JP2007052983A - Insulated electric wire - Google Patents

Insulated electric wire Download PDF

Info

Publication number
JP2007052983A
JP2007052983A JP2005236590A JP2005236590A JP2007052983A JP 2007052983 A JP2007052983 A JP 2007052983A JP 2005236590 A JP2005236590 A JP 2005236590A JP 2005236590 A JP2005236590 A JP 2005236590A JP 2007052983 A JP2007052983 A JP 2007052983A
Authority
JP
Japan
Prior art keywords
mass
parts
insulator layer
pts
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005236590A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Ishida
克義 石田
Atsushi Suzuki
淳 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2005236590A priority Critical patent/JP2007052983A/en
Publication of JP2007052983A publication Critical patent/JP2007052983A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an insulated electric wire having high insulating characteristics, high scratch resistance, and high flame retardancy. <P>SOLUTION: The insulated electric wire is constituted by forming on a conductor 1 in order a first insulator layer made of PE or polyolefin resin in which volume resistivity after immersion in water for 100 hours is 1×10<SP>14</SP>Ωcm or more, a second insulator layer 3 made of a flame retardant resin composition obtained by blending magnesium hydroxide of 250-350 pts.mass to base resin of 100 pts.mass comprising EVA of 45-55 pts.mass, AEM of 35-45 pts.mass, and SEB elastomer of 5-10 pts.mass, and a third insulator layer 4 made of the scratch resistant composition obtained by blending flame retardant agent of 60-130 pts.mass comprising magnesium hydroxide of 50-100 pts.mass and melamine cyanurate of 10-30 pts.mass to base resin of 100 pts.mass comprising EVA of 60-80 pts.mass, SEEPS of 15-25 pts.mass, AEM of 5-10 pts.mass, and acid modified LLDPE of 5-10 pts.mass. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、高絶縁性、耐外傷性並びに高難燃性を有する絶縁電線に関する。   The present invention relates to an insulated wire having high insulation, external resistance, and high flame resistance.

近年、環境等の問題から難燃性絶縁電線の被覆材料においても、従来のPVCやハロゲン系難燃剤に代えて、燃焼時にハロゲンガスの発生しない、いわゆるハロゲンフリーの被覆材料への転換が進められている。このようなハロゲンフリーの被覆材料としては、エチレン系単独重合体、エチレン系共重合体、エチレン・アクリルゴム等をベース樹脂成分とし、これに水酸化マグネシウム、水酸化アルミニウム、水和珪酸アルミニウム等の金属水和物系難燃剤を配合したものが知られている。しかし、前記エチレン系重合体などの樹脂成分は本質的に難燃性を有していないので、これを高度に難燃化しようとする場合、金属水和物系難燃剤を多量に配合することが必要であり、その結果、被覆材料の可とう性や機械特性が低下し、或いは脆くなって電線どうしの擦れや硬い器物の角との接触などにより外傷を受けやすくなるという問題がある。さらには、絶縁特性等の電気的特性にも問題があった。   In recent years, coating materials for flame-retardant insulated wires have been switched to so-called halogen-free coating materials that do not generate halogen gas during combustion in place of conventional PVC and halogen-based flame retardants due to environmental problems. ing. As such a halogen-free coating material, an ethylene homopolymer, an ethylene copolymer, ethylene / acrylic rubber or the like is used as a base resin component, and magnesium hydroxide, aluminum hydroxide, hydrated aluminum silicate, etc. A compound containing a metal hydrate flame retardant is known. However, since the resin component such as the ethylene-based polymer has essentially no flame retardancy, a high amount of metal hydrate flame retardant should be blended when trying to make this highly flame-retardant. As a result, there is a problem in that the flexibility and mechanical properties of the coating material are lowered, or the coating material becomes brittle and easily damaged by contact between the wires and the corners of hard objects. Furthermore, there is a problem in electrical characteristics such as insulation characteristics.

上記のような問題を改善するため、ポリオレフィン系樹脂に脂肪酸やシランカップリング剤で表面処理した金属水和物を配合して、難燃性、機械特性、電気絶縁特性を改善しようとする提案が特許文献1に記載されている。また、エチレン・酢酸ビニル共重合体などのエチレン系共重合体、少なくとも一部が懸化されたエチレン・酢酸ビニル共重合体、不飽和カルボン酸変性ポリオレフィン樹脂をベース樹脂とし、これに架橋性シランカップリング剤で表面処理した金属水和物、メラミンシアヌレート化合物を配合し、これを被覆することによって絶縁電線の難燃性および機械特性を改善しようとする提案が特許文献2に記載されている。さらに、エチレン系共重合体にスチレン系のエラストマーやアクリルゴムを混合することによって機械特性を向上させ、金属水和物とメラミンシアヌレート化合物によって難燃性を改善しようとする提案が特許文献3に記載されている。   In order to improve the above problems, there is a proposal to improve flame retardancy, mechanical properties, and electrical insulation properties by blending a metal hydrate surface-treated with a fatty acid or a silane coupling agent into a polyolefin resin. It is described in Patent Document 1. In addition, an ethylene copolymer such as an ethylene / vinyl acetate copolymer, an ethylene / vinyl acetate copolymer suspended at least partially, and an unsaturated carboxylic acid-modified polyolefin resin are used as a base resin, and a crosslinkable silane is used as the base resin. Patent Document 2 describes a proposal to improve the flame retardancy and mechanical properties of an insulated wire by blending and coating a metal hydrate surface-treated with a coupling agent and a melamine cyanurate compound. . Further, Patent Document 3 proposes to improve mechanical properties by mixing an ethylene copolymer with a styrene elastomer or acrylic rubber, and to improve flame retardancy with a metal hydrate and a melamine cyanurate compound. Are listed.

上記した特許文献に記載されている被覆樹脂組成物や絶縁電線は、UL規格1581の垂直燃焼試験のVW−1規格に適合する難燃性を有し、また破断伸び、引張破断強度等の機械特性を満足させることができるとされている。しかしこれらの被覆樹脂組成物や絶縁電線は、いずれもベース樹脂100質量部に対して金属水和物系難燃剤100〜250質量部または150〜280質量部を配合してなるものであり、このように金属水和物系難燃剤を多量に配合すると、難燃性の向上には有効であるが可とう性の低下や脆さの増大を招き、特に電線どうしの擦れや硬い器物の角との接触等で被覆層に傷が生じやすく、いわゆる耐外傷性が悪いという問題がある。また絶縁特性上からも問題があった。
特開2000−195336号公報 特開2000−294036号公報 特開2001−60414号公報
The coated resin composition and the insulated wire described in the above-mentioned patent documents have flame retardancy conforming to the VW-1 standard of the vertical combustion test of UL standard 1581, and have a machine such as elongation at break and tensile break strength. It is said that the characteristics can be satisfied. However, these coating resin compositions and insulated wires are formed by blending 100 to 250 parts by mass or 150 to 280 parts by mass of a metal hydrate flame retardant with respect to 100 parts by mass of the base resin. If a large amount of a metal hydrate flame retardant is added as described above, it is effective for improving the flame retardancy, but it causes a decrease in flexibility and an increase in brittleness. There is a problem that the coating layer is easily damaged due to contact or the like, and the so-called trauma resistance is poor. There was also a problem in terms of insulation characteristics.
JP 2000-195336 A JP 2000-294036 A JP 2001-60414 A

よって本発明が解決しようとする課題は、高絶縁特性、耐外傷性および高難燃性を有する絶縁電線を提供することにある。特に、絶縁体層が比較的薄い層であっても前記の特性を有し、電子機器類用として有用な絶縁電線を提供することにある。   Therefore, the problem to be solved by the present invention is to provide an insulated wire having high insulation characteristics, damage resistance, and high flame resistance. In particular, an object of the present invention is to provide an insulated wire that has the above-described characteristics even when the insulator layer is a relatively thin layer and is useful for electronic devices.

前記解決しようとする課題は、請求項1に記載されるように、導体上に、3層構造の絶縁体層が形成された絶縁電線であって、導体上から順次、ポリエチレン樹脂または水浸漬100時間の体積抵抗率が1×1014Ω・cmを下回ることがないポリオレフィン系樹脂からなる第1絶縁体層、エチレン・酢酸ビニル共重合体45〜55質量部、エチレン・アクリルゴム35〜45質量部およびスチレン・エチレン・ブチレン共重合体エラストマー5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウムが250〜350質量部配合された難燃性樹脂組成物からなる第2絶縁体層、エチレン・酢酸ビニル共重合体60〜80質量部、スチレン・エチレン・エチレンプロピレン・スチレン共重合体15〜25質量部、エチレン・アクリルゴム5〜10質量部および酸変性直鎖状低密度ポリエチレン5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウム50〜100質量部およびメラミンシアヌレート10〜30質量部からなる難燃剤の合計量が60〜130質量部となる範囲で配合した耐外傷性樹脂組成物からなる第3絶縁体層が形成された絶縁電線とすることによって、解決される。 The problem to be solved is an insulated wire in which an insulator layer having a three-layer structure is formed on a conductor as described in claim 1, and the polyethylene resin or the water-immersed 100 is sequentially formed on the conductor. First insulator layer made of polyolefin resin whose time volume resistivity does not fall below 1 × 10 14 Ω · cm, 45 to 55 parts by mass of ethylene / vinyl acetate copolymer, 35 to 45 mass of ethylene / acrylic rubber Second insulator comprising a flame retardant resin composition in which 250 to 350 parts by mass of magnesium hydroxide is blended with 100 parts by mass of a base resin comprising 5 parts by mass of styrene / ethylene / butylene copolymer elastomer Layer, ethylene / vinyl acetate copolymer 60-80 parts by mass, styrene / ethylene / ethylene propylene / styrene copolymer 15-25 parts by mass, ethylene From 50 to 100 parts by weight of magnesium hydroxide and 10 to 30 parts by weight of melamine cyanurate, based on 100 parts by weight of base resin consisting of 5 to 10 parts by weight of acrylic rubber and 5 to 10 parts by weight of acid-modified linear low density polyethylene This is solved by forming an insulated electric wire on which a third insulator layer made of a damage resistant resin composition blended in a range where the total amount of the flame retardant becomes 60 to 130 parts by mass is formed.

また請求項2に記載されるように、前記絶縁体層の厚さは、各絶縁体層の合計厚さをTとした時に、第1絶縁体層は厚さが0.05mm以上でかつ<1/3T、第2絶縁体層は>1/3T、また第3絶縁体層が<1/3Tとなるように形成した請求項1に記載の絶縁電線とすることによって、解決される。   According to a second aspect of the present invention, the thickness of the insulator layer is such that when the total thickness of each insulator layer is T, the first insulator layer has a thickness of 0.05 mm or more and < The insulated wire according to claim 1, wherein 1 / 3T, the second insulator layer is> 1 / 3T, and the third insulator layer is formed to be <1 / 3T.

本発明は、導体上に3層構造の絶縁体層が形成された絶縁電線であって、導体上から順次、ポリエチレン樹脂(以下PE)または水浸漬100時間の体積抵抗率が1×1014Ω・cmを下回ることがないポリオレフィン系樹脂からなる第1絶縁体層を形成したので高い絶縁特性を有し、またエチレン・酢酸ビニル共重合体(以下EVA)45〜55質量部、エチレン・アクリルゴム(以下AEM)35〜45質量部およびスチレン・エチレン・ブチレン共重合体エラストマー(以下SEBエラストマー)5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウムが250〜350質量部配合された難燃性樹脂組成物からなる第2絶縁体層を形成したので、高難燃性、具体的にはノンハロゲンでUL規格1581のVW−1試験に合格すると共に、EVA60〜80質量部、スチレン・エチレン・エチレンプロピレン・スチレン共重合体(以下SEEPS)15〜25質量部、AEM5〜10質量部および酸変性直鎖状低密度ポリエチレン(以下酸変性LLDPE)5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウム50〜100質量部およびメラミンシアヌレート10〜30質量部からなる難燃剤の合計量が60〜130質量部となる範囲で配合した耐外傷性樹脂組成物からなる第3絶縁体層を形成したので、高い耐外傷性を有する絶縁電線が得られる。 The present invention is an insulated wire in which an insulator layer having a three-layer structure is formed on a conductor, and the volume resistivity of polyethylene resin (hereinafter referred to as PE) or water immersion for 100 hours is 1 × 10 14 Ω sequentially from the conductor.・ Because the first insulator layer made of polyolefin resin that does not fall below cm is formed, it has high insulation characteristics, and 45 to 55 parts by mass of ethylene / vinyl acetate copolymer (hereinafter EVA), ethylene / acrylic rubber (Hereinafter referred to as AEM) 35 to 45 parts by mass and styrene / ethylene / butylene copolymer elastomer (hereinafter referred to as SEB elastomer) 5 to 10 parts by mass, 100 to part by mass of magnesium hydroxide is blended in an amount of 250 to 350 parts by mass. Since the second insulator layer made of the flame retardant resin composition is formed, it has high flame retardancy, specifically non-halogen, VW- While passing the test, EVA 60 to 80 parts by mass, styrene / ethylene / ethylene propylene / styrene copolymer (hereinafter referred to as SEEPS) 15 to 25 parts by mass, AEM 5 to 10 parts by mass and acid-modified linear low density polyethylene (hereinafter referred to as acid). Modified LLDPE) The total amount of the flame retardant comprising 50 to 100 parts by mass of magnesium hydroxide and 10 to 30 parts by mass of melamine cyanurate is 60 to 130 parts by mass with respect to 100 parts by mass of the base resin comprising 5 to 10 parts by mass. Since the 3rd insulator layer which consists of a damage-resistant resin composition mix | blended in the range was formed, the insulated wire which has high damage resistance is obtained.

また前記絶縁体層の厚さは、各絶縁体層の合計厚さをTとした時に、第1絶縁体層は厚さが0.05mm以上でかつ<1/3T、第2絶縁体層は>1/3T、また第3絶縁体層が<1/3Tとなるように形成したので、高絶縁特性、耐外傷性および高難燃性を有する電子機器類用の絶縁電線として有用となる。さらにこの絶縁電線は、第1絶縁体層としてポリオレフィン系樹脂を用いるので口出し作業性等にも優れている。   The thickness of the insulator layer is such that when the total thickness of each insulator layer is T, the first insulator layer has a thickness of 0.05 mm or more and <1 / 3T, and the second insulator layer is Since it is formed so that> 1 / 3T and the third insulator layer is <1 / 3T, it is useful as an insulated wire for electronic devices having high insulation characteristics, scratch resistance and high flame resistance. Furthermore, since this insulated wire uses polyolefin resin as a 1st insulator layer, it is excellent also in extraction workability | operativity etc.

以下に本発明を詳細に説明する。請求項1に記載の本発明は、導体上に、3層構造の絶縁体層が形成された絶縁電線であって、導体上から順次、PEまたは水浸漬100時間の体積抵抗率が1×1014Ω・cmを下回ることがないポリオレフィン系樹脂からなる第1絶縁体層、EVA45〜55質量部、AEM35〜45質量部およびSEBエラストマー5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウムが250〜350質量部配合された難燃性樹脂組成物からなる第2絶縁体層、EVA60〜80質量部、SEEPS15〜25質量部、AEM5〜10質量部および酸変性LLDPE5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウム50〜100質量部およびメラミンシアヌレート10〜30質量部からなる難燃剤の合計量が60〜130質量部となる範囲で配合した耐外傷性樹脂組成物からなる第3絶縁体層が形成された絶縁電線である。このような構成の絶縁電線とすることによって、高絶縁特性、耐外傷性および高難燃性を有する絶縁電線とすることができる。 The present invention is described in detail below. The present invention described in claim 1 is an insulated wire in which an insulator layer having a three-layer structure is formed on a conductor, and the volume resistivity of 100 hours of PE or water immersion is 1 × 10 in order from the conductor. 14 base resin made of polyolefin resin not to fall below 14 Ω · cm, 45 to 55 parts by weight of EVA, 35 to 45 parts by weight of AEM and 5 to 10 parts by weight of SEB elastomer, Second insulator layer composed of a flame retardant resin composition containing 250 to 350 parts by weight of magnesium oxide, EVA 60 to 80 parts by weight, SEEPS 15 to 25 parts by weight, AEM 5 to 10 parts by weight, and acid-modified LLDPE 5 to 10 parts by weight Flame retardant comprising 50 to 100 parts by weight of magnesium hydroxide and 10 to 30 parts by weight of melamine cyanurate with respect to 100 parts by weight of the base resin Of the total weight of the third insulated wire insulator layer is formed consisting of external damage resin composition containing within an amount of 60 to 130 parts by weight. By setting it as the insulated wire of such a structure, it can be set as the insulated wire which has a high insulation characteristic, damage resistance, and a high flame retardance.

まず、導体上に形成される第1絶縁体層について説明する。この第1絶縁体層は、絶縁電線に高い絶縁特性を付与するものであるから、絶縁性能に優れた樹脂材料が使用される。すなわち、水浸漬100時間における体積抵抗率が1×1014Ω・cmを下回ることがない樹脂が好ましく、PEやポリプロピレン(以下PP)、α−オレフィン共重合体等のポリオレフィン系樹脂が用いられる。」このような樹脂から第1絶縁体層を形成することによって、得られた絶縁電線は絶縁特性として、30℃の水道水に24時間浸漬したとの絶縁抵抗が、10MΩ・km以上の特性が得られる。 First, the first insulator layer formed on the conductor will be described. Since this 1st insulator layer provides a high insulation characteristic to an insulated wire, the resin material excellent in the insulation performance is used. That is, a resin whose volume resistivity after 100 hours of water immersion does not fall below 1 × 10 14 Ω · cm is preferable, and polyolefin resins such as PE, polypropylene (hereinafter referred to as PP), and α-olefin copolymer are used. By forming the first insulator layer from such a resin, the obtained insulated wire has an insulation characteristic that the insulation resistance when immersed in tap water at 30 ° C. for 24 hours is 10 MΩ · km or more. can get.

つぎに第2絶縁体層として、難燃性に優れた樹脂組成物について説明する。この第2絶縁体層は、絶縁電線に高度な難燃性を付与するためのもので、難燃性に優れた難燃性樹脂組成物が使用される。すなわち、EVA45〜55質量部とAEM35〜45質量部およびSEBエラストマー5〜10質量部からなるベース樹脂100質量部に対し、好ましくはシランカップリング剤で表面処理した水酸化マグネシウム250〜300質量部配合された難燃性樹脂組成物である。ベース樹脂の一つとして使用されるEVAは、難燃性の点から酢酸ビニルの含有量が高いものが好ましいが、機械特性とのバランスから適宜選択して用いる。一例としては、酢酸ビニル含有量22~47質量%、好ましくは25〜42質量%でMFR(メルトマスフローレート)が0.1〜20g/10min(190℃、2.16kg)、好ましくは0.1〜3のEVAである。このようなEVAは、例えば三井・デュポンポリケミカル社製の商品名EV180などが挙げられる。そしてEVAは、ベース樹脂中に45〜55質量部の範囲で配合される。その配合量が45質量部未満では機械強度が不足し、また55質量部を超えると難燃性が不足するためである。   Next, a resin composition having excellent flame retardancy will be described as the second insulator layer. This 2nd insulator layer is for providing high flame retardance to an insulated wire, and the flame-retardant resin composition excellent in flame retardance is used. That is, 250 to 300 parts by mass of magnesium hydroxide preferably surface-treated with a silane coupling agent is added to 100 parts by mass of the base resin consisting of 45 to 55 parts by mass of EVA, 35 to 45 parts by mass of AEM and 5 to 10 parts by mass of SEB elastomer. Flame retardant resin composition. EVA used as one of the base resins preferably has a high vinyl acetate content from the viewpoint of flame retardancy, but is appropriately selected from the balance with mechanical properties. As an example, the vinyl acetate content is 22 to 47% by mass, preferably 25 to 42% by mass, and the MFR (melt mass flow rate) is 0.1 to 20 g / 10 min (190 ° C., 2.16 kg), preferably 0.1 EVA of ~ 3. Examples of such EVA include trade name EV180 manufactured by Mitsui DuPont Polychemical Co., Ltd. And EVA is mix | blended in 45-55 mass parts in base resin. When the blending amount is less than 45 parts by mass, the mechanical strength is insufficient, and when it exceeds 55 parts by mass, the flame retardancy is insufficient.

また、ベース樹脂として用いるAEMの配合量は35〜45質量部とする。配合量が35質量部未満では難燃性が不足となり、また45質量部を超えると機械強度が不足となるためである。さらに、ベース樹脂として用いるSEBエラストマーの配合量は5〜10質量部であり、配合量が5質量部未満では機械強度が不足し、10質量部を超えると難燃性が不足する。このようなSEBエラストマーとしては、スチレンの含有量が15〜35質量%のものが好ましい。具体的な一例としては、日本合成ゴム社製の商品名ダイナロン4630Pを挙げることができる。   Moreover, the compounding quantity of AEM used as base resin shall be 35-45 mass parts. If the blending amount is less than 35 parts by mass, the flame retardancy is insufficient, and if it exceeds 45 parts by mass, the mechanical strength is insufficient. Furthermore, the blending amount of the SEB elastomer used as the base resin is 5 to 10 parts by mass. When the blending amount is less than 5 parts by mass, the mechanical strength is insufficient, and when it exceeds 10 parts by mass, the flame retardancy is insufficient. Such SEB elastomer preferably has a styrene content of 15 to 35% by mass. As a specific example, trade name Dynalon 4630P manufactured by Nippon Synthetic Rubber Co., Ltd. can be mentioned.

そして、前述のベース樹脂には難燃性と機械特性を向上させるために、ベース樹脂100質量部に対し水酸化マグネシウムが250〜300質量部添加される。なお水酸化マグネシウムは、好ましくは平均粒径が0.3μm以下の微粒子水酸化マグネシウムをシランカップリング剤で表面処理したものが使用される。さらに、平均粒径が0.3μm以下の微粒子水酸化マグネシウムをシランカップリング剤で表面処理したものを180〜250質量部、平均粒径が0.3μm以下の微粒子水酸化マグネシウムを50〜120質量部の割合範囲とし、これを250〜300質量部となるように配合しても良い。このように2種類の水酸化マグネシウムの組合せによって、ベース樹脂中に隙間なく水酸化マグネシウムを分散できるので、引張り時のクレーズ(欠陥)の発生を防止でき、得られた難燃性樹脂組成物は、特に破断強度や破断伸び等の機械特性が大幅に向上される。なお、水酸化マグネシウムの配合量が250質量部未満では、UL規格1581のVW−1試験に合格する高度な難燃性が得られず、また300質量部を超えると可とう性等の機械特性が著しく低下するようになり好ましくない。   And in order to improve a flame retardance and a mechanical characteristic to the above-mentioned base resin, 250-300 mass parts of magnesium hydroxide is added with respect to 100 mass parts of base resins. The magnesium hydroxide is preferably one obtained by surface-treating fine magnesium hydroxide having an average particle size of 0.3 μm or less with a silane coupling agent. Further, 180 to 250 parts by mass of finely divided magnesium hydroxide having an average particle size of 0.3 μm or less and a surface treatment with a silane coupling agent, and 50 to 120 masses of fine particle magnesium hydroxide having an average particle size of 0.3 μm or less. The ratio may be in a range of 250 parts by weight to 300 parts by weight. Thus, by combining two types of magnesium hydroxide, magnesium hydroxide can be dispersed in the base resin without gaps, so that the occurrence of crazes (defects) during tension can be prevented, and the obtained flame-retardant resin composition is In particular, mechanical properties such as breaking strength and breaking elongation are greatly improved. In addition, when the blending amount of magnesium hydroxide is less than 250 parts by mass, high flame retardancy that passes the VW-1 test of UL standard 1581 cannot be obtained, and when it exceeds 300 parts by mass, mechanical properties such as flexibility are obtained. Is undesirably low.

以上の難燃性樹脂組成物は、構成各成分の所定量をドライブレンドし二軸混練押出機、バンバリーミキサー、ニーダー、ロール等の通常用いられる混練機で溶融混練し、ついで通常用いられる押出成形機を用いて導体上に押出被覆することによって、絶縁電線の第2絶縁体層を形成できる。またこの難燃性樹脂組成物には必要に応じて、例えば、紫外線吸収剤、酸化防止剤、老化防止剤、銅害防止剤、顔料、滑剤、相溶化剤等を、本発明の目的を損なわない範囲で適宜配合しても良く、また場合により他の難燃助剤(赤燐、ポリ燐酸化合物、ヒドロキシ錫酸亜鉛等)を併用しても良い。   The above flame-retardant resin composition is prepared by dry blending a predetermined amount of each constituent component and melt-kneading with a commonly used kneader such as a twin-screw kneading extruder, Banbury mixer, kneader, roll, etc. The second insulator layer of the insulated wire can be formed by extrusion coating on the conductor using a machine. In addition, the flame retardant resin composition may contain, for example, an ultraviolet absorber, an antioxidant, an anti-aging agent, a copper damage inhibitor, a pigment, a lubricant, a compatibilizing agent, and the like, if necessary. If necessary, other flame retardant aids (red phosphorus, polyphosphoric acid compound, zinc hydroxytinate, etc.) may be used in combination.

つぎに、第3絶縁体層を形成する耐外傷性に優れた樹脂組成物について説明する。この耐外傷性樹脂組成物は、耐外傷性のみではなく難燃性も考慮することが好ましいので、耐外傷性に優れたベース樹脂と難燃剤によって構成される。ベース樹脂の一つとして使用されるEVAは、難燃性の点からは酢酸ビニルの含有量が高いものが好ましいが、機械特性とのバランスから適宜選択して用いる。一例としては、酢酸ビニル含有量22~47質量%、好ましくは25〜42質量%でMFR(メルトマスフローレート)が0.1〜20g/10min(190℃、2.16kg)、好ましくは0.1〜3g/10minのEVAである。このようなEVAとしては、例えば三井・デュポンポリケミカル社製の商品名EV180などが挙げられる。そしてEVAは、ベース樹脂中に60〜80質量部の範囲で配合される、その配合量が60質量部未満では機械強度が不足し、また80質量部を超えると難燃性が不足すると共に、柔軟性も低下するので前記範囲とされる。   Next, a resin composition having excellent trauma resistance that forms the third insulator layer will be described. The trauma resistant resin composition preferably includes not only the trauma resistance but also the flame retardancy, and therefore is composed of a base resin and a flame retardant having excellent trauma resistance. EVA used as one of the base resins preferably has a high vinyl acetate content from the viewpoint of flame retardancy, but is appropriately selected from the balance with mechanical properties. As an example, the vinyl acetate content is 22 to 47% by mass, preferably 25 to 42% by mass, and the MFR (melt mass flow rate) is 0.1 to 20 g / 10 min (190 ° C., 2.16 kg), preferably 0.1 It is ˜3 g / 10 min EVA. Examples of such EVA include a trade name EV180 manufactured by Mitsui DuPont Polychemical Co., Ltd. And EVA is blended in the range of 60 to 80 parts by mass in the base resin. If the blending amount is less than 60 parts by mass, the mechanical strength is insufficient, and if it exceeds 80 parts by mass, the flame retardancy is insufficient. Since the flexibility is also lowered, the above range is set.

また、ベース樹脂の一つとして用いるSEEPSは、スチレンの含有量が20質量%以上のものが好ましい。このようなSEEPSの具体例としては、クラレ社製の商品名セプトン4033などである。そしてSEEPSの配合量は、ベース樹脂中に15〜25質量部とする。配合量が15質量部未満では機械強度が不足し、また25質量部を超えると難燃性が不足するためである。   Further, SEEPS used as one of the base resins preferably has a styrene content of 20% by mass or more. A specific example of such SEEPS is Kuraray's trade name Septon 4033. And the compounding quantity of SEEPS shall be 15-25 mass parts in base resin. If the blending amount is less than 15 parts by mass, the mechanical strength is insufficient, and if it exceeds 25 parts by mass, the flame retardancy is insufficient.

さらにベース樹脂として使用するAEMは、エチレンの重合体ブロックとメチルアクリレートの重合体ブロックからなるブロック重合体であり、一例としては、三井・デュポンポリケミカル社製の商品名VAMAC DPなどが挙げられる。そしてAEMの配合量は、ベース樹脂中に5〜10質量部とする。その配合量が5質量部未満では、難燃性が不足すると共に柔軟性が低下する。また、10質量部を超えると機械強度が不足するので前記範囲とされる。   Further, AEM used as a base resin is a block polymer composed of an ethylene polymer block and a methyl acrylate polymer block, and examples thereof include trade name VAMAC DP manufactured by Mitsui DuPont Polychemical Co., Ltd. And the compounding quantity of AEM shall be 5-10 mass parts in base resin. When the blending amount is less than 5 parts by mass, the flame retardancy is insufficient and the flexibility is lowered. On the other hand, if the amount exceeds 10 parts by mass, the mechanical strength is insufficient, so the above range is adopted.

またベース樹脂の一つである酸変性LLDPEは、直鎖状低密度ポリエチレンや直鎖状超低密度ポリエチレン等の密度が0.93g/cm以下のポリエチレンを、マレイン酸、無水マレイン酸等で変性してなるものであり、中でも直鎖状超低密度ポリエチレンをマレイン酸変性してなるものが好ましい。そして酸変性LLDPEの配合量は、5〜10質量部の範囲であり、配合量が5質量部未満では水酸化マグネシウムのベース樹脂中への分散性の改善効果が小さく、機械特性等に及ぼす向上効果も期待できない。また10質量部を超えると破断伸びが不足し、柔軟性も低下すると共に、導体との密着力が強くなり過ぎて、絶縁電線の接続作業等の口出し性が悪くなるので好ましくない。以上の耐外傷性組成物によれば、R=0.5のダイヤモンド圧指、荷重100gによる引掻き試験を行なっても白化が見られない耐外傷性が得られる。 In addition, acid-modified LLDPE, which is one of the base resins, is made of polyethylene having a density of 0.93 g / cm 3 or less, such as linear low density polyethylene and linear ultra-low density polyethylene, with maleic acid, maleic anhydride, etc. Of these, a product obtained by modifying a linear ultra-low density polyethylene with maleic acid is preferable. The blending amount of the acid-modified LLDPE is in the range of 5 to 10 parts by mass. If the blending amount is less than 5 parts by mass, the effect of improving the dispersibility of the magnesium hydroxide in the base resin is small, and the improvement on the mechanical properties and the like. We cannot expect effect. On the other hand, if it exceeds 10 parts by mass, the elongation at break will be insufficient, the flexibility will be lowered, the adhesiveness with the conductor will be too strong, and the lead-out property such as the connecting work of the insulated wire will be deteriorated. According to the above-mentioned trauma resistant composition, trauma resistance in which no whitening is observed even when a scratch test with a diamond finger of R = 0.5 and a load of 100 g is performed is obtained.

以上のベース樹脂には難燃性を向上させるために、ベース樹脂100質量部に対して水酸化マグネシウム50〜100質量部とメラミンシアヌレート10〜30質量部の割合範囲の難燃剤を、60〜130質量部配合して難燃性も付与した耐外傷性樹脂組成物とする。そして水酸化マグネシウムは、天然水酸化マグネシウム、合成水酸化マグネシウム等が用いられるが、中でも合成水酸化マグネシウムを用いるのが好ましい。また、その粒子径等について特に制限はないが、粒子径が5μm以下で平均粒子径2〜4μmとするのが樹脂に対する分散性等から好ましい。なお水酸化マグネシウムの配合量が50質量部未満では、難燃性が十分でなく、また100質量部を超えると、耐外傷性樹脂組成物が硬くなりすぎ、第3絶縁体層としての耐外傷性を低下させるようになる。水酸化マグネシウムと併用するメラミンシアヌレートは、10〜30質量部の範囲で配合される。配合量が10質量部未満では難燃性の改善効果が期待できず、また30質量部を超えると破断伸び等の機械強度の低下や、被覆層として外観が悪くなる。このように水酸化マグネシウムとメラミンシアヌレートを併用することによって、水酸化マグネシウムを単独で配合する場合に比較して、同部数の配合でより高い難燃化の効果が得られる。また、両者はそれぞれの配合量範囲において、ベース樹脂100質量部に対して60〜130質量部となるように配合される。このような配合量とするのは、60質量部未満では耐外傷性は良好となるが難燃性に劣るようになり、また130質量部を超えると耐外傷性が劣るようになるためである。   In order to improve the flame retardancy of the above base resin, a flame retardant in a ratio range of 50 to 100 parts by mass of magnesium hydroxide and 10 to 30 parts by mass of melamine cyanurate with respect to 100 parts by mass of the base resin, It is set as the external damage-resistant resin composition which mix | blended 130 mass parts and also provided the flame retardance. As magnesium hydroxide, natural magnesium hydroxide, synthetic magnesium hydroxide, or the like is used, and among them, synthetic magnesium hydroxide is preferably used. The particle diameter is not particularly limited, but the particle diameter is preferably 5 μm or less and the average particle diameter is 2 to 4 μm from the viewpoint of dispersibility with respect to the resin. In addition, when the blending amount of magnesium hydroxide is less than 50 parts by mass, the flame retardancy is not sufficient, and when it exceeds 100 parts by mass, the trauma resistant resin composition becomes too hard and the trauma resistance as the third insulator layer. To lower the sex. Melamine cyanurate used together with magnesium hydroxide is blended in the range of 10 to 30 parts by mass. When the blending amount is less than 10 parts by mass, the effect of improving the flame retardancy cannot be expected. Thus, by using together magnesium hydroxide and melamine cyanurate, compared with the case where magnesium hydroxide is mix | blended independently, the higher flame retarding effect is acquired by the mixing | blending of the same number of parts. Moreover, both are mix | blended so that it may become 60-130 mass parts with respect to 100 mass parts of base resins in each compounding quantity range. The reