JP5821827B2 - Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition - Google Patents

Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition Download PDF

Info

Publication number
JP5821827B2
JP5821827B2 JP2012254741A JP2012254741A JP5821827B2 JP 5821827 B2 JP5821827 B2 JP 5821827B2 JP 2012254741 A JP2012254741 A JP 2012254741A JP 2012254741 A JP2012254741 A JP 2012254741A JP 5821827 B2 JP5821827 B2 JP 5821827B2
Authority
JP
Japan
Prior art keywords
mass
parts
base polymer
eva
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012254741A
Other languages
Japanese (ja)
Other versions
JP2014101454A (en
Inventor
周 岩崎
周 岩崎
一史 木村
一史 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2012254741A priority Critical patent/JP5821827B2/en
Priority to CN201310574464.9A priority patent/CN103839622B/en
Priority to CN201510651270.3A priority patent/CN105206324A/en
Priority to US14/084,364 priority patent/US9805840B2/en
Publication of JP2014101454A publication Critical patent/JP2014101454A/en
Application granted granted Critical
Publication of JP5821827B2 publication Critical patent/JP5821827B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/446Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylacetals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0853Vinylacetate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/448Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from other vinyl compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/46Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes silicones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/016Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L19/00Compositions of rubbers not provided for in groups C08L7/00 - C08L17/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Insulated Conductors (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、難燃性のノンハロゲン架橋樹脂組成物が被覆された鉄道車両用絶縁電線及び鉄道車両用ケーブルに関するものである。 The present invention relates to flame retardant halogen-free crosslinked resin composition is cable insulation wire and rail vehicle coated railway vehicle.

環境問題に対する意識は世界的に高まりつつあり、燃焼時にハロゲンガスを発生させない、所謂ハロゲンフリー材料を絶縁電線及びケーブルに使用することが求められている。例えば、金属水酸化物等のハロゲンフリー難燃剤を使用した絶縁電線が知られている(例えば、特許文献1参照)。   The awareness of environmental problems is increasing worldwide, and it is required to use so-called halogen-free materials for insulated wires and cables that do not generate halogen gas during combustion. For example, an insulated wire using a halogen-free flame retardant such as a metal hydroxide is known (for example, see Patent Document 1).

火災時に炎の伝播を抑制できる高い難燃性を得るためには、このようなハロゲンフリー難燃剤を高充填する必要があるが、高充填すると、機械特性が低下するとともに、溶融流れ性も低下し、成形機が制約されてしまうという問題があった。   In order to obtain high flame retardance that can suppress the propagation of flames in the event of a fire, it is necessary to fill such a halogen-free flame retardant at a high level. However, there is a problem that the molding machine is restricted.

一方、鉄道車両や、自動車等の車両に用いられる絶縁電線及びケーブルは、使用される環境に応じて、高い耐油性及び低温特性を有することが必要である。   On the other hand, insulated wires and cables used in railway vehicles and vehicles such as automobiles are required to have high oil resistance and low temperature characteristics depending on the environment in which they are used.

高い耐油性を得るためには、結晶性の高いポリマ、又は極性の高いポリマを用いることがよいこと、また、低温特性を得るためには、ガラス転移点(Tg)の低い材料を用いるとよいことが知られている。   In order to obtain high oil resistance, it is preferable to use a polymer having high crystallinity or a polymer having high polarity, and in order to obtain low temperature characteristics, it is preferable to use a material having a low glass transition point (Tg). It is known.

特開2010−97881号公報JP 2010-97881 A

しかし、高い耐油性を得るために、結晶性の高いポリマを用いると、可とう性が低下し、絶縁電線及びケーブルに適用すると配線性が悪化するという問題があった。   However, if a polymer with high crystallinity is used in order to obtain high oil resistance, there is a problem that flexibility is lowered and wiring property is deteriorated when applied to insulated wires and cables.

また、極性の高いポリマ、例えば、酢酸ビニル含有量(VA量)が50質量%以上のエチレン酢酸ビニル共重合体(EVA)は、常温時の可とう性を保ちながら耐油性にも優れているものの、Tgが高く、低温特性に劣るという問題があった。
さらに、VA量の高いEVAは、常温及び溶融時の粘着性が高く、押出成形時に、ダイス周辺に材料が回り込み蓄積される現象(以下ダイスカスと称す)が起こる。ダイスカスが電線やケーブルの表面に付着すると外観を悪くする。加えて、VA量の高いEVAはベタツキがあり、成形後の電線やケーブルが貼り付く問題を有している。
In addition, a highly polar polymer such as an ethylene vinyl acetate copolymer (EVA) having a vinyl acetate content (VA amount) of 50% by mass or more is excellent in oil resistance while maintaining flexibility at room temperature. However, there was a problem that Tg was high and the low temperature characteristics were inferior.
Further, EVA having a high VA amount has high adhesiveness at room temperature and at the time of melting, and a phenomenon in which the material wraps around and accumulates around the die during extrusion (hereinafter referred to as die scum) occurs. If the die scum adheres to the surface of an electric wire or cable, the appearance is deteriorated. In addition, EVA with a high amount of VA is sticky and has a problem of sticking of a wire or cable after molding.

本発明は、上述の問題に鑑みてなされたものであり、難燃性及び優れた機械特性を備えるとともに、高い耐油性及び優れた低温特性を両立させ、ダイスカスや電線・ケーブル同士の貼り付きを防止できるノンハロゲン架橋樹脂組成物が被覆された鉄道車両用絶縁電線及び鉄道車両用ケーブルを提供することを目的とする。 The present invention has been made in view of the above-mentioned problems, has flame retardancy and excellent mechanical properties, and achieves both high oil resistance and excellent low-temperature properties, and enables sticking between dies and wires / cables. halogen-free crosslinked resin composition which can prevent an object to provide a cable for insulated wire and rail vehicles for railway vehicles covered.

上記目的を達成するため、本発明によれば、以下のノンハロゲン架橋樹脂組成物を用いた鉄道車両用絶縁電線、鉄道車両用ケーブルが提供される。 In order to achieve the above object, according to the present invention, there are provided an insulated wire for railway vehicles and a cable for railway vehicles using the following non-halogen crosslinked resin composition.

[1]ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜9010の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%であるノンハロゲン架橋樹脂組成物が絶縁層として被覆されていることを特徴とする鉄道車両用絶縁電線。 [1] 0.5 to 10 parts by mass of a silicone rubber and 100 to 250 parts by mass of a metal hydroxide are contained with respect to 100 parts by mass of the base polymer. a) an ethylene-vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) by DSC of −55 ° C. or lower, (a): (b) = 70: 30 to 90 : together containing at 1:10 (mass ratio), that the vinyl acetate content of the base polymer (VA amount) Ru 50 to 70% by mass Roh Nharogen crosslinked resin composition is coated as an insulating layer Insulated wires for railway vehicles.

