flame-retardant cable having flame-retardant and extrudable properties by devising the configuration of the flame-retardant insulated wire and the flame-retardant cable. ..

(実施の形態)
<難燃性絶縁電線の構成および製造方法>
図1および図2は、本発明の一実施の形態に係る難燃性絶縁電線を示す横断面図である。図1に示すように、第1の実施の形態に係る難燃性絶縁電線10は、導体1と、導体1の周囲に被覆される絶縁層2とを有している。絶縁層2は、以下で詳述する本発明の一実施の形態に係る難燃性樹脂組成物からなる。絶縁層2の厚さは特に限定されるものではないが、0.15〜2mmが好ましい。
(Embodiment)
<Construction and manufacturing method of flame-retardant insulated wire>
1 and 2 are cross-sectional views showing a flame-retardant insulated electric wire according to an embodiment of the present invention. As shown in FIG. 1, the flame-retardant insulated wire 10 according to the first embodiment has a conductor 1 and an insulating layer 2 coated around the conductor 1. The insulating layer 2 is made of a flame-retardant resin composition according to an embodiment of the present invention, which will be described in detail below. The thickness of the insulating layer 2 is not particularly limited, but is preferably 0.15 to 2 mm.

導体1としては、通常用いられる金属線、例えば銅線、銅合金線のほか、アルミニウム線、金線、銀線、光ファイバなどを用いることができる。また、導体1として、金属線の周囲に錫やニッケルなどの金属めっきを施したものを用いてもよい。さらに、導体1として、金属線を撚り合わせた撚り線導体を用いることもできる。 As the conductor 1, in addition to commonly used metal wires such as copper wire and copper alloy wire, aluminum wire, gold wire, silver wire, optical fiber and the like can be used. Further, as the conductor 1, a conductor having metal plating such as tin or nickel around the metal wire may be used. Further, as the conductor 1, a stranded wire conductor obtained by twisting metal wires can also be used.

また、導体1と絶縁層2との間に、例えばポリエステルテープなどからなるセパレータ6を設けることができる。セパレータ6を設けることにより、導体1として撚り線導体を使用した場合、難燃性樹脂組成物の押出し時、すなわち、絶縁層2の形成時に導体1の内部への、難燃性樹脂組成物の潜り込みを防止することができる。 Further, a separator 6 made of, for example, polyester tape can be provided between the conductor 1 and the insulating layer 2. When a stranded conductor is used as the conductor 1 by providing the separator 6, the flame-retardant resin composition is introduced into the conductor 1 when the flame-retardant resin composition is extruded, that is, when the insulating layer 2 is formed. It is possible to prevent sneaking in.

本実施の形態の難燃性絶縁電線10は、例えば、以下のように製造される。まず、(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む材料を溶融混練し、本実施の形態の難燃性樹脂組成物を得る。 The flame-retardant insulated wire 10 of the present embodiment is manufactured as follows, for example. First, a material containing (A) an ethylene polymer, (B) a metal hydroxide, and (C) a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule is melt-kneaded and kneaded. Obtain the flame-retardant resin composition of the embodiment.

その後、導体1を準備し、押出成形機により、導体1(セパレータ6)の周囲を被覆するように、本実施の形態の難燃性樹脂組成物を押出して、所定厚さの絶縁層2を形成する。こうすることで、難燃性絶縁電線10を製造することができる。 After that, the conductor 1 is prepared, and the flame-retardant resin composition of the present embodiment is extruded by an extrusion molding machine so as to cover the periphery of the conductor 1 (separator 6) to obtain an insulating layer 2 having a predetermined thickness. Form. By doing so, the flame-retardant insulated wire 10 can be manufactured.

本実施の形態の難燃性樹脂組成物を製造するための混練装置は、例えば、バンバリーミキサーや加圧ニーダなどのバッチ式混練機、二軸押出機などの連続式混練機などの公知の混練装置を採用することができる。 The kneading device for producing the flame-retardant resin composition of the present embodiment is known as, for example, a known kneading machine such as a batch type kneader such as a Banbury mixer or a pressurized kneader, or a continuous kneader such as a twin-screw extruder. The device can be adopted.

また、本実施の形態では、難燃性絶縁電線10を製造した後に、絶縁層2を構成する難燃性樹脂組成物を、例えば電子線架橋法または化学架橋法により架橋する。本実施の形態の難燃性絶縁電線10においては、このような架橋がされていることは必須ではないが、架橋により難燃性樹脂組成物の耐熱性が向上するため、このような架橋がされていることが好ましい。 Further, in the present embodiment, after the flame-retardant insulated wire 10 is manufactured, the flame-retardant resin composition constituting the insulating layer 2 is crosslinked by, for example, an electron beam cross-linking method or a chemical cross-linking method. In the flame-retardant insulated wire 10 of the present embodiment, it is not essential that such cross-linking is performed, but since the cross-linking improves the heat resistance of the flame-retardant resin composition, such cross-linking is performed. It is preferable that it is.

電子線架橋法を用いる場合には、難燃性樹脂組成物を難燃性絶縁電線10の絶縁層2として成形した後に、例えば1〜30Mradの電子線を照射して架橋する。化学架橋法を用いる場合には、難燃性樹脂組成物にあらかじめ架橋剤を添加しておき、この難燃性樹脂組成物を難燃性絶縁電線10の絶縁層2として成形した後に、熱処理して架橋する。後述の実施例では、電子線架橋法を用いている。 When the electron beam cross-linking method is used, the flame-retardant resin composition is formed as the insulating layer 2 of the flame-retardant insulated wire 10, and then cross-linked by irradiating an electron beam of, for example, 1 to 30 Mrad. When the chemical cross-linking method is used, a cross-linking agent is added to the flame-retardant resin composition in advance, and this flame-retardant resin composition is molded as the insulating layer 2 of the flame-retardant insulated wire 10 and then heat-treated. To bridge. In the examples described later, the electron beam cross-linking method is used.

また、図2に示すように、第2の実施の形態に係る難燃性絶縁電線20は、導体1と、導体1の周囲に設けられた絶縁内層2aと、絶縁内層2aの周囲に設けられた絶縁外層2bとを有している。第2の実施の形態の難燃性絶縁電線20では、絶縁層が絶縁内層2aおよび絶縁外層2bからなる点が、第1の実施の形態の難燃性絶縁電線10との相違点である。絶縁外層2bは、本実施の形態の難燃性樹脂組成物からなる。なお、絶縁内層2aは、ポリエチレンなどの絶縁性樹脂からなる。 Further, as shown in FIG. 2, the flame-retardant insulated wire 20 according to the second embodiment is provided around the conductor 1, the insulating inner layer 2a provided around the conductor 1, and the insulating inner layer 2a. It has an insulating outer layer 2b. The flame-retardant insulated wire 20 of the second embodiment is different from the flame-retardant insulated wire 10 of the first embodiment in that the insulating layer is composed of the insulating inner layer 2a and the insulating outer layer 2b. The insulating outer layer 2b is made of the flame-retardant resin composition of the present embodiment. The insulating inner layer 2a is made of an insulating resin such as polyethylene.

本実施の形態において使用する難燃性樹脂組成物は、実施例で作製した電線に限らず、あらゆる用途およびサイズに適用可能であり、盤内配線用、車両用、自動車用、機器内配線用、電力用の各電線の絶縁層に使用することができる。 The flame-retardant resin composition used in the present embodiment is not limited to the electric wires produced in the examples, and can be applied to all uses and sizes, for in-panel wiring, for vehicles, for automobiles, and for in-equipment wiring. , Can be used for the insulating layer of each electric wire for electric power.

<難燃性ケーブルの構成>
図3は、本発明の一実施の形態に係る難燃性ケーブル30を示す横断面図である。図3に示すように、本実施の形態に係る難燃性ケーブル30は、前述の難燃性絶縁電線10を3本撚り合わせた三芯撚り線と、前記三芯撚り線の周囲に設けられた介在5とからなるコアと、前記コアの周囲に設けられたシース4とを備えている。シース4は、前述の難燃性樹脂組成物からなる。
<Composition of flame-retardant cable>
FIG. 3 is a cross-sectional view showing a flame-retardant cable 30 according to an embodiment of the present invention. As shown in FIG. 3, the flame-retardant cable 30 according to the present embodiment is provided around the three-core stranded wire obtained by twisting three of the above-mentioned flame-retardant insulated wires 10 and the three-core stranded wire. It is provided with a core including the interposition 5 and a sheath 4 provided around the core. The sheath 4 is made of the above-mentioned flame-retardant resin composition.

本実施の形態の難燃性ケーブル30は、例えば、以下のように製造される。まず、前述した方法により、難燃性絶縁電線10を3本製造する。その後、難燃性絶縁電線10をスフ糸、クラフト紙、紙テープ、ジュートなどの介在5と共に撚り合わせ、その後、これを被覆するように、(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む材料を混練した難燃性樹脂組成物を押し出す。その後、例えば電子線を難燃性樹脂組成物に照射し、難燃性樹脂組成物中の(A)エチレン系ポリマを架橋させ、所定厚さのシース4を形成する。こうすることで、本実施の形態の難燃性ケーブル30を製造することができる。 The flame-retardant cable 30 of the present embodiment is manufactured as follows, for example. First, three flame-retardant insulated electric wires 10 are manufactured by the method described above. After that, the flame-retardant insulated wire 10 is twisted together with the interposition 5 such as sufu thread, kraft paper, paper tape, and jute, and then (A) ethylene polymer and (B) metal hydroxide are applied so as to cover them. And (C) a flame-retardant resin composition kneaded with a material containing a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule is extruded. Then, for example, the flame-retardant resin composition is irradiated with an electron beam to crosslink the (A) ethylene-based polymer in the flame-retardant resin composition to form a sheath 4 having a predetermined thickness. By doing so, the flame-retardant cable 30 of the present embodiment can be manufactured.

本実施の形態のケーブル11は、芯線として難燃性絶縁電線10を3本撚り合わせた三芯撚り線を有する場合を例に説明したが、芯線は単芯(1本)でもよいし、三芯以外の多芯撚り線であってもよい。また、難燃性絶縁電線10とシース4との間に、介在5がないものであってもよいし、逆に難燃性絶縁電線10とシース4との間に、他の絶縁層(シース)が形成された、多層シース構造を採用することもできる。また、難燃性絶縁電線10とシース4との間に、金属テープや銅線の編組構造からなるシールド層を設けてもよい。 The case where the cable 11 of the present embodiment has a three-core stranded wire obtained by twisting three flame-retardant insulated wires 10 as a core wire has been described as an example, but the core wire may be a single core (one) or three. It may be a multi-core stranded wire other than the core. Further, there may be no interposition 5 between the flame-retardant insulated wire 10 and the sheath 4, and conversely, another insulating layer (sheath) may be provided between the flame-retardant insulated wire 10 and the sheath 4. ) Is formed, and a multi-layer sheath structure can also be adopted. Further, a shield layer made of a braided structure of a metal tape or a copper wire may be provided between the flame-retardant insulated wire 10 and the sheath 4.

また、本実施の形態の難燃性ケーブル30は、前述の難燃性絶縁電線10を使用した場合を例に説明したが、これに限定されず、ポリエチレンなど汎用の材料を用いた電線を使用することもできる。 Further, the flame-retardant cable 30 of the present embodiment has been described by taking the case where the above-mentioned flame-retardant insulated electric wire 10 is used as an example, but the present invention is not limited to this, and an electric wire using a general-purpose material such as polyethylene is used. You can also do it.

<難燃性樹脂組成物の構成>
以下、本実施の形態の難燃性樹脂組成物について詳述する。本実施の形態に係る難燃性樹脂組成物は、(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含んでいる。以下、本実施の形態では、難燃性樹脂組成物を構成する(A)エチレン系ポリマをベースポリマとして説明する場合がある。また、難燃性樹脂組成物を構成する(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物をまとめて難燃剤として説明する場合がある。
<Structure of flame-retardant resin composition>
Hereinafter, the flame-retardant resin composition of the present embodiment will be described in detail. The flame-retardant resin composition according to the present embodiment has (A) an ethylene polymer, (B) a metal hydroxide, and (C) a plurality of phenolic hydroxyl groups in the molecule and has a carboxyl group. Contains compounds that do not. Hereinafter, in the present embodiment, the ethylene polymer (A) constituting the flame-retardant resin composition may be described as a base polymer. Further, when (B) a metal hydroxide constituting the flame-retardant resin composition and (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group are collectively described as a flame retardant. There is.

本実施の形態の(A)エチレン系ポリマとしては、例えば、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸エステル共重合体、エチレン−α−オレフィン共重合体などが挙げられる。ケーブルの種類によっては土中埋設される場合もあるため、生分解性を持たないポリマが好ましく、(A)エチレン系ポリマとしては、エチレン−酢酸ビニル共重合体が好ましい。 Examples of the (A) ethylene-based polymer of the present embodiment include an ethylene-vinyl acetate copolymer, an ethylene-acrylic acid ester copolymer, and an ethylene-α-olefin copolymer. Since it may be buried in the soil depending on the type of cable, a polymer having no biodegradability is preferable, and as the (A) ethylene-based polymer, an ethylene-vinyl acetate copolymer is preferable.

本実施の形態の(B)金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウム、ハードクレー、ハイドロタルサイト等が挙げられ、なかでも(B1)水酸化マグネシウム又は(B2)水酸化アルミニウムが好ましい。(B1)水酸化マグネシウムとしては、例えば、表面無処理のもの(ブルーサイト鉱石を粉砕した天然水酸化マグネシウムや合成水酸化マグネシウム)、または、シランカップリング剤、リン酸エステル、もしくは、ステアリン酸やオレイン酸などの脂肪酸によって表面処理されているものが挙げられる。特に、(B1)水酸化マグネシウムとしては、シランカップリング剤によって表面処理されているものを用いることが好ましい。シランカップリング剤によって表面処理された水酸化マグネシウムは、ポリマとの親和性が高いため、これを用いた難燃性樹脂組成物の引張特性が良好なものとなるためである。金属水酸化物は、エチレン系ポリマ100質量部に対して、100質量部以上180質量部以下含む。なお、後述の実施例で示すように、(B1)水酸化マグネシウムを用いる場合には、ベースポリマ100質量部に対して、100質量部以上160質量部以下であることが好ましい。(B1)水酸化マグネシウムが、ベースポリマ100質量部に対して、100質量部未満であると電線の絶縁層に必要な難燃性が得られず、160質量部を超えると材料成分同士が衝突・摩擦・密着・凝集し流動性が低下し、電線の絶縁層形成時の押出加工性が損なわれる。(B2)水酸化アルミニウムとしては、表面無処理のもの、表面がシランカップリング剤、リン酸エステル、もしくは、ステアリン酸やオレイン酸などの脂肪酸によって表面処理されているものが挙げられる。(B2)水酸化アルミニウムを用いる場合には、ベースポリマ100質量部に対して、100質量部以上180質量部以下であることが好ましい。 Examples of the (B) metal hydroxide of the present embodiment include magnesium hydroxide, aluminum hydroxide, calcium hydroxide, hard clay, hydrotalcite, and the like, among which (B1) magnesium hydroxide or (B2). Aluminum hydroxide is preferred. (B1) Magnesium hydroxide includes, for example, untreated surface (natural magnesium hydroxide or synthetic magnesium hydroxide obtained by crushing brucite ore), silane coupling agent, phosphoric acid ester, or stearic acid. Examples thereof include those surface-treated with fatty acids such as oleic acid. In particular, as (B1) magnesium hydroxide, it is preferable to use magnesium hydroxide that has been surface-treated with a silane coupling agent. This is because magnesium hydroxide surface-treated with a silane coupling agent has a high affinity with a polymer, and thus the tensile properties of the flame-retardant resin composition using the magnesium hydroxide are improved. The metal hydroxide contains 100 parts by mass or more and 180 parts by mass or less with respect to 100 parts by mass of the ethylene polymer. As shown in Examples described later, when (B1) magnesium hydroxide is used, it is preferably 100 parts by mass or more and 160 parts by mass or less with respect to 100 parts by mass of the base polymer. (B1) If the amount of magnesium hydroxide is less than 100 parts by mass with respect to 100 parts by mass of the base polymer, the flame retardancy required for the insulating layer of the electric wire cannot be obtained, and if it exceeds 160 parts by mass, the material components collide with each other. -Friction, adhesion, and aggregation reduce the fluidity, and the extrusion processability when forming the insulating layer of the electric wire is impaired. Examples of (B2) aluminum hydroxide include those having no surface treatment and those having a surface treated with a silane coupling agent, a phosphoric acid ester, or a fatty acid such as stearic acid or oleic acid. (B2) When aluminum hydroxide is used, it is preferably 100 parts by mass or more and 180 parts by mass or less with respect to 100 parts by mass of the base polymer.

