JP2010157413A - Non-halogen flame retardant electric wire/cable - Google Patents

Non-halogen flame retardant electric wire/cable Download PDF

Info

Publication number
JP2010157413A
JP2010157413A JP2008334612A JP2008334612A JP2010157413A JP 2010157413 A JP2010157413 A JP 2010157413A JP 2008334612 A JP2008334612 A JP 2008334612A JP 2008334612 A JP2008334612 A JP 2008334612A JP 2010157413 A JP2010157413 A JP 2010157413A
Authority
JP
Japan
Prior art keywords
electric wire
silane coupling
halogen
flame retardant
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008334612A
Other languages
Japanese (ja)
Inventor
Katsuichi Fukuchi
勝一 福地
Kazufumi Kimura
一史 木村
Motoharu Kajiyama
元治 梶山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008334612A priority Critical patent/JP2010157413A/en
Publication of JP2010157413A publication Critical patent/JP2010157413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high strength non-halogen flame-retardant electric wire capable of enhancing elastic modulus and strength. <P>SOLUTION: In the non-halogen flame-retardant electric wire covered with a non-halogen resin composition in which a flame-retardant agent such as magnesium hydroxide, aluminum hydroxide or the like with a surface treated with a silane coupling agent is added to an olefin based polymer, the resin composition in which the flame-retardant agent with the surface treated with the silane coupling agent having a molecular weight of 200 or more, preferably 240 or more and having a straight-chain molecular structure is mixed into the olefin based polymer is used for an insulating layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高強度を有するノンハロゲン電線・ケーブルに関するものである。   The present invention relates to a non-halogen wire / cable having high strength.

従来、電線・ケーブル被覆材料は安価でかつ高難燃であるポリ塩化ビニル(以下PVCと称す)が広く用いられてきた。しかし、PVCはハロゲン元素を含有していることから、廃電線焼却時にダイオキシンの発生が指摘されるようになり、ノンハロゲン化が強く望まれるようになった。   Conventionally, polyvinyl chloride (hereinafter referred to as PVC), which is inexpensive and highly flame retardant, has been widely used as an electric wire / cable coating material. However, since PVC contains a halogen element, generation of dioxins has been pointed out during incineration of waste electric wires, and non-halogenation has been strongly desired.

ノンハロゲン難燃電線(ケーブルも含む)は、ハロゲン元素を含まないオレフィン系ポリマと難燃剤に水酸化マグネシウム又は水酸化アルミニウムの何れか若しくは両方を含み、更にメラニンシアヌレート、ホウ酸亜鉛及びホウ酸金属塩等の難燃助剤を含むものが知られている。   Non-halogen flame retardant wires (including cables) include olefin polymers that do not contain halogen elements, flame retardants containing either or both of magnesium hydroxide and aluminum hydroxide, and melanin cyanurate, zinc borate and metal borate. Those containing a flame retardant aid such as salt are known.

上記の技術でハロゲン元素を含まないオレフィン系ポリマとしては、ポリエチレン(以下PEと称す)の他に燃焼時に難燃性に有利な酸素遮断効果のある炭化膜を形成するエチレン・エチルアクリレートコポリマ(以下EEAと称す)又はエチレン酢酸ビニルコポリマ(以下EVAと称す)の単独もしくはブレンド物が主に用いられている。さらに難燃性を高めるために上記難燃剤、難燃助剤を併用していることが知られている。   As an olefin polymer that does not contain a halogen element by the above-mentioned technology, in addition to polyethylene (hereinafter referred to as PE), an ethylene / ethyl acrylate copolymer (hereinafter referred to as PE) that forms a carbonized film having an oxygen barrier effect that is advantageous for flame retardancy during combustion. EEA) or ethylene vinyl acetate copolymer (hereinafter referred to as EVA) alone or blends are mainly used. Furthermore, it is known that the flame retardant and the flame retardant aid are used in combination in order to enhance the flame retardancy.

機器用途の電線ではこれらの樹脂組成物からなる電線端末にコネクタを取り付けて使用されるが、上記の組成物では、従来のPVCと比較し弾性率、強度が小さいことから変形しやすい、破れやすい。変形、破れが生じると二次的にコネクタから電線が抜けやすい、導体が腐食し電気の導通不良が起こるため改善すべき問題となっている。   For electric wires for equipment, a connector is attached to an electric wire end made of these resin compositions, but the above composition is easily deformed and easily broken because of its low elastic modulus and strength compared to conventional PVC. . When deformation or breakage occurs, the electric wires are likely to come out of the connector secondarily, the conductor is corroded, and electrical conduction failure occurs, which is a problem to be improved.

特開2003−34793号公報JP 2003-34793 A 特開平7−176219号公報JP-A-7-176219

このノンハロゲン樹脂組成物の強度を向上させるには、シランカップリング剤で表面処理した難燃剤を用いることが行われている。   In order to improve the strength of the non-halogen resin composition, a flame retardant surface-treated with a silane coupling agent is used.

すなわち、水酸化マグネシウムや水酸化アルミニウム等は親水性であり、PE、EEA、EVA等との結合が悪いため、水酸化マグネシウムや水酸化アルミニウム等をシランカップリング剤で表面処理を行って疎水性とし、これによりPE、EEA、EVA等との結合性を良好にして高強度化を図っている。   That is, magnesium hydroxide, aluminum hydroxide, etc. are hydrophilic and have poor binding to PE, EEA, EVA, etc., so that magnesium hydroxide, aluminum hydroxide, etc. are surface treated with a silane coupling agent to be hydrophobic. As a result, the bonding strength with PE, EEA, EVA, etc. is improved to increase the strength.

しかしながら、シランカップリング剤で表面処理した難燃剤を用いても、現状では十分な弾性率、強度が得られていない。また、シランカップリング処理される水酸化マグネシウムなどの平均粒径を1.0μm以下、特に0.5μm以下にすることで、難燃剤の分散性を高めて弾性率や強度を高めるようにしているが、それでも十分な強度が得られない問題がある。   However, even if a flame retardant surface-treated with a silane coupling agent is used, sufficient elastic modulus and strength are not obtained at present. Further, by making the average particle size of magnesium hydroxide or the like to be subjected to silane coupling treatment be 1.0 μm or less, particularly 0.5 μm or less, the dispersibility of the flame retardant is increased to increase the elastic modulus and strength. However, there is still a problem that sufficient strength cannot be obtained.

本発明の目的は、弾性率や強度を高めることができるノンハロゲン難燃電線・ケーブルを提供することにある。   An object of the present invention is to provide a non-halogen flame retardant electric wire / cable that can increase the elastic modulus and strength.

上記の目的を達成するために、請求項1の発明は、オレフィン系ポリマに、シランカップリング剤で表面処理した水酸化マグネシウム、水酸化アルミニウム等の難燃剤を加えたノンハロゲン樹脂組成物を被覆したノンハロゲン難燃電線において、分子量200以上、好ましくは240以上で、かつ直鎖状の分子構造をもつシランカップリング剤で表面処理した難燃剤を、オレフィン系ポリマに混合した樹脂組成物を絶縁層に用いるようにしたノンハロゲン難燃電線・ケーブルである。   In order to achieve the above object, the invention of claim 1 is coated with a non-halogen resin composition in which a flame retardant such as magnesium hydroxide or aluminum hydroxide, which has been surface-treated with a silane coupling agent, is added to an olefin polymer. In a non-halogen flame retardant electric wire, a resin composition in which a flame retardant having a molecular weight of 200 or more, preferably 240 or more, and surface-treated with a silane coupling agent having a linear molecular structure is mixed with an olefin polymer is used as an insulating layer. It is a non-halogen flame retardant electric wire / cable designed to be used.

請求項2の発明は、シランカップリング剤は、γ−メタクリロキシプロピルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ジブチルアミノプロピルトリメトキシシラン、γ−ジアリルアミノプロピルトリメトキシシラン等からなる請求項1記載のノンハロゲン難燃電線・ケーブルである。   In the invention of claim 2, the silane coupling agent is selected from the group consisting of γ-methacryloxypropyltrimethoxysilane, n-hexadecyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-ureidopropyltri 2. The non-halogen flame-retardant electric wire / cable according to claim 1, comprising ethoxysilane, γ-dibutylaminopropyltrimethoxysilane, γ-diallylaminopropyltrimethoxysilane, or the like.