[2]前記EVAは、メルトマスフローレイト(MFR)が異なる2種以上のEVAから構成されるとともに、MFRが15g/10min以上のEVAが5〜20質量%含まれていることを特徴とする前記[1]に記載の鉄道車両用絶縁電線。 [2] The EVA is composed of two or more types of EVA having different melt mass flow rates (MFR), and includes 5 to 20% by mass of EVA having an MFR of 15 g / 10 min or more. [1] The insulated wire for a railway vehicle according to [1] .

[3]ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、
前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜90:10の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%であるノンハロゲン架橋樹脂組成物が絶縁層として被覆されている車両用絶縁電線を有することを特徴とする鉄道車両用ケーブル。
[3] 0.5 to 10 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer,
The base polymer contains, as main components, (a) an ethylene-vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) of −55 ° C. or less by DSC method, (a) : (B) = 70: 30 to 90:10 ratio (mass ratio), and the non-halogen crosslinked resin composition in which the vinyl acetate content (VA amount) of the base polymer is 50 to 70% by mass is insulated. A cable for a railway vehicle comprising an insulated electric wire for a vehicle that is coated as a layer.

[4]ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、
前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜90:10の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%であるノンハロゲン架橋樹脂組成物がシースとして被覆されていることを特徴とする鉄道車両用ケーブル。
[4] 0.5 to 10 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer,
The base polymer contains, as main components, (a) an ethylene-vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) of −55 ° C. or less by DSC method, (a) : (B) = A non-halogen crosslinked resin composition containing 70:30 to 90:10 in a ratio (mass ratio) and having a vinyl acetate content (VA amount) of the base polymer of 50 to 70% by mass. A railway vehicle cable characterized by being coated as:

本発明によれば、難燃性及び優れた機械特性を備えるとともに、高い耐油性及び優れた低温特性を両立させ、ダイスカスや電線・ケーブル同士の貼り付きを防止できるノンハロゲン架橋樹脂組成物が被覆された鉄道車両用絶縁電線及び鉄道車両用ケーブルが提供される。 According to the present invention, a non-halogen cross-linked resin composition that has flame retardancy and excellent mechanical properties, is compatible with high oil resistance and excellent low-temperature properties, and can prevent sticking between dies, wires and cables is coated. Rail vehicle insulated wire and cable for railway vehicles has is provided.

本発明の絶縁電線の一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the insulated wire of this invention. 本発明のケーブルの一実施形態を示す断面図である。It is sectional drawing which shows one Embodiment of the cable of this invention.

以下、本発明の絶縁電線及びケーブルの一実施形態について、図面を参照しつつ具体的に説明する。   Hereinafter, an insulated wire and a cable according to an embodiment of the present invention will be specifically described with reference to the drawings.

(絶縁電線)
図1は、本発明の絶縁電線の一実施形態を示す断面図である。
(Insulated wire)
FIG. 1 is a cross-sectional view showing an embodiment of the insulated wire of the present invention.

図1に示すように、本実施の形態に係る絶縁電線11は、汎用の材料、例えば、錫めっき銅等からなる導体11aと、導体11aの外周に形成された絶縁層11bとを備える。   As shown in FIG. 1, the insulated wire 11 according to the present embodiment includes a conductor 11a made of a general-purpose material, for example, tin-plated copper, and an insulating layer 11b formed on the outer periphery of the conductor 11a.

絶縁層11bは、ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有するノンハロゲン架橋樹脂組成物から構成される。   The insulating layer 11b is composed of a non-halogen crosslinked resin composition containing 0.5 to 10 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer. .

ノンハロゲン架橋樹脂組成物中のベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜90:10の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%である。 The base polymer in the non-halogen crosslinked resin composition comprises, as main components, (a) an ethylene vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin having a glass transition point (Tg) by DSC of −55 ° C. or lower. The resin is contained in a ratio (mass ratio) of (a) :( b) = 70: 30 to 90:10 , and the vinyl acetate content (VA amount) of the base polymer is 50 to 70% by mass.

一般に、ベースポリマに用いるポリマの種類が、1,2,3・・・k・・・n個あったとき、ベースポリマ中のVA量は、下記式(1)によって導かれる。すなわち、   In general, when there are 1, 2, 3,..., K,..., N types of polymers used for the base polymer, the VA amount in the base polymer is derived by the following formula (1). That is,

上記式(1)中、Xは、ポリマkのVA量(質量%)、Yは、ポリマkのベースポリマ全体を占める割合、及びkは、自然数をそれぞれ示す。   In the above formula (1), X represents the VA amount (% by mass) of the polymer k, Y represents the ratio of the polymer k to the entire base polymer, and k represents a natural number.

本実施の形態において、用いられるノンハロゲン架橋樹脂組成物のベースポリマのVA量が、50質量%未満だと耐油性を満足することができず、70質量%を超えると、低温特性が得られない。また、EVAは、燃焼時に脱酢酸による吸熱が起こる。したがって、VA量が低いと、難燃性が低下する傾向にある。   In this embodiment, if the VA amount of the base polymer of the non-halogen crosslinked resin composition used is less than 50% by mass, the oil resistance cannot be satisfied, and if it exceeds 70% by mass, the low temperature characteristics cannot be obtained. . In addition, EVA absorbs heat due to deacetic acid during combustion. Therefore, when the amount of VA is low, the flame retardancy tends to decrease.

本実施の形態においては、ベースポリマの構成成分の1つである(a)EVAは、メルトマスフローレイト(MFR)が異なる2種以上から構成されるとともに、MFRが15g/10min以上のEVAが5〜20質量%含まれていることが好ましい。より好ましくは5〜15質量%であり、さらに好ましくは5〜10質量%である。その理由は、高MFRのEVA含量をこの範囲とすることによって、溶融流れ性、及び生産性を高めることができるからである。すなわち、使用するEVAすべてのMFRが15g/10min未満であると、押出成形時の吐出量が低くなり、生産性が低下することがある。MFRが15g/10min以上のEVAが5質量%未満であると、押出成形時の吐出量が低くなり、生産性が低下することがある。20質量%を超えると、樹脂組成物の溶融時に粘着が激しく、ニーダ等のバッチ式混練機内からの取出が難しくなることがある。また、MFRが15g/10min以上のEVAのVA量については、特に制限はなく、ベースポリマの全体のVA量が50〜70質量%となっていればよい。   In the present embodiment, (a) EVA, which is one of the constituent components of the base polymer, is composed of two or more types having different melt mass flow rates (MFR), and 5% EVA having an MFR of 15 g / 10 min or more. It is preferable that -20 mass% is contained. More preferably, it is 5-15 mass%, More preferably, it is 5-10 mass%. This is because the melt flowability and productivity can be improved by setting the EVA content of the high MFR within this range. That is, if the MFR of all the EVAs used is less than 15 g / 10 min, the discharge amount at the time of extrusion molding becomes low, and the productivity may be lowered. When the EVA having an MFR of 15 g / 10 min or more is less than 5% by mass, the discharge amount at the time of extrusion molding is lowered, and the productivity may be lowered. If it exceeds 20% by mass, the resin composition may be strongly adhered, and it may be difficult to take it out from a batch kneader such as a kneader. Moreover, there is no restriction | limiting in particular about the VA amount of EVA whose MFR is 15 g / 10min or more, The whole VA amount of a base polymer should just be 50-70 mass%.