本実施の形態の(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物としては、例えば、没食子酸のエステル誘導体((C1)没食子酸メチル、(C2)没食子酸プロピルなど)、ピロガロール、カテコール、ガロタンニン、(C3)2,3,4−トリヒドロキシベンゾフェノン、(C4)ビスフェノールAなどが挙げられる。 Examples of the compound (C) of the present embodiment having a plurality of phenolic hydroxyl groups and no carboxyl group include ester derivatives of gallic acid ((C1) methyl gallate, (C2) propyl gallate). Etc.), pyrogallol, catechol, gallotannin, (C3) 2,3,4-trihydroxybenzophenone, (C4) bisphenol A and the like.

なお、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物において、「複数のフェノール性水酸基を有し」としているのは、分子内にフェノール性水酸基を1つしか有しない化合物の場合、フェノール性水酸基が有するラジカルトラップ効果が十分に発揮されないことを本発明者が確認しているためである。なお、ラジカルトラップ効果とは、難燃剤が気相の燃焼物中のラジカルと反応して安定化し、酸素との反応を抑制する効果をいう。 In addition, in (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group, only one phenolic hydroxyl group is defined as "having a plurality of phenolic hydroxyl groups" in the molecule. This is because the present inventor has confirmed that the radical trapping effect of the phenolic hydroxyl group is not sufficiently exhibited in the case of a compound that does not have it. The radical trap effect is an effect in which the flame retardant reacts with radicals in the combustion product of the gas phase to stabilize the flame retardant and suppress the reaction with oxygen.

また、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物において、「カルボキシル基を有しない」としているのは、後述の比較例に示すように、カルボキシル基を有する化合物を添加すると、(B)金属水酸化物との相互作用により樹脂組成物の流動性が低下し、押出し時の加工性評価が不合格となるためである。またカルボキシル基の強い極性のため没食子酸では融点が280℃以上となり通常の加工温度では溶融せず樹脂組成物中で凝集塊として存在するため機械的な破壊の起点となりやすい。このため融点の低い、例えば、融点が200℃以下である(C2)没食子酸プロピル(C3)2,3,4−トリヒドロキシベンゾフェノン、(C4)ビスフェノールAが好適である。 Further, in the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group, "having no carboxyl group" is defined as having a carboxyl group as shown in a comparative example described later. This is because when the compound is added, the fluidity of the resin composition decreases due to the interaction with (B) the metal hydroxide, and the processability evaluation at the time of extrusion fails. Further, due to the strong polarity of the carboxyl group, gallic acid has a melting point of 280 ° C. or higher, does not melt at a normal processing temperature, and exists as agglomerates in the resin composition, so that it tends to be a starting point of mechanical destruction. Therefore, propyl gallate (C3) 2,3,4-trihydroxybenzophenone and (C4) bisphenol A, which have a low melting point, for example, a melting point of 200 ° C. or lower, are suitable.

また、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、没食子酸のエステル誘導体((C1)没食子酸メチル、(C2)没食子酸プロピルなど)、ピロガロール、カテコール、ガロタンニン、(C3)2,3,4−トリヒドロキシベンゾフェノン、(C4)ビスフェノールAなどのうちから複数選択してこれらを併用してもよい。 Further, as a compound having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group, ester derivatives of gallic acid ((C1) methyl gallate, (C2) propyl gallate, etc.), pyrogallol, catechol, etc. , Gallotannin, (C3) 2,3,4-trihydroxybenzophenone, (C4) bisphenol A, and the like may be selected and used in combination.

なお、後述の実施例で示すように、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物は、ベースポリマ100質量部に対して、2質量部以上であることが好ましい。(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が、ベースポリマ100質量部に対して2質量部未満であると、電線の絶縁層に必要な難燃性を得るために(B)金属水酸化物を多量に添加する必要があるためである。(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物の含有量の上限値は、特にこれを限定するものではないが、40質量部以下、より好ましくは20質量部以下である。 As shown in Examples described later, the amount of the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and having no carboxyl group is 2 parts by mass or more with respect to 100 parts by mass of the base polymer. Is preferable. (C) When the amount of the compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule is less than 2 parts by mass with respect to 100 parts by mass of the base polymer, the flame retardancy required for the insulating layer of the electric wire is obtained. This is because it is necessary to add a large amount of (B) metal hydroxide in order to obtain it. (C) The upper limit of the content of the compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule is not particularly limited, but is 40 parts by mass or less, more preferably 20 parts by mass. It is as follows.

また、本実施の形態の難燃剤である(B)金属水酸化物および(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物の総和は、ベースポリマ100質量部に対して、100質量部以上220質量部未満であることが好ましい。難燃剤の総和が、ベースポリマ100質量部に対して、100質量部未満であるとVW−1試験に合格する難燃性が得られず、220質量部以上であると押出加工性が低下し、加工性評価が不合格となる場合がある。 Further, the total amount of the (B) metal hydroxide and (C) the compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule, which is the flame retardant of the present embodiment, is 100 parts by mass of the base polymer. On the other hand, it is preferably 100 parts by mass or more and less than 220 parts by mass. If the total amount of the flame retardants is less than 100 parts by mass with respect to 100 parts by mass of the base polymer, flame retardancy that passes the VW-1 test cannot be obtained, and if it is 220 parts by mass or more, the extrusion processability is lowered. , Workability evaluation may fail.

また、本実施の形態の難燃性樹脂組成物は、上記材料以外にも、必要に応じてその他の難燃剤、難燃助剤、架橋剤、架橋助剤、加工助剤、カップリング剤、表面処理剤、着色剤、滑剤、酸化防止剤、オゾン劣化防止剤、紫外線吸収剤、光安定剤、金属キレーター、軟化剤、可塑剤などを特性に影響が出ない範囲で含有していてもよい。 In addition to the above materials, the flame retardant resin composition of the present embodiment includes other flame retardants, flame retardants, cross-linking agents, cross-linking aids, processing aids, coupling agents, etc., if necessary. It may contain a surface treatment agent, a colorant, a lubricant, an antioxidant, an ozone deterioration inhibitor, an ultraviolet absorber, a light stabilizer, a metal chelator, a softener, a plasticizer, etc. within a range that does not affect the characteristics. ..

本実施の形態の難燃性樹脂組成物は、後述の実施例で作製した電線に限らず、ケーブルを含むあらゆる用途およびサイズに適用可能であり、鉄道車両用、自動車用、盤内配線用、機器内配線用、電力用の各電線の絶縁層および各ケーブルのシースに使用することができる。 The flame-retardant resin composition of the present embodiment is applicable to all uses and sizes including cables, not limited to the electric wires produced in the examples described later, and is used for railway vehicles, automobiles, and in-panel wiring. It can be used for the insulating layer of each electric wire for wiring in equipment and for electric power, and for the sheath of each cable.

<本実施の形態の特徴と効果>
図1および図2に示す本実施の形態に係る難燃性絶縁電線10,20の特徴の一つは、導体1と、導体1の周囲に被覆される絶縁層2(絶縁内層2a)とを有し、絶縁層2(絶縁外層2b)は(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物により構成されていることである。
<Characteristics and effects of this embodiment>
One of the features of the flame-retardant insulated wires 10 and 20 according to the present embodiment shown in FIGS. 1 and 2 is that the conductor 1 and the insulating layer 2 (insulating inner layer 2a) coated around the conductor 1 are provided. The insulating layer 2 (insulating outer layer 2b) has (A) an ethylene-based polymer, (B) a metal hydroxide, and (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and no carboxyl group. It is composed of a flame-retardant resin composition containing and.

また、図3に示す本実施の形態に係る難燃性ケーブル30の特徴の一つは、難燃性絶縁電線10の周囲に設けられたシース4を備え、シース4は、前記難燃性樹脂組成物により構成されていることである。 Further, one of the features of the flame-retardant cable 30 according to the present embodiment shown in FIG. 3 is a sheath 4 provided around the flame-retardant insulated electric wire 10, and the sheath 4 is the flame-retardant resin. It is composed of a composition.

本実施の形態では、このような構成を採用したことにより、難燃性および押出加工性を備えた難燃性絶縁電線および難燃性ケーブルを提供することができる。以下、その理由について具体的に説明する。 In the present embodiment, by adopting such a configuration, it is possible to provide a flame-retardant insulated electric wire and a flame-retardant cable having flame retardancy and extrusion processability. The reason for this will be described in detail below.