請求項3の発明は、オレフィン系ポリマ100重量部に対してシランカップリング剤で表面処理した水酸化マグネシウム又は水酸化アルミニウムを単独又は併用で40〜300重量部混合した請求項1又は2記載のノンハロゲン難燃電線・ケーブルである。   Invention of Claim 3 mixed 40-300 weight part of magnesium hydroxide or aluminum hydroxide surface-treated with the silane coupling agent individually or in combination with 100 weight part of olefin polymer. Non-halogen flame retardant wire / cable.

請求項4の発明は、水酸化マグネシウム又は水酸化アルミニウムの粒径が1.5μm以下、好ましくは1.0μm以下である請求項1〜3いずれかに記載のノンハロゲン難燃電線・ケーブルである。   The invention of claim 4 is the non-halogen flame-retardant electric wire / cable according to any one of claims 1 to 3, wherein the particle size of magnesium hydroxide or aluminum hydroxide is 1.5 μm or less, preferably 1.0 μm or less.

請求項5の発明は、オレフィン系ポリマに、マレイン酸コポリマ1〜30重量部併用する請求項1〜4いずれかに記載のノンハロゲン難燃電線・ケーブルである。   The invention according to claim 5 is the non-halogen flame retardant electric wire / cable according to any one of claims 1 to 4, wherein 1 to 30 parts by weight of a maleic acid copolymer is used in combination with the olefin polymer.

本発明は、難燃剤をシランカップリング剤で処理する際に、シランカップリング剤として、分子量200以上、好ましくは240以上で、かつ直鎖状の分子構造をもつシランカップリング剤を用いることで、ポリオレフィン系コポリマと難燃剤との結合が良好となり、弾性率や強度を高めることができる。   In the present invention, when a flame retardant is treated with a silane coupling agent, a silane coupling agent having a molecular weight of 200 or more, preferably 240 or more and having a linear molecular structure is used as the silane coupling agent. The bond between the polyolefin-based copolymer and the flame retardant becomes good, and the elastic modulus and strength can be increased.

以下本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明は、ハロゲンを含有しないオレフィン系ポリマ100重量部と、シランカップリング剤で表面処理した水酸化マグネシウム又は水酸化アルミニウムを40〜300重量部配合することで、端末加工性に優れた高強度のノンハロゲン難燃電線・ケーブルとするものである。   The present invention blends 100 parts by weight of an olefin polymer containing no halogen and 40 to 300 parts by weight of magnesium hydroxide or aluminum hydroxide surface-treated with a silane coupling agent, thereby providing high strength with excellent terminal processability. Non-halogen flame retardant wire / cable.

ここで、樹脂組成物を被覆した電線の表面粗さを0.5μm以下、絶縁層と導体の密着力が5N/25mm以上で、導体の弾性率が10GPa以上、樹脂組成物が電離性放射線により架橋処理されていることが好ましい。   Here, the surface roughness of the electric wire coated with the resin composition is 0.5 μm or less, the adhesion between the insulating layer and the conductor is 5 N / 25 mm or more, the elastic modulus of the conductor is 10 GPa or more, and the resin composition is ionized by radiation. It is preferable that it is subjected to crosslinking treatment.

本発明で用いるオレフィン系ポリマとしては、高、中、低密度ポリエチレン、ポリプロピレン、エチレン・プロピレン・コポリマ、エチレン・プロピレン・ジエンターポリマ、エチレン・メチルアクリレートコポリマ、エチレン・エチルアクリレートコポリマ、直鎖状低密度ポリエチレン、超低密度ポリエチレン、エチレン・酢酸ビニルコポリマ、エチレン・ブテンコポリマ、エチレン・ヘキセンコポリマ、エチレン・メチルメタアクリレートコポリマ、エチレン・オクテンコポリマ、スチレンエチレンブチレンスチレン共重合体の単独もしくはブレンド物等を挙げられる。   Examples of the olefin polymer used in the present invention include high, medium and low density polyethylene, polypropylene, ethylene / propylene / copolymer, ethylene / propylene / diene terpolymer, ethylene / methyl acrylate copolymer, ethylene / ethyl acrylate copolymer, linear low Examples include high-density polyethylene, ultra-low-density polyethylene, ethylene / vinyl acetate copolymer, ethylene / butene copolymer, ethylene / hexene copolymer, ethylene / methyl methacrylate copolymer, ethylene / octene copolymer, and styrene / ethylene / butylene / styrene copolymer. It is done.