さらに、ベースポリマの構成成分の他の1つである(b)酸変性ポリオレフィン樹脂の含有量が、(a)エチレン酢酸ビニル共重合体(EVA)との質量比において、(a):(b)=70:30〜90:10の割合よりも大きい(30質量%を超える)と耐油性を低下させる。好ましくは、(a):(b)=80:20〜90:10の割合である。また、Tgが−55℃より高い(b)酸変性ポリオレフィンを用いると、低温特性が低下する。Tgが−55℃以下の酸変性ポリオレフィン樹脂としては、特に制限はないが、結晶性の低い物のほうが可とう性がよく、目安として融点が90℃以下のものが好ましい。具体的には、酸変性を施した、超低密度ポリエチレン、エチレン−メチルアクリレート共重合体、エチレン−エチルアクリレート共重合体、エチレン−ブテン−1共重合体、エチレン−ヘキセン−1共重合体、エチレン−オクテン−1共重合体等を挙げることができる。また、これらのポリマを併用することもできる。また、金属水酸化物との密着性を良くすることで低温特性が向上されるため、酸変性をすることが有効である。酸としては、マレイン酸、無水マレイン酸、フマル酸等を挙げることができる。 Furthermore, the content of (b) acid-modified polyolefin resin, which is another constituent component of the base polymer, is (a) in a mass ratio with respect to (a) ethylene vinyl acetate copolymer (EVA). ) = 70: 30 to greater than 90:10 (more than 30% by mass), the oil resistance is lowered. Preferably , ( a) :( b) = 80: 20 to 90:10. Further, when (b) acid-modified polyolefin having a Tg higher than -55 ° C. is used, the low temperature characteristics are lowered. The acid-modified polyolefin resin having a Tg of −55 ° C. or lower is not particularly limited, but those having low crystallinity are more flexible, and those having a melting point of 90 ° C. or lower are preferable. Specifically, ultra-low density polyethylene subjected to acid modification, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-butene-1 copolymer, ethylene-hexene-1 copolymer, An ethylene-octene-1 copolymer etc. can be mentioned. These polymers can also be used in combination. Moreover, since low temperature characteristics are improved by improving the adhesion with the metal hydroxide, it is effective to perform acid modification. Examples of the acid include maleic acid, maleic anhydride, fumaric acid and the like.

本実施の形態において、その効果を発揮する限り、ベースポリマには、(a)エチレン酢酸ビニル共重合体(EVA)、及び(b)酸変性ポリオレフィン樹脂以外のポリマ成分を含有させてもよい。   In this embodiment, as long as the effect is exhibited, the base polymer may contain a polymer component other than (a) an ethylene vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin.

本実施の形態において、ベースポリマへの添加物質の1つであるシリコーンゴムは、その添加量が、0.5質量部未満であると、ダイスカス発生及び電線・ケーブル同士の貼り付きが有り、10質量部を超えると、引張強さが低下する。ベースポリマ100質量部に対して、シリコーンゴムを0.5〜7.5質量部の割合で含有することが好ましく、0.5〜5質量部の割合で含有することがより好ましい。   In the present embodiment, silicone rubber, which is one of the substances added to the base polymer, causes die scum and sticks between wires and cables when the amount added is less than 0.5 parts by mass. When it exceeds the mass part, the tensile strength decreases. It is preferable to contain silicone rubber at a ratio of 0.5 to 7.5 parts by mass, and more preferably 0.5 to 5 parts by mass with respect to 100 parts by mass of the base polymer.

本実施の形態において用いられるシリコーンゴムは、ジメチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサンなどが挙げられる。シリコーンゴムはEVAとの相溶性が悪く、混練後の材料の表層部に移行するためダイスカスおよび電線ケーブル同士の貼り付きを防止できる。   Examples of the silicone rubber used in this embodiment include dimethylpolysiloxane, methylvinylpolysiloxane, and methylphenylpolysiloxane. Silicone rubber is poorly compatible with EVA and moves to the surface layer portion of the material after kneading, so that it is possible to prevent sticking between the die scum and the electric cable.

本実施の形態において用いられる架橋方式は、有機過酸化物又は硫黄化合物による化学架橋、電子線、放射線等による照射架橋、その他の化学反応を利用した架橋等があるが、いずれの架橋方法も適用可能である。   The cross-linking method used in this embodiment includes chemical cross-linking with organic peroxides or sulfur compounds, irradiation cross-linking with electron beam, radiation, etc., cross-linking using other chemical reactions, etc., but any cross-linking method is applied. Is possible.

本実施の形態において、ベースポリマへの添加物質の他の1つである金属水酸化物は、その含有量が、100質量部未満であると、十分な難燃性を得ることができず、250質量部を超えると、低温特性が確保されない。ベースポリマ100質量部に対して、金属水酸化物を100〜200質量部の割合で含有することが好ましく、100〜150質量部の割合で含有することがより好ましい。   In the present embodiment, if the content of the metal hydroxide, which is another additive substance to the base polymer, is less than 100 parts by mass, sufficient flame retardancy cannot be obtained, If it exceeds 250 parts by mass, the low temperature characteristics cannot be ensured. The metal hydroxide is preferably contained in a proportion of 100 to 200 parts by mass, more preferably 100 to 150 parts by mass with respect to 100 parts by mass of the base polymer.

本実施の形態に用いられる金属水酸化物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム等を挙げることができる。水酸化カルシウムの分解時の吸熱量は、約1000J/gであるのに対して、水酸化アルミニウム、水酸化マグネシウムの吸熱量は、1500〜1600J/gと高く、難燃性が良好なため好ましい。難燃剤は、分散性等を考慮し、シランカップリング剤、チタネート系カップリング剤、ステアリン酸等の脂肪酸等によって表面処理を施すことができる。   Examples of the metal hydroxide used in the present embodiment include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, and the like. The endothermic amount at the time of decomposition of calcium hydroxide is about 1000 J / g, whereas the endothermic amounts of aluminum hydroxide and magnesium hydroxide are as high as 1500 to 1600 J / g, which is preferable because of good flame retardancy. . The flame retardant can be surface-treated with a silane coupling agent, a titanate coupling agent, a fatty acid such as stearic acid, and the like in consideration of dispersibility and the like.

これらの材料で構成されたノンハロゲン架橋樹脂組成物には、必要に応じて、架橋助剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強剤、界面活性剤、無機充填剤、可塑剤、金属キレート剤、発泡剤、相溶化剤、加工助剤、安定剤等を添加することができる。   Non-halogen cross-linked resin compositions composed of these materials include cross-linking aids, flame retardant aids, UV absorbers, light stabilizers, softeners, lubricants, colorants, reinforcing agents, and surface active agents as necessary. An agent, an inorganic filler, a plasticizer, a metal chelating agent, a foaming agent, a compatibilizer, a processing aid, a stabilizer and the like can be added.

また、本実施の形態においては、絶縁層を、単層で構成してもよく、また、多層構造とすることもできる。多層構造とした場合の具体例としては、最外層に上記ノンハロゲン架橋樹脂組成物を、また、最外層以外にポリオレフィン樹脂を押出被覆することで得られる構造を挙げることができる。ポリオレフィン樹脂としては、低密度ポリエチレン、EVA、エチレン‐エチルアクリレート共重合体、エチレン‐メチルアクリレート共重合体、エチレン‐グリシジルメタクリレート共重合体、無水マレイン酸ポリオレフィン等を挙げることができ、これらを単独で又は2種以上を混合して用いることができる。さらに、必要に応じて、セパレータ、編組等を施してもよい。   In this embodiment mode, the insulating layer may be a single layer or may have a multilayer structure. Specific examples of a multilayer structure include a structure obtained by extrusion coating the non-halogen crosslinked resin composition on the outermost layer and a polyolefin resin on the outermost layer. Examples of the polyolefin resin include low density polyethylene, EVA, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer, and maleic anhydride polyolefin. Or 2 or more types can be mixed and used. Furthermore, you may give a separator, a braiding, etc. as needed.

最外層以外の絶縁層に用いる材料としてはゴム材料も適用可能であり、エチレン−プロピレン共重合体ゴム(EPR)、エチレン−プロピレン−ジエン三元共重合体ゴム(EPDM)、アクリロニトリル−ブタジエンゴム(NBR)、水素添加NBR(HNBR)、アクリルゴム、エチレン−アクリル酸エステル共重合体ゴム、エチレンオクテン共重合体ゴム(EOR)、エチレン−酢酸ビニル共重合体ゴム、エチレン−ブテン−1共重合体ゴム(EBR)、ブタジエンスチレン共重合体ゴム(SBR)、イソブチレン−イソプレン共重合体ゴム(IIR)、ポリスチレンブロックを有するブロック共重合体ゴム、ウレタンゴム、ホスファゼンゴム等を挙げることができ、これらを単独で又は2種以上を混合して用いることができる。   As the material used for the insulating layer other than the outermost layer, a rubber material is also applicable, such as ethylene-propylene copolymer rubber (EPR), ethylene-propylene-diene terpolymer rubber (EPDM), acrylonitrile-butadiene rubber ( NBR), hydrogenated NBR (HNBR), acrylic rubber, ethylene-acrylate copolymer rubber, ethylene octene copolymer rubber (EOR), ethylene-vinyl acetate copolymer rubber, ethylene-butene-1 copolymer Rubber (EBR), butadiene styrene copolymer rubber (SBR), isobutylene-isoprene copolymer rubber (IIR), block copolymer rubber having a polystyrene block, urethane rubber, phosphazene rubber and the like. It can use individually or in mixture of 2 or more types.

また、上記ポリオレフィン樹脂やゴム材料に限定されず、絶縁性を有するものであれば、特に制限はない。必要に応じて、難燃剤、難燃助剤、架橋剤、架橋助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強剤、界面活性剤、酸化防止剤、無機充填剤、カップリング剤、可塑剤、金属キレート剤、発泡剤、相溶化剤、加工助剤、安定剤等を添加することができる。架橋処理は、有機過酸化物又は硫黄化合物による化学架橋、電子線、放射線等による照射架橋、その他の化学反応を利用した架橋等があるが、いずれの架橋方法も適用可能である。   Moreover, it is not limited to the said polyolefin resin and rubber material, If there is insulation, there will be no restriction | limiting in particular. If necessary, flame retardant, flame retardant aid, crosslinking agent, crosslinking aid, UV absorber, light stabilizer, softener, lubricant, colorant, reinforcing agent, surfactant, antioxidant, inorganic filler , Coupling agents, plasticizers, metal chelating agents, foaming agents, compatibilizers, processing aids, stabilizers, and the like can be added. The crosslinking treatment includes chemical crosslinking with an organic peroxide or a sulfur compound, irradiation crosslinking with an electron beam, radiation, and the like, and crosslinking using other chemical reactions, and any crosslinking method can be applied.

(ケーブル)
図2は、本発明のケーブルの一実施形態を示す断面図である。
(cable)
FIG. 2 is a cross-sectional view showing an embodiment of the cable of the present invention.

図2に示すように、本実施の形態に係るケーブル12は、汎用の材料、例えば、錫めっき銅等からなる導体12aと、導体12aの外周に形成された絶縁層12bと、絶縁層12bの外周に形成されたシース12cとを備える。   As shown in FIG. 2, the cable 12 according to the present embodiment includes a conductor 12a made of a general-purpose material such as tin-plated copper, an insulating layer 12b formed on the outer periphery of the conductor 12a, and an insulating layer 12b. And a sheath 12c formed on the outer periphery.

絶縁層12bは、例えば、エチレン−ブテン−1共重合体ゴム、ポリブチレンナフタレート、ポリブチレンテレフタレート、ポリフェニレンオキサイド、及びポリエーテルエーテルケトンからなる群から選ばれる1種以上のポリマから構成される。上述のノンハロゲン架橋樹脂組成物から形成されていてもよい。   The insulating layer 12b is made of, for example, one or more polymers selected from the group consisting of ethylene-butene-1 copolymer rubber, polybutylene naphthalate, polybutylene terephthalate, polyphenylene oxide, and polyether ether ketone. You may form from the above-mentioned non-halogen crosslinked resin composition.

シース12cは、上述のノンハロゲン架橋樹脂組成物から形成されている。
なお、ノンハロゲン架橋樹脂組成物の詳細については、上述の絶縁電線の場合と同様であるため、説明を省略する。
The sheath 12c is formed from the above-mentioned non-halogen crosslinked resin composition.
In addition, since it is the same as that of the case of the above-mentioned insulated wire about the detail of a non-halogen crosslinked resin composition, description is abbreviate | omitted.

また、本実施の形態においては、シースを、単層で構成してもよく、また、多層構造とすることもできる。多層構造とした場合の具体例としては、最外層に上記ノンハロゲン架橋樹脂組成物を、また、最外層以外にポリオレフィン樹脂を押出被覆することで得られる構造を挙げることができる。ポリオレフィン樹脂としては、低密度ポリエチレン、EVA、エチレン‐エチルアクリレート共重合体、エチレン‐メチルアクリレート共重合体、エチレン‐グリシジルメタクリレート共重合体、無水マレイン酸ポリオレフィン等を挙げることができ、これらを単独で又は2種以上を混合して用いることができる。さらに、必要に応じて、セパレータ、編組等を施してもよい。   In the present embodiment, the sheath may be formed of a single layer or a multilayer structure. Specific examples of a multilayer structure include a structure obtained by extrusion coating the non-halogen crosslinked resin composition on the outermost layer and a polyolefin resin on the outermost layer. Examples of the polyolefin resin include low density polyethylene, EVA, ethylene-ethyl acrylate copolymer, ethylene-methyl acrylate copolymer, ethylene-glycidyl methacrylate copolymer, and maleic anhydride polyolefin. Or 2 or more types can be mixed and used. Furthermore, you may give a separator, a braiding, etc. as needed.

