JP2021036513A - Insulated wire - Google Patents

Insulated wire Download PDF

Info

Publication number
JP2021036513A
JP2021036513A JP2019233954A JP2019233954A JP2021036513A JP 2021036513 A JP2021036513 A JP 2021036513A JP 2019233954 A JP2019233954 A JP 2019233954A JP 2019233954 A JP2019233954 A JP 2019233954A JP 2021036513 A JP2021036513 A JP 2021036513A
Authority
JP
Japan
Prior art keywords
mass
parts
resin composition
ethylene
maleic anhydride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019233954A
Other languages
Japanese (ja)
Other versions
JP7247881B2 (en
Inventor
周 岩崎
Shu Iwasaki
周 岩崎
有 木部
Tamotsu Kibe
有 木部
孔亮 中村
Yoshiaki Nakamura
孔亮 中村
橋本 充
Mitsuru Hashimoto
充 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to CN202010789478.2A priority Critical patent/CN112409676B/en
Priority to DE102020122063.4A priority patent/DE102020122063A1/en
Publication of JP2021036513A publication Critical patent/JP2021036513A/en
Application granted granted Critical
Publication of JP7247881B2 publication Critical patent/JP7247881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0846Copolymers of ethene with unsaturated hydrocarbons containing other atoms than carbon or hydrogen atoms
    • C08L23/0869Acids or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0275Disposition of insulation comprising one or more extruded layers of insulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

To provide an insulated wire including a single insulating layer and not provided with a separator, the insulated wire having mechanical characteristics, flame retardancy, insulation properties, low temperature properties, heat resistance and wire processability.SOLUTION: An insulated wire 10 has a conductor 1, and an insulating layer 2 that coats the conductor 1, where the insulating layer 2 directly coats the conductor 1. A resin composition constituting the insulating layer 2 includes a base polymer, metal hydroxide, a processing aid, and a metal chelator. The base polymer includes high-density polyethylene, maleic anhydride-modified high-density polyethylene, ethylene-acrylate-maleic anhydride ternary copolymer, maleic anhydride-modified ethylene-α-olefin copolymer, and ethylene-acrylate copolymer. The processing aid is in the form of metallic soap and/or silicone processing aid.SELECTED DRAWING: Figure 1

Description

本発明は、絶縁電線に関するものである。 The present invention relates to an insulated electric wire.

絶縁電線は、導体と、前記導体の周囲に設けられる被覆層としての絶縁層とを有している。前記絶縁電線の絶縁層は、ゴムや樹脂を主原料とした材料からなる。このような絶縁電線は、用途に応じて必要な特性が異なる。例えば、鉄道車両用、自動車用または機器用の絶縁電線には、高い絶縁性や難燃性、低温特性、耐ダイナミックカットスルー性などが要求される。 The insulated wire has a conductor and an insulating layer as a coating layer provided around the conductor. The insulating layer of the insulated wire is made of a material mainly made of rubber or resin. Such insulated wires have different required characteristics depending on the application. For example, insulated wires for railway vehicles, automobiles, and equipment are required to have high insulation, flame retardancy, low temperature characteristics, and dynamic cut-through resistance.

このような絶縁電線において、高い耐摩耗性および耐ダイナミックカットスルー性を得るために、導体と絶縁層との間にセパレータを設けるという方法もあるが、こうすると、製造コストが増大するだけでなく、配線作業性が低下するという問題がある。そのため、セパレータを設けることなく(セパレータレス)、絶縁層の機械特性を向上させることが望ましい。 In such an insulated wire, in order to obtain high wear resistance and dynamic cut-through resistance, there is a method of providing a separator between the conductor and the insulating layer, but this not only increases the manufacturing cost but also increases the manufacturing cost. , There is a problem that wiring workability is lowered. Therefore, it is desirable to improve the mechanical properties of the insulating layer without providing a separator (separatorless).

そのため、絶縁電線の絶縁層を構成するベースポリマとして、高い結晶性を有するポリマを用いることが考えられる。高い結晶性を有するポリマとしては、例えば、高密度ポリエチレン(High Density Polyethylene:HDPE)が挙げられる。 Therefore, it is conceivable to use a polymer having high crystallinity as a base polymer constituting the insulating layer of the insulated wire. Examples of the polymer having high crystallinity include high density polyethylene (HDPE).

絶縁性と難燃性とを両立させることを目的として、例えば、特許文献1には、高密度ポリエチレンを含むベースポリマに、難燃剤として金属水酸化物を添加した絶縁層を有する絶縁電線が記載されている。 For the purpose of achieving both insulation and flame retardancy, for example, Patent Document 1 describes an insulated wire having an insulating layer in which a metal hydroxide is added as a flame retardant to a base polymer containing high-density polyethylene. Has been done.

特開2016−17108号公報Japanese Unexamined Patent Publication No. 2016-17108

しかし、本発明者の検討によれば、例えば、セパレータレスの絶縁電線において、絶縁層を単層とした場合に、絶縁層を特許文献1に記載された組成の樹脂組成物によって構成しても、十分な機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性が得られない場合があることを確認した。 However, according to the study of the present inventor, for example, in a separatorless insulated wire, when the insulating layer is a single layer, the insulating layer may be composed of the resin composition having the composition described in Patent Document 1. It was confirmed that sufficient mechanical properties, flame retardancy, insulation, low temperature characteristics, heat resistance and wire workability may not be obtained.

本発明は、このような課題に鑑みてなされたものであり、単層の絶縁層を有するセパレータレスの絶縁電線において、機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性を備えた絶縁電線を提供することを目的とする。 The present invention has been made in view of such problems, and in a separatorless insulated wire having a single-layer insulating layer, it has mechanical properties, flame retardancy, insulating properties, low temperature properties, heat resistance, and wire processability. It is an object of the present invention to provide an insulated electric wire provided with.

本願において開示される発明のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 A brief description of typical inventions disclosed in the present application is as follows.

[1]絶縁電線は、導体と、前記導体の周囲に被覆される絶縁層とを有し、前記絶縁層は、前記導体上に直接被覆されており、前記絶縁層を構成する樹脂組成物は、ベースポリマと、金属水酸化物と、加工助剤と、金属キレート剤とを含む。前記ベースポリマは、高密度ポリエチレンと、無水マレイン酸変性高密度ポリエチレンと、エチレン−アクリル酸エステル−無水マレイン酸3元共重合体と、無水マレイン酸変性エチレン−α−オレフィン共重合体と、エチレン−アクリル酸エステル共重合体とを含む。前記加工助剤は、金属石鹸および/またはシリコーン系加工助剤を含む。前記樹脂組成物は、前記ベースポリマ100質量部中、前記無水マレイン酸変性高密度ポリエチレンを5質量部以上35質量部未満含有し、前記エチレン−アクリル酸エステル−無水マレイン酸3元共重合体を30質量部以上50質量部未満含有し、前記無水マレイン酸変性エチレン−α−オレフィン共重合体を5質量部以上20質量部以下含有し、前記エチレン−アクリル酸エステル共重合体を10質量部以上30質量部以下含有する。前記樹脂組成物は、前記ベースポリマ100質量部に対して前記金属水酸化物を140質量部以上200質量部以下含有し、前記加工助剤を1質量部以上10質量部以下含有し、前記金属キレート剤を1質量部以上10質量部以下含有する。 [1] The insulated wire has a conductor and an insulating layer coated around the conductor, the insulating layer is directly coated on the conductor, and the resin composition constituting the insulating layer is , Base polymer, metal hydroxide, processing aid, and metal chelating agent. The base polymer is high-density polyethylene, maleic anhydride-modified high-density polyethylene, ethylene-acrylic acid ester-maleic anhydride ternary copolymer, maleic anhydride-modified ethylene-α-olefin copolymer, and ethylene. -Contains with acrylic ester copolymer. The processing aids include metal soaps and / or silicone-based processing aids. The resin composition contains 5 parts by mass or more and less than 35 parts by mass of the maleic anhydride-modified high-density polyethylene in 100 parts by mass of the base polymer, and contains the ethylene-acrylic acid ester-maleic anhydride ternary copolymer. It contains 30 parts by mass or more and less than 50 parts by mass, contains 5 parts by mass or more and 20 parts by mass or less of the maleic anhydride-modified ethylene-α-olefin copolymer, and 10 parts by mass or more of the ethylene-acrylic acid ester copolymer. Contains 30 parts by mass or less. The resin composition contains 140 parts by mass or more and 200 parts by mass or less of the metal hydroxide and 1 part by mass or more and 10 parts by mass or less of the processing aid with respect to 100 parts by mass of the base polymer. The chelating agent is contained in an amount of 1 part by mass or more and 10 parts by mass or less.

[2][1]記載の絶縁電線において、前記加工助剤は、融点が120℃以上の金属石鹸を含む。 [2] In the insulated wire according to [1], the processing aid contains a metal soap having a melting point of 120 ° C. or higher.

[3][2]記載の絶縁電線において、前記加工助剤は、融点が220℃以上の金属石鹸を含む。 [3] In the insulated wire according to [2], the processing aid contains a metal soap having a melting point of 220 ° C. or higher.

[4][1]〜[3]のいずれか1つに記載の絶縁電線において、前記エチレン−アクリル酸エステル共重合体のアクリル酸エステル量は、10質量%以上25質量%以下である。 [4] In the insulated wire according to any one of [1] to [3], the amount of acrylic acid ester of the ethylene-acrylic acid ester copolymer is 10% by mass or more and 25% by mass or less.

[5][1]〜[4]のいずれか1つに記載の絶縁電線において、前記無水マレイン酸変性エチレン−α−オレフィン共重合体のガラス転移点は、−55℃以下である。 [5] In the insulated wire according to any one of [1] to [4], the glass transition point of the maleic anhydride-modified ethylene-α-olefin copolymer is −55 ° C. or lower.

[6][1]〜[5]のいずれか1つに記載の絶縁電線において、前記樹脂組成物は、前記ベースポリマ100質量部に対して前記金属水酸化物を150質量部以上180質量部以下含有する。 [6] In the insulated wire according to any one of [1] to [5], the resin composition contains 150 parts by mass or more and 180 parts by mass of the metal hydroxide with respect to 100 parts by mass of the base polymer. It contains the following.

[7][1]〜[6]のいずれか1つに記載の絶縁電線において、前記金属水酸化物は、水酸化マグネシウムである。 [7] In the insulated wire according to any one of [1] to [6], the metal hydroxide is magnesium hydroxide.

[8][1]〜[7]のいずれか1つに記載の絶縁電線において、前記樹脂組成物は、架橋されている。 [8] In the insulated wire according to any one of [1] to [7], the resin composition is crosslinked.

本発明によれば、単層の絶縁層を有するセパレータレスの絶縁電線において、機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性を備えた絶縁電線を提供することができる。 According to the present invention, it is possible to provide an insulated wire having mechanical properties, flame retardancy, insulating properties, low temperature characteristics, heat resistance and wire workability in a separatorless insulated wire having a single-layer insulating layer. ..

一実施の形態の絶縁電線の構造を示す横断面図である。It is sectional drawing which shows the structure of the insulated electric wire of one Embodiment.

(検討事項)
実施の形態を説明する前に、本発明者らが検討した事項について説明する。
(Consideration)
Before explaining the embodiment, the matters examined by the present inventors will be described.

まず、前述したように、導体と、前記導体の周囲に被覆された(単層の)絶縁層とを備える絶縁電線において、絶縁性と難燃性とを両立させることを目的として、高密度ポリエチレンを含む(A)ベースポリマに、難燃剤として(B)金属水酸化物を添加した樹脂組成物を絶縁層とすることを検討した(以下、検討例の絶縁電線と称する)。 First, as described above, in an insulated wire having a conductor and an insulating layer (single layer) coated around the conductor, high-density polyethylene is used for the purpose of achieving both insulation and flame retardancy. It was examined to use a resin composition in which (B) a metal hydroxide was added as a flame retardant to (A) a base polymer containing (A) as an insulating layer (hereinafter, referred to as an insulated wire in an example of study).

難燃剤として(B)金属水酸化物を用いる場合には、ハロゲン系難燃剤やリン系難燃剤と異なり、燃焼時に有毒なガスが発生しないため、環境への悪影響や二次災害などを防止できる点で優れている。一方で、難燃剤として(B)金属水酸化物を用いる場合には、十分な難燃性を確保するために、ハロゲン系難燃剤やリン系難燃剤に比べて、多くの量をベースポリマに添加する必要がある。しかし、(A1)高密度ポリエチレンは、(B)金属水酸化物との相溶性が低いため、(A1)高密度ポリエチレンに(B)金属水酸化物を多量に添加すると、樹脂組成物の機械特性が低下してしまう。 When (B) metal hydroxide is used as the flame retardant, unlike halogen-based flame retardants and phosphorus-based flame retardants, toxic gas is not generated during combustion, so adverse effects on the environment and secondary disasters can be prevented. Excellent in terms of points. On the other hand, when (B) metal hydroxide is used as the flame retardant, a larger amount is used as the base polymer than the halogen-based flame retardant and the phosphorus-based flame retardant in order to ensure sufficient flame retardancy. Need to be added. However, since (A1) high-density polyethylene has low compatibility with (B) metal hydroxide, when a large amount of (B) metal hydroxide is added to (A1) high-density polyethylene, the machine of the resin composition The characteristics will deteriorate.

本発明者らは、検討例において、(A)ベースポリマに、(A1)高密度ポリエチレン以外に、(A5)エチレン−アクリル酸エステル共重合体を添加し、さらに(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体、および、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体を添加することを検討した。 In the study example, the present inventors added (A5) ethylene-acrylic acid ester copolymer to (A) base polymer in addition to (A1) high-density polyethylene, and further added (A3) ethylene-acrylic acid ester. It was examined to add a ternary copolymer of maleic anhydride and (A4) modified ethylene-α-olefin copolymer of maleic anhydride.

(A5)エチレン−アクリル酸エステル共重合体は、(B)金属水酸化物との相溶性が高いポリマであるため、(A)ベースポリマに(A5)エチレン−アクリル酸エステル共重合体を添加することで、(B)金属水酸化物を多量に添加した場合であっても、樹脂組成物の機械特性の低下を抑制できる。 Since the (A5) ethylene-acrylic acid ester copolymer is a polymer having high compatibility with (B) metal hydroxide, the (A5) ethylene-acrylic acid ester copolymer is added to the (A) base polymer. By doing so, even when a large amount of (B) metal hydroxide is added, deterioration of the mechanical properties of the resin composition can be suppressed.

ただし、(A1)高密度ポリエチレンと(A5)エチレン−アクリル酸エステル共重合体との相溶性は高くない。そのため、(A)ベースポリマに、(A1)高密度ポリエチレンと(A5)エチレン−アクリル酸エステル共重合体との間の極性を有する(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体、および、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体をさらに添加することによって、(A)ベースポリマと(B)金属水酸化物との密着性を高めることができる。その結果、検討例において、樹脂組成物の機械特性の確保と難燃性の確保とを両立することができる。 However, the compatibility between (A1) high-density polyethylene and (A5) ethylene-acrylic acid ester copolymer is not high. Therefore, the (A3) base polymer has a polarity between (A1) high-density polyethylene and (A5) ethylene-acrylic acid ester copolymer, and (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer weight. By further adding the coalescence and the (A4) maleic anhydride-modified ethylene-α-olefin copolymer, the adhesion between the (A) base polymer and the (B) metal hydroxide can be enhanced. As a result, in the study example, it is possible to secure both the mechanical properties of the resin composition and the flame retardancy.

ここで、本発明者らは、検討例において、以下の3つの課題を確認している。検討例における1つ目の課題は、機械特性、難燃性および絶縁性(電気特性)の両立が難しいことである。一般に、樹脂組成物の難燃性を向上させるため、(B)金属水酸化物を多量に添加すると、樹脂組成物の絶縁性が低下してしまう。この問題を解消するための方法としては、例えば、絶縁電線の絶縁層を(B)金属水酸化物の添加量の多い樹脂組成物からなる難燃層と、(B)金属水酸化物の添加量の少ない樹脂組成物からなる絶縁層との2層構造にするという方法が考えられる。ただし、このようにすると、電線を細径化することが難しく、また、製造コストも増大してしまう。従って、単層の絶縁層において、機械特性、難燃性および絶縁性を確保することが望まれる。 Here, the present inventors have confirmed the following three problems in the study example. The first problem in the study example is that it is difficult to achieve both mechanical properties, flame retardancy and insulating properties (electrical properties). In general, if a large amount of (B) metal hydroxide is added in order to improve the flame retardancy of the resin composition, the insulating property of the resin composition is lowered. As a method for solving this problem, for example, the insulating layer of the insulated wire is added with (B) a flame-retardant layer made of a resin composition in which a large amount of metal hydroxide is added, and (B) addition of metal hydroxide. A method of forming a two-layer structure with an insulating layer made of a small amount of resin composition can be considered. However, in this way, it is difficult to reduce the diameter of the electric wire, and the manufacturing cost also increases. Therefore, it is desired to ensure mechanical properties, flame retardancy and insulation in a single insulating layer.

検討例における2つ目の課題は、電線加工性および絶縁性の両立が難しいことであり、具体的には、ダイスカスおよびニップルカスの発生である。電線製造用の押出被覆装置を用いて、導体の周囲に樹脂組成物からなる絶縁層を形成する際に、押出被覆装置のダイスおよびニップルにカスが発生し、これが押出された絶縁層の表面に付着していく。このようなダイスカスおよびニップルカスは、電線加工性を低下させ、絶縁層の外観を悪くするのみならず、これらのカスに電界が集中し、絶縁破壊の原因になるという問題があった。 The second problem in the study example is that it is difficult to achieve both wire workability and insulation, and specifically, the generation of die scum and nipple scum. When an insulating layer made of a resin composition is formed around a conductor using an extrusion covering device for electric wire manufacturing, debris is generated on the die and nipple of the extrusion covering device, and this is generated on the surface of the extruded insulating layer. It will adhere. Such die scraps and nipple scraps have a problem that not only the workability of the electric wire is deteriorated and the appearance of the insulating layer is deteriorated, but also the electric field is concentrated on these scraps and causes dielectric breakdown.

検討例における3つ目の課題は、耐熱性の低下である。セパレータレスの絶縁電線にあっては、絶縁層が導体上に直接被覆されている。そのため、導体に含まれる銅などが絶縁層内に拡散し、これを触媒とする熱劣化(熱老化)が発生するため、耐熱性が低下するという問題があった。 The third issue in the study example is a decrease in heat resistance. In a separatorless insulated wire, the insulating layer is directly coated on the conductor. Therefore, copper or the like contained in the conductor diffuses into the insulating layer, and thermal deterioration (heat aging) using this as a catalyst occurs, so that there is a problem that heat resistance is lowered.

また、これらの3つの課題以外にも、検討例に係る絶縁電線において、低温環境下での柔軟性、すなわち低温特性を確保することは必要不可欠である。 In addition to these three issues, it is indispensable to ensure flexibility in a low temperature environment, that is, low temperature characteristics, in the insulated wire according to the study example.

以上より、単層の絶縁層を有するセパレータレスの絶縁電線において、その構成を工夫することにより、機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性を備えた絶縁電線が望まれる。 From the above, in a separatorless insulated wire having a single layer of insulating layer, by devising the configuration, an insulated wire having mechanical properties, flame retardancy, insulation, low temperature characteristics, heat resistance and wire workability can be obtained. desired.

(実施の形態)
<絶縁電線の主要な構成および効果>
以下、本発明の一実施の形態に係る絶縁電線について、図面を参照して説明する。図1は、本実施の形態に係る絶縁電線を示す横断面図である。図1に示すように、本実施の形態に係る絶縁電線10は、導体1と、導体1の周囲に被覆される単層の絶縁層2とを有している。本実施の形態に係る絶縁電線10は、セパレータを有しておらず、絶縁層2は、導体1上に直接被覆されている。
(Embodiment)
<Main configurations and effects of insulated wires>
Hereinafter, the insulated wire according to the embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view showing an insulated wire according to the present embodiment. As shown in FIG. 1, the insulated wire 10 according to the present embodiment has a conductor 1 and a single-layer insulating layer 2 coated around the conductor 1. The insulated wire 10 according to the present embodiment does not have a separator, and the insulating layer 2 is directly coated on the conductor 1.

本実施の形態に係る絶縁層2を構成する樹脂組成物は、(A)ベースポリマと、(B)金属水酸化物と、(C)加工助剤と、(D)金属キレート剤とを含んでいる。 The resin composition constituting the insulating layer 2 according to the present embodiment contains (A) a base polymer, (B) a metal hydroxide, (C) a processing aid, and (D) a metal chelating agent. I'm out.

本実施の形態に係る(A)ベースポリマは、(A1)高密度ポリエチレンと、(A2)無水マレイン酸変性高密度ポリエチレンと、(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体と、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体と、(A5)エチレン−アクリル酸エステル共重合体とを含んでいる。 The (A) base polymer according to the present embodiment is (A1) high-density polyethylene, (A2) anhydrous maleic acid-modified high-density polyethylene, and (A3) ethylene-acrylic acid ester-anhydrous maleic acid ternary copolymer. And (A4) a maleic anhydride-modified ethylene-α-olefin copolymer and (A5) an ethylene-acrylic acid ester copolymer.

本実施の形態に係る(C)加工助剤は、金属石鹸および/またはシリコーン系加工助剤である。 The processing aid (C) according to the present embodiment is a metal soap and / or a silicone-based processing aid.

本実施の形態では、以上のような構成を採用したことにより、単層の絶縁層を有するセパレータレスの絶縁電線において、機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性を備えることができる。以下、その理由について具体的に説明する。 In the present embodiment, by adopting the above configuration, the separatorless insulated wire having a single-layer insulating layer has mechanical properties, flame retardancy, insulating properties, low temperature characteristics, heat resistance, and wire processability. Can be provided. The reason for this will be described in detail below.

前述したように、検討例の絶縁電線の絶縁層を構成する樹脂組成物において、(A)ベースポリマとして、(B)金属水酸化物との相溶性が高い(A5)エチレン−アクリル酸エステル共重合体を添加した。そして、(A)ベースポリマとして、(A5)エチレン−アクリル酸エステル共重合体との相溶性が高い(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体を添加し、かつ、(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体との相溶性が高い(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体を添加した。 As described above, in the resin composition constituting the insulating layer of the insulated wire of the study example, (A) as a base polymer, (B) highly compatible with metal hydroxide (A5) ethylene-acrylic acid ester The polymer was added. Then, as the (A) base polymer, a (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer having high compatibility with the (A5) ethylene-acrylic acid ester copolymer was added, and (A) A3) Highly compatible with the ethylene-acrylic acid ester-maleic anhydride ternary copolymer (A4) Maleylene anhydride-modified ethylene-α-olefin copolymer was added.