前述したように、本発明者は、検討例の難燃性絶縁電線の絶縁層を構成する樹脂組成物において、(A)エチレン系ポリマを主体とする樹脂成分に対して、(B)金属水酸化物の比率が低すぎると、難燃性が維持できなくなり、一方で(B)金属水酸化物の比率が高すぎると、押出加工性が損なわれてしまうということを確認している。 As described above, in the resin composition constituting the insulating layer of the flame-retardant insulated wire of the study example, the present inventor has (A) a resin component mainly composed of an ethylene polymer and (B) metallic water. It has been confirmed that if the ratio of the oxide is too low, the flame retardancy cannot be maintained, while if the ratio of the (B) metal hydroxide is too high, the extrusion processability is impaired.

そこで、本発明者は、本実施の形態に係る難燃性絶縁電線の絶縁層を(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物により構成している。このように、前記難燃性樹脂組成物に、難燃剤として(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を添加することにより、(A)エチレン系ポリマに対する(B)金属水酸化物の比率を低くすることができ、電線の被覆層形成時の難燃性樹脂組成物の押出加工性を向上させることができる。同様に、ケーブルのシース形成時の難燃性樹脂組成物の押出し加工性を向上させることができる。 Therefore, the present inventor has provided the insulating layer of the flame-retardant insulated wire according to the present embodiment with (A) an ethylene polymer, (B) a metal hydroxide, and (C) a plurality of phenolic hydroxyl groups in the molecule. It is composed of a flame-retardant resin composition containing a compound having and having no carboxyl group. As described above, by adding (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group as a flame retardant to the flame-retardant resin composition, the (A) ethylene-based polymer can be treated. (B) The ratio of the metal hydroxide can be lowered, and the extrusion processability of the flame retardant resin composition at the time of forming the coating layer of the electric wire can be improved. Similarly, the extrusion processability of the flame-retardant resin composition at the time of forming the sheath of the cable can be improved.

そして、前記難燃性樹脂組成物に、難燃剤として(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を添加することにより、(A)エチレン系ポリマに対する(B)金属水酸化物の比率を低くした場合であっても、前記難燃性樹脂組成物からなる絶縁層を有する難燃性絶縁電線の難燃性を向上させることができる。同様に、前記難燃性樹脂組成物からなるシースを備える難燃性ケーブルの難燃性を向上させることができる。 Then, by adding (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group as a flame retardant to the flame-retardant resin composition, (A) with respect to the ethylene-based polymer (B). ) Even when the ratio of the metal hydroxide is lowered, the flame retardancy of the flame-retardant insulated wire having the insulating layer made of the flame-retardant resin composition can be improved. Similarly, the flame retardancy of the flame-retardant cable including the sheath made of the flame-retardant resin composition can be improved.

なお、前述したように、(B)金属水酸化物の難燃作用は、吸熱反応を利用した樹脂の熱分解抑制によるものである。そして、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物の難燃作用は、ラジカルトラップ効果によるものである。このように、本実施の形態の難燃性絶縁電線および難燃性ケーブルにあっては、これらの難燃作用の異なる難燃剤を併用しているため、その相乗効果によって、これらの難燃剤を単独で使用する場合に比べて難燃性をさらに向上させることができる。 As described above, the flame-retardant action of the metal hydroxide (B) is due to the suppression of thermal decomposition of the resin by utilizing the endothermic reaction. The flame-retardant action of the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group is due to the radical trapping effect. As described above, in the flame-retardant insulated electric wire and the flame-retardant cable of the present embodiment, since these flame retardants having different flame-retardant actions are used in combination, these flame retardants are produced by the synergistic effect. The flame retardancy can be further improved as compared with the case of using it alone.

また、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物は、ハロゲン化物と同様のラジカルトラップ効果を有するため、難燃性を発揮させるために樹脂組成物にハロゲン化物を添加する必要がない。そのため、本実施の形態の難燃性樹脂組成物によれば、火災時の毒性ガスの発生や二次災害などを防止でき、かつ、廃却時に焼却処分を行っても問題とならないノンハロゲン難燃性絶縁電線およびノンハロゲン難燃性ケーブルを提供することができる。 Further, (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group has a radical trapping effect similar to that of a halide, and therefore, a halogen is added to the resin composition in order to exhibit flame retardancy. There is no need to add compounds. Therefore, according to the flame-retardant resin composition of the present embodiment, non-halogen flame-retardant flame-retardant that can prevent the generation of toxic gas at the time of fire and secondary disasters and does not cause any problem even if incinerated at the time of disposal Sexually insulated wires and non-halogen flame retardant cables can be provided.

(実施例)
以下、本発明を実施例に基づいてさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
(Example)
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

<実施例および比較例の概要>
以下、実施例1〜実施例10の難燃性絶縁電線および比較例1〜比較例6の絶縁電線について説明する。実施例1〜実施例10の難燃性絶縁電線は、図1に示す難燃性絶縁電線10に対応する。すなわち、難燃性絶縁電線10の絶縁層2は、本実施の形態の難燃性樹脂組成物からなる。また、比較例1〜比較例6の絶縁電線の形状は、図1に示す難燃性絶縁電線10と同様であるが、この絶縁層2は本実施の形態の難燃性樹脂組成物とは異なる組成の樹脂組成物からなる。実施例1〜実施例10および比較例1〜比較例6の難燃性樹脂組成物の組成を表1に示している。
<Outline of Examples and Comparative Examples>
Hereinafter, the flame-retardant insulated wires of Examples 1 to 10 and the insulated wires of Comparative Examples 1 to 6 will be described. The flame-retardant insulated wires of Examples 1 to 10 correspond to the flame-retardant insulated wires 10 shown in FIG. That is, the insulating layer 2 of the flame-retardant insulated wire 10 is made of the flame-retardant resin composition of the present embodiment. The shape of the insulated wire of Comparative Examples 1 to 6 is the same as that of the flame-retardant insulated wire 10 shown in FIG. 1, but the insulating layer 2 is different from the flame-retardant resin composition of the present embodiment. It consists of resin compositions having different compositions. The compositions of the flame-retardant resin compositions of Examples 1 to 10 and Comparative Examples 1 to 6 are shown in Table 1.

なお、表1には、(A)エチレン系ポリマとして、エチレン−酢酸ビニル共重合体(EV170、三井デュポンポリケミカル株式会社製)を用いた実施例および比較例を示しているが、評価結果としてその他の(A)エチレン系ポリマ、または複数の種類の(A)エチレン系ポリマを組み合わせたものを用いた場合も同様の結果が得られている。また、(B)金属水酸化物として、(B1)シラン処理水酸化マグネシウム(マグシーズ(登録商標)S4、神島化学工業株式会社製)又は(B2)脂肪酸処理水酸化アルミニウム(BF−013S(日本軽金属社製))を用いた。また、(C1)没食子酸メチル、(C2)没食子酸プロピル、(C3)2,3,4−トリヒドロキシベンゾフェノン及び(C5)没食子酸は、東京化成工業株式会社製のものを用いた。 Table 1 shows examples and comparative examples in which an ethylene-vinyl acetate copolymer (EV170, manufactured by Mitsui DuPont Polychemical Co., Ltd.) was used as the (A) ethylene-based polymer. Similar results are obtained when other (A) ethylene-based polymers or a combination of a plurality of types (A) ethylene-based polymers are used. Further, as (B) metal hydroxide, (B1) silane-treated magnesium hydroxide (Magnes (registered trademark) S4, manufactured by Konoshima Chemical Co., Ltd.) or (B2) fatty acid-treated aluminum hydroxide (BF-013S (Nippon Light Metal)) )) Was used. Further, as (C1) methyl gallate, (C2) propyl gallate, (C3) 2,3,4-trihydroxybenzophenone and (C5) gallate, those manufactured by Tokyo Chemical Industry Co., Ltd. were used.

Figure 0006860833
Figure 0006860833

Figure 0006860833
Figure 0006860833

Figure 0006860833
Figure 0006860833

実施例1〜実施例10の難燃性絶縁電線の製造方法は次の通りである。まず、表1に示す実施例1〜実施例10の各材料を室温にてドライブレンドし、混合した材料を加圧ニーダにより取出温度150℃にて溶融混練し、難燃性樹脂組成物を生成した。その後、電線製造用の押出被覆装置である東洋精機製ラボプラストミル20mm単軸押出機を用いて、22AWG銅撚り線の周囲に被覆厚0.41mmで難燃性樹脂組成物からなる絶縁層を形成することにより、電線を作製した(シリンダ温度160℃、電線引取速度4.0m/min)。この電線に電子線架橋処理(6Mrad)を行うことで、絶縁層を構成する難燃性樹脂組成物の架橋を行い、実施例1〜実施例10の難燃性絶縁電線を作製した。比較例1〜比較例6の絶縁電線の製造方法は、実施例1〜実施例10の難燃性絶縁電線と同様であるため省略する。 The method for manufacturing the flame-retardant insulated electric wire of Examples 1 to 10 is as follows. First, each of the materials of Examples 1 to 10 shown in Table 1 is dry-blended at room temperature, and the mixed materials are melt-kneaded with a pressure kneader at a take-out temperature of 150 ° C. to produce a flame-retardant resin composition. did. After that, an insulating layer made of a flame-retardant resin composition having a coating thickness of 0.41 mm was formed around a 22 AWG copper stranded wire using a Labo Plast Mill 20 mm single-screw extruder manufactured by Toyo Seiki, which is an extrusion coating device for manufacturing electric wires. By forming, an electric wire was produced (cylinder temperature 160 ° C., electric wire take-up speed 4.0 m / min). By performing an electron beam cross-linking treatment (6Mrad) on this electric wire, the flame-retardant resin composition constituting the insulating layer was cross-linked to produce the flame-retardant insulated electric wires of Examples 1 to 10. The method for manufacturing the insulated wire of Comparative Examples 1 to 6 is the same as that of the flame-retardant insulated wire of Examples 1 to 10, and will be omitted.

<実施例および比較例の評価方法>
(1)加工性評価
加工性評価については、電線の絶縁層形成時の押出機のトルクを測定し、このトルクが50N・m以下のものを合格、このトルクが50N・mを超えるものを不合格とした。
<Evaluation method of Examples and Comparative Examples>
(1) Workability evaluation For workability evaluation, the torque of the extruder at the time of forming the insulating layer of the electric wire is measured, and the one with this torque of 50 Nm or less is passed, and the one with this torque exceeding 50 Nm is not accepted. It was passed.

(2)難燃性評価
難燃性評価については、作製した難燃性絶縁電線に対して、難燃性規格UL1581に規定される垂直燃焼試験VW−1を行い、合格または不合格を判定した。
(2) Flame-retardant evaluation Regarding flame-retardant evaluation, the vertical combustion test VW-1 specified in the flame-retardant standard UL1581 was performed on the manufactured flame-retardant insulated wire, and it was judged whether it passed or failed. ..

なお、難燃性を評価する別の指標として、JIS K 7201−2で規定する酸素指数も測定した。ただし、難燃性評価はあくまで、垂直燃焼試験VW−1の結果に基づいて行った。 As another index for evaluating flame retardancy, the oxygen index defined by JIS K 7201-2 was also measured. However, the flame retardancy evaluation was performed based on the result of the vertical combustion test VW-1.

実施例4乃至実施例7、比較例4及び比較例5については、参考試験として、低温特性を評価した。作製した難燃性絶縁電線から銅撚り線を抜き取り、低温槽付き引張試験機を用いてJIS C 3005に準拠した方法により、絶縁体の−40℃での引張試験を行った。試料はチューブ形状とし、2時間低温槽内に放置した後、25mm/minの速度で引張試験を行った。伸びが30%以上のものを合格とし、30%未満のものを不合格とした。 For Examples 4 to 7, Comparative Example 4 and Comparative Example 5, the low temperature characteristics were evaluated as a reference test. A copper stranded wire was extracted from the produced flame-retardant insulated wire, and a tensile test was performed on the insulator at −40 ° C. by a method conforming to JIS C 3005 using a tensile tester with a low temperature bath. The sample had a tube shape and was left in a low temperature bath for 2 hours, and then a tensile test was performed at a speed of 25 mm / min. Those with an elongation of 30% or more were accepted, and those with an elongation of less than 30% were rejected.

<実施例1〜実施例10の詳細および評価結果>
表1に示すように、実施例1〜実施例10の難燃性絶縁電線の絶縁層を構成する難燃性樹脂組成物は、その材料として(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含んでいる。
<Details of Examples 1 to 10 and evaluation results>
As shown in Table 1, the flame-retardant resin compositions constituting the insulating layer of the flame-retardant insulated wires of Examples 1 to 10 include (A) ethylene-based polymer and (B) metallic water as the materials thereof. It contains an oxide and (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and having no carboxyl group.

実施例1および実施例3の難燃性樹脂組成物は、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、(C1)没食子酸メチルを用いている。 The flame-retardant resin compositions of Examples 1 and 3 use (C1) methyl gallate as a compound having a plurality of phenolic hydroxyl groups in the molecule and no carboxyl group.

実施例2、実施例4、実施例6及び実施例8乃至実施例10の難燃性樹脂組成物は、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、(C2)没食子酸プロピルを用いている。 The flame-retardant resin compositions of Examples 2, 4, 6, and 8 to 10 are (C) compounds having a plurality of phenolic hydroxyl groups in the molecule and no carboxyl group. , (C2) propyl gallate is used.

実施例5の難燃性樹脂組成物は、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、(C4)ビスフェノールAを用いている。 In the flame-retardant resin composition of Example 5, (C4) bisphenol A is used as the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group.

実施例7の難燃性樹脂組成物は、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、(C3)2,3,4−トリヒドロキシベンゾフェノンを用いている。 The flame-retardant resin composition of Example 7 uses (C3) 2,3,4-trihydroxybenzophenone as a compound (C) having a plurality of phenolic hydroxyl groups in the molecule and no carboxyl group. There is.

実施例1および実施例2の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して、(B1)水酸化マグネシウムが125質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が15質量部である。 The flame-retardant resin compositions of Examples 1 and 2 have (B1) 125 parts by mass of magnesium hydroxide with respect to 100 parts by mass of (A) ethylene-based polymer, and (C) a plurality of flame-retardant resin compositions in the molecule. The compound having a phenolic hydroxyl group and no carboxyl group is 15 parts by mass.

一方、実施例3および実施例4の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して、(B1)水酸化マグネシウムが100質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が30質量部である。そのため、実施例3および実施例4は、(B1)水酸化マグネシウムおよび(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物の配合比率が実施例1および実施例2と相違している。 On the other hand, in the flame-retardant resin compositions of Examples 3 and 4, 100 parts by mass of (B1) magnesium hydroxide was added to 100 parts by mass of (A) ethylene-based polymer, and (C) intramolecularly contained. The amount of the compound having a plurality of phenolic hydroxyl groups and no carboxyl group is 30 parts by mass. Therefore, in Examples 3 and 4, the compounding ratios of (B1) magnesium hydroxide and (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and no carboxyl group are the blending ratios of Examples 1 and 2. Is different from.

また、実施例5の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して、(B1)水酸化マグネシウムが130質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が20質量部である。 Further, in the flame-retardant resin composition of Example 5, (A) 100 parts by mass of the ethylene polymer, (B1) magnesium hydroxide is 130 parts by mass, and (C) a plurality of phenolic compounds in the molecule. The compound having a hydroxyl group and no carboxyl group is 20 parts by mass.

また、実施例6の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して、(B1)水酸化マグネシウムが130質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が2質量部である。 Further, in the flame-retardant resin composition of Example 6, (A) 100 parts by mass of the ethylene polymer, (B1) magnesium hydroxide is 130 parts by mass, and (C) a plurality of phenolic compounds in the molecule. The compound having a hydroxyl group and no carboxyl group is 2 parts by mass.

実施例7の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して(B1)水酸化マグネシウムが160質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が15質量部である。 The flame-retardant resin composition of Example 7 has (A) 160 parts by mass of magnesium hydroxide (B1) with respect to 100 parts by mass of an ethylene polymer, and (C) has a plurality of phenolic hydroxyl groups in the molecule. However, the amount of the compound having no carboxyl group is 15 parts by mass.

実施例8の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して(B2)水酸化アルミニウムが100質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が15質量部である。 The flame-retardant resin composition of Example 8 has (A) 100 parts by mass of (B2) aluminum hydroxide with respect to 100 parts by mass of an ethylene polymer, and (C) has a plurality of phenolic hydroxyl groups in the molecule. However, the amount of the compound having no carboxyl group is 15 parts by mass.

実施例9の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して(B2)水酸化アルミニウムが130質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が15質量部である。 The flame-retardant resin composition of Example 9 has (A) 130 parts by mass of (B2) aluminum hydroxide with respect to 100 parts by mass of an ethylene polymer, and (C) has a plurality of phenolic hydroxyl groups in the molecule. However, the amount of the compound having no carboxyl group is 15 parts by mass.