(ノンハロゲン架橋樹脂組成物)
本発明の実施形態に使用するノンハロゲン架橋樹脂組成物は、ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜100:0の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%である。ノンハロゲン架橋樹脂組成物の詳細については、前述した通りである。
(Non-halogen crosslinked resin composition)
The non-halogen crosslinked resin composition used in the embodiment of the present invention contains 0.5 to 10 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer. The base polymer contains, as main components, (a) an ethylene vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) by DSC of −55 ° C. or less ( a): (b) = 70: 30 to 100: 0 in a proportion (mass ratio), and the vinyl acetate content (VA amount) of the base polymer is 50 to 70 mass%. Details of the non-halogen crosslinked resin composition are as described above.

本発明の実施形態に使用するノンハロゲン架橋樹脂組成物は、種々の用途に使用できるが、難燃性及び優れた機械特性を備えるとともに、高い耐油性及び優れた低温特性を両立させ、ダイスカスや電線・ケーブル同士の貼り付きを防止できるため、絶縁電線の絶縁層やケーブルのシースに好適に使用できる。特に、車両用絶縁電線及び車両用ケーブルに好適に使用できる。 The non-halogen crosslinked resin composition used in the embodiment of the present invention can be used for various applications, but has both flame resistance and excellent mechanical properties, as well as high oil resistance and excellent low-temperature properties, and can be used for die dies and electric wires. -Since it can prevent sticking of cables, it can be used suitably for the insulation layer of an insulated wire and the sheath of a cable. In particular, it can be suitably used for a vehicle insulated wire and a vehicle cable.

以下に、本発明のケーブルを、実施例を用いてさらに具体的に説明する。なお、本発明は、以下の実施例によって、いかなる制限を受けるものではない。   Below, the cable of this invention is demonstrated more concretely using an Example. Note that the present invention is not limited in any way by the following examples.

参考例1)
図2に示すケーブルを以下のようにして製造した。すなわち、導体として、構成80本/0.40mmの錫めっき銅導体を用い、絶縁層として、エチレン−ブテン−1共重合体ゴム(三井化学社製、商品名:タフマA−4050S)100質量部に対して、有機過酸化物(日本油脂社製、商品名:パーブチルP)(パーブチルは登録商標)を2質量部添加した樹脂組成物を用い、シースとして、表1に示す配合用材料からなるノンハロゲン架橋樹脂組成物を用いた。これらの樹脂組成物を、導体の外周に、絶縁層の厚さが0.45mm、また、シースの厚さが1.67mmになるように、4.5インチ連続蒸気架橋押出機で2層押出を行い、外径8.60mmになるように被覆した。架橋は、1.8MPaの高圧蒸気を用いて3分間行って、ケーブルを得た。なお、表1中の1〜3のEVAは、MFR15g/10min未満のEVAである。
( Reference Example 1)
The cable shown in FIG. 2 was manufactured as follows. That is, 80 conductors / 0.40 mm tin-plated copper conductor is used as the conductor, and 100 parts by mass of ethylene-butene-1 copolymer rubber (manufactured by Mitsui Chemicals, trade name: Toughma A-4050S) as the insulating layer. In contrast, a resin composition to which 2 parts by mass of an organic peroxide (manufactured by NOF Corporation, trade name: Perbutyl P) (Perbutyl is a registered trademark) was used, and the sheath was composed of the compounding materials shown in Table 1. A non-halogen crosslinked resin composition was used. These resin compositions are extruded on the outer periphery of the conductor by a two-layer extrusion using a 4.5 inch continuous steam cross-linking extruder so that the insulating layer has a thickness of 0.45 mm and the sheath has a thickness of 1.67 mm. And coated to an outer diameter of 8.60 mm. Crosslinking was performed for 3 minutes using 1.8 MPa high-pressure steam to obtain a cable. In addition, 1-3 EVA in Table 1 is EVA less than MFR15g / 10min.

この場合、シースを構成するノンハロゲン架橋樹脂組成物の材料としては、EVA(VA:60質量%)(LANXESS社製、商品名:レバプレン600)(レバプレンは登録商標)を100質量部、シリコーンゴム(ジメチルポリシロキサン、信越化学社製、商品名:KE76)を5質量部、有機過酸化物(日本油脂社製、商品名:パーブチルP)(パーブチルは登録商標)を2質量部、水酸化マグネシウム(協和化学社製、商品名:キスマ5L)(キスマは登録商標)を100質量部、それぞれ配合したものを用いた。   In this case, as the material of the non-halogen crosslinked resin composition constituting the sheath, EVA (VA: 60% by mass) (manufactured by LANXESS, trade name: Revaprene 600) (Revaprene is a registered trademark), 100 parts by mass, silicone rubber ( 5 parts by weight of dimethylpolysiloxane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KE76), 2 parts by weight of organic peroxide (manufactured by NOF Corporation, trade name: Perbutyl P) (Perbutyl is a registered trademark), magnesium hydroxide ( 100 parts by mass of Kyowa Chemical Co., Ltd., trade name: Kisuma 5L) (Kisuma is a registered trademark) were used.

なお、図1に示す本発明の実施の形態に係る絶縁電線を、図2に示すケーブルにおけるシースの代わりに、表1に示す配合用材料からなるノンハロゲン架橋樹脂組成物からなる絶縁層を用いることによって、同様に製造した。評価の結果、本発明の効果を奏するものであった。   In addition, the insulated wire which concerns on embodiment of this invention shown in FIG. 1 uses the insulating layer which consists of a non-halogen crosslinked resin composition which consists of a compounding material shown in Table 1 instead of the sheath in the cable shown in FIG. Were similarly produced. As a result of the evaluation, the effect of the present invention was achieved.

得られたケーブルを、特に鉄道車両用途に求められる以下に示す各種評価試験によって評価した。その評価結果を表1に示す。   The obtained cable was evaluated by the following various evaluation tests required especially for railway vehicle applications. The evaluation results are shown in Table 1.

[評価試験]
(混練加工性の評価)
表1に示したシースの配合用材料を25Lニーダで設定温度50℃で混練し、自己発熱により150℃まで温度上昇した後、チャンバーを傾け、材料が自然に落下するものを◎、手作業で落下できるものを○、全くかき出せないものを×とした。
[Evaluation test]
(Evaluation of kneading processability)
The material for blending the sheath shown in Table 1 was kneaded with a 25 L kneader at a set temperature of 50 ° C., and after raising the temperature to 150 ° C. by self-heating, the chamber was tilted and the material dropped naturally by hand. Those that could be dropped were marked with ◯, and those that could not be scraped out were marked with x.

(押出生産性の評価)
ケーブルに絶縁層及びシースを被覆するに際し、4.5インチ連続蒸気架橋押出機で2層押出を実施したときの最高引取り速度が20m/min以上であれば◎、1m/min以上20m/min未満であれば○、全く引取れない場合を×とした。
(Evaluation of extrusion productivity)
When the insulation layer and sheath are coated on the cable, if the maximum take-up speed is 20 m / min or more when two-layer extrusion is performed with a 4.5 inch continuous steam crosslinking extruder, ◎, 1 m / min or more and 20 m / min If it was less than ◯, the case where it could not be picked up was marked as x.

(ダイスカスの評価)
ケーブルに絶縁層及びシースを被覆するに際し、4.5インチ連続蒸気架橋押出機で2層押出を実施したときの100m押出後のダイスを目視で観察し、ダイスカスの有無を確認した。ダイスカスがあれば×、ダイスカスがなければ◎とした。
(Evaluation of die scum)
When covering the cable with the insulating layer and the sheath, the die after 100 m extrusion when the two-layer extrusion was carried out with a 4.5 inch continuous steam crosslinking extruder was visually observed to confirm the presence or absence of the die scum. If there was a die scum, it was rated as x.

(貼り付きの評価)
ケーブルに絶縁層及びシースを被覆するに際し、4.5インチ連続蒸気架橋押出機で2層押出を実施したときの100m押出後、450mm径のボビンに巻き取り、60分後にケーブルをほどく際、ケーブル同士が貼り付いたら×、貼り付くことなくきれいにほどければ◎とした。
(Evaluation with sticking)
When covering a cable with an insulating layer and a sheath, when a two-layer extrusion is carried out with a 4.5 inch continuous steam cross-linking extruder, the cable is wound around a bobbin having a diameter of 450 mm and unwound after 60 minutes. If the two stick together, it was marked as ×, and if it was clean without sticking, it was marked as ◎.

(難燃性の評価)
EN60332−1−2に準拠した垂直難燃試験を実施した。550mmのケーブルを垂直に支持し、上部から475mmの位置で60秒間炎を当て、取り外した後、上部から50mm〜540mmの範囲で残炎が自己消火すれば◎とし、残炎が上記範囲を超えた場合を×とした。
(Evaluation of flame retardancy)
A vertical flame retardant test in accordance with EN60332-1-2 was performed. 550mm cable is supported vertically, flame is applied at 475mm from the top for 60 seconds, removed, and after flame extinguishes in the range of 50mm to 540mm from the top, ◎, after flame exceeds the above range The case was marked with x.

(シースの評価)
シースの評価は、絶縁層を切削し、シース部を6号ダンベル試験片に打ち抜いて、以下の試験を実施した。
(Evaluation of sheath)
The sheath was evaluated by cutting the insulating layer, punching the sheath portion into a No. 6 dumbbell test piece, and carrying out the following tests.

引張強さ評価:
EN60811−1−1に準拠し、引張速度200mm/minで引張試験を実施した。引張強さが10MPa以上のものを◎とし、10MPaを下回るものを×とした。
Tensile strength evaluation:
In accordance with EN60881-1-1, a tensile test was performed at a tensile speed of 200 mm / min. Those having a tensile strength of 10 MPa or more were rated as ◎, and those having a tensile strength lower than 10 MPa were rated as x.

耐油性評価:
EN60811−2−1に準拠し、70℃に熱した試験油IRM903内に168時間浸漬後、引張試験を実施した。伸び変化率が40%以下のものを◎とし、40%を超えるものを×とした。
Oil resistance evaluation:
In accordance with EN60881-2-1, a tensile test was conducted after 168 hours immersion in test oil IRM903 heated to 70 ° C. Those with an elongation change rate of 40% or less were marked with ◎, and those with a rate of elongation exceeding 40% were marked with ×.

低温特性評価:
EN60811−1−4に準拠し、−40℃で30%以上の伸びを示したものを◎、30%未満の伸びの場合を×とした。
Low temperature characteristic evaluation:
In accordance with EN60881-1-4, ◎ indicates an elongation of 30% or more at -40 ° C, and x indicates an elongation of less than 30%.

(総合評価)
総合評価として、すべての評価が◎のものを優良(◎)、評価が◎と○からなるものを良(○)、いずれかの評価で1つでも不合格(×)があれば不合格(×)とした。
(Comprehensive evaluation)
As a comprehensive evaluation, all evaluations with ◎ are excellent (◎), evaluations with ◎ and ○ are good (○), and if any evaluation fails (×), it will be rejected ( X).

(実施例13
参考例1において、シースの配合用材料を、表1の実施例13に示すものに変えたこと以外は参考例1と同様にして実施例13のケーブルを製造した。
(Examples 1 to 13 )
In Reference Example 1, cables of Examples 1 to 13 were produced in the same manner as Reference Example 1 except that the material for blending the sheath was changed to that shown in Examples 1 to 13 in Table 1.

得られたケーブルを、参考例1と同様に、各種評価試験によって評価した。その評価結果を表1に示す。 The obtained cable was evaluated by various evaluation tests as in Reference Example 1. The evaluation results are shown in Table 1.

表1に示すように、参考例1及び実施例1〜3の場合、押出加工性は○であり、総合評価は○となった。 As shown in Table 1, in the case of Reference Example 1 and Examples 1 to 3 , the extrusion processability was “good” and the overall evaluation was “good”.

実施例及び10の混練加工性、並びに、実施例11及び13の押出加工性は○であり、実施例1011及び13の総合評価は○となった。 The kneadability of Examples 8 and 10 and the extrudability of Examples 11 and 13 were ○, and the overall evaluation of Examples 8 , 10 , 11 and 13 was ○.

実施例及び12の場合、すべての評価が◎であり、総合評価は◎となった。 In the case of Examples 4 to 7 , 9 and 12 , all evaluations were ◎, and the overall evaluation was ◎.

(比較例1〜8)
参考例1において、シースの配合用材料を、表2に示すものに変えたこと以外は参考例1と同様にして比較例1〜8のケーブルを製造した。
(Comparative Examples 1-8)
In Reference Example 1, cables of Comparative Examples 1 to 8 were produced in the same manner as Reference Example 1 except that the sheath compounding material was changed to that shown in Table 2.

得られたケーブルを、参考例1と同様に、各種評価試験によって評価した。その評価結果を表2に示す。 The obtained cable was evaluated by various evaluation tests as in Reference Example 1. The evaluation results are shown in Table 2.

表2に示すように、比較例1の場合、ベースポリマのVA含量が低く、難燃性、耐油性が×であった。そのため、総合評価は×となった。   As shown in Table 2, in the case of Comparative Example 1, the VA content of the base polymer was low, and the flame retardancy and oil resistance were x. Therefore, the overall evaluation was x.

比較例2の場合、ベースポリマのVA含量が高く、低温特性が×であった。そのため、総合評価は×となった。   In the case of Comparative Example 2, the VA content of the base polymer was high, and the low temperature characteristics were x. Therefore, the overall evaluation was x.

比較例3の場合、酸変性ポリオレフィンの添加量が多すぎ、耐油性が×であった。そのため、総合評価は×となった。   In the case of Comparative Example 3, the amount of acid-modified polyolefin added was too large, and the oil resistance was x. Therefore, the overall evaluation was x.

比較例4の場合、酸変性ポリオレフィンのTgが高く、低温特性が×であった。そのため、総合評価は×となった。   In the case of Comparative Example 4, the Tg of the acid-modified polyolefin was high and the low temperature characteristics were x. Therefore, the overall evaluation was x.