しかし、このような検討例の絶縁電線において、絶縁性(電気特性)および電線加工性の低下が課題として明らかになった。 However, in the insulated wire of such a study example, deterioration of insulation (electrical characteristics) and wire workability has been clarified as a problem.

そこで、本実施の形態に係る樹脂組成物には、(A)ベースポリマとして、さらに(A2)無水マレイン酸変性高密度ポリエチレンを添加している。(A2)無水マレイン酸変性高密度ポリエチレンは、(A1)高密度ポリエチレンとの相溶性が高く、かつ、(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体および(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体との相溶性も高い。そのため、本実施の形態にあっては、(A)ベースポリマと(B)金属水酸化物との密着性を高めることができ、絶縁電線の絶縁性を向上させることができる。 Therefore, (A2) maleic anhydride-modified high-density polyethylene is further added as the (A) base polymer to the resin composition according to the present embodiment. (A2) Maleic anhydride-modified high-density polyethylene has high compatibility with (A1) high-density polyethylene, and (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer and (A4) male anhydride. It also has high compatibility with acid-modified ethylene-α-olefin copolymers. Therefore, in the present embodiment, the adhesion between the (A) base polymer and the (B) metal hydroxide can be improved, and the insulating property of the insulated wire can be improved.

また、本実施の形態に係る樹脂組成物は、(A)ベースポリマとして、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体を含んでいるため、低温環境下での柔軟性が向上し、絶縁電線において低温特性を確保することができる。 Further, since the resin composition according to the present embodiment contains (A4) maleic anhydride-modified ethylene-α-olefin copolymer as (A) base polymer, flexibility in a low temperature environment is improved. However, low temperature characteristics can be ensured in the insulated wire.

また、本実施の形態に係る樹脂組成物には、さらに、(C)加工助剤として、金属石鹸および/またはシリコーン系加工助剤を添加している。これらの加工助剤は、押出被覆装置において樹脂組成物を押し出す際に、ダイスまたはニップルと当該樹脂組成物との間に介在し、潤滑性を高める。その結果、図1に示す本実施の形態に係る絶縁電線10にあっては、ダイスカスおよびニップルカスの発生を防止し、電線加工性を向上させることができる。また、本実施の形態に係る絶縁電線10にあっては、ダイスカスおよびニップルカスが発生しないため、これらのカスを原因とする絶縁性の低下も防止することができる。 Further, a metal soap and / or a silicone-based processing aid is added as the (C) processing aid to the resin composition according to the present embodiment. These processing aids intervene between the die or nipple and the resin composition when extruding the resin composition in the extrusion coating device to enhance the lubricity. As a result, in the insulated electric wire 10 according to the present embodiment shown in FIG. 1, it is possible to prevent the generation of die scraps and nipple scraps and improve the wire workability. Further, in the insulated wire 10 according to the present embodiment, since die scraps and nipple scraps are not generated, it is possible to prevent deterioration of the insulating property due to these scraps.

また、本実施の形態に係る樹脂組成物には、さらに(D)金属キレート剤を添加している。前述したように、図1に示す本実施の形態に係る絶縁電線10は、セパレータを有しておらず、絶縁層2は、導体1上に直接被覆されている。このようなセパレータレスの絶縁電線にあっては、導体1に含まれる銅などが絶縁層2内に拡散し、これを触媒とする熱劣化(熱老化)が発生するため、耐熱性が低下する。この点、本実施の形態に係る樹脂組成物に添加した(D)金属キレート剤が、絶縁層2内に拡散した銅などを捕捉するため、絶縁電線10の耐熱性の低下を防止することができる。 Further, (D) a metal chelating agent is further added to the resin composition according to the present embodiment. As described above, the insulated wire 10 according to the present embodiment shown in FIG. 1 does not have a separator, and the insulating layer 2 is directly coated on the conductor 1. In such a separatorless insulated wire, copper and the like contained in the conductor 1 diffuse into the insulating layer 2, and thermal deterioration (heat aging) using this as a catalyst occurs, so that the heat resistance is lowered. .. In this regard, since the metal chelating agent (D) added to the resin composition according to the present embodiment captures copper and the like diffused in the insulating layer 2, it is possible to prevent a decrease in the heat resistance of the insulated wire 10. it can.

以上より、本実施の形態に係る絶縁電線10にあっては、単層の絶縁層を有するセパレータレスの絶縁電線において、機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性を備えることができる。 From the above, in the insulated wire 10 according to the present embodiment, the separatorless insulated wire having a single-layer insulating layer has mechanical properties, flame retardancy, insulating properties, low temperature characteristics, heat resistance, and wire processability. Can be provided.

<導体の構成>
以下、本実施の形態に係る絶縁電線10に用いられる導体1の構成について説明する。
<Conductor composition>
Hereinafter, the configuration of the conductor 1 used in the insulated electric wire 10 according to the present embodiment will be described.

図1に示す導体1としては、通常用いられる金属線、例えば銅線、銅合金線のほか、アルミニウム線、金線、銀線などを用いることができる。また、導体1として、金属線の周囲に錫やニッケルなどの金属めっきを施したものを用いてもよい。さらに、導体1として、金属線を撚り合わせた(集合)撚り導体を用いることもできる。導体1の断面積および外径は、特に限定されるものではなく、絶縁電線10に求められる電気特性に応じて適宜変更することができる。導体1の断面積は、例えば1mm2以上10mm2以下であり、導体1の外径は、例えば1.20mm以上2.30mm以下である。 As the conductor 1 shown in FIG. 1, a commonly used metal wire, for example, a copper wire, a copper alloy wire, an aluminum wire, a gold wire, a silver wire, or the like can be used. Further, as the conductor 1, a conductor having metal plating such as tin or nickel around the metal wire may be used. Further, as the conductor 1, a (aggregate) twisted conductor in which metal wires are twisted can be used. The cross-sectional area and outer diameter of the conductor 1 are not particularly limited, and can be appropriately changed according to the electrical characteristics required for the insulated wire 10. The cross-sectional area of the conductor 1 is, for example, 1 mm 2 or more and 10 mm 2 or less, and the outer diameter of the conductor 1 is, for example, 1.20 mm or more and 2.30 mm or less.

<絶縁層の構成>
前述したように、図1に示す絶縁電線10の絶縁層2は、以下で詳述する本実施の形態に係る樹脂組成物からなる。絶縁層2の厚さは、特に限定されるものではないが、0.15mm以上2mm以下が好ましい。
<Structure of insulation layer>
As described above, the insulating layer 2 of the insulated wire 10 shown in FIG. 1 is made of the resin composition according to the present embodiment, which will be described in detail below. The thickness of the insulating layer 2 is not particularly limited, but is preferably 0.15 mm or more and 2 mm or less.

<樹脂組成物の詳細な構成>
以下、本実施の形態に係る絶縁電線10の絶縁層2を構成する樹脂組成物について、本発明の成立に必要な配合量なども含めて原材料ごとに詳細に説明する。
<Detailed composition of resin composition>
Hereinafter, the resin composition constituting the insulating layer 2 of the insulated wire 10 according to the present embodiment will be described in detail for each raw material, including the blending amount required for the establishment of the present invention.

[高密度ポリエチレン]
本実施の形態に係る(A1)高密度ポリエチレンとしては、融点、密度および分子量は特に限定されるものではないが、密度が0.942g/cm3以上のポリエチレンであることが好ましい。本実施の形態において、(A1)高密度ポリエチレンは、機械特性、特に耐ダイナミックカットスルー性を担保する。本実施の形態において、後述の(A2)無水マレイン酸変性高密度ポリエチレンを単独で用いると樹脂組成物の粘性が高くなる等の虞があることから、(A2)無水マレイン酸変性高密度ポリエチレンと併せて(A1)高密度ポリエチレンを含有させる必要があるが、その含有量については特にこれを限定しない。ただし、(A1)高密度ポリエチレンは、(A)ベースポリマ100質量部中、5質量部以上35質量部以下含有することが好ましく、10質量部以上30質量部以下含有することがより好ましい。(A1)高密度ポリエチレンの含有量を、(A)ベースポリマ100質量部中、5質量部以上、より好ましくは10質量部以上とすることで、十分な耐ダイナミックカットスルー性が得られる。(A1)高密度ポリエチレンの含有量を、(A)ベースポリマ100質量部中、35質量部以下、より好ましくは30質量部以下とすることで、(A)ベースポリマ中に(A1)高密度ポリエチレンと(A2)無水マレイン酸変性高密度ポリエチレンとをバランス良く配合することができ、後述するように十分な絶縁性(電気特性)を担保することができる。
[High density polyethylene]
The high-density polyethylene (A1) according to the present embodiment is not particularly limited in melting point, density and molecular weight, but is preferably polyethylene having a density of 0.942 g / cm 3 or more. In the present embodiment, (A1) high-density polyethylene ensures mechanical properties, particularly dynamic cut-through resistance. In the present embodiment, if the (A2) maleic anhydride-modified high-density polyethylene described later is used alone, the viscosity of the resin composition may increase. Therefore, the (A2) maleic anhydride-modified high-density polyethylene is used. At the same time, it is necessary to contain (A1) high-density polyethylene, but the content thereof is not particularly limited. However, the (A1) high-density polyethylene is preferably contained in an amount of 5 parts by mass or more and 35 parts by mass or less, and more preferably 10 parts by mass or more and 30 parts by mass or less in 100 parts by mass of the (A) base polymer. Sufficient dynamic cut-through resistance can be obtained by setting the content of (A1) high-density polyethylene to 5 parts by mass or more, more preferably 10 parts by mass or more, out of 100 parts by mass of the (A) base polymer. By setting the content of (A1) high-density polyethylene to 35 parts by mass or less, more preferably 30 parts by mass or less in 100 parts by mass of (A) base polymer, (A1) high density in (A1) base polymer. Polyethylene and (A2) maleic anhydride-modified high-density polyethylene can be blended in a well-balanced manner, and sufficient insulating properties (electrical characteristics) can be ensured as described later.

[無水マレイン酸変性高密度ポリエチレン]
(A2)無水マレイン酸変性高密度ポリエチレンは、高密度ポリエチレンに無水マレイン酸をグラフト共重合させたものである。
[Maleic anhydride-modified high-density polyethylene]
(A2) Maleic anhydride-modified high-density polyethylene is a high-density polyethylene graft-copolymerized with maleic anhydride.

本実施の形態に係る(A2)無水マレイン酸変性高密度ポリエチレンとしては、融点、密度および分子量は特に限定されるものではないが、相溶性の観点から(A1)高密度ポリエチレンと同等の密度であることが好ましい。本実施の形態において、(A2)無水マレイン酸変性高密度ポリエチレンは、(A1)高密度ポリエチレンと同様、機械特性、特に耐ダイナミックカットスルー性を担保するとともに、(A1)高密度ポリエチレンとの相溶性および(B)金属水酸化物との相溶性が高いことから、絶縁性(電気特性)を担保する。 The (A2) maleic anhydride-modified high-density polyethylene according to the present embodiment is not particularly limited in melting point, density and molecular weight, but has a density equivalent to that of (A1) high-density polyethylene from the viewpoint of compatibility. It is preferable to have. In the present embodiment, (A2) maleic anhydride-modified high-density polyethylene, like (A1) high-density polyethylene, ensures mechanical properties, particularly dynamic cut-through resistance, and has a phase with (A1) high-density polyethylene. Insulation (electrical characteristics) is ensured because of its high solubility and compatibility with (B) metal hydroxide.