水酸化マグネシウム、水酸化アルミニウムを表面処理するシランカップリング剤としては、分子量200、好ましくは240以上で、かつ直鎖状の分子構造をもつシランカップリング剤を用いる。   As the silane coupling agent for surface treatment of magnesium hydroxide and aluminum hydroxide, a silane coupling agent having a molecular weight of 200, preferably 240 or more, and having a linear molecular structure is used.

この直鎖状シランカップリング剤としては、   As this linear silane coupling agent,

Figure 2010157413
Figure 2010157413

γ−メタクリロキシプロピルトリメトキシシラン(分子量248.4)、 γ-methacryloxypropyltrimethoxysilane (molecular weight 248.4),

Figure 2010157413
Figure 2010157413

n−ヘキサデシルトリメトキシシラン(分子量346.7)、 n-hexadecyltrimethoxysilane (molecular weight 346.7),

Figure 2010157413
Figure 2010157413

γ−グリシドキシプロピルトリメトキシシラン(分子量236.3)、 γ-glycidoxypropyltrimethoxysilane (molecular weight 236.3),

Figure 2010157413
Figure 2010157413

ビニルトリアセトキシシラン(分子量232.3)、 Vinyltriacetoxysilane (molecular weight 232.3),

Figure 2010157413
Figure 2010157413

γ−ウレイドプロピルトリエトキシシラン(分子量264.5)、 γ-ureidopropyltriethoxysilane (molecular weight 264.5),

Figure 2010157413
Figure 2010157413

γ−ジブチルアミノプロピルトリメトキシシラン(分子量291.1)、 γ-dibutylaminopropyltrimethoxysilane (molecular weight 291.1),

Figure 2010157413
Figure 2010157413

n−デシルトリメトキシシラン(分子量262.5)、 n-decyltrimethoxysilane (molecular weight 262.5),

Figure 2010157413
Figure 2010157413

γ−ジアリルアミノプロピルトリメトキシシラン(分子量259.5) γ-diallylaminopropyltrimethoxysilane (molecular weight 259.5)

Figure 2010157413
Figure 2010157413

n−オクタデシルトリメトキシシラン
等が挙げられ、これらシランカップリング剤の溶液を水酸化マグネシウムや水酸化アルミニウムに噴霧或いは含浸させた後、これを乾燥させることで、水酸化マグネシウムや水酸化アルミニウムの表面にシランカップリング剤を付着させることができる。
n-octadecyltrimethoxysilane and the like, and after spraying or impregnating magnesium hydroxide or aluminum hydroxide with a solution of these silane coupling agents, the surface of magnesium hydroxide or aluminum hydroxide is dried. A silane coupling agent can be attached to the substrate.

本発明においては、分子量200、好ましくは分子量240以上で、かつ直鎖状の分子構造をもつシランカップリング剤で難燃剤を表面処理し、これをオレフィン系ポリマに混合することで、直鎖状のシランカップリング剤とポリオレフィンとが結合する確率を高くすることができ、これにより弾性率、強度を向上させることが可能となる。   In the present invention, the flame retardant is surface-treated with a silane coupling agent having a molecular weight of 200, preferably a molecular weight of 240 or more, and having a linear molecular structure, and this is mixed with an olefin polymer to form a linear chain. It is possible to increase the probability that the silane coupling agent and polyolefin are bonded to each other, thereby improving the elastic modulus and strength.

水酸化マグネシウムや水酸化アルミニウム等の難燃剤の平均粒径は、1.5μm以下、好ましくは1.0μm以下が好ましく、更に好ましくは0.5μm以下が好ましい。   The average particle diameter of flame retardants such as magnesium hydroxide and aluminum hydroxide is 1.5 μm or less, preferably 1.0 μm or less, and more preferably 0.5 μm or less.

難燃剤の添加量を40〜300重量部に規定したのは、40重量部未満では難燃性が不十分であり、300重量部を越えるとそれ以上の難燃効果は小さく、むしろ機械的特性や伸びが低下するからである。   The amount of the flame retardant added is defined as 40 to 300 parts by weight. If the amount is less than 40 parts by weight, the flame retardancy is insufficient. If the amount exceeds 300 parts by weight, the flame retardant effect is small. This is because the elongation decreases.