比較例5の場合、水酸化マグネシウムの添加量が低く、難燃性が×であった。そのため、総合評価は×となった。   In the case of Comparative Example 5, the amount of magnesium hydroxide added was low, and the flame retardancy was x. Therefore, the overall evaluation was x.

比較例6の場合、水酸化マグネシウムの添加量が多く、低温特性が×であった。そのため、総合評価は×となった。   In the case of Comparative Example 6, the amount of magnesium hydroxide added was large and the low temperature characteristics were x. Therefore, the overall evaluation was x.

比較例7の場合、シリコーンゴムが添加されていないため、ダイスカスが発生し、ケーブルのベタツキもあった。そのため、総合評価は×となった。   In the case of Comparative Example 7, since silicone rubber was not added, die scum was generated and the cable was sticky. Therefore, the overall evaluation was x.

比較例8の場合、シリコーンゴムの添加量が多いため、引張強さが低下した。そのため、総合評価は×となった。   In the case of Comparative Example 8, the tensile strength decreased because the amount of silicone rubber added was large. Therefore, the overall evaluation was x.

11:絶縁電線、11a:導体、11b:絶縁層
12:ケーブル、12a:導体、12b:絶縁層、12c:シース

11: insulated wire, 11a: conductor, 11b: insulating layer 12: cable, 12a: conductor, 12b: insulating layer, 12c: sheath

Claims (4)

ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、
前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜9010の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%であるノンハロゲン架橋樹脂組成物が絶縁層として被覆されていることを特徴とする鉄道車両用絶縁電線。
Containing 100 to 250 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer;
The base polymer contains, as main components, (a) an ethylene-vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) of −55 ° C. or less by DSC method, (a) : (b) = 70: 30~ 90: 10 with a proportion (mass ratio) of the vinyl acetate content of the base polymer (VA amount) Ru 50 to 70% by mass Roh Nharogen crosslinked resin composition An insulated wire for railway vehicles, characterized in that is coated as an insulating layer.
前記EVAは、メルトマスフローレイト(MFR)が異なる2種以上のEVAから構成されるとともに、MFRが15g/10min以上のEVAが5〜20質量%含まれていることを特徴とする請求項1に記載の鉄道車両用絶縁電線。 The EVA is composed of two or more types of EVA having different melt mass flow rates (MFR), and contains 5 to 20% by mass of EVA having an MFR of 15 g / 10 min or more. The insulated wire for rail vehicles described . ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、Containing 100 to 250 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer;
前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜90:10の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%であるノンハロゲン架橋樹脂組成物が絶縁層として被覆されている車両用絶縁電線を有することを特徴とする鉄道車両用ケーブル。The base polymer contains, as main components, (a) an ethylene-vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) of −55 ° C. or less by DSC method, (a) : (B) = 70: 30 to 90:10 ratio (mass ratio), and the non-halogen crosslinked resin composition in which the vinyl acetate content (VA amount) of the base polymer is 50 to 70% by mass is insulated. A cable for a railway vehicle comprising an insulated electric wire for a vehicle that is coated as a layer.
ベースポリマ100質量部に対して、シリコーンゴムを0.5〜10質量部、及び金属水酸化物を100〜250質量部の割合で含有し、
前記ベースポリマは、主成分として、(a)エチレン酢酸ビニル共重合体(EVA)及び(b)DSC法によるガラス転移点(Tg)が−55℃以下である酸変性ポリオレフィン樹脂を、(a):(b)=70:30〜90:10の割合(質量比)で含有するとともに、当該ベースポリマの酢酸ビニル含有量(VA量)が50〜70質量%であるノンハロゲン架橋樹脂組成物がシースとして被覆されていることを特徴とする鉄道車両用ケーブル。
Containing 100 to 250 parts by mass of silicone rubber and 100 to 250 parts by mass of metal hydroxide with respect to 100 parts by mass of the base polymer;
The base polymer contains, as main components, (a) an ethylene-vinyl acetate copolymer (EVA) and (b) an acid-modified polyolefin resin having a glass transition point (Tg) of −55 ° C. or less by DSC method, (a) : (B) = A non-halogen crosslinked resin composition containing 70:30 to 90:10 in a ratio (mass ratio) and having a vinyl acetate content (VA amount) of the base polymer of 50 to 70% by mass. A railway vehicle cable characterized by being coated as:
JP2012254741A 2012-11-20 2012-11-20 Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition Active JP5821827B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012254741A JP5821827B2 (en) 2012-11-20 2012-11-20 Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
CN201310574464.9A CN103839622B (en) 2012-11-20 2013-11-15 Halogen cross-linkable resin composition and insulated electric conductor, cable
CN201510651270.3A CN105206324A (en) 2012-11-20 2013-11-15 Insulating wire and cable
US14/084,364 US9805840B2 (en) 2012-11-20 2013-11-19 Halogen-free crosslinked resin composition and insulated wire and cable using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012254741A JP5821827B2 (en) 2012-11-20 2012-11-20 Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition

Publications (2)

Publication Number Publication Date
JP2014101454A JP2014101454A (en) 2014-06-05
JP5821827B2 true JP5821827B2 (en) 2015-11-24

Family

ID=50728229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012254741A Active JP5821827B2 (en) 2012-11-20 2012-11-20 Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition

Country Status (3)

Country Link
US (1) US9805840B2 (en)
JP (1) JP5821827B2 (en)
CN (2) CN105206324A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5733352B2 (en) * 2013-07-23 2015-06-10 日立金属株式会社 Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition
JP6376464B2 (en) * 2014-06-19 2018-08-22 日立金属株式会社 Insulated wire
JP6300094B2 (en) * 2014-07-07 2018-03-28 日立金属株式会社 Cross-linked insulated wire and cable using non-halogen crosslinkable resin composition
JP6399293B2 (en) * 2014-08-05 2018-10-03 日立金属株式会社 Phosphorus-free non-halogen flame retardant resin composition and insulated wire and cable using the same
WO2016061755A1 (en) * 2014-10-22 2016-04-28 徐睿 Plastic material and preparation method therefor
JP6376463B2 (en) * 2014-10-31 2018-08-22 日立金属株式会社 cable
JP6398662B2 (en) * 2014-12-03 2018-10-03 日立金属株式会社 Non-halogen crosslinkable resin composition, cross-linked insulated wire and cable
JP6398663B2 (en) * 2014-12-03 2018-10-03 日立金属株式会社 Non-halogen crosslinkable resin composition, cross-linked insulated wire and cable
WO2016104888A1 (en) * 2014-12-23 2016-06-30 엘에스전선 주식회사 Halogen-free insulating composition having excellent oil resistance and cold resistance, and wire including insulating layer formed therefrom
JP6777374B2 (en) * 2015-01-22 2020-10-28 日立金属株式会社 Insulated wires and cables
JP6424748B2 (en) * 2015-06-11 2018-11-21 日立金属株式会社 Halogen free flame retardant insulated wire and halogen free flame retardant cable
JP2017050189A (en) * 2015-09-02 2017-03-09 日立金属株式会社 Insulation wire and cable using non-halogen flame retardant resin composition
US10669411B2 (en) 2015-12-14 2020-06-02 Fujikura Ltd. Flame-retardant resin composition and metal cable, optical fiber cable, and molded article using the same
US20180355157A1 (en) * 2015-12-14 2018-12-13 Fujikura Ltd. Flame-retardant resin composition and metal cable, optical fiber cable, and molded article using the same
US10920049B2 (en) * 2016-09-09 2021-02-16 Leoni Kabel Gmbh Polymer composition with high flexibility and flame retardancy
WO2018046099A1 (en) * 2016-09-09 2018-03-15 Leoni Kabel Gmbh Strand-shaped elements and polymer composition for preparing same
EP3510603B1 (en) * 2016-09-09 2020-06-17 LEONI Kabel GmbH Conjunction device such as a cable and polymer composition for preparing same
CN109689769B (en) * 2016-09-09 2021-09-14 莱尼电缆有限公司 Elongated article having good flexibility and high flame retardancy
CN109423051B (en) * 2017-09-04 2021-04-16 中广核高新核材科技(苏州)有限公司 Silane crosslinked elastomer cable sheath material for new energy automobile
CN109423052B (en) * 2017-09-04 2021-04-16 中广核高新核材科技(苏州)有限公司 Silane crosslinked elastomer cable material for new energy automobile high-voltage wire and preparation method thereof
CN111180122B (en) * 2018-11-13 2023-01-03 日立金属株式会社 Cable with a protective layer
JP2021144839A (en) * 2020-03-11 2021-09-24 日立金属株式会社 Method for producing power transmission cable using non-halogen flame-retardant resin composition