本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部中、(A2)無水マレイン酸変性高密度ポリエチレンを5質量部以上35質量部未満含有する。(A2)無水マレイン酸変性高密度ポリエチレンの含有量を、(A)ベースポリマ100質量部中5質量部以上とすることで絶縁電線の絶縁層として十分な絶縁性が得られる。また、(A2)無水マレイン酸変性高密度ポリエチレンは(B)金属水酸化物との密着性が高いが、その含有量を(A)ベースポリマ100質量部中35質量部未満とすることで樹脂組成物の粘性が高くなりすぎず、絶縁層として形成した場合に外観の荒れを防止するとともに、層厚が薄くなった部分から絶縁破壊が生じるといった事態を防止することができる。 The resin composition according to the present embodiment contains (A2) maleic anhydride-modified high-density polyethylene in an amount of 5 parts by mass or more and less than 35 parts by mass in 100 parts by mass of the (A) base polymer. By setting the content of (A2) maleic anhydride-modified high-density polyethylene to 5 parts by mass or more out of 100 parts by mass of (A) base polymer, sufficient insulating properties can be obtained as an insulating layer of an insulated wire. Further, (A2) maleic anhydride-modified high-density polyethylene has high adhesion to (B) metal hydroxide, but the content thereof is less than 35 parts by mass in 100 parts by mass of (A) base polymer. The viscosity of the composition does not become too high, and when it is formed as an insulating layer, it is possible to prevent the appearance from being roughened, and it is possible to prevent a situation in which dielectric breakdown occurs from a portion where the layer thickness is thinned.

[エチレン−アクリル酸エステル−無水マレイン酸3元共重合体]
本実施の形態に係る(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体は、無水マレイン酸変性ポリマ(無水マレイン酸のグラフト共重合体)よりも無水マレイン酸量が多いため、無水マレイン酸変性ポリマよりも(B)金属水酸化物との相溶性が高い。そのため、本実施の形態において、(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体は、機械特性、特に耐摩耗性を担保する。
[Ethylene-acrylic acid ester-maleic anhydride ternary copolymer]
Since the (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer according to the present embodiment has a larger amount of maleic anhydride than the maleic anhydride-modified polymer (graft copolymer of maleic anhydride). It has higher compatibility with (B) metal hydroxide than maleic anhydride-modified polymer. Therefore, in the present embodiment, the (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer ensures mechanical properties, particularly wear resistance.

本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部中、(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体を30質量部以上50質量部未満含有する。(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体の含有量を、(A)ベースポリマ100質量部中30質量部以上とすることで、絶縁電線の絶縁層として十分な耐摩耗性が得られ、(A)ベースポリマ100質量部中50質量部未満とすることで、絶縁電線の絶縁層として十分な伸びが得られる。 The resin composition according to the present embodiment contains (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer in an amount of 30 parts by mass or more and less than 50 parts by mass in 100 parts by mass of the (A) base polymer. By setting the content of the (A3) ethylene-acrylic acid ester-maleic anhydride ternary copolymer to 30 parts by mass or more out of 100 parts by mass of the (A) base polymer, sufficient wear resistance as an insulating layer of the insulated wire is obtained. When the property is obtained and the amount is less than 50 parts by mass in (A) 100 parts by mass of the base polymer, sufficient elongation can be obtained as an insulating layer of the insulated wire.

(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体としては、エチレン−アクリル酸メチル−無水マレイン酸3元共重合体、エチレン−アクリル酸エチル−無水マレイン酸3元共重合体、エチレン−アクリル酸ブチル−無水マレイン酸3元共重合体などが挙げられ、これらのうちの1つを単独で用いても、これらを2種類以上併用してもよい。本実施の形態において、アクリル酸エステル量および無水マレイン酸量は特に限定されるものではないが、(B)金属水酸化物との密着性を高めるという観点から、アクリル酸エステル量は5質量%以上30質量%以下が好ましく、無水マレイン酸量は2.8質量%以上3.6質量%以下が好ましい。 (A3) Ethylene-acrylic acid ester-maleic anhydride ternary copolymer includes ethylene-methyl acrylate-maleic anhydride ternary copolymer, ethyl ethylene-ethyl acrylate-maleic anhydride ternary copolymer, and the like. Examples thereof include ethylene-butyl acrylate-maleic anhydride ternary copolymer, and one of them may be used alone or two or more of them may be used in combination. In the present embodiment, the amount of acrylic acid ester and the amount of maleic anhydride are not particularly limited, but the amount of acrylic acid ester is 5% by mass from the viewpoint of (B) enhancing the adhesion with the metal hydroxide. The amount of maleic anhydride is preferably 2.8% by mass or more and 3.6% by mass or less, preferably 30% by mass or more.

[無水マレイン酸変性エチレン−α−オレフィン共重合体]
本実施の形態に係る(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体は、エチレン−α−オレフィン共重合体に無水マレイン酸をグラフト共重合させたものである。エチレン−α−オレフィン共重合体は低温環境下での柔軟性に優れており、無水マレイン酸で変性することにより、(B)金属水酸化物との相溶性が向上する。そのため、本実施の形態において、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体は、機械特性、特に低温特性を担保する。
[Maleic anhydride-modified ethylene-α-olefin copolymer]
The (A4) maleic anhydride-modified ethylene-α-olefin copolymer according to the present embodiment is obtained by graft-copolymerizing maleic anhydride with an ethylene-α-olefin copolymer. The ethylene-α-olefin copolymer has excellent flexibility in a low temperature environment, and by modifying it with maleic anhydride, the compatibility with (B) metal hydroxide is improved. Therefore, in the present embodiment, the (A4) maleic anhydride-modified ethylene-α-olefin copolymer ensures mechanical properties, particularly low temperature properties.

本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部中、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体を5質量部以上20質量部以下含有する。(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体の含有量を、(A)ベースポリマ100質量部中5質量部以上とすることで、十分な低温特性が得られ、(A)ベースポリマ100質量部中20質量部以下とすることで、適切な柔軟性を有し、かつ、十分な耐ダイナミックカットスルー性が得られる。 The resin composition according to the present embodiment contains (A4) maleic anhydride-modified ethylene-α-olefin copolymer in an amount of 5 parts by mass or more and 20 parts by mass or less in 100 parts by mass of the (A) base polymer. By setting the content of the (A4) maleic anhydride-modified ethylene-α-olefin copolymer to 5 parts by mass or more out of 100 parts by mass of the (A) base polymer, sufficient low temperature characteristics can be obtained, and the (A) base can be obtained. By setting the amount to 20 parts by mass or less out of 100 parts by mass of the polymer, it is possible to obtain appropriate flexibility and sufficient dynamic cut-through resistance.

また、本実施の形態に係る樹脂組成物において、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体のガラス転移点は、−55℃以下であることが好ましい。(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体は、(B)金属水酸化物との間で高い密着性を有するポリマであり、かつ、低温環境下での柔軟性に優れるポリマである。そのため、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体のガラス転移点を−55℃以下とすることで、これを含む樹脂組成物の低温特性を向上することができる。なお、本実施の形態において、(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体のガラス転移点は、示差走査熱量測定(Differential scanning calorimetry:DSC)法によって測定することができるが、これに限定されるものではない。 Further, in the resin composition according to the present embodiment, the glass transition point of the (A4) maleic anhydride-modified ethylene-α-olefin copolymer is preferably −55 ° C. or lower. (A4) Maleic anhydride-modified ethylene-α-olefin copolymer is a polymer having high adhesion to (B) metal hydroxide and having excellent flexibility in a low temperature environment. is there. Therefore, by setting the glass transition point of the (A4) maleic anhydride-modified ethylene-α-olefin copolymer to −55 ° C. or lower, the low temperature characteristics of the resin composition containing the same can be improved. In the present embodiment, the glass transition point of the (A4) maleic anhydride-modified ethylene-α-olefin copolymer can be measured by the differential scanning calorimetry (DSC) method. It is not limited to.

(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体の原材料であるエチレン−α−オレフィン共重合体としては、炭素数が3以上12以下のα−オレフィンとエチレンとの共重合体が挙げられる。炭素数が3以上12以下のα−オレフィンとしては、例えばプロピレン、1−ブテン、1−ペンテン、1−ヘキセン、4−メチルペンテン、1−ヘプテン、1−オクテンなどが挙げられ、1−ブテンが好ましい。ここで例示した(A4)無水マレイン酸変性エチレン−α−オレフィン共重合体は、これらのうちの1つを単独で使用しても、これらを2種類以上併用してもよい。 (A4) Examples of the ethylene-α-olefin copolymer which is a raw material of the maleic anhydride-modified ethylene-α-olefin copolymer include a copolymer of α-olefin having 3 or more and 12 or less carbon atoms and ethylene. Be done. Examples of the α-olefin having 3 or more and 12 or less carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 4-methylpentene, 1-heptene, 1-octene and the like. preferable. As the (A4) maleic anhydride-modified ethylene-α-olefin copolymer exemplified here, one of them may be used alone, or two or more kinds thereof may be used in combination.

[エチレン−アクリル酸エステル共重合体]
本実施の形態に係る(A5)エチレン−アクリル酸エステル共重合体は、(B)金属水酸化物との相溶性が高く、かつ、(A3)エチレン−アクリル酸エステル−無水マレイン酸3元共重合体との相溶性も高い。そのため、(B)金属水酸化物を(A)ベースポリマ中に分散させることができる。さらに、(A5)エチレン−アクリル酸エステル共重合体は、燃焼時に炭化層を形成して難燃効果を奏する。以上より、本実施の形態において、(A5)エチレン−アクリル酸エステル共重合体は、難燃性を担保する。
[Ethylene-acrylic acid ester copolymer]
The (A5) ethylene-acrylic acid ester copolymer according to the present embodiment has high compatibility with (B) metal hydroxide, and (A3) ethylene-acrylic acid ester-maleic anhydride ternary compound. It has high compatibility with the polymer. Therefore, (B) metal hydroxide can be dispersed in (A) base polymer. Further, the (A5) ethylene-acrylic acid ester copolymer forms a carbonized layer at the time of combustion and exhibits a flame retardant effect. From the above, in the present embodiment, the (A5) ethylene-acrylic acid ester copolymer ensures flame retardancy.

本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部中、(A5)エチレン−アクリル酸エステル共重合体を10質量部以上30質量部以下含有する。(A5)エチレン−アクリル酸エステル共重合体の含有量を、(A)ベースポリマ100質量部中10質量部以上とすることで、絶縁電線の絶縁層として十分な伸びが得られ、(A)ベースポリマ100質量部中30質量部以下とすることで、絶縁電線の絶縁層として十分な耐摩耗性が得られる。 The resin composition according to the present embodiment contains (A5) ethylene-acrylic acid ester copolymer in an amount of 10 parts by mass or more and 30 parts by mass or less in 100 parts by mass of the (A) base polymer. By setting the content of the (A5) ethylene-acrylic acid ester copolymer to 10 parts by mass or more out of 100 parts by mass of the (A) base polymer, sufficient elongation can be obtained as an insulating layer of the insulated wire, and (A) By setting the amount to 30 parts by mass or less out of 100 parts by mass of the base polymer, sufficient wear resistance can be obtained as an insulating layer of an insulated wire.

また、本実施の形態に係る樹脂組成物において、(A5)エチレン−アクリル酸エステル共重合体のアクリル酸エステル量は、10質量%以上25質量%以下であることが好ましい。こうすることで、(B)金属水酸化物との密着性を適切な範囲で高めることができ、樹脂組成物の機械特性を向上させることができる。 Further, in the resin composition according to the present embodiment, the amount of the acrylic acid ester of the (A5) ethylene-acrylic acid ester copolymer is preferably 10% by mass or more and 25% by mass or less. By doing so, the adhesion to (B) the metal hydroxide can be enhanced in an appropriate range, and the mechanical properties of the resin composition can be improved.