上記樹脂組成物に電離性放射線で架橋処理を施すことでポリマ間の結合力が増加し弾性率向上により端末加工性の更なる向上が図れる。   By subjecting the resin composition to a crosslinking treatment with ionizing radiation, the bonding force between the polymers increases, and the end workability can be further improved by improving the elastic modulus.

また、上記配合に難燃助剤、着色剤、カーボンブラック、架橋助剤、充填剤、滑剤等を適宜加えても良い。   In addition, a flame retardant aid, a colorant, carbon black, a crosslinking aid, a filler, a lubricant, and the like may be appropriately added to the above formulation.

次に本発明の実施例を比較例と共に説明する。   Next, examples of the present invention will be described together with comparative examples.

Figure 2010157413
Figure 2010157413

Figure 2010157413
Figure 2010157413

Figure 2010157413
Figure 2010157413

最初に表中の特性は次の方法により測定した。   First, the characteristics in the table were measured by the following method.

配合組成物を150℃に設定した加圧ニーダ(モリヤマ製75L加圧ニーダ)で混練して作製した。220℃に保持した40mm押出機を用いて、これらの配合組成物を外径0.48mmの7本撚り線上に外径0.88mmに押出被覆し電線サンプルを作製した。   The blended composition was prepared by kneading with a pressure kneader set at 150 ° C. (75 L pressure kneader manufactured by Moriyama). Using a 40 mm extruder maintained at 220 ° C., these blended compositions were extrusion coated to an outer diameter of 0.88 mm on seven strands having an outer diameter of 0.48 mm to prepare electric wire samples.

電離性放射線架橋は電子線架橋設備により1Mradの照射量で行った。   Ionizing radiation crosslinking was performed with an electron beam crosslinking facility at an irradiation dose of 1 Mrad.

引張強さと伸び及び弾性率はJIS C−3005に準拠し電線より芯線を抜いたチューブを用いて引張速度200mm/minで測定し、引張強さは10.5MPa以上、伸びは150%以上を目標とした。   Tensile strength, elongation, and elastic modulus are measured at a tensile speed of 200 mm / min using a tube with the core wire removed from the wire in accordance with JIS C-3005. The tensile strength is 10.5 MPa or more and the elongation is 150% or more. It was.

50%モジュラスは、50%の伸びを与えた時の応力値(MPa)を示している。   The 50% modulus indicates a stress value (MPa) when an elongation of 50% is given.

耐外傷性で、スクレープ試験とカットスルー試験は、PVCと比較し、同等であれば○、PVCより優れていれば二重丸、PCVより劣っていれば×とした。   As for the scratch resistance, the scrape test and the cut-through test were evaluated as ◯ if they were equivalent, double circle if they were better than PVC, and x if they were inferior to PCV.

難燃性はULsubject785に準拠した垂直燃焼試験(VW−1)を実施し60秒以内に消炎したものを合格(○)とした。   For flame retardancy, a vertical flame test (VW-1) based on ULsubject 785 was conducted and the flame extinguished within 60 seconds was regarded as acceptable (O).

実施例、比較例に用いた試料を以下に示す。   Samples used in Examples and Comparative Examples are shown below.

超低密度PEは、密度:0.9g/cm3、MI:0.8g/10minであり、EVAは、VA含有量42%、MI:0.2g/10minであり、EEAは、EA含有量15%、MI:0.8g/10minであり、無水マレイン酸コポリマは、ボンダインLX4110(商品名)を用いた。 The ultra-low density PE has a density of 0.9 g / cm 3 , MI: 0.8 g / 10 min, EVA has a VA content of 42%, MI: 0.2 g / 10 min, and EEA has an EA content. 15%, MI: 0.8 g / 10 min. Bondin LX4110 (trade name) was used as the maleic anhydride copolymer.