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0345638A (en) * 1989-07-14 1991-02-27 Hitachi Cable Ltd Flame-retardant electrical insulation composition
EP0440118A3 (en) * 1990-01-31 1992-02-26 Fujikura Ltd. Electric insulated wire and cable using the same
JP2550808B2 (en) * 1991-08-23 1996-11-06 日立電線株式会社 Flame-retardant electrical insulation composition and flame-retardant wire / cable
US6133367A (en) * 1997-06-17 2000-10-17 E. I. Du Pont De Nemours And Company Ethylene vinyl acetate blends
US6924031B2 (en) * 1998-09-25 2005-08-02 Pirelli Cavi E Sistemi S.P.A. Low-smoke self-extinguishing electrical cable and flame-retardant composition used therein
JP4181681B2 (en) * 1999-02-19 2008-11-19 日本ユニカー株式会社 Flame retardant ethylene-based resin composition and electric wire / cable
JP4629836B2 (en) * 2000-07-19 2011-02-09 古河電気工業株式会社 Insulated wire
JP3796123B2 (en) * 2001-02-14 2006-07-12 平河ヒューテック株式会社 Flame retardant resin composition and flame retardant molded article using the same
JP2007161814A (en) * 2005-12-12 2007-06-28 Fujikura Ltd Non-halogen flame retardant resin composition and non-halogen fire retardant electric wire/cable
JP2007238845A (en) * 2006-03-10 2007-09-20 Kurabe Ind Co Ltd Flame-retardant composition and electric wire
JP4270237B2 (en) * 2006-07-31 2009-05-27 日立電線株式会社 Non-halogen flame retardant thermoplastic elastomer composition, method for producing the same, and electric wire / cable using the same
CN100556947C (en) * 2007-04-26 2009-11-04 江苏三角洲塑化有限公司 A kind of low-smoke bittern-free highly fire-proof elastic polyolefin electric cable material
JP5659450B2 (en) * 2007-06-13 2015-01-28 日立金属株式会社 Non-halogen flame retardant wire / cable
CN101397380B (en) * 2008-09-09 2010-12-22 苏州德尔泰高聚物有限公司 High temperature resistant soft low-smoke no-halogen flame-proof polyolefine cable material
JP2010084103A (en) * 2008-10-02 2010-04-15 Kurabe Ind Co Ltd Flame-retardant composition and electric wire
JP2010097881A (en) * 2008-10-17 2010-04-30 Hitachi Cable Ltd Insulation wire
JP2010126649A (en) * 2008-11-27 2010-06-10 Furukawa Electric Co Ltd:The Thermoplastic resin composition and molded article produced by using the same
JP5700530B2 (en) * 2011-02-03 2015-04-15 株式会社Nuc Flame retardant resin composition for optical drop cable jacket and optical drop cable
JP5449245B2 (en) * 2011-04-18 2014-03-19 古河電気工業株式会社 Flame retardant resin composition and molded article using the same
WO2012150716A1 (en) * 2011-05-02 2012-11-08 古河電気工業株式会社 Flame-retardant resin composition and molded article
JP5594330B2 (en) * 2012-07-25 2014-09-24 日立金属株式会社 Halogen-free flame-retardant resin composition, insulated wires and cables

Also Published As

Publication number Publication date
US9805840B2 (en) 2017-10-31
CN103839622A (en) 2014-06-04
CN103839622B (en) 2016-09-21
JP2014101454A (en) 2014-06-05
CN105206324A (en) 2015-12-30
US20140141245A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP6376464B2 (en) Insulated wire
JP5978806B2 (en) Railway vehicle cable
JP6229942B2 (en) Insulated wires for railway vehicles and cables for railway vehicles
JP6376463B2 (en) cable
JP5972836B2 (en) Non-halogen flame retardant wire cable
JP5733352B2 (en) Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition
JP5780477B2 (en) Phosphorus-free non-halogen flame retardant insulated wires and phosphorus-free non-halogen flame retardant cables
JP5617903B2 (en) Vehicle wires, vehicle cables
JP2006310093A (en) Non-halogen-based insulated electric wire and wire harness
JP2015000913A (en) Non-halogen flame-retardant resin composition, and wires and cables prepared using the same
JP6902205B2 (en) cable
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
JP6777374B2 (en) Insulated wires and cables
JP6021746B2 (en) Non-halogen flame retardant wire
JP2016108391A (en) Non-halogen crosslinkable resin composition, crosslinked insulated electric wire and cable
JP6300094B2 (en) Cross-linked insulated wire and cable using non-halogen crosslinkable resin composition
JP5590177B1 (en) Phosphorus-free non-halogen flame-retardant insulated wires and phosphorus-free non-halogen flame-retardant insulated cables
JP2017050189A (en) Insulation wire and cable using non-halogen flame retardant resin composition
JP2015201448A (en) Non-halogen flame-retardant electric wire cable
JP6816419B2 (en) Insulated wires and cables
JP6816420B2 (en) Insulated wires and cables
JP2021036513A (en) Insulated wire
JP5692619B2 (en) Phosphorus-free non-halogen flame-retardant insulated wires and phosphorus-free non-halogen flame-retardant insulated cables
JP2014065844A (en) Non-halogen flame-retardant resin composition and production method of the same, and insulated electric wire and cable using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140822

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150921

R150 Certificate of patent or registration of utility model

Ref document number: 5821827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350