(A5)エチレン−アクリル酸エステル共重合体としては、エチレン−アクリル酸メチル共重合体、エチレン−アクリル酸エチル共重合体、エチレン−アクリル酸ブチル共重合体などが挙げられ、エチレン−アクリル酸メチル共重合体が好ましい。ここで例示した(A5)エチレン−アクリル酸エステル共重合体は、これらのうちの1つを単独で使用しても、これらを2種類以上併用してもよい。なお、エチレン−酢酸ビニル共重合体は、高温環境下で脱酢酸反応が起こり、物性低下が著しいため、(A5)エチレン−アクリル酸エステル共重合体としては使用できない。 Examples of the (A5) ethylene-acrylate copolymer include an ethylene-methyl acrylate copolymer, an ethylene-ethyl acrylate copolymer, and a butyl ethylene-butyl acrylate copolymer. Copolymers are preferred. As the (A5) ethylene-acrylic acid ester copolymer exemplified here, one of them may be used alone, or two or more kinds thereof may be used in combination. The ethylene-vinyl acetate copolymer cannot be used as the (A5) ethylene-acrylic acid ester copolymer because the deacetic acid reaction occurs in a high temperature environment and the physical properties are significantly deteriorated.

[金属水酸化物]
本実施の形態に係る(B)金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムなどが挙げられ、水酸化マグネシウムが好ましい。これは、金属水酸化物の熱分解反応(吸熱反応)の反応開始温度が約350℃であり、樹脂組成物の熱分解温度と近く、樹脂組成物の熱分解を抑制する効果が高いためである。
[Metal hydroxide]
Examples of the metal hydroxide (B) according to the present embodiment include magnesium hydroxide, aluminum hydroxide, calcium hydroxide and the like, and magnesium hydroxide is preferable. This is because the reaction start temperature of the thermal decomposition reaction (endothermic reaction) of the metal hydroxide is about 350 ° C., which is close to the thermal decomposition temperature of the resin composition, and is highly effective in suppressing the thermal decomposition of the resin composition. is there.

後述の実施例に示すように、本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部に対して(B)金属水酸化物を140質量部以上200質量部以下含有する。(B)金属水酸化物の含有量を、(A)ベースポリマ100質量部に対して140質量部以上とすることで絶縁電線の絶縁層として十分な難燃性が得られ、(A)ベースポリマ100質量部に対して200質量部以下とすることで、絶縁電線の絶縁層として十分な絶縁性が得られる。また、後述の実施例(実施例1〜4,6,8〜12)に示すように、本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部に対して(B)金属水酸化物を150質量部以上180質量部以下含有することが好ましい。こうすることで、本実施の形態に係る樹脂組成物を絶縁層とする絶縁電線において、十分な難燃性、低温特性および耐熱性を発揮させることができる。 As shown in Examples described later, the resin composition according to the present embodiment contains (A) 140 parts by mass or more and 200 parts by mass or less of (B) metal hydroxide with respect to 100 parts by mass of the base polymer. By setting the content of (B) metal hydroxide to 140 parts by mass or more with respect to 100 parts by mass of (A) base polymer, sufficient flame retardancy can be obtained as an insulating layer of an insulated wire, and (A) base. By setting the amount to 200 parts by mass or less with respect to 100 parts by mass of the polymer, sufficient insulating properties can be obtained as an insulating layer of an insulated wire. Further, as shown in Examples (Examples 1 to 4, 6, 8 to 12) described later, the resin composition according to the present embodiment is (A) a metal (B) with respect to 100 parts by mass of the base polymer. It is preferable that the hydroxide is contained in an amount of 150 parts by mass or more and 180 parts by mass or less. By doing so, it is possible to exhibit sufficient flame retardancy, low temperature characteristics and heat resistance in the insulated wire having the resin composition according to the present embodiment as the insulating layer.

また、本実施の形態の(B)金属水酸化物は、シランカップリング剤、チタネート系カップリング剤、または、ステアリン酸などの脂肪酸類によって表面処理されているものを用いることが好ましい。こうすることで、樹脂組成物中の金属水酸化物の分散性が向上し、その結果、樹脂組成物の成形加工性および難燃性が向上する。絶縁電線の絶縁層として高い耐熱性が必要である場合には、シランカップリング剤によって表面処理された金属水酸化物を用いることが好ましい。 Further, it is preferable to use the metal hydroxide of the present embodiment (B) which has been surface-treated with a silane coupling agent, a titanate-based coupling agent, or a fatty acid such as stearic acid. By doing so, the dispersibility of the metal hydroxide in the resin composition is improved, and as a result, the molding processability and flame retardancy of the resin composition are improved. When high heat resistance is required as the insulating layer of the insulated wire, it is preferable to use a metal hydroxide surface-treated with a silane coupling agent.

[加工助剤]
本実施の形態に係る(C)加工助剤は、前述したように、金属石鹸および/またはシリコーン系加工助剤である。
[Processing aid]
As described above, the processing aid (C) according to the present embodiment is a metal soap and / or a silicone-based processing aid.

本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部に対して、(C)加工助剤を1質量部以上10質量部以下含有する。(C)加工助剤の含有量を、(A)ベースポリマ100質量部に対して1質量部以上とすることで、ダイスカスおよびニップルカスの発生を抑制することができる。また、(C)加工助剤は可燃物であるが、(C)加工助剤の含有量を(A)ベースポリマ100質量部に対して10質量部以下とすることで、前述した樹脂組成物の難燃性を十分に発揮させることができる。 The resin composition according to the present embodiment contains (A) 1 part by mass or more and 10 parts by mass or less of the processing aid with respect to 100 parts by mass of the base polymer. By setting the content of the processing aid (C) to 1 part by mass or more with respect to 100 parts by mass of the (A) base polymer, the generation of dice shavings and nipple shavings can be suppressed. Further, although (C) the processing aid is a combustible material, the above-mentioned resin composition is formed by setting the content of (C) the processing aid to 10 parts by mass or less with respect to 100 parts by mass of the (A) base polymer. The flame retardancy of the above can be fully exhibited.

また、本実施の形態に係る樹脂組成物において、(C)加工助剤は、融点が120℃以上の金属石鹸を含むことが好ましく、融点が220℃以上の金属石鹸を含むことがより好ましい。こうすることで、樹脂組成物の押出成形時の温度(例えば130℃〜240℃)において、ダイスまたはニップルと当該樹脂組成物との間の潤滑性を効果的に高め、ダイスカスおよびニップルカスの発生をより確実に防止することができる。 Further, in the resin composition according to the present embodiment, the processing aid (C) preferably contains a metal soap having a melting point of 120 ° C. or higher, and more preferably contains a metal soap having a melting point of 220 ° C. or higher. By doing so, the lubricity between the die or nipple and the resin composition is effectively enhanced at the temperature during extrusion molding of the resin composition (for example, 130 ° C. to 240 ° C.), and the generation of die residue and nipple residue is generated. It can be prevented more reliably.

金属石鹸としては、例えば、ステアリン酸マグネシウム(融点120℃)、12−ヒドロキシステアリン酸マグネシウム(融点220℃)などが挙げられる。 Examples of the metal soap include magnesium stearate (melting point 120 ° C.) and magnesium 12-hydroxystearate (melting point 220 ° C.).

シリコーン系加工助剤としては、例えば、オルガノポリシロキサンが挙げられ、具体的には、ジメチルポリシロキサン、メチルビニルポリシロキサン、メチルフェニルポリシロキサン、または、ビニル基などの官能基をその末端に有する変性ポリシロキサンが挙げられる。 Examples of the silicone-based processing aid include organopolysiloxane, and specifically, modification having a functional group such as dimethylpolysiloxane, methylvinylpolysiloxane, methylphenylpolysiloxane, or vinyl group at the end thereof. Examples include polysiloxane.

[金属キレート剤]
本実施の形態に係る(D)金属キレート剤は、銅害防止剤または重金属不活性化剤ともよばれる。
[Metal chelating agent]
The (D) metal chelating agent according to the present embodiment is also called a copper damage inhibitor or a heavy metal inactivating agent.

本実施の形態に係る樹脂組成物は、(A)ベースポリマ100質量部に対して、(D)金属キレート剤を1質量部以上10質量部以下含有する。(D)金属キレート剤の含有量を、(A)ベースポリマ100質量部に対して1質量部以上とすることで絶縁電線の絶縁層として十分な耐熱性が得られる。また、(D)金属キレート剤の含有量を、(A)ベースポリマ100質量部に対して10質量部以下とすることで、(D)金属キレート剤を(A)ベースポリマ中に十分に分散させることができ、樹脂組成物にツブが発生し低温曲げ試験で割れるといった事態を防止することができる。 The resin composition according to the present embodiment contains (A) 1 part by mass or more and 10 parts by mass or less of the metal chelating agent with respect to 100 parts by mass of the base polymer. By setting the content of the (D) metal chelating agent to 1 part by mass or more with respect to 100 parts by mass of the (A) base polymer, sufficient heat resistance can be obtained as an insulating layer of an insulated wire. Further, by setting the content of the (D) metal chelating agent to 10 parts by mass or less with respect to 100 parts by mass of the (A) base polymer, the (D) metal chelating agent is sufficiently dispersed in the (A) base polymer. It is possible to prevent the resin composition from being cracked in the low temperature bending test due to the generation of whelks.

(D)金属キレート剤としては、例えばヒドラジド化合物またはサリチル酸誘導体などが挙げられ、具体的には、N,N'−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、3−(N−サリチロイル)アミノ−1,2,4−トリアゾール、N'1,N'12−ビス(2−ヒドロキシベンゾイル)ドデカンジヒドラジド、または、2−ヒドロキシ−N−1H−1,2,4−トリアゾール−3−イルベンゾアミド、アルコールカルボン酸エステルなどが挙げられる。 Examples of the (D) metal chelating agent include hydrazine compounds and salicylic acid derivatives, and specific examples thereof include N, N'-bis [3- (3,5-di-tert-butyl-4-hydroxyphenyl). Propionyl] hydrazine, 3- (N-salicyloyl) amino-1,2,4-triazole, N'1, N'12-bis (2-hydroxybenzoyl) dodecandihydrazide, or 2-hydroxy-N-1H-1 , 2,4-Triazole-3-ylbenzoamide, alcohol carboxylic acid ester and the like.

[その他]
また、本実施の形態の樹脂組成物は、以上で説明した原材料以外にも、必要に応じて(E)その他の成分として、(E1)酸化防止剤、(E2)架橋助剤、着色剤、化学架橋剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、補強材、界面活性剤、無機充填材、可塑剤、発泡剤、相溶化剤、安定剤などを含有していてもよい。
[Other]
In addition to the raw materials described above, the resin composition of the present embodiment contains (E) other components such as (E1) antioxidant, (E2) cross-linking aid, and colorant, as required. Contains chemical cross-linking agents, flame retardants, UV absorbers, light stabilizers, softeners, lubricants, reinforcing materials, surfactants, inorganic fillers, plasticizers, foaming agents, compatibilizers, stabilizers, etc. You may.

(E1)酸化防止剤としては、例えば、フェノール系酸化防止剤、硫黄系酸化防止剤、フェノール/チオエステル系酸化防止剤、アミン系酸化防止剤、亜リン酸エステル系酸化防止剤などが挙げられる。 Examples of the (E1) antioxidant include phenol-based antioxidants, sulfur-based antioxidants, phenol / thioester-based antioxidants, amine-based antioxidants, and phosphite ester-based antioxidants.

