JP2008037927A - Flame-retardant resin composition and insulated wire - Google Patents

Flame-retardant resin composition and insulated wire Download PDF

Info

Publication number
JP2008037927A
JP2008037927A JP2006211087A JP2006211087A JP2008037927A JP 2008037927 A JP2008037927 A JP 2008037927A JP 2006211087 A JP2006211087 A JP 2006211087A JP 2006211087 A JP2006211087 A JP 2006211087A JP 2008037927 A JP2008037927 A JP 2008037927A
Authority
JP
Japan
Prior art keywords
mass
resin composition
flame
retardant resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006211087A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ishida
克義 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2006211087A priority Critical patent/JP2008037927A/en
Publication of JP2008037927A publication Critical patent/JP2008037927A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flame-retardant resin composition using resin material with low crystallinity, imparting a sufficient flame-retardancy and a proper adhesion with a conductor and attaining a high tensile strength at break after crosslinking. <P>SOLUTION: The flame-retardant resin composition comprises 240-300 pts.mass of magnesium hydroxide surface treated with vinyl silane based coupling agent compounded with 100 pts.mass of a base resin comprising 50-70 pts.mass of an α-olefin copolymer with more than 1.0 g/10 min of melt flow rate and more than 30 MPa of tensile strength, 30-50 pts.mass of an ethylene-vinyl acetate copolymer with more than 30 mass% of acetic acid content, and/or an ethylene-acrylate rubber with more than 30 mass% of methylacrylate content. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高い難燃性、電気絶縁性、耐水性に優れ、電子機器用電線等の被覆材などとして好適なハロゲンフリーの難燃性樹脂組成物とそれを用いた絶縁電線に関する。   The present invention relates to a halogen-free flame-retardant resin composition that is excellent in high flame retardancy, electrical insulation, and water resistance, and is suitable as a coating material for electric appliances and the like, and an insulated wire using the same.

電子機器用電線にはUL認定が必要である。難燃性はUL94に示されたVW−1燃焼試験方法により、非常に高難燃性が要求される。
従来、ハロゲンフリーの難燃性樹脂組成物としては、エチレン・酢酸ビニル共重合体(以下、EVAと略記する。)やエチレン・エチルアクリレート共重合体(以下、EEAと略記する。)などのポリオレフィン系樹脂に、水酸化マグネシウム、水酸化アルミニウムなどの難燃剤、メラミンシアヌレート、ヒドロキシスズ酸亜鉛などの難燃助剤を配合したものが知られている(例えば、特許文献1参照。)。
また、シランカップリング剤やステアリン酸などで表面処理した水酸化マグネシウムなどを用いて、樹脂組成物の機械特性を高めることも知られている(例えば、特許文献2参照。)。
さらに、EVAやアクリルゴムなどの酸コポリマーに金属水和物などを多量に添加した難燃性組成物を導体上に被覆した後、電子線で被覆を架橋して得られる絶縁電線も提案されている(例えば、特許文献3参照。)。
UL certification is required for electric wires for electronic equipment. The flame retardancy is required to be very high flame retardancy by the VW-1 combustion test method shown in UL94.
Conventionally, as a halogen-free flame retardant resin composition, polyolefin such as ethylene / vinyl acetate copolymer (hereinafter abbreviated as EVA) and ethylene / ethyl acrylate copolymer (hereinafter abbreviated as EEA). A resin containing a flame retardant such as magnesium hydroxide or aluminum hydroxide and a flame retardant aid such as melamine cyanurate or zinc hydroxystannate is known (for example, see Patent Document 1).
It is also known to improve the mechanical properties of a resin composition using magnesium hydroxide surface-treated with a silane coupling agent or stearic acid (for example, see Patent Document 2).
Furthermore, an insulated wire obtained by coating a flame retardant composition obtained by adding a large amount of metal hydrate to an acid copolymer such as EVA or acrylic rubber on a conductor and then crosslinking the coating with an electron beam has been proposed. (For example, refer to Patent Document 3).

このようなハロゲンフリーの難燃性樹脂組成物にあっては、焼却処分の際に有害なハロゲン化合物を発生することがなく、この樹脂組成物からなる被覆層を有する絶縁電線が、UL1581規格に規定されるVW−1燃焼試験に合格する高難燃性を発揮し、良好な機械特性、加工性を有しており、例えば電子機器用絶縁電線の絶縁体、シースなどに用いられている。
特開2000−294036号公報 特開2000−195336号公報 特開2004−339317号公報
In such a halogen-free flame-retardant resin composition, no harmful halogen compound is generated during incineration, and an insulated wire having a coating layer made of this resin composition conforms to the UL1581 standard. It exhibits high flame retardancy that passes the prescribed VW-1 combustion test, has good mechanical properties and workability, and is used, for example, as an insulator or sheath of an insulated wire for electronic equipment.
JP 2000-294036 A JP 2000-195336 A JP 2004-339317 A

ハロゲンフリーの高難燃材料には、水酸化マグネシウムなどの金属水和物の多量添加が(200〜300質量部)必要とされるため、金属水和物の多量充填が可能なベース樹脂が選択される。このような樹脂としては、例えば、結晶性の低いEVA、EEA、EPゴム、スチレン系エラストマー、エチレン・アクリルゴム(以下、AEMと略記する。)などの樹脂ブレンドが挙げられる。
しかしながら、この種の樹脂を用いることによって、樹脂分の酸成分と導体表面の水酸基が水素結合することによって密着力が強くなり、例えば、電線とコネクターを接続するときに電線の端末部分を除去する作業が困難になるなど、ハーネス加工性が悪くなるという問題があった。
また、これらの電線は、通常可撓性を得るために、撚線の導体が用いられるが、被覆樹脂との密着性が過度に強い場合には、導体上に被覆残りが生じたり、導体切れを起こす場合もある。
Halogen-free highly flame retardant materials require the addition of a large amount of metal hydrate such as magnesium hydroxide (200 to 300 parts by mass), so a base resin capable of filling a large amount of metal hydrate is selected. Is done. Examples of such resins include resin blends such as EVA, EEA, EP rubber, styrene elastomer, and ethylene / acrylic rubber (hereinafter abbreviated as AEM) having low crystallinity.
However, by using this type of resin, the acid component of the resin and the hydroxyl group on the surface of the conductor form hydrogen bonds, thereby increasing the adhesion, and for example, removing the end portion of the wire when connecting the wire and the connector. There was a problem that the workability of the harness deteriorated, such as difficult work.
In addition, in order to obtain flexibility, these electric wires are usually made of stranded conductors. However, if the adhesiveness with the coating resin is excessively strong, a coating residue may be formed on the conductor or the conductor may be cut. May occur.

また、ハロゲンフリーの難燃性樹脂組成物において、高難燃性を損なうことなく、導体との密着力を低下させる手段として、結晶性が低くフィラー充填性の高いポリオレフィンを樹脂の主成分とすることも考えられる。しかし、ポリオレフィン樹脂は、EVAやAEMに比べ、水酸化マグネシウムを添加したときに得られる難燃効果が低いため、難燃剤の添加量が樹脂100質量部に対して240質量部以上必要である。
またポリオレフィン樹脂はJIS K6922−1に規定されるメルトマスフローレイト(以下、MFRと略記する。)が1.0g/10min以上、引張強度が30MPa以上でなければ、照射後の機械特性が10.3MPa以上を達成できない。同様に水酸化マグネシウムはビニルシランカップリング剤を用い電子線照射により機械特性を向上させなければならない。
In addition, in a halogen-free flame-retardant resin composition, a polyolefin having a low crystallinity and a high filler filling property is used as a main component of the resin as a means for reducing the adhesion to the conductor without impairing the high flame retardancy. It is also possible. However, the polyolefin resin has a low flame retardant effect obtained when magnesium hydroxide is added as compared with EVA or AEM, and therefore the amount of flame retardant added is 240 parts by mass or more with respect to 100 parts by mass of the resin.
The polyolefin resin has a mechanical property after irradiation of 10.3 MPa unless the melt mass flow rate (hereinafter abbreviated as MFR) defined in JIS K6922-1 is 1.0 g / 10 min or more and the tensile strength is not 30 MPa or more. The above cannot be achieved. Similarly, magnesium hydroxide must have a mechanical property improved by electron beam irradiation using a vinylsilane coupling agent.

本発明は、前記事情に鑑みてなされ、結晶性の低い樹脂材料を用い、十分な難燃性と適度な導体密着力が得られ、且つ架橋後に高い引張破断強度を達成できる難燃性樹脂組成物の提供を目的とする。   The present invention has been made in view of the above circumstances, uses a resin material having low crystallinity, provides sufficient flame retardancy and appropriate conductor adhesion, and can achieve high tensile fracture strength after crosslinking. The purpose is to provide goods.

前記目的を達成するため、本発明は、MFR1.0g/10min以上、引張強度30MPa以上のαオレフィン共重合体50〜70質量部と、酢酸含有量が30質量%以上であるEVAおよび/またはメチルアクリレート含有量が30質量%以上であるAEM30〜50質量部とからなるベース樹脂100質量部に、ビニルシランカップリング剤で表面処理した水酸化マグネシウム240〜300質量部を配合してなることを特徴とする難燃性樹脂組成物を提供する。
本発明の難燃性樹脂組成物は、架橋されてなることが好ましい。
In order to achieve the above object, the present invention provides EVA and / or methyl having an MFR of 1.0 g / 10 min or more and an α-olefin copolymer having a tensile strength of 30 MPa or more and an acetic acid content of 30 mass% or more. It is characterized in that 240 to 300 parts by mass of magnesium hydroxide surface-treated with a vinyl silane coupling agent is blended with 100 parts by mass of a base resin consisting of 30 to 50 parts by mass of AEM having an acrylate content of 30% by mass or more. Provided is a flame retardant resin composition.
The flame retardant resin composition of the present invention is preferably crosslinked.