実施例10の難燃性樹脂組成物は、(A)エチレン系ポリマ100質量部に対して(B2)水酸化アルミニウムが180質量部であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物が30質量部である。 The flame-retardant resin composition of Example 10 has (A) 180 parts by mass of (B2) aluminum hydroxide with respect to 100 parts by mass of an ethylene polymer, and (C) has a plurality of phenolic hydroxyl groups in the molecule. However, the amount of the compound having no carboxyl group is 30 parts by mass.

表1に示すように、実施例1〜実施例10において、前述の材料の種類や各材料の配合比率の違いにかかわらず(1)加工性評価および(2)難燃性評価はいずれも合格であった。 As shown in Table 1, in Examples 1 to 10, both (1) processability evaluation and (2) flame retardancy evaluation passed regardless of the difference in the type of material and the compounding ratio of each material. Met.

<比較例1〜比較例6の詳細および評価結果>
表2に示す比較例1〜比較例6は、実施例1〜実施例10で用いた材料の種類や各材料の配合比率を変更したものである。
<Details and evaluation results of Comparative Examples 1 to 6>
Comparative Examples 1 to 6 shown in Table 2 are obtained by changing the types of materials used in Examples 1 to 10 and the blending ratio of each material.

表2に示すように、比較例1〜比較例3の樹脂組成物は、その材料として(A)エチレン系ポリマと、(B)水酸化マグネシウムとを含んでいるが、実施例1〜実施例10と異なり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を含んでいない。 As shown in Table 2, the resin compositions of Comparative Examples 1 to 3 contain (A) ethylene-based polymer and (B) magnesium hydroxide as the materials thereof, and the resin compositions of Examples 1 to 3 contain (A) ethylene-based polymer and (B) magnesium hydroxide. Unlike No. 10, (C) does not contain a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule.

比較例4および比較例5の樹脂組成物は、その材料として(A)エチレン系ポリマと、(B1)水酸化マグネシウムと、分子内に複数のフェノール性水酸基を有するが、カルボキシル基も有する化合物である(C5)没食子酸とを含んでいる。 The resin compositions of Comparative Examples 4 and 5 are composed of (A) ethylene polymer, (B1) magnesium hydroxide, and a compound having a plurality of phenolic hydroxyl groups in the molecule but also having a carboxyl group. Contains some (C5) gallic acid.

比較例6の樹脂組成物は、その材料として、(A)エチレン系ポリマと、(B1)水酸化マグネシウムと、(C1)没食子酸メチルとを含み、この点で実施例1および実施例3の難燃性樹脂組成物と同じである。ただし、比較例6では、(B1)水酸化マグネシウムが(A)エチレン系ポリマ100質量部に対して80質量部である点で実施例1と相違している。 The resin composition of Comparative Example 6 contains (A) an ethylene polymer, (B1) magnesium hydroxide, and (C1) methyl gallate as its materials, and in this respect, the resin compositions of Examples 1 and 3 It is the same as the flame-retardant resin composition. However, Comparative Example 6 is different from Example 1 in that (B1) magnesium hydroxide is 80 parts by mass with respect to 100 parts by mass of (A) ethylene-based polymer.

表2に示すように、比較例1において、(1)加工性評価および(2)難燃性評価は不合格となった。 As shown in Table 2, in Comparative Example 1, (1) workability evaluation and (2) flame retardancy evaluation were unacceptable.

また、比較例2〜比較例5において、(2)難燃性評価は合格である一方、(1)加工性評価が不合格となった。 Further, in Comparative Examples 2 to 5, (2) the flame retardancy evaluation was passed, while (1) the workability evaluation was unacceptable.

また、比較例6において、(1)加工性評価は合格である一方、(2)難燃性評価は不合格となった。 Further, in Comparative Example 6, (1) the workability evaluation was passed, while (2) the flame retardancy evaluation was unacceptable.

<実施例および比較例のまとめ>
実施例1〜実施例10に示すように、本実施の形態の難燃性絶縁電線は、絶縁層を(A)エチレン系ポリマと、(B)金属水酸化物と、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物により構成することで、難燃性および押出加工性を備えることができる。
<Summary of Examples and Comparative Examples>
As shown in Examples 1 to 10, the flame-retardant insulated wire of the present embodiment has an insulating layer in (A) an ethylene polymer, (B) a metal hydroxide, and (C) in a molecule. By being composed of a flame-retardant resin composition containing a compound having a plurality of phenolic hydroxyl groups and no carboxyl group, flame retardancy and extrusion processability can be provided.

具体的には、比較例1〜比較例3に示すように、(A)エチレン系ポリマと、(B)金属水酸化物とを含む樹脂組成物では、(A)エチレン系ポリマ100質量部に対して、(B1)水酸化マグネシウム220質量部以上添加してはじめて(2)難燃性評価が合格する。しかし、(A)エチレン系ポリマに対する(B1)水酸化マグネシウムの添加量が多いと、樹脂組成物の流動性が低下し、(1)加工性評価が不合格となる。実際には、比較例1に示すように、(A)エチレン系ポリマに対する(B1)水酸化マグネシウムの添加量を少なくしていくと、(A)エチレン系ポリマ100質量部に対して、(B1)水酸化マグネシウム165質量部となった時点で、(1)加工性評価が未だ不合格であるにもかかわらず、(2)難燃性評価が不合格となってしまう。これらの結果から、(A)エチレン系ポリマと、(B)金属水酸化物とを含む樹脂組成物を絶縁層とする絶縁電線において、難燃性と押出加工性との両方を満たすものは存在しないということがわかる。 Specifically, as shown in Comparative Examples 1 to 3, in the resin composition containing (A) ethylene polymer and (B) metal hydroxide, (A) 100 parts by mass of ethylene polymer On the other hand, (2) flame retardancy evaluation passes only after (B1) 220 parts by mass or more of magnesium hydroxide is added. However, if the amount of (B1) magnesium hydroxide added to (A) the ethylene polymer is large, the fluidity of the resin composition decreases, and (1) the processability evaluation fails. Actually, as shown in Comparative Example 1, when the addition amount of (B1) magnesium hydroxide to (A) ethylene polymer is reduced, (B1) is (B1) with respect to 100 parts by mass of (A) ethylene polymer. When the amount of magnesium hydroxide reaches 165 parts by mass, (1) the workability evaluation is still unsuccessful, but (2) the flame retardancy evaluation is unsuccessful. From these results, there are some insulated wires having a resin composition containing (A) ethylene polymer and (B) metal hydroxide as an insulating layer, which satisfy both flame retardancy and extrusion processability. It turns out that it does not.

それに対して、実施例1および実施例2では、難燃剤である(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を、(A)エチレン系ポリマ100質量部に対して15質量部添加することで、(B1)水酸化マグネシウムの添加量を125質量部としても(2)難燃性評価が合格となる。そして、(B1)水酸化マグネシウムの添加量を(A)エチレン系ポリマ100質量部に対して125質量部まで少なくすることができるため、(1)加工性評価も合格となる。 On the other hand, in Examples 1 and 2, a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule (C), which is a flame retardant, was added to (A) 100 parts by mass of an ethylene polymer. On the other hand, by adding 15 parts by mass, (2) flame retardancy evaluation is passed even if the amount of (B1) magnesium hydroxide added is 125 parts by mass. Since the amount of (B1) magnesium hydroxide added can be reduced to 125 parts by mass with respect to 100 parts by mass of (A) ethylene-based polymer, (1) processability evaluation also passes.

この点、実施例5乃至実施例7においても同様であり、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を、(A)エチレン系ポリマ100質量部に対して2〜20質量部添加することで、(B1)水酸化マグネシウムの添加量を130〜160質量部とすることができ、(1)加工性評価および(2)難燃性評価が合格となる。 This point is the same in Examples 5 to 7, and the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and having no carboxyl group is added to (A) 100 parts by mass of the ethylene-based polymer. By adding 2 to 20 parts by mass, the amount of (B1) magnesium hydroxide added can be 130 to 160 parts by mass, and (1) processability evaluation and (2) flame retardancy evaluation pass. ..