(E2)架橋助剤としては、例えば、トリメチロールプロパントリメタクリレート(TMPT)、トリアリルイソシアヌレート、トリアリルシアヌレート、N,N'−メタフェニレンビスマレイミド、エチレングリコールジメタクリレート、アクリル酸亜鉛、メタクリル酸亜鉛などが挙げられる。 Examples of the (E2) cross-linking aid include trimethylolpropane trimethacrylate (TMPT), triallyl isocyanurate, triallyl cyanurate, N, N'-metaphenylene bismaleimide, ethylene glycol dimethacrylate, zinc acrylate, and methacrylic acid. Examples include zinc acid.

また、本実施の形態に係る絶縁電線の絶縁層を構成する樹脂組成物は、架橋されていることが好ましい。これにより、樹脂組成物の機械特性が向上する。 Further, it is preferable that the resin composition constituting the insulating layer of the insulated wire according to the present embodiment is crosslinked. This improves the mechanical properties of the resin composition.

<絶縁電線の製造方法>
図1に示す本実施の形態に係る絶縁電線10は、例えば、以下のように製造される。まず、(A)ベースポリマと、(B)金属水酸化物と、必要に応じて他の原材料とを溶融混練し、本実施の形態の樹脂組成物を得る。
<Manufacturing method of insulated wire>
The insulated wire 10 according to the present embodiment shown in FIG. 1 is manufactured as follows, for example. First, (A) a base polymer, (B) a metal hydroxide, and, if necessary, other raw materials are melt-kneaded to obtain the resin composition of the present embodiment.

本実施の形態の樹脂組成物を製造するための混練装置は、例えば、バンバリーミキサーや加圧ニーダなどのバッチ式混練機、二軸押出機などの連続式混練機などの公知の混練装置を採用することができる。 As the kneading device for producing the resin composition of the present embodiment, for example, a known kneading device such as a batch type kneader such as a Banbury mixer or a pressurized kneader, or a continuous kneader such as a twin-screw extruder is adopted. can do.

その後、導体1を準備し、押出成形機により、導体1の周囲を被覆するように、本実施の形態の樹脂組成物を押し出して、所定厚さの絶縁層2を形成する。こうすることで、絶縁電線10を製造することができる。 After that, the conductor 1 is prepared, and the resin composition of the present embodiment is extruded by an extrusion molding machine so as to cover the periphery of the conductor 1 to form an insulating layer 2 having a predetermined thickness. By doing so, the insulated wire 10 can be manufactured.

また、本実施の形態の絶縁電線10の製造方法においては、絶縁層2を形成した後に、絶縁層2を構成する樹脂組成物を、例えば電子線架橋法または化学架橋法により架橋する工程を含む。この工程は必須ではないが、前述したように、架橋により当該樹脂組成物の機械特性が向上するため、この工程を含むことが好ましい。 Further, the method for manufacturing the insulated wire 10 of the present embodiment includes a step of forming the insulating layer 2 and then cross-linking the resin composition constituting the insulating layer 2 by, for example, an electron beam cross-linking method or a chemical cross-linking method. .. Although this step is not essential, as described above, it is preferable to include this step because the cross-linking improves the mechanical properties of the resin composition.

電子線架橋法を用いる場合には、樹脂組成物を絶縁電線10の複数の被覆層2として成形した後に、例えば1〜30Mradの電子線を照射して架橋する。化学架橋法を用いる場合には、樹脂組成物にあらかじめ架橋剤を添加しておき、樹脂組成物を絶縁電線10の絶縁層2として形成した後に、熱処理して架橋する。樹脂組成物の配合組成も比較的簡素化できるため好ましい。 When the electron beam cross-linking method is used, the resin composition is formed as a plurality of coating layers 2 of the insulated wire 10, and then cross-linked by irradiating an electron beam of, for example, 1 to 30 Mrad. When the chemical cross-linking method is used, a cross-linking agent is added to the resin composition in advance, the resin composition is formed as the insulating layer 2 of the insulating electric wire 10, and then heat-treated for cross-linking. The compounding composition of the resin composition is also preferable because it can be relatively simplified.

(実施例)
以下、本発明を実施例に基づいてさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
(Example)
Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.

<実施例および比較例の概要>
以下、実施例1〜12および比較例1〜8の絶縁電線について説明する。実施例1〜12の絶縁電線は、図1に示す本実施の形態に係る絶縁電線10に対応する。比較例1〜8の絶縁電線は、図1に示す絶縁電線10と構成は同様であるが、絶縁層2を構成する樹脂組成物が実施例1〜12と異なっている。
<Outline of Examples and Comparative Examples>
Hereinafter, the insulated wires of Examples 1 to 12 and Comparative Examples 1 to 8 will be described. The insulated wires of Examples 1 to 12 correspond to the insulated wires 10 according to the present embodiment shown in FIG. The insulated wires of Comparative Examples 1 to 8 have the same configuration as the insulated wires 10 shown in FIG. 1, but the resin composition constituting the insulating layer 2 is different from that of Examples 1 to 12.

<実施例および比較例の製造方法>
実施例1〜12および比較例1〜8の絶縁電線の製造方法は次の通りである。まず、表1および表2に示す各原材料を室温にてドライブレンドし、混合した原材料を25L加圧ニーダにより130〜240℃にて溶融混練し、樹脂組成物を生成した。造粒機でペレット化した樹脂組成物を、電線製造用の押出被覆装置を用いて、導体の周囲に被覆して絶縁層を形成することにより、絶縁電線を作製した。この絶縁電線に電子線架橋処理(5Mrad)を行うことで、絶縁層を構成する樹脂組成物の架橋を行い、実施例1〜12の絶縁電線を作製した。比較例1〜8の絶縁電線の製造方法は、実施例1〜12の絶縁電線と同様であるため省略する。
<Manufacturing methods of Examples and Comparative Examples>
The methods for manufacturing the insulated wires of Examples 1 to 12 and Comparative Examples 1 to 8 are as follows. First, each of the raw materials shown in Tables 1 and 2 was dry-blended at room temperature, and the mixed raw materials were melt-kneaded at 130 to 240 ° C. with a 25 L pressure kneader to produce a resin composition. An insulated wire was produced by coating a resin composition pelletized by a granulator around a conductor using an extrusion coating device for manufacturing an electric wire to form an insulating layer. By performing an electron beam cross-linking treatment (5Mrad) on this insulated wire, the resin composition constituting the insulating layer was cross-linked to produce the insulated wires of Examples 1 to 12. The method for manufacturing the insulated wires of Comparative Examples 1 to 8 is the same as that of the insulated wires of Examples 1 to 12, and thus is omitted.

<実施例および比較例の原材料>
実施例1〜12および比較例1〜8の絶縁電線の絶縁層を構成する樹脂組成物の組成を表1および表2に示す。
<Ingredients for Examples and Comparative Examples>
The compositions of the resin compositions constituting the insulating layer of the insulated wires of Examples 1 to 12 and Comparative Examples 1 to 8 are shown in Tables 1 and 2.

Figure 2021036513
Figure 2021036513

Figure 2021036513
Figure 2021036513

実施例1〜12および比較例1〜8の絶縁電線の導体は、スズメッキ銅撚り導体(芯線19本、素線外径0.18mm)を用いた。絶縁層の被覆厚は0.26mmとした。 As the conductors of the insulated wires of Examples 1 to 12 and Comparative Examples 1 to 8, tin-plated copper stranded conductors (19 core wires, wire outer diameter 0.18 mm) were used. The coating thickness of the insulating layer was 0.26 mm.

<実施例および比較例の評価方法>
実施例および比較例は、以下で詳述する特性について評価した。総合評価としては、以下の(1)〜(6)の特性評価の全てにおいて、◎または○であるものを「◎」とし、△が含まれるものを「○」とし、×が含まれるものを「×」とした。
<Evaluation method of Examples and Comparative Examples>
Examples and comparative examples were evaluated for the properties detailed below. As a comprehensive evaluation, in all of the following characteristic evaluations (1) to (6), those with ◎ or ○ are designated as “◎”, those containing △ are designated as “○”, and those containing × are designated as “○”. It was set as "x".

(1)低温特性:低温試験
絶縁電線の低温特性を、低温巻き付け試験によって評価した。具体的には、作製した電線を−40℃で4時間冷却し、その後、φ5.6mmおよびφ7.0mmのマンドレルに6回巻き付けた。φ5.6mmのマンドレルに巻き付けた際に、絶縁層にクラックが観察されなかったものを「◎」とし、φ5.6mmのマンドレルではクラックが観察されたが、φ7.0mmのマンドレルではクラックが観察されなかったものを「○」とし、φ5.6mmおよびφ7.0mmのいずれのマンドレルでもクラックが観察されたものを「×」とした。
(1) Low temperature characteristics: Low temperature test The low temperature characteristics of the insulated wire were evaluated by a low temperature winding test. Specifically, the produced electric wire was cooled at −40 ° C. for 4 hours, and then wound around a φ5.6 mm and φ7.0 mm mandrel 6 times. When wound around a φ5.6 mm mandrel, no cracks were observed in the insulating layer as “◎”, and cracks were observed in the φ5.6 mm mandrel, but cracks were observed in the φ7.0 mm mandrel. Those that did not have were marked with "○", and those in which cracks were observed in both the φ5.6 mm and φ7.0 mm mandrels were marked with "x".

(2)耐熱性:熱老化試験
絶縁電線の耐熱性を、熱老化試験によって評価した。具体的には、作製した電線を180℃の老化試験機に100時間または168時間放置し、φ5.6mmのマンドレルに6回巻き付けた。168時間放置後にマンドレルに巻き付けた際に、絶縁層にクラックが観察されなかったものを「◎」とし、168時間放置後ではクラックが観察されたが、100時間放置後ではクラックが観察されなかったものを「○」とし、100時間放置後にクラックが観察されたものを「×」とした。
(2) Heat resistance: Heat aging test The heat resistance of the insulated wire was evaluated by the heat aging test. Specifically, the produced electric wire was left in an aging tester at 180 ° C. for 100 hours or 168 hours, and wound around a mandrel having a diameter of 5.6 mm 6 times. When the mandrel was wound around the mandrel after being left for 168 hours, no cracks were observed in the insulating layer, and the cracks were observed after being left for 168 hours, but no cracks were observed after being left for 100 hours. Those with cracks observed after being left for 100 hours were marked with "○", and those with cracks were marked with "x".

(3)難燃性:難燃試験
絶縁電線の難燃性を、規格EN50305.9.1.2に準拠した難燃試験により評価した。具体的には、作製した絶縁電線を37本撚りの1束とし、14束を等間隔で垂直に並べ、20分間バーナーで炎をあてた後、炭化長が下端部より1.0m以下のものを「◎」とし、炭化長が1.0mを超えて1.5m未満のものを「○」とし、炭化長が1.5m以上のものを「×」とした。
(3) Flame retardancy: Flame retardant test The flame retardancy of the insulated wire was evaluated by a flame retardant test conforming to the standard EN5035.9.2.1. Specifically, the produced insulated wires are made into one bundle of 37 twists, 14 bundles are arranged vertically at equal intervals, and after burning with a burner for 20 minutes, the carbonization length is 1.0 m or less from the lower end. Was designated as “⊚”, those having a carbonization length of more than 1.0 m and less than 1.5 m were designated as “◯”, and those having a carbonization length of 1.5 m or more were designated as “x”.