水酸化マグネシウムA〜Eは、表3に示すように、粒径とシランカップリング剤を変えたもので、水酸化マグネシウムAは、γ−メタクリロキシプロピルトリメトキシシラン(平均分子量248.4)で表面処理した平均粒径0.8μmのもの、水酸化マグネシウムBは、n−ヘキサデシルトリメトキシシラン(平均分子量346.7)で表面処理した平均粒径0.8μmのもの、水酸化マグネシウムC,Dは、γ−メタクリロキシプロピルトリメトキシシラン(平均分子量248.4)で表面処理した平均粒径1.5μmと2.0μmのもの、水酸化マグネシウムEは、ビニルトリメトキシシラン(平均分子量148.2)で表面処理した平均粒径1.2μmのもの、また水酸化アルミニウムは、γ−メタクリロキシプロピルトリメトキシシラン(平均分子量248.4)で表面処理した平均粒径0.8μmのものである。   As shown in Table 3, magnesium hydroxides A to E were obtained by changing the particle diameter and the silane coupling agent. Magnesium hydroxide A was γ-methacryloxypropyltrimethoxysilane (average molecular weight 248.4). Surface treated average particle size 0.8 μm, magnesium hydroxide B is n-hexadecyltrimethoxysilane (average molecular weight 346.7) surface treated average particle size 0.8 μm, magnesium hydroxide C, D is an average particle size of 1.5 μm and 2.0 μm surface-treated with γ-methacryloxypropyltrimethoxysilane (average molecular weight 248.4). Magnesium hydroxide E is vinyltrimethoxysilane (average molecular weight 148. 2) surface treated with an average particle size of 1.2 μm, and aluminum hydroxide is γ-methacryloxypropyltrimethoxysilane The average particle size is 0.8 μm which is surface-treated with (average molecular weight 248.4).

難燃助剤は、メラミンシアヌレート、酸化防止剤は、テトラキス−(メチレン−3−(3’,5’−ジ−第三・ブチル−4’−ヒドロキシフェニル)プロピオネート)メタン)を用いた。   Melamine cyanurate was used as the flame retardant aid, and tetrakis- (methylene-3- (3 ', 5'-di-tert-butyl-4'-hydroxyphenyl) propionate) methane) was used as the antioxidant.

実施例1〜13(表1)は、いずれも耐外傷性が良好であるのに対して、比較例1〜3(表2)は、平均分子量148.2のビニルトリメトキシシランで表面処理した水酸化マグネシウムEを用いているため、難燃性は良好なものの、耐外傷性が劣る。   While Examples 1 to 13 (Table 1) all have good trauma resistance, Comparative Examples 1 to 3 (Table 2) were surface-treated with vinyltrimethoxysilane having an average molecular weight of 148.2. Since magnesium hydroxide E is used, the flame resistance is good, but the damage resistance is poor.

また比較例4では、平均分子量248.4のγ−メタクリロキシプロピルトリメトキシシランで表面処理した水酸化マグネシウムDを用いているが、粒径が2.0μmと大きいため耐外傷性が劣る。   In Comparative Example 4, magnesium hydroxide D surface-treated with γ-methacryloxypropyltrimethoxysilane having an average molecular weight of 248.4 is used. However, since the particle size is as large as 2.0 μm, the damage resistance is inferior.

また、水酸化マグネシウムAを用いた比較例5、6の場合、添加量が30重量部と少ない比較例5は、耐外傷性、難燃性に劣り、350重量部と多い比較例6は、耐外傷性、難燃性が良好であるが、伸びが138%と低い、これにより水酸化マグネシウムのオレフィン系ポリマに対する添加量は40〜300重量部の範囲が良いことが分かる。   In the case of Comparative Examples 5 and 6 using magnesium hydroxide A, Comparative Example 5 with a small addition amount of 30 parts by weight is inferior in trauma resistance and flame retardancy, and Comparative Example 6 with a large amount of 350 parts by weight is Although it has good trauma resistance and flame retardancy, it can be seen that the elongation is low at 138%, so that the amount of magnesium hydroxide added to the olefin polymer is in the range of 40 to 300 parts by weight.

Claims (5)

オレフィン系ポリマに、シランカップリング剤で表面処理した水酸化マグネシウム、水酸化アルミニウム等の難燃剤を加えたノンハロゲン樹脂組成物を被覆したノンハロゲン難燃電線において、分子量200以上、好ましくは240以上で、かつ直鎖状の分子構造をもつシランカップリング剤で表面処理した難燃剤を、オレフィン系ポリマに混合した樹脂組成物を絶縁層に用いることを特徴とするノンハロゲン難燃電線・ケーブル。   In a non-halogen flame retardant wire coated with a non-halogen resin composition obtained by adding a flame retardant such as magnesium hydroxide or aluminum hydroxide surface-treated with a silane coupling agent to an olefin polymer, the molecular weight is 200 or more, preferably 240 or more, A non-halogen flame-retardant electric wire / cable characterized by using, as an insulating layer, a resin composition in which a flame retardant surface-treated with a silane coupling agent having a linear molecular structure is mixed with an olefin polymer. シランカップリング剤は、γ−メタクリロキシプロピルトリメトキシシラン、n−ヘキサデシルトリメトキシシラン、γ−グリシドキシプロピルトリメトキシシラン、ビニルトリアセトキシシラン、γ−ウレイドプロピルトリエトキシシラン、γ−ジブチルアミノプロピルトリメトキシシラン、γ−ジアリルアミノプロピルトリメトキシシラン等からなる請求項1記載のノンハロゲン難燃電線・ケーブル。   Silane coupling agents are γ-methacryloxypropyltrimethoxysilane, n-hexadecyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltriacetoxysilane, γ-ureidopropyltriethoxysilane, γ-dibutylamino. The non-halogen flame-retardant electric wire / cable according to claim 1, comprising propyltrimethoxysilane, γ-diallylaminopropyltrimethoxysilane, or the like. オレフィン系ポリマ100重量部に対してシランカップリング剤で表面処理した水酸化マグネシウム又は水酸化アルミニウムを単独又は併用で40〜300重量部混合した請求項1又は2記載のノンハロゲン難燃電線・ケーブル。   The non-halogen flame-retardant electric wire / cable according to claim 1 or 2, wherein 40 to 300 parts by weight of magnesium hydroxide or aluminum hydroxide surface-treated with a silane coupling agent is mixed alone or in combination with 100 parts by weight of an olefin polymer. 水酸化マグネシウム又は水酸化アルミニウムの粒径が1.5μm以下、好ましくは1.0μm以下である請求項1〜3いずれかに記載のノンハロゲン難燃電線・ケーブル。   The halogen-free flame retardant electric wire / cable according to any one of claims 1 to 3, wherein the particle size of magnesium hydroxide or aluminum hydroxide is 1.5 µm or less, preferably 1.0 µm or less. オレフィン系ポリマに、マレイン酸コポリマ1〜30重量部併用する請求項1〜4いずれかに記載のノンハロゲン難燃電線・ケーブル。   The non-halogen flame-retardant electric wire / cable according to any one of claims 1 to 4, wherein 1 to 30 parts by weight of a maleic acid copolymer is used in combination with the olefin polymer.
JP2008334612A 2008-12-26 2008-12-26 Non-halogen flame retardant electric wire/cable Pending JP2010157413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008334612A JP2010157413A (en) 2008-12-26 2008-12-26 Non-halogen flame retardant electric wire/cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008334612A JP2010157413A (en) 2008-12-26 2008-12-26 Non-halogen flame retardant electric wire/cable

Publications (1)

Publication Number Publication Date
JP2010157413A true JP2010157413A (en) 2010-07-15

Family

ID=42575162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008334612A Pending JP2010157413A (en) 2008-12-26 2008-12-26 Non-halogen flame retardant electric wire/cable

Country Status (1)

Country Link
JP (1) JP2010157413A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001782A (en) * 2011-06-15 2013-01-07 Canon Inc Thermoplastic composite material, method for producing the same and molded article
WO2014010500A1 (en) * 2012-07-09 2014-01-16 古河電気工業株式会社 Non-halogen flame-retardant resin composition and insulated wire/cable having non-halogen flame-retardant resin composition
JP2020132817A (en) * 2019-02-25 2020-08-31 住友電気工業株式会社 Resin composition, inorganic filler, DC power cable, and method for manufacturing DC power cable
CN116814017A (en) * 2023-07-01 2023-09-29 东莞市安高瑞新材料科技有限公司 High-voltage wire cable material for new energy automobile and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283030A (en) * 1993-03-25 1994-10-07 Hitachi Cable Ltd Nonflammable electric insulating composite and insulated wire
JPH0778518A (en) * 1993-09-08 1995-03-20 Hitachi Cable Ltd Fire-resistant thin thickness insulated electric wire
JPH07176219A (en) * 1993-12-20 1995-07-14 Hitachi Cable Ltd Flame retardant thin insulating electric wire
JP2001101928A (en) * 1999-09-29 2001-04-13 Yazaki Corp Flame-retardant resin composition
JP2001210151A (en) * 2000-01-26 2001-08-03 Kyowa Chem Ind Co Ltd Heat degradation resistant flame-retardant insulated wire and cable
JP2002265948A (en) * 2001-03-06 2002-09-18 Konoshima Chemical Co Ltd Magnesium hydroxide flame retardant coated with silane coupling agent, its production method, and flame- retardant resin composition
JP2003192846A (en) * 2001-12-26 2003-07-09 Furukawa Electric Co Ltd:The Insulated resin composition having excellent heat resistance and weather resistance and insulated electric wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06283030A (en) * 1993-03-25 1994-10-07 Hitachi Cable Ltd Nonflammable electric insulating composite and insulated wire
JPH0778518A (en) * 1993-09-08 1995-03-20 Hitachi Cable Ltd Fire-resistant thin thickness insulated electric wire
JPH07176219A (en) * 1993-12-20 1995-07-14 Hitachi Cable Ltd Flame retardant thin insulating electric wire
JP2001101928A (en) * 1999-09-29 2001-04-13 Yazaki Corp Flame-retardant resin composition
JP2001210151A (en) * 2000-01-26 2001-08-03 Kyowa Chem Ind Co Ltd Heat degradation resistant flame-retardant insulated wire and cable
JP2002265948A (en) * 2001-03-06 2002-09-18 Konoshima Chemical Co Ltd Magnesium hydroxide flame retardant coated with silane coupling agent, its production method, and flame- retardant resin composition
JP2003192846A (en) * 2001-12-26 2003-07-09 Furukawa Electric Co Ltd:The Insulated resin composition having excellent heat resistance and weather resistance and insulated electric wire

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013001782A (en) * 2011-06-15 2013-01-07 Canon Inc Thermoplastic composite material, method for producing the same and molded article
WO2014010500A1 (en) * 2012-07-09 2014-01-16 古河電気工業株式会社 Non-halogen flame-retardant resin composition and insulated wire/cable having non-halogen flame-retardant resin composition
JPWO2014010500A1 (en) * 2012-07-09 2016-06-23 古河電気工業株式会社 Non-halogen flame retardant resin composition and insulated wire / cable having the resin composition
JP2020132817A (en) * 2019-02-25 2020-08-31 住友電気工業株式会社 Resin composition, inorganic filler, DC power cable, and method for manufacturing DC power cable
CN116814017A (en) * 2023-07-01 2023-09-29 东莞市安高瑞新材料科技有限公司 High-voltage wire cable material for new energy automobile and preparation method thereof
CN116814017B (en) * 2023-07-01 2024-01-30 东莞市安高瑞新材料科技有限公司 High-voltage wire cable material for new energy automobile and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP4974041B2 (en) Non-halogen wires, wire bundles and automotive wire harnesses
CN106397947B (en) Halogen-free flame-retardant resin composition, insulated wire and cable
JP2013177610A (en) Non-halogen flame-retardant resin composition, and non-halogen flame-retardant electric wire and cable
JP5269476B2 (en) Electric wire / cable
WO2006068303A1 (en) Flame-retardant resin composition and molded body using same
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
JP2010157413A (en) Non-halogen flame retardant electric wire/cable
JP2005314516A (en) Non-halogen flame-retardant resin composition
JP2008097918A (en) Non-halogen flame-resistant wire excelling in terminal workability
JP5260868B2 (en) Insulating resin composition and insulated wire
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP2008037927A (en) Flame-retardant resin composition and insulated wire
JP2001151952A (en) Nonhalogen flame-retardant resin composition
JP2005268036A (en) Non halogen flame retardant electric wire / cable
JP2006244894A (en) Nonhalogen flame-retardant electric wire and cable
JP6388216B2 (en) Insulated wires and cables
JP2002097319A (en) Flame-retardant polyolefin resin composition and electric wire/cable covered therewith
JP2002302574A (en) Nonhalogen flame retardant resin composition and flame retardant electric wire/cable using the same
JP2002343144A (en) Non halogen flame retardant insulated electric wire excellent in wire stripping
JP2007052983A (en) Insulated electric wire
JP2009227872A (en) Insulating resin composition, and insulated electric wire
JP3829647B2 (en) Non-halogen flame retardant insulated wire with excellent wire strip properties
JP2017228524A (en) Insulated wire
JP2004256621A (en) Nonhalogen flame-retardant resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709