また、実施例3および実施例4に示すように、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を、(A)エチレン系ポリマ100質量部に対して30質量部添加することで、(B1)水酸化マグネシウムの添加量を100質量部としても(2)難燃性評価が合格となる。そして、実施例3および実施例4では、(B1)水酸化マグネシウムの添加量を(A)エチレン系ポリマ100質量部に対して100質量部まで少なくすることができるため、(1)加工性評価が合格となるのはいうまでもないが、押出機の押出トルクを実施例1および実施例2に比べてさらに小さくすることができるため、電線の製造効率をさらに向上させることができる。 Further, as shown in Examples 3 and 4, 30 (C) a compound having a plurality of phenolic hydroxyl groups in the molecule and no carboxyl group was added to (A) 100 parts by mass of the ethylene polymer. By adding parts by mass, (2) flame retardancy evaluation is passed even if the amount of (B1) magnesium hydroxide added is 100 parts by mass. Then, in Examples 3 and 4, the amount of (B1) magnesium hydroxide added can be reduced to 100 parts by mass with respect to 100 parts by mass of (A) ethylene polymer, and thus (1) workability evaluation. Needless to say, the extrusion torque of the extruder can be made smaller than that of the first and second embodiments, so that the manufacturing efficiency of the electric wire can be further improved.

実施例1〜実施例10に示すように、(C1)没食子酸メチルや(C2)没食子酸プロピルなどの没食子酸のエステル誘導体が難燃剤として有用であることがわかる。特に、実施例6では、(A)エチレン系ポリマ100質量部に対して(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を2質量部添加しただけでも難燃性評価(VW−1燃焼試験)に合格している。(B)金属水酸化物と作用の異なる難燃剤を併用したことによる相乗効果であると考えられる。また、実施例1と実施例2とを、または、実施例3と実施例4とをそれぞれ比較すると、(C1)没食子酸メチルと(C2)没食子酸プロピルとの間で特性にほとんど差がない。そのため、同じ没食子酸のエステル誘導体である没食子酸エチルや没食子酸ブチルなども同様の特性を示すものと推察される。また実施例8乃至実施例10に示すように、(B)金属水酸化物として、(B2 )水酸化アルミニウムを使用した場合、180質量部まで添加しても(2)難燃性評価だけでなく(1)加工性評価についても合格する結果となった。理由は不明であるが、金属水酸化物粒子同士の衝突時の摩擦の大きさ等が関係しているものと考えられる。 As shown in Examples 1 to 10, it can be seen that ester derivatives of gallate such as (C1) methyl gallate and (C2) propyl gallate are useful as flame retardants. In particular, in Example 6, flame retardancy is achieved even by adding only 2 parts by mass of (A) a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule to 100 parts by mass of the ethylene polymer. It has passed the sex evaluation (VW-1 combustion test). (B) It is considered that this is a synergistic effect due to the combined use of a metal hydroxide and a flame retardant having a different action. Further, when Example 1 and Example 2 or Example 3 and Example 4 are compared, there is almost no difference in characteristics between (C1) methyl gallate and (C2) propyl gallate. .. Therefore, it is presumed that ethyl gallate and butyl gallate, which are ester derivatives of the same gallate, also exhibit the same characteristics. Further, as shown in Examples 8 to 10, when (B) aluminum hydroxide is used as the (B) metal hydroxide, even if it is added up to 180 parts by mass, only (2) flame retardancy evaluation is performed. None (1) The result was that the workability evaluation was also passed. The reason is unknown, but it is considered that the magnitude of friction at the time of collision between metal hydroxide particles is related.

一方で、比較例4および比較例5に示すように、樹脂組成物を(A)エチレン系ポリマと、(B1)水酸化マグネシウムと、分子内に複数のフェノール性水酸基を有するが、カルボキシル基も有する化合物である(C5)没食子酸とにより構成した場合には、(2)難燃性評価は合格となる一方で、(1)加工性評価は不合格となる。これは、(C5)没食子酸は分子内にカルボキシル基を有しているため、(B1)水酸化マグネシウムの表面に(C5)没食子酸分子内のカルボキシル基が結合し、樹脂組成物の流動性が低下するためと考えられる。 On the other hand, as shown in Comparative Example 4 and Comparative Example 5, the resin composition has (A) ethylene polymer, (B1) magnesium hydroxide, and a plurality of phenolic hydroxyl groups in the molecule, but also has a carboxyl group. When it is composed of (C5) gallic acid, which is a compound having the compound, (2) flame retardancy evaluation is passed, while (1) processability evaluation is unacceptable. This is because (C5) gallic acid has a carboxyl group in the molecule, so that the carboxyl group in the (C5) gallic acid molecule is bonded to the surface of (B1) magnesium hydroxide, and the fluidity of the resin composition Is thought to be due to a decrease in.

また、比較例6に示すように、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物を、(A)エチレン系ポリマ100質量部に対して15質量部添加した場合であっても、(B1)水酸化マグネシウムの添加量を80質量部とすると(2)難燃性評価が不合格となる。従って、実施例3、実施例4、実施例5および実施例6の結果と併せると、(B)金属水酸化物は、(A)エチレン系ポリマ100質量部に対して100質量部以上180質量部以下とすることが好ましいことがわかる。 Further, as shown in Comparative Example 6, (C) a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule was added in an amount of 15 parts by mass with respect to 100 parts by mass of the ethylene-based polymer (A). Even in this case, if (B1) the amount of magnesium hydroxide added is 80 parts by mass, (2) the flame retardancy evaluation fails. Therefore, when combined with the results of Examples 3, 4, 5, and 6, the amount of (B) metal hydroxide is 100 parts by mass or more and 180 parts by mass with respect to 100 parts by mass of (A) ethylene polymer. It can be seen that it is preferable to use less than one part.

また、(1)加工性評価に関して、実施例1〜実施例10および比較例1〜比較例6に示すように、押出トルクは、(B1)水酸化マグネシウムの添加量におおよそ比例している。ただし、実施例2又は実施例4の(C2)没食子酸プロピルを添加した場合は、(B1)水酸化マグネシウムの添加量が同じである実施例1又は実施例3と比較すると、押出トルクが小さくなっていることがわかる。理由の1つとしては、化合物の融点が樹脂組成物の加工温度(160℃)よりも低い(C2)没食子酸プロピル(融点150℃)が滑剤の1つとして働き、樹脂組成物の流動性を向上させたということが考えられる。従って、押出加工性を向上させるという観点からは、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、(C2)没食子酸プロピルを用いることが好ましいといえる。 Further, regarding (1) workability evaluation, as shown in Examples 1 to 10 and Comparative Examples 1 to 6, the extrusion torque is approximately proportional to the amount of (B1) magnesium hydroxide added. However, when (C2) propyl gallate of Example 2 or Example 4 is added, the extrusion torque is smaller than that of Example 1 or Example 3 in which the amount of (B1) magnesium hydroxide added is the same. You can see that it is. One of the reasons is that propyl gallate (melting point 150 ° C.), whose melting point of the compound is lower than the processing temperature (160 ° C.) of the resin composition, acts as one of the lubricants to improve the fluidity of the resin composition. It is possible that it was improved. Therefore, from the viewpoint of improving the extrusion processability, it can be said that it is preferable to use (C2) propyl gallate as the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group.

また、(2)難燃性評価に関して、実施例1〜実施例10および比較例1〜比較例6に示すように、VW−1に合格するためには、酸素指数が少なくとも30以上であることが要件の一つであると考えられる。ただし、比較例1に示すように、酸素指数が30以上であってもVW−1に不合格となる場合があることから、電線の難燃性評価についてはVW−1に基づいて行うことが好ましいということもいえる。 Further, regarding (2) flame retardancy evaluation, as shown in Examples 1 to 10 and Comparative Examples 1 to 6, the oxygen index must be at least 30 or more in order to pass VW-1. Is considered to be one of the requirements. However, as shown in Comparative Example 1, even if the oxygen index is 30 or more, VW-1 may be rejected. Therefore, the flame retardancy evaluation of the electric wire should be performed based on VW-1. It can also be said that it is preferable.