(4)耐ダイナミックカットスルー性:ダイナミックカットスルー試験
絶縁電線の耐ダイナミックカットスルー性を、規格EN50305.5.6に準拠したダイナミックカットスルー試験により評価した。具体的には、先端にニードルがついた切断刃を1N/秒の速度で絶縁電線に当てて、絶縁層が切断された荷重(4回の平均値)を測定した。荷重が90N以上であるものを「◎」とし、荷重が70N以上90N未満であるものを「○」とし、荷重が70N未満であるものを「×」とした。
(4) Dynamic cut-through resistance: Dynamic cut-through test The dynamic cut-through resistance of the insulated wire was evaluated by a dynamic cut-through test in accordance with the standard EN50305.5.6. Specifically, a cutting blade having a needle at the tip was applied to an insulated wire at a speed of 1 N / sec, and the load at which the insulating layer was cut (mean value of 4 times) was measured. A load of 90 N or more was designated as “⊚”, a load of 70 N or more and less than 90 N was designated as “◯”, and a load of less than 70 N was designated as “x”.

(5)電線加工性
絶縁電線の電線加工性をダイスカスおよびニップルカスの発生の有無および直流安定性試験により評価した。具体的には、1000mの絶縁電線を製造する場合において、絶縁層の押出成形時にダイスカスがない、または、ダイスカスが発生してもエアーで飛ばすことができ電線外観に異常がなく、かつ、ニップルカスもないものを「◎」とし、ダイスカスがない、または、ダイスカスが発生してもエアーで飛ばすことができ、電線外観に異常がなく、かつ、ニップルカスが微量に発生したものを「○」とし、ニップルカス起因によるコブが発生し、後述の直流安定性試験において240時間以上短絡しないものを「△」とし、ニップルカス起因によるコブが発生し、後述の直流安定性試験において240時間未満で短絡したもの、または、絶縁電線の外観荒れが著しいものを「×」とした。
(5) Wire workability The wire workability of the insulated wire was evaluated by the presence or absence of die residue and nipple residue and the DC stability test. Specifically, in the case of manufacturing an insulated wire of 1000 m, there is no die residue during extrusion molding of the insulating layer, or even if die residue is generated, it can be blown off with air, and there is no abnormality in the appearance of the electric wire, and the nipple residue is also present. If there is no die scum, or if there is no dice scum, it can be blown off with air, and if there is no abnormality in the appearance of the wire and a small amount of nipple scum is generated, it is marked as "○". If bumps are generated due to the cause and do not short-circuit for 240 hours or more in the DC stability test described later, they are marked with "Δ", and if bumps are generated due to nipple residue and short-circuited in less than 240 hours in the DC stability test described later, or , The one with a markedly rough appearance of the insulated wire was marked with "x".

(6)絶縁性:直流安定性試験
絶縁電線の絶縁性を、規格EN50305.6.7に準拠した直流安定性試験により評価した。具体的には、作製した絶縁電線を85℃で3質量%濃度の食塩水に浸漬させた状態で300Vを印加し、短絡(絶縁破壊)するまでの時間を測定した。絶縁破壊するまでの時間が300時間以上であるものを「◎」とし、240時間以上300時間未満であるものを「○」とし、240時間未満であるものを「×」とした。
(6) Insulation: DC stability test The insulation of the insulated wire was evaluated by a DC stability test in accordance with the standard EN050305.6.7. Specifically, 300 V was applied in a state where the produced insulated wire was immersed in a saline solution having a concentration of 3% by mass at 85 ° C., and the time until a short circuit (dielectric breakdown) was measured. Those having a time until dielectric breakdown of 300 hours or more were designated as "⊚", those having a time of 240 hours or more and less than 300 hours were marked with "○", and those having a time of less than 240 hours were marked with "x".

<実施例および比較例の詳細および評価結果>
表1に実施例1〜12の構成および評価結果を示す。また、表2に比較例1〜8の構成および評価結果を示す。
<Details of Examples and Comparative Examples and Evaluation Results>
Table 1 shows the configurations and evaluation results of Examples 1 to 12. Table 2 shows the configurations and evaluation results of Comparative Examples 1 to 8.

表1に示すように、実施例1〜12の絶縁電線は、絶縁層を構成する樹脂組成物の組成を変化させたものである。 As shown in Table 1, the insulated wires of Examples 1 to 12 have different compositions of the resin composition constituting the insulating layer.

表1に示すように、実施例1〜12において、樹脂組成物の組成の違いにかかわらず上記(1)〜(6)の特性は、いずれも良好であった。特に、実施例1〜5は、他の実施例に比べてより高い評価となった。 As shown in Table 1, in Examples 1 to 12, the characteristics of (1) to (6) above were all good regardless of the difference in the composition of the resin composition. In particular, Examples 1 to 5 received a higher evaluation than the other examples.

具体的には、実施例7よりも(B)水酸化マグネシウムの添加量が少なく、かつ、実施例8よりも(D)金属キレート剤の添加量が少ない実施例1〜6,9〜12は、他の実施例に比べて(1)低温特性が優れている。 Specifically, Examples 1 to 6, 9 to 12 have a smaller amount of (B) magnesium hydroxide added than in Example 7 and a smaller amount of (D) metal chelating agent added than in Example 8. , (1) Excellent low temperature characteristics as compared with other examples.

実施例7よりも(B)水酸化マグネシウムの添加量が少なく、かつ、実施例9,10よりも(D)金属キレート剤の添加量が多い実施例1〜6,8,11,12は、他の実施例に比べて(2)耐熱性が優れている。 In Examples 1 to 6, 8, 11 and 12, the amount of (B) magnesium hydroxide added was smaller than that of Example 7, and the amount of (D) metal chelating agent added was larger than that of Examples 9 and 10. Compared with other examples, (2) heat resistance is excellent.

実施例1〜5,10よりも(B)水酸化マグネシウムの添加量が多い実施例6〜9,11,12は、他の実施例に比べて(3)難燃性が優れている。特に、(B)水酸化マグネシウムの添加量が多い実施例7は、他の実施例に比べて(4)耐ダイナミックカットスルー性が優れている。 Examples 6 to 9, 11 and 12 in which the amount of magnesium hydroxide added (B) is larger than that in Examples 1 to 5 and 10 are (3) superior in flame retardancy as compared with other examples. In particular, Example 7 in which (B) a large amount of magnesium hydroxide is added is superior in (4) dynamic cut-through resistance as compared with other examples.

(C)加工助剤に融点の異なる複数の金属石鹸を併用した実施例1,7、および、(C)加工助剤に金属石鹸とシリコーン系加工助剤とを併用した実施例2〜5,8〜10,12は、他の実施例に比べて(5)電線加工性が優れている。特に、(C)加工助剤の添加量が多い実施例5は、他の実施例に比べて特に(5)電線加工性が優れている。 Examples 1 and 7 in which (C) a plurality of metal soaps having different melting points are used in combination with a processing aid, and Examples 2 to 5 in which a metal soap and a silicone-based processing aid are used in combination as a processing aid. 8 to 10 and 12 are (5) excellent in wire workability as compared with other examples. In particular, Example 5 in which (C) a large amount of processing aid is added is particularly excellent in (5) wire workability as compared with other examples.

実施例6〜9,11,12よりも(B)水酸化マグネシウムの添加量が少なく、かつ、実施例10よりも(A2)無水マレイン酸変性高密度ポリエチレンの添加量が多い実施例1〜5は、他の実施例に比べて(6)絶縁性が優れている。 Examples 1 to 5 in which the amount of (B) magnesium hydroxide added is smaller than in Examples 6 to 9, 11 and 12, and the amount of (A2) maleic anhydride-modified high-density polyethylene added is larger than in Example 10. Is superior in (6) insulating property as compared with other examples.

一方、表2に示すように、比較例1は、難燃剤である(B)水酸化マグネシウムの添加量が少ないため、(3)難燃性で不合格となった。 On the other hand, as shown in Table 2, Comparative Example 1 was rejected due to (3) flame retardancy because the amount of magnesium hydroxide (B) magnesium hydroxide added as a flame retardant was small.

比較例2は、可燃物である(C)加工助剤の添加量が多いため、(3)難燃性で不合格となった。 Comparative Example 2 was rejected due to (3) flame retardancy because the amount of the combustible (C) processing aid added was large.

比較例3は、(C)加工助剤の添加量が少ないため、ダイスカスおよびニップルカスを防止することができず、かつ、直流安定性試験においてカス由来のコブから短絡したことにより、(5)電線加工性および(6)絶縁性で不合格となった。 In Comparative Example 3, (C) the amount of the processing aid added was small, so that it was not possible to prevent die scraps and nipple scraps, and in the DC stability test, a short circuit occurred from the bumps derived from the scraps, resulting in (5) electric wires. It was rejected due to workability and (6) insulation.

比較例4は、難燃剤である(B)水酸化マグネシウムの添加量が多いため、(6)絶縁性で不合格となった。 In Comparative Example 4, the flame retardant (B) magnesium hydroxide was added in a large amount, so that (6) the insulating property was rejected.

比較例5は、(D)金属キレート剤の添加量が少ないため、(2)耐熱性で不合格となった。 In Comparative Example 5, (D) the amount of the metal chelating agent added was small, and therefore (2) heat resistance was rejected.

比較例6は、(D)金属キレート剤の添加量が多いため、分散性が低下して低温割れを起こし、(1)低温特性で不合格となった。 In Comparative Example 6, since (D) the amount of the metal chelating agent added was large, the dispersibility was lowered and low-temperature cracking occurred, and (1) the low-temperature characteristics were rejected.

比較例7は、(A2)無水マレイン酸変性高密度ポリエチレンを含んでいないため、(6)絶縁性で不合格となった。 Comparative Example 7 was rejected due to (6) insulation because it did not contain (A2) maleic anhydride-modified high-density polyethylene.

比較例8は、(A1)高密度ポリエチレンを含んでいないため、押し出し時の粘度が高すぎて外観が荒れ、かつ、直流安定性試験において肉厚の薄い箇所から短絡したことにより、(5)電線加工性および(6)絶縁性で不合格となった。 In Comparative Example 8, since (A1) high-density polyethylene was not contained, the viscosity at the time of extrusion was too high and the appearance was rough, and in the DC stability test, a short circuit was made from a thin walled portion (5). It was rejected due to wire workability and (6) insulation.

<実施例および比較例のまとめ>
実施例および比較例の結果より、本発明によれば、単層の絶縁層を有するセパレータレスの絶縁電線において、機械特性、難燃性、絶縁性、低温特性、耐熱性および電線加工性を備えることができることが示された。特に、(A)ベースポリマとして(A2)無水マレイン酸変性高密度ポリエチレンを添加することで、高い絶縁性が得られることが明らかになった。そして、(A)ベースポリマに(C)加工助剤を適量添加することで、高い電線加工性が得られること、すなわち、ダイスカスおよびニップルカスの発生を防止できることが明らかになった。そして、(A)ベースポリマに(D)金属キレート剤を適量添加することで、高い耐熱性が得られることが明らかになった。
<Summary of Examples and Comparative Examples>
From the results of Examples and Comparative Examples, according to the present invention, a separatorless insulated wire having a single-layer insulating layer has mechanical properties, flame retardancy, insulating properties, low temperature properties, heat resistance, and wire workability. It was shown that it can be done. In particular, it has been clarified that high insulating properties can be obtained by adding (A2) maleic anhydride-modified high-density polyethylene as the (A) base polymer. Then, it was clarified that high wire workability can be obtained by adding an appropriate amount of the processing aid (C) to the (A) base polymer, that is, the generation of dice shavings and nipple shavings can be prevented. Then, it was clarified that high heat resistance can be obtained by adding an appropriate amount of the (D) metal chelating agent to the (A) base polymer.