また本発明は、前述した本発明に係る難燃性樹脂組成物が導体上に被覆されてなり、且つ該難燃性樹脂組成物からなる被覆が電子線照射により架橋されていることを特徴とする絶縁電線を提供する。   Further, the present invention is characterized in that the above-mentioned flame retardant resin composition according to the present invention is coated on a conductor, and the coating composed of the flame retardant resin composition is crosslinked by electron beam irradiation. Provide insulated wires.

本発明の難燃性樹脂組成物は、結晶性の低い樹脂材料を用い、十分な難燃性と適度な導体密着力が得られ、且つ架橋後に高い引張破断強度を達成することができる。   The flame-retardant resin composition of the present invention uses a resin material having low crystallinity, provides sufficient flame retardancy and appropriate conductor adhesion, and can achieve high tensile breaking strength after crosslinking.

本発明の難燃性樹脂組成物は、MFR1.0以上、引張強度30MPa以上のαオレフィン共重合体50〜70質量部と、酢酸含有量が30質量%以上であるEVAおよび/またはメチルアクリレート含有量が30質量%以上であるAEM30〜50質量部とからなるベース樹脂100質量部に、ビニルシランカップリング剤で表面処理した水酸化マグネシウム240〜300質量部を配合してなるものである。   The flame retardant resin composition of the present invention contains 50 to 70 parts by mass of an α-olefin copolymer having an MFR of 1.0 or more and a tensile strength of 30 MPa or more, and EVA and / or methyl acrylate having an acetic acid content of 30% by mass or more. It is obtained by blending 240 to 300 parts by mass of magnesium hydroxide surface-treated with a vinylsilane coupling agent in 100 parts by mass of a base resin consisting of 30 to 50 parts by mass of AEM having an amount of 30% by mass or more.

結晶性の低い材料でULの105℃耐熱と引張強度10.3MPaを達成するには、樹脂組成物に電子線を照射して架橋することが必要である。この点から、本発明の難燃性樹脂組成物は、ベース樹脂中に、ポリエチレンなどの非極性樹脂に比べて架橋効率の高いEVAやAEMを配合している。また、本発明の難燃性樹脂組成物は、導体との密着力が弱いαオレフィン共重合体を50%以上配合している。特に、耐熱性や引張強度を補うために、高強度のαオレフィン共重合体と、電子線照射により架橋効率の高いビニルシランカップリング剤処理の水酸化マグネシウムとを組み合わせている。これらを限定的に組み合わせることでのみ、目標を達成することができた。   In order to achieve UL 105 ° C. heat resistance and tensile strength of 10.3 MPa with a material having low crystallinity, it is necessary to crosslink the resin composition by irradiating it with an electron beam. From this point, the flame-retardant resin composition of the present invention contains EVA or AEM having a higher crosslinking efficiency than the nonpolar resin such as polyethylene in the base resin. In addition, the flame retardant resin composition of the present invention contains 50% or more of an α-olefin copolymer having a weak adhesion to a conductor. In particular, in order to supplement heat resistance and tensile strength, a high-strength α-olefin copolymer is combined with magnesium hydroxide treated with a vinyl silane coupling agent having a high crosslinking efficiency by electron beam irradiation. Only by combining them in a limited way, the goal could be achieved.

本発明の難燃性樹脂組成物に用いられる、MFR1.0以上、引張強度30MPa以上のαオレフィン共重合体としては、エチレン−αオレフィン共重合体、プロピレン−αオレフィン共重合体などが挙げられ、その中でもエチレン−αオレフィン共重合体が好ましいく、市販品としてはタフマー(登録商標)A−1085(商品名、三井化学社製)などが挙げられる。   Examples of the α-olefin copolymer having an MFR of 1.0 or more and a tensile strength of 30 MPa or more used in the flame-retardant resin composition of the present invention include an ethylene-α-olefin copolymer and a propylene-α-olefin copolymer. Of these, ethylene-α-olefin copolymers are preferable, and commercially available products include TAFMER (registered trademark) A-1085 (trade name, manufactured by Mitsui Chemicals, Inc.).

本発明の難燃性樹脂組成物に用いられる、酢酸含有量が30質量%以上のEVAとしては、EVA単体、EVAにエチレン−エチルアクリレート共重合体(EEA)、エチレン−ブチルアクリレート共重合体(EBA)、エチレン−メチルアクリレート共重合体(EMA)等のエチレン−アクリル酸エステル共重合体などを添加した樹脂が挙げられ、EVA単体を用いることが好ましい。これらの樹脂は、分子内に酸素を含んでおり、燃焼時にポリマーが熱分解されることにより不燃性のガスを発生するので、これをベース樹脂の構成成分として用いることにより、燃焼時に自己消火性を発現する難燃性樹脂組成物が得られる。   As EVA used in the flame retardant resin composition of the present invention, acetic acid content of 30% by mass or more, EVA alone, EVA with ethylene-ethyl acrylate copolymer (EEA), ethylene-butyl acrylate copolymer ( EBA), a resin to which an ethylene-acrylic acid ester copolymer such as ethylene-methyl acrylate copolymer (EMA) is added, and the like, and it is preferable to use EVA alone. These resins contain oxygen in the molecule and generate nonflammable gas when the polymer is thermally decomposed during combustion. By using this as a constituent component of the base resin, self-extinguishing properties during combustion Is obtained.

本発明の難燃性樹脂組成物に用いられる、メチルアクリレート含有量が30質量%以上であるAEMとしては、エチレン30〜70質量%とアクリル酸メチル、アクリル酸ブチルなどのアクリル酸エステル30〜70質量%との共重合体、特にアクリル酸メチルとの共重合体が好ましい。さらに、エチレン−アクリル酸メチルを主成分とし、不飽和有機酸エステルを第3成分とする三元共重合体が特に有効である。これは通常市販されているものを用いることができ、例えばベイマック(VAMAC:商品名、デュポン社製)などが挙げられる。このアクリルゴムは耐熱性、機械的強度、難燃性、柔軟性を向上させる目的でブレンドされる。   As AEM used for the flame retardant resin composition of the present invention having a methyl acrylate content of 30% by mass or more, 30 to 70% by mass of ethylene and 30 to 70 acrylic acid esters such as methyl acrylate and butyl acrylate. A copolymer with mass%, particularly a copolymer with methyl acrylate is preferred. Furthermore, a terpolymer having ethylene-methyl acrylate as a main component and an unsaturated organic acid ester as a third component is particularly effective. As this, a commercially available product can be used, and examples thereof include Baymac (VAMAC: trade name, manufactured by DuPont). This acrylic rubber is blended for the purpose of improving heat resistance, mechanical strength, flame retardancy, and flexibility.

本発明の難燃性樹脂組成物において、ベース樹脂100質量部中のαオレフィン共重合体の配合量は、50〜70質量部の範囲とする。αオレフィン共重合体の配合量が50質量部未満であると、難燃性樹脂組成物の導体密着力が高くなって、絶縁電線のハーネス加工性が悪くなる。一方、αオレフィン共重合体の配合量が70質量部を超えると、得られる樹脂組成物の難燃性が悪化すると共に、引張強度が低下する。   In the flame-retardant resin composition of the present invention, the blending amount of the α-olefin copolymer in 100 parts by mass of the base resin is in the range of 50 to 70 parts by mass. When the blending amount of the α-olefin copolymer is less than 50 parts by mass, the conductor adhesion of the flame retardant resin composition is increased, and the harness workability of the insulated wire is deteriorated. On the other hand, when the blending amount of the α-olefin copolymer exceeds 70 parts by mass, the flame retardancy of the resulting resin composition deteriorates and the tensile strength decreases.

本発明の難燃性樹脂組成物において、ベース樹脂100質量部中のEVAおよび/またはAEMの配合比率は、30〜50質量部の範囲とする。EVAおよび/またはAEMの配合量が30質量部未満であると、αオレフィン共重合体の配合量が増加し、得られる樹脂組成物の難燃性が悪化すると共に、電子線照射による架橋効率が悪くなり引張強度が低下する。一方、EVAおよび/またはAEMの配合量が50質量部を超えると、αオレフィン共重合体の配合量が少なくなって、難燃性樹脂組成物の導体密着力が高くなる。   In the flame-retardant resin composition of the present invention, the blending ratio of EVA and / or AEM in 100 parts by mass of the base resin is in the range of 30 to 50 parts by mass. When the blending amount of EVA and / or AEM is less than 30 parts by mass, the blending amount of the α-olefin copolymer increases, the flame retardancy of the resulting resin composition is deteriorated, and the crosslinking efficiency by electron beam irradiation is increased. It becomes worse and the tensile strength decreases. On the other hand, when the blending amount of EVA and / or AEM exceeds 50 parts by mass, the blending amount of the α-olefin copolymer decreases, and the conductor adhesion of the flame retardant resin composition increases.

本発明の難燃性樹脂組成物における難燃剤には、難燃性付与効果が大きく、且つベース樹脂との親和性に優れた、ビニルシランカップリング剤で表面処理した水酸化マグネシウム(以下、単に水酸化マグネシウムと記す。)が用いられる。この水酸化マグネシウムには、その平均粒子径が0.7〜1.3μmのものが好ましく、また水酸化マグネシウム粒子表面におけるビニルシランカップリング剤の存在量は0.1〜2質量%程度で十分である。ビニルシランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシランなどが好ましい。   As the flame retardant in the flame retardant resin composition of the present invention, magnesium hydroxide surface treated with a vinyl silane coupling agent (hereinafter simply referred to as water) has a large effect of imparting flame retardancy and excellent affinity with the base resin. (Referred to as magnesium oxide). The magnesium hydroxide preferably has an average particle diameter of 0.7 to 1.3 μm, and the amount of vinylsilane coupling agent present on the surface of the magnesium hydroxide particles is about 0.1 to 2% by mass. is there. As the vinyl silane coupling agent, vinyl trimethoxy silane, vinyl triethoxy silane and the like are preferable.

本発明の難燃性樹脂組成物において、この水酸化マグネシウムの配合量は、ベース樹脂100質量部に対して240〜300質量部の範囲とする。水酸化マグネシウムの配合量が240質量部未満であると、得られる難燃性樹脂組成物の難燃性が不十分となる。一方、水酸化マグネシウムの配合量が300質量部を超えると、得られる難燃性樹脂組成物の機械特性、特に引張強度が悪化する。   In the flame-retardant resin composition of the present invention, the amount of magnesium hydroxide is in the range of 240 to 300 parts by mass with respect to 100 parts by mass of the base resin. When the blending amount of magnesium hydroxide is less than 240 parts by mass, the flame retardancy of the obtained flame retardant resin composition becomes insufficient. On the other hand, when the compounding amount of magnesium hydroxide exceeds 300 parts by mass, the mechanical properties, particularly the tensile strength, of the obtained flame-retardant resin composition is deteriorated.

本発明の難燃性樹脂組成物では、前述した必須成分以外に、難燃助剤、酸化防止剤、紫外線吸収剤、銅害防止剤、帯電防止剤、滑剤、加工助剤、着色剤、無機充填剤などの添加剤を適宜配合することができる。   In the flame retardant resin composition of the present invention, in addition to the essential components described above, flame retardant aids, antioxidants, ultraviolet absorbers, copper damage inhibitors, antistatic agents, lubricants, processing aids, colorants, inorganic Additives such as fillers can be appropriately blended.

本発明の難燃性樹脂組成物は、架橋されていてもよい。架橋を施すことにより、得られる難燃性樹脂組成物の耐熱性、耐摩耗性が向上する。架橋方法には、成形後に電子線を照射する電子線架橋法もしくは予め難燃性樹脂組成物に架橋剤を配合しておき、成形後加熱して架橋させる化学架橋が採用される。   The flame retardant resin composition of the present invention may be cross-linked. By performing the crosslinking, the heat resistance and wear resistance of the obtained flame-retardant resin composition are improved. As the cross-linking method, an electron beam cross-linking method in which an electron beam is irradiated after molding or a chemical cross-linking in which a cross-linking agent is preliminarily blended with a flame retardant resin composition and then heated and cross-linked is employed.

本発明の難燃性樹脂組成物からなる成形品が、例えば電子機器用絶縁電線等の絶縁体やシースなどの薄肉のものでは照射線量1〜30Mradの電子線架橋が好ましく、厚肉の成形品の場合には化学架橋が好ましい。
化学架橋に用いられる架橋剤には、ジクミルパーオキサイド、ジ−tert−ブチルパーオキサイドなどの有機過酸化物が用いられ、架橋助剤には、アクリル酸亜鉛、トリアリルイソシアヌレートなどの不飽和化合物が用いられる。
When the molded article made of the flame-retardant resin composition of the present invention is thin, such as an insulator such as an insulated wire for electronic equipment or a sheath, electron beam crosslinking with an irradiation dose of 1 to 30 Mrad is preferable, and a thick molded article In this case, chemical crosslinking is preferred.
Organic peroxides such as dicumyl peroxide and di-tert-butyl peroxide are used as the crosslinking agent used for chemical crosslinking, and unsaturated acrylates such as zinc acrylate and triallyl isocyanurate are used as the crosslinking aid. A compound is used.

本発明の絶縁電線は、前述した難燃性樹脂組成物からなる絶縁体または絶縁体とシースを有するもので、導体上もしくは絶縁体上に周知の押出被覆法により前記難燃性樹脂組成物を被覆して絶縁体あるいはシースを形成したもの、あるいは被覆後に電子線を照射して、あるいは加熱して絶縁体、シースを架橋したものである。この絶縁電線の絶縁体の厚さは、0.05〜0.8mmとされ、シースの厚さは0.05〜0.8mmとされる。   The insulated wire of the present invention has an insulator made of the flame retardant resin composition described above or an insulator and a sheath, and the flame retardant resin composition is coated on a conductor or an insulator by a known extrusion coating method. An insulator or a sheath is formed by coating, or an insulator or a sheath is crosslinked by irradiation with an electron beam or heating after coating. The thickness of the insulator of this insulated wire is 0.05 to 0.8 mm, and the thickness of the sheath is 0.05 to 0.8 mm.

本発明の難燃性樹脂組成物は、塩素などのハロゲン元素が含まれないので、これからなる成形物を焼却処分する際に、有害なハロゲン含有ガスが発生することがない。また、高い難燃性を示し、この組成物を被覆層とした絶縁電線は、UL1581に規定されるVW−1燃焼試験に合格する。
さらに、機械特性が良好であり、引張破断強度が10MPa以上、引張破断伸びが150%以上の値を有する。
また、架橋を施したものでは、耐熱性、耐摩耗性、硬度等の特性が向上する。
以下、実施例により本発明の効果を実証する。
Since the flame-retardant resin composition of the present invention does not contain a halogen element such as chlorine, no harmful halogen-containing gas is generated when a molded product made of the flame-retardant resin composition is incinerated. Moreover, the insulated wire which shows high flame retardance and made this composition a coating layer passes the VW-1 combustion test prescribed | regulated to UL1581.
Furthermore, the mechanical properties are good, the tensile breaking strength is 10 MPa or more, and the tensile breaking elongation is 150% or more.
In addition, those subjected to crosslinking improve characteristics such as heat resistance, wear resistance and hardness.
Hereinafter, the effects of the present invention will be demonstrated by examples.

表1(実施例1〜8)、及び表2(比較例1〜10)に示す配合組成(単位:質量部)の樹脂組成物を配合し、バンバリーにより180℃で5分間混練した。その際、表1及び表2中に記した各配合成分に加え、加工助剤としてベース樹脂100質量部に対し5質量部のステアリン酸、及び2質量部の酸化防止剤を添加した。
混練後、押出機にて、AWG26(7/0.16TA)の導体上に押出被覆を行い、絶縁厚0.25mmの被覆を形成した。ついで、これに照射線量15Mradの電子線を照射し、絶縁体を電子線架橋した。
得られた絶縁電線について、以下の評価を行った。
The resin compositions having the blending compositions (units: parts by mass) shown in Table 1 (Examples 1 to 8) and Table 2 (Comparative Examples 1 to 10) were blended and kneaded at 180 ° C. for 5 minutes. In that case, in addition to each compounding component described in Table 1 and Table 2, 5 mass parts stearic acid and 2 mass parts antioxidant were added with respect to 100 mass parts of base resins as a processing aid.
After kneading, extrusion coating was performed on the conductor of AWG26 (7 / 0.16TA) with an extruder to form a coating with an insulation thickness of 0.25 mm. Subsequently, this was irradiated with an electron beam with an irradiation dose of 15 Mrad, and the insulator was electron beam cross-linked.
The following evaluation was performed about the obtained insulated wire.

評価項目 (合否判断基準)
・引張破断強度 (10MPa以上合格)
・引張破断伸び (150%以上合格)
・難燃性 (UL1581規格VW−1燃焼試験、5本中5本合格)
・導体密着力 (2kg/10mm以下合格)
Evaluation items (acceptance criteria)
・ Tensile strength at break (passed 10MPa or more)
-Tensile elongation at break (over 150% passed)
・ Flame retardancy (UL 1581 standard VW-1 combustion test, 5 out of 5 passed)
-Conductor adhesion (passed 2kg / 10mm or less)

引張破断強度及び引張破断伸びは、UL1581に記載の方法に従って測定した。
導体密着力は、絶縁電線の被覆10mmを残して導体を引き抜くときの力を測定した。絶縁電線の被覆を10mm残し、他部は被覆除去して導体を露出させたものを検体とし、板に導体外径より大きく、被覆外径よりも小さい穴を穿設した板を用い、この穴の上から下に向けて検体の導体を通し、引っ張り速度100mm/minで下方に引っ張り、引き抜く力を測定した。
The tensile strength at break and the tensile elongation at break were measured according to the methods described in UL1581.
The conductor adhesion force was measured by pulling out the conductor leaving the insulated wire covering 10 mm. The insulation wire is left 10 mm, the other part is removed, and the conductor is exposed, and a sample is used. A plate having a hole larger than the outer diameter of the conductor and smaller than the outer diameter of the plate is used. The specimen conductor was passed from above to below, pulled downward at a pulling speed of 100 mm / min, and the pulling force was measured.

表1及び表2において、各配合成分は以下の市販品を用いた。
EVAは、EV180(商品名、三井・デュポンポリケミカル社製、ブロックPP、MFR=0.3)を用いた。
AEMは、VAMAC DP(商品名、三井・デュポンポリケミカル社製、MA含有量30質量%以上)を用いた。
αオレフィン共重合体は、タフマー(登録商標)A−1085(三井化学社製)を用いた。
水酸化マグネシウムは、キスマ5L(商品名、協和化学社製)を用いた。
In Tables 1 and 2, the following commercially available products were used as the blending components.
As EVA, EV180 (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd., block PP, MFR = 0.3) was used.
As AEM, VAMAC DP (trade name, manufactured by Mitsui DuPont Polychemical Co., Ltd., MA content of 30% by mass or more) was used.
As the α-olefin copolymer, Tafmer (registered trademark) A-1085 (manufactured by Mitsui Chemicals) was used.
As the magnesium hydroxide, Kisuma 5L (trade name, manufactured by Kyowa Chemical Co., Ltd.) was used.

Figure 2008037927
Figure 2008037927

Figure 2008037927
Figure 2008037927

表1に示す本発明に係る実施例1〜8は、十分な難燃性と適度な導体密着力が得られ、且つ架橋後に高い引張破断強度を達成することができた。   In Examples 1 to 8 according to the present invention shown in Table 1, sufficient flame retardancy and appropriate conductor adhesion were obtained, and high tensile fracture strength was achieved after crosslinking.

一方、表2に示す比較例1は、αオレフィン共重合体が本発明の範囲より多く、EVAが不足している組成としたものであり、難燃性及び引張破断伸びが不合格となった。
比較例2は、αオレフィン共重合体が本発明の範囲より多く、AEMが不足している組成としたものであり、難燃性及び引張破断強度が不合格となった。
比較例2は、αオレフィン共重合体が本発明の範囲より多く、EVA+AEMの合計量が不足している組成としたものであり、難燃性及び引張破断強度が不合格となった。
比較例4は、αオレフィン共重合体が本発明の範囲より少なく、EVA+AEMの合計量が過剰になっている組成としたものであり、難燃性や強度は合格しているが、導体密着力が高すぎて不合格となった。
比較例5は、αオレフィン共重合体が本発明の範囲より少なく、EVAを過剰としたものであり、難燃性は合格しているが、導体密着力が高すぎて不合格となり、さらに引張破断伸びが不合格となった。
比較例6は、αオレフィン共重合体が本発明の範囲より少なく、AEMを過剰としたものであり、難燃性は合格しているが、導体密着力が高すぎて不合格となり、さらに引張破断強度が不合格となった。
比較例7及び比較例8は、水酸化マグネシウムを本発明の範囲より少なくしたものであり、難燃性が不合格となった。
比較例9及び比較例10は、水酸化マグネシウムを過剰に配合したものであり、難燃性は合格したが、引張破断強度又は引張破断伸びが不合格となった。

On the other hand, Comparative Example 1 shown in Table 2 has a composition in which the α-olefin copolymer is more than the range of the present invention and EVA is insufficient, and the flame retardancy and the tensile elongation at break are rejected. .
In Comparative Example 2, the α-olefin copolymer was more than the range of the present invention and AEM was insufficient, and the flame retardancy and tensile strength at break were unacceptable.
In Comparative Example 2, the α-olefin copolymer was more than the range of the present invention, and the total amount of EVA + AEM was insufficient, and the flame retardancy and the tensile strength at break were unacceptable.
Comparative Example 4 has a composition in which the α-olefin copolymer is less than the range of the present invention and the total amount of EVA + AEM is excessive, and the flame retardancy and strength are passed, but the conductor adhesion strength Was too high to be rejected.
In Comparative Example 5, the α-olefin copolymer is less than the range of the present invention, EVA is excessive, and the flame retardancy is passed, but the conductor adhesion is too high and the test is rejected. The elongation at break failed.
In Comparative Example 6, the α-olefin copolymer is less than the range of the present invention, and the AEM is excessive, and the flame retardancy is passed, but the conductor adhesion is too high and the test is rejected. The breaking strength was rejected.
In Comparative Example 7 and Comparative Example 8, the amount of magnesium hydroxide was less than the range of the present invention, and the flame retardancy was rejected.
In Comparative Example 9 and Comparative Example 10, magnesium hydroxide was added in excess, and the flame retardancy passed, but the tensile strength at break or tensile elongation at break failed.

Claims (3)

JIS K6922−1に規定されるメルトマスフローレイト1.0g/10min以上、引張強度30MPa以上のαオレフィン共重合体50〜70質量部と、酢酸含有量が30質量%以上であるエチレン・酢酸ビニル共重合体および/またはメチルアクリレート含有量が30質量%以上であるエチレン・アクリルゴム30〜50質量部とからなるベース樹脂100質量部に、ビニルシランカップリング剤で表面処理した水酸化マグネシウム240〜300質量部を配合してなることを特徴とする難燃性樹脂組成物。   50 to 70 parts by mass of an α-olefin copolymer having a melt mass flow rate of 1.0 g / 10 min or more and a tensile strength of 30 MPa or more as defined in JIS K6922-1, and an ethylene / vinyl acetate copolymer having an acetic acid content of 30% by mass or more. Magnesium hydroxide 240 to 300 mass parts surface-treated with a vinylsilane coupling agent on 100 parts by mass of a base resin composed of 30 to 50 parts by mass of an ethylene / acrylic rubber having a polymer and / or methyl acrylate content of 30 mass% or more A flame retardant resin composition comprising a part. 架橋されてなることを特徴とする請求項1に記載の難燃性樹脂組成物。   The flame retardant resin composition according to claim 1, which is crosslinked. 請求項1に記載の難燃性樹脂組成物が導体上に被覆されてなり、且つ該難燃性樹脂組成物からなる被覆が電子線照射により架橋されていることを特徴とする絶縁電線。

An insulated wire, wherein the flame retardant resin composition according to claim 1 is coated on a conductor, and the coating made of the flame retardant resin composition is crosslinked by electron beam irradiation.

JP2006211087A 2006-08-02 2006-08-02 Flame-retardant resin composition and insulated wire Withdrawn JP2008037927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006211087A JP2008037927A (en) 2006-08-02 2006-08-02 Flame-retardant resin composition and insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006211087A JP2008037927A (en) 2006-08-02 2006-08-02 Flame-retardant resin composition and insulated wire

Publications (1)

Publication Number Publication Date
JP2008037927A true JP2008037927A (en) 2008-02-21

Family

ID=39173336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006211087A Withdrawn JP2008037927A (en) 2006-08-02 2006-08-02 Flame-retardant resin composition and insulated wire

Country Status (1)

Country Link
JP (1) JP2008037927A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304884A (en) * 2012-03-14 2013-09-18 日立电线株式会社 Phosphorus-free based halogen-free flame-retardant resin composition, phosphorus-free based halogen-free flame-retardant insulated electric wire and phosphorus-free based halogen-free flame-retardant cable
CN104078140A (en) * 2013-03-29 2014-10-01 日立金属株式会社 Halogen- and phosphorus-free flame-retardant insulated wire and halogen- and phosphorus-free flame-retardant insulated cable
JP2019116582A (en) * 2017-12-27 2019-07-18 古河電気工業株式会社 Silane crosslinked acrylic rubber molded body and manufacturing method therefor, silane crosslinked acrylic rubber composition, and oil resistant product
CN111499959A (en) * 2018-12-27 2020-08-07 矢崎总业株式会社 Resin composition, coated cable, and wire harness

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304884A (en) * 2012-03-14 2013-09-18 日立电线株式会社 Phosphorus-free based halogen-free flame-retardant resin composition, phosphorus-free based halogen-free flame-retardant insulated electric wire and phosphorus-free based halogen-free flame-retardant cable
JP2013216866A (en) * 2012-03-14 2013-10-24 Hitachi Cable Ltd Phosphorus-free based halogen-free flame-retardant resin composition, phosphorus-free based halogen-free flame-retardant insulated electric wire and phosphorus-free based halogen-free flame-retardant cable
CN105111571A (en) * 2012-03-14 2015-12-02 日立金属株式会社 Phosphorus-free based halogen-free flame-retardant insulated electric wire and phosphorus-free based halogen-free flame-retardant cable
US9267079B2 (en) 2012-03-14 2016-02-23 Hitachi Metals, Ltd. Phosphorus-free based halogen-free flame-retardant resin composition, phosphorus-free based halogen-free flame-retardant insulated electric wire and phosphorus-free based halogen-free flame-retardant cable
CN104078140A (en) * 2013-03-29 2014-10-01 日立金属株式会社 Halogen- and phosphorus-free flame-retardant insulated wire and halogen- and phosphorus-free flame-retardant insulated cable
JP2019116582A (en) * 2017-12-27 2019-07-18 古河電気工業株式会社 Silane crosslinked acrylic rubber molded body and manufacturing method therefor, silane crosslinked acrylic rubber composition, and oil resistant product
CN111499959A (en) * 2018-12-27 2020-08-07 矢崎总业株式会社 Resin composition, coated cable, and wire harness
CN111499959B (en) * 2018-12-27 2023-07-14 矢崎总业株式会社 Resin composition, coated cable, and wire harness

Similar Documents

Publication Publication Date Title
JP5144013B2 (en) Flame retardant resin composition and molded body using the same
JP5306632B2 (en) Flame retardant resin composition and insulated wire coated with the same
JP2006310093A (en) Non-halogen-based insulated electric wire and wire harness
JP5260852B2 (en) Wire covering resin composition, insulated wire and method for producing the same
JP5275647B2 (en) Insulated wires with excellent heat resistance
JP5330660B2 (en) Insulated wires with excellent weather resistance
JP5269476B2 (en) Electric wire / cable
JP2005171172A (en) Flame retardant crosslincked resin composition and insulated wire and wire harness using the same
JP2005314516A (en) Non-halogen flame-retardant resin composition
JP2008037927A (en) Flame-retardant resin composition and insulated wire
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP5260868B2 (en) Insulating resin composition and insulated wire
JP2008097918A (en) Non-halogen flame-resistant wire excelling in terminal workability
JP2002146118A (en) Flame-retardant resin composition and flame-retardant insulated wire using the same as coating material
JP2010157413A (en) Non-halogen flame retardant electric wire/cable
JP2006244894A (en) Nonhalogen flame-retardant electric wire and cable
JP2005268036A (en) Non halogen flame retardant electric wire / cable
JP2009275191A (en) Flame retardant resin composition, insulated wire and wire harness
JP4057410B2 (en) Insulating resin composition and insulated wire using the same
WO2013002114A1 (en) Flame retardant resin composition and molded article
JP2006182875A (en) Flame-retardant thermoplastic resin composition
JP2004256621A (en) Nonhalogen flame-retardant resin composition
JP2004339317A (en) Non-halogen flame retardant resin composition
JP2009227872A (en) Insulating resin composition, and insulated electric wire
JP2002343144A (en) Non halogen flame retardant insulated electric wire excellent in wire stripping

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006