なお、参考試験として実施した(3)低温特性評価に関しては、実施例4〜実施例7、比較例4及び比較例5に示すように、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物として、(C2)没食子酸プロピル(融点150℃)、(C3)2,3,4−トリヒドロキシベンゾフェノン(融点140℃)、(C4)ビスフェノールA(融点158℃)を用いた実施例4〜実施例7については、低温特性が合格し、(C5)没食子酸(融点285℃)を用いた比較例4及び比較例5については、低温特性が不合格となった。これは、難燃性絶縁電線の製造時における加工温度よりも高い融点を持つ(C5)没食子酸(融点285℃)を用いた比較例4及び比較例5では、通常の加工温度では溶融せず樹脂組成物中で凝集塊として存在するため機械的な破壊の起点となりやすいためと考えられる。このため、融点の低い(C2)没食子酸プロピル(融点150℃)、(C3)2,3,4−トリヒドロキシベンゾフェノン(融点140℃)、(C4)ビスフェノールA(融点158℃)が好適である。よって、低温特性を合格するためには、(C)分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物の融点は、難燃性絶縁電線の製造時における加工温度よりも高いものを用いることが好ましいといえる。 Regarding (3) low temperature characteristic evaluation carried out as a reference test, as shown in Examples 4 to 7, Comparative Example 4 and Comparative Example 5, (C) has a plurality of phenolic hydroxyl groups in the molecule. As a compound having no carboxyl group, (C2) propyl gallate (melting point 150 ° C.), (C3) 2,3,4-trihydroxybenzophenone (melting point 140 ° C.), and (C4) bisphenol A (melting point 158 ° C.) are used. The low temperature characteristics of Examples 4 to 7 used were passed, and the low temperature characteristics of Comparative Examples 4 and 5 using (C5) phenolic acid (melting point 285 ° C.) were unacceptable. This is because in Comparative Example 4 and Comparative Example 5 using (C5) gallic acid (melting point 285 ° C.) having a melting point higher than the processing temperature at the time of manufacturing the flame-retardant insulated wire, it did not melt at the normal processing temperature. It is considered that this is because it exists as an agglomerate in the resin composition and is likely to be a starting point of mechanical destruction. Therefore, propyl gallate (melting point 150 ° C.), (C3) 2,3,4-trihydroxybenzophenone (melting point 140 ° C.), and (C4) bisphenol A (melting point 158 ° C.), which have low melting points, are preferable. .. Therefore, in order to pass the low temperature characteristics, the melting point of the compound (C) having a plurality of phenolic hydroxyl groups in the molecule and not having a carboxyl group is higher than the processing temperature at the time of manufacturing the flame-retardant insulated wire. It can be said that it is preferable to use one.

本発明は前記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the gist thereof.

1 導体
2 絶縁層
2a 絶縁内層
2b 絶縁外層
4 シース
5 介在
6 セパレータ
10,20 難燃性絶縁電線
30 難燃性ケーブル
1 Conductor 2 Insulation layer 2a Insulation inner layer 2b Insulation outer layer 4 Sheath 5 Interposition 6 Separator 10, 20 Flame-retardant insulated wire 30 Flame-retardant cable

Claims (4)

導体と、前記導体の周囲に被覆される絶縁層とを有し、
前記絶縁層は、エチレン系ポリマと、金属水酸化物と、分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物からなり、
前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記金属水酸化物を100質量部以上180質量部以下含み、
前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記化合物を2質量部以上含み、
前記化合物は、没食子酸のエステル誘導体である
難燃性絶縁電線。
It has a conductor and an insulating layer coated around the conductor.
The insulating layer comprises a flame-retardant resin composition containing an ethylene polymer, a metal hydroxide, and a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule.
The flame-retardant resin composition contains 100 parts by mass or more and 180 parts by mass or less of the metal hydroxide with respect to 100 parts by mass of the ethylene polymer.
The flame retardant resin composition, relative to the ethylene polymer 100 parts by weight, looking containing the compound 2 parts by mass or more,
The compound is a flame-retardant insulated wire which is an ester derivative of gallic acid.
請求項1記載の難燃性絶縁電線において、
前記化合物は、没食子酸メチル、没食子酸プロピルおよび2,3,4−トリヒドロキシベンゾフェノンからなる群から選択される少なくとも1つの化合物である、難燃性絶縁電線。
In the flame-retardant insulated wire according to claim 1,
The compound, methyl gallate, at least one compound selected from propyl gallate and 2,3,4-trihydroxy-benzo phenol emissions or Ranaru group, flame-retardant insulated wire.
導体と、前記導体の周囲に被覆される絶縁層とからなる絶縁電線を含むコアと、前記コアの周囲に設けられるシースとを有し、
前記シースは、エチレン系ポリマと、金属水酸化物と、分子内に複数のフェノール性水酸基を有しかつカルボキシル基を有しない化合物とを含む難燃性樹脂組成物からなり、
前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記金属水酸化物を100質量部以上180質量部以下含み、
前記難燃性樹脂組成物は、前記エチレン系ポリマ100質量部に対して、前記化合物を2質量部以上含み、
前記化合物は、没食子酸のエステル誘導体である
難燃性ケーブル。
It has a core including an insulated wire composed of a conductor and an insulating layer coated around the conductor, and a sheath provided around the core.
The sheath is composed of a flame-retardant resin composition containing an ethylene polymer, a metal hydroxide, and a compound having a plurality of phenolic hydroxyl groups and no carboxyl group in the molecule.
The flame-retardant resin composition contains 100 parts by mass or more and 180 parts by mass or less of the metal hydroxide with respect to 100 parts by mass of the ethylene polymer.
The flame retardant resin composition, relative to the ethylene polymer 100 parts by weight, looking containing the compound 2 parts by mass or more,
The compound is a flame-retardant cable which is an ester derivative of gallic acid.
請求項記載の難燃性ケーブルにおいて、
前記化合物は、没食子酸メチル、没食子酸プロピルおよび2,3,4−トリヒドロキシベンゾフェノンからなる群から選択される少なくとも1つの化合物である、難燃性ケーブル。
In the flame-retardant cable according to claim 3,
The compound, methyl gallate, at least one compound selected from propyl gallate and 2,3,4-trihydroxy-benzo phenol emissions or Ranaru group, flame-retardant cables.
JP2019199476A 2018-11-05 2019-11-01 Flame-retardant insulated wires and flame-retardant cables Active JP6860833B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201911071256.0A CN111138746B (en) 2018-11-05 2019-11-05 Flame-retardant insulated wire and flame-retardant cable
DE102020102416.9A DE102020102416A1 (en) 2018-11-05 2020-01-31 FLAME RETARDANT INSULATED ELECTRIC WIRE AND FLAME RETARDANT CABLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018208276 2018-11-05
JP2018208276 2018-11-05

Publications (2)

Publication Number Publication Date
JP2020077634A JP2020077634A (en) 2020-05-21
JP6860833B2 true JP6860833B2 (en) 2021-04-21

Family

ID=70724362

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019199476A Active JP6860833B2 (en) 2018-11-05 2019-11-01 Flame-retardant insulated wires and flame-retardant cables

Country Status (2)

Country Link
JP (1) JP6860833B2 (en)
DE (1) DE102020102416A1 (en)

Also Published As

Publication number Publication date
DE102020102416A1 (en) 2021-05-06
JP2020077634A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP5323332B2 (en) Flame retardant insulated wire
JP6229942B2 (en) Insulated wires for railway vehicles and cables for railway vehicles
JP2015038869A (en) Insulation wire and cable using halogen-free flame-retardant resin composition
JP6284673B1 (en) RESIN COMPOSITION, RESIN COATING MATERIAL, AUTOMATIC WIRE HARNESS, AND AUTOMATIC WIRE HARNESS MANUFACTURING METHOD
EP3293738B1 (en) Insulated wire and cable
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
JP2008277142A (en) Insulated wire, and wiring harness
JP5858351B2 (en) Insulated wires and cables for railway vehicles using halogen-free flame-retardant resin composition
WO2018074233A1 (en) Insulated wire, and insulating resin composition
JP2009176475A (en) Insulated wire
KR20140049606A (en) Non-halogen flame retardant resin composition and electric wire and cable using same
CN111138746B (en) Flame-retardant insulated wire and flame-retardant cable
JP6860833B2 (en) Flame-retardant insulated wires and flame-retardant cables
CN112409676B (en) Insulated wire
JP7363557B2 (en) Flame-retardant resin compositions, flame-retardant insulated wires and flame-retardant cables
JP7272218B2 (en) Flame-retardant insulated wire
JP2007207642A (en) Non-halogen-based insulation wire
JP7426791B2 (en) Halogen-free flame-retardant insulated wire and halogen-free flame-retardant cable
JP6816420B2 (en) Insulated wires and cables
JP6816419B2 (en) Insulated wires and cables
JP2005346941A (en) Cross-linked, external-damage resistant and flame retardant insulating wire
JP6947857B2 (en) Wires and cables
JP7380494B2 (en) insulated wire and cable
JP2024012947A (en) Flame retardant resin composition and cable and electric wire therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201023

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20201023

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20201029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210310

R150 Certificate of patent or registration of utility model

Ref document number: 6860833

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350