本発明は前記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。 The present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the gist thereof.

1 導体
2 絶縁層
10 絶縁電線
1 Conductor 2 Insulation layer 10 Insulation wire

Claims (8)

導体と、前記導体の周囲に被覆される絶縁層とを有し、
前記絶縁層は、前記導体上に直接被覆されており、
前記絶縁層を構成する樹脂組成物は、ベースポリマと、金属水酸化物と、加工助剤と、金属キレート剤とを含み、
前記ベースポリマは、高密度ポリエチレンと、無水マレイン酸変性高密度ポリエチレンと、エチレン−アクリル酸エステル−無水マレイン酸3元共重合体と、無水マレイン酸変性エチレン−α−オレフィン共重合体と、エチレン−アクリル酸エステル共重合体とを含み、
前記加工助剤は、金属石鹸および/またはシリコーン系加工助剤を含み、
前記樹脂組成物は、前記ベースポリマ100質量部中、前記無水マレイン酸変性高密度ポリエチレンを5質量部以上35質量部未満含有し、
前記樹脂組成物は、前記ベースポリマ100質量部中、前記エチレン−アクリル酸エステル−無水マレイン酸3元共重合体を30質量部以上50質量部未満含有し、
前記樹脂組成物は、前記ベースポリマ100質量部中、前記無水マレイン酸変性エチレン−α−オレフィン共重合体を5質量部以上20質量部以下含有し、
前記樹脂組成物は、前記ベースポリマ100質量部中、前記エチレン−アクリル酸エステル共重合体を10質量部以上30質量部以下含有し、
前記樹脂組成物は、前記ベースポリマ100質量部に対して前記金属水酸化物を140質量部以上200質量部以下含有し、
前記樹脂組成物は、前記ベースポリマ100質量部に対して前記加工助剤を1質量部以上10質量部以下含有し、
前記樹脂組成物は、前記ベースポリマ100質量部に対して前記金属キレート剤を1質量部以上10質量部以下含有する、絶縁電線。
It has a conductor and an insulating layer coated around the conductor.
The insulating layer is directly coated on the conductor, and the insulating layer is directly coated on the conductor.
The resin composition constituting the insulating layer contains a base polymer, a metal hydroxide, a processing aid, and a metal chelating agent.
The base polymer is high-density polyethylene, maleic anhydride-modified high-density polyethylene, ethylene-acrylic acid ester-maleic anhydride ternary copolymer, maleic anhydride-modified ethylene-α-olefin copolymer, and ethylene. -Contains with acrylic ester copolymer
The processing aids include metal soaps and / or silicone-based processing aids.
The resin composition contains 5 parts by mass or more and less than 35 parts by mass of the maleic anhydride-modified high-density polyethylene in 100 parts by mass of the base polymer.
The resin composition contains 30 parts by mass or more and less than 50 parts by mass of the ethylene-acrylic acid ester-maleic anhydride ternary copolymer in 100 parts by mass of the base polymer.
The resin composition contains 5 parts by mass or more and 20 parts by mass or less of the maleic anhydride-modified ethylene-α-olefin copolymer in 100 parts by mass of the base polymer.
The resin composition contains 10 parts by mass or more and 30 parts by mass or less of the ethylene-acrylic acid ester copolymer in 100 parts by mass of the base polymer.
The resin composition contains 140 parts by mass or more and 200 parts by mass or less of the metal hydroxide with respect to 100 parts by mass of the base polymer.
The resin composition contains 1 part by mass or more and 10 parts by mass or less of the processing aid with respect to 100 parts by mass of the base polymer.
The resin composition is an insulated electric wire containing 1 part by mass or more and 10 parts by mass or less of the metal chelating agent with respect to 100 parts by mass of the base polymer.
請求項1記載の絶縁電線において、
前記加工助剤は、融点が120℃以上の金属石鹸を含む、絶縁電線。
In the insulated wire according to claim 1,
The processing aid is an insulated electric wire containing a metal soap having a melting point of 120 ° C. or higher.
請求項2記載の絶縁電線において、
前記加工助剤は、融点が220℃以上の金属石鹸を含む、絶縁電線。
In the insulated wire according to claim 2,
The processing aid is an insulated electric wire containing a metal soap having a melting point of 220 ° C. or higher.
請求項1〜3のいずれか1項に記載の絶縁電線において、
前記エチレン−アクリル酸エステル共重合体のアクリル酸エステル量は、10質量%以上25質量%以下である、絶縁電線。
In the insulated wire according to any one of claims 1 to 3,
An insulated wire in which the amount of acrylic acid ester of the ethylene-acrylic acid ester copolymer is 10% by mass or more and 25% by mass or less.
請求項1〜4のいずれか1項に記載の絶縁電線において、
前記無水マレイン酸変性エチレン−α−オレフィン共重合体のガラス転移点は、−55℃以下である、絶縁電線。
In the insulated wire according to any one of claims 1 to 4,
An insulated wire having a glass transition point of the maleic anhydride-modified ethylene-α-olefin copolymer of −55 ° C. or lower.
請求項1〜5のいずれか1項に記載の絶縁電線において、
前記樹脂組成物は、前記ベースポリマ100質量部に対して前記金属水酸化物を150質量部以上180質量部以下含有する、絶縁電線。
In the insulated wire according to any one of claims 1 to 5,
The resin composition is an insulated electric wire containing 150 parts by mass or more and 180 parts by mass or less of the metal hydroxide with respect to 100 parts by mass of the base polymer.
請求項1〜6のいずれか1項に記載の絶縁電線において、
前記金属水酸化物は、水酸化マグネシウムである、絶縁電線。
In the insulated wire according to any one of claims 1 to 6,
The metal hydroxide is an insulated electric wire which is magnesium hydroxide.
請求項1〜7のいずれか1項に記載の絶縁電線において、
前記樹脂組成物は、架橋されている、絶縁電線。
In the insulated wire according to any one of claims 1 to 7,
The resin composition is a crosslinked insulated electric wire.
JP2019233954A 2019-08-23 2019-12-25 insulated wire Active JP7247881B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010789478.2A CN112409676B (en) 2019-08-23 2020-08-07 Insulated wire
DE102020122063.4A DE102020122063A1 (en) 2019-08-23 2020-08-24 ELECTRICALLY INSULATED CABLE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019152715 2019-08-23
JP2019152715 2019-08-23

Publications (2)

Publication Number Publication Date
JP2021036513A true JP2021036513A (en) 2021-03-04
JP7247881B2 JP7247881B2 (en) 2023-03-29

Family

ID=74716380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019233954A Active JP7247881B2 (en) 2019-08-23 2019-12-25 insulated wire

Country Status (2)

Country Link
JP (1) JP7247881B2 (en)
CN (1) CN112409676B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610298A (en) * 2021-07-16 2023-03-01 Hitachi Metals Ltd Insulated wire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325833A (en) * 2000-05-12 2001-11-22 Furukawa Electric Co Ltd:The Insulated electric wire
JP2002042553A (en) * 2000-07-19 2002-02-08 Furukawa Electric Co Ltd:The Insulating resin composition and insulated wire
JP2003261721A (en) * 2002-03-08 2003-09-19 Sumitomo Wiring Syst Ltd Olefinic thermoplastic elastomer composition and covered wire
JP2008007730A (en) * 2006-06-30 2008-01-17 Nippon Polyethylene Kk Flame-retardant resin composition, electric wire and cable using the same
JP2009269955A (en) * 2008-05-01 2009-11-19 Hitachi Cable Ltd Radiation-resistant sheath material and radiation-resistant cable
JP2011046879A (en) * 2009-08-28 2011-03-10 Swcc Showa Cable Systems Co Ltd Electric wire/cable-coating flame retardant composition and electric wire/cable
JP2011219530A (en) * 2010-04-05 2011-11-04 Autonetworks Technologies Ltd Composition for electrical wire covering material, insulated wire and wiring harness
JP2016108390A (en) * 2014-12-03 2016-06-20 日立金属株式会社 Non-halogen crosslinkable resin composition, crosslinked insulated electric wire and cable

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6300094B2 (en) * 2014-07-07 2018-03-28 日立金属株式会社 Cross-linked insulated wire and cable using non-halogen crosslinkable resin composition
JP6398663B2 (en) * 2014-12-03 2018-10-03 日立金属株式会社 Non-halogen crosslinkable resin composition, cross-linked insulated wire and cable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001325833A (en) * 2000-05-12 2001-11-22 Furukawa Electric Co Ltd:The Insulated electric wire
JP2002042553A (en) * 2000-07-19 2002-02-08 Furukawa Electric Co Ltd:The Insulating resin composition and insulated wire
JP2003261721A (en) * 2002-03-08 2003-09-19 Sumitomo Wiring Syst Ltd Olefinic thermoplastic elastomer composition and covered wire
JP2008007730A (en) * 2006-06-30 2008-01-17 Nippon Polyethylene Kk Flame-retardant resin composition, electric wire and cable using the same
JP2009269955A (en) * 2008-05-01 2009-11-19 Hitachi Cable Ltd Radiation-resistant sheath material and radiation-resistant cable
JP2011046879A (en) * 2009-08-28 2011-03-10 Swcc Showa Cable Systems Co Ltd Electric wire/cable-coating flame retardant composition and electric wire/cable
JP2011219530A (en) * 2010-04-05 2011-11-04 Autonetworks Technologies Ltd Composition for electrical wire covering material, insulated wire and wiring harness
JP2016108390A (en) * 2014-12-03 2016-06-20 日立金属株式会社 Non-halogen crosslinkable resin composition, crosslinked insulated electric wire and cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2610298A (en) * 2021-07-16 2023-03-01 Hitachi Metals Ltd Insulated wire

Also Published As

Publication number Publication date
CN112409676B (en) 2024-03-01
CN112409676A (en) 2021-02-26
JP7247881B2 (en) 2023-03-29

Similar Documents

Publication Publication Date Title
JP6376464B2 (en) Insulated wire
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP6376463B2 (en) cable
JP5323332B2 (en) Flame retardant insulated wire
JP6229942B2 (en) Insulated wires for railway vehicles and cables for railway vehicles
JP5780477B2 (en) Phosphorus-free non-halogen flame retardant insulated wires and phosphorus-free non-halogen flame retardant cables
JP6902205B2 (en) cable
JP2015000913A (en) Non-halogen flame-retardant resin composition, and wires and cables prepared using the same
US9624366B2 (en) Crosslinkable halogen-free resin composition, cross-linked insulated wire and cable
JP6777374B2 (en) Insulated wires and cables
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
EP3293738A1 (en) Insulated wire and cable
JP2008277142A (en) Insulated wire, and wiring harness
JPWO2018074233A1 (en) Insulated wire and insulating resin composition
JP6300094B2 (en) Cross-linked insulated wire and cable using non-halogen crosslinkable resin composition
JP7247881B2 (en) insulated wire
JP2017050189A (en) Insulation wire and cable using non-halogen flame retardant resin composition
JP2012109229A (en) Non-halogen fire retardant multilayer insulated wire
US9627099B2 (en) Crosslinkable halogen-free resin composition, cross-linked insulated wire and cable
JP5535136B2 (en) Non-halogen flame retardant multilayer insulated wire
JP2008037927A (en) Flame-retardant resin composition and insulated wire
JP6816420B2 (en) Insulated wires and cables
JP6816419B2 (en) Insulated wires and cables
JP6947857B2 (en) Wires and cables
JP6860833B2 (en) Flame-retardant insulated wires and flame-retardant cables

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220906

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221103

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R150 Certificate of patent or registration of utility model

Ref document number: 7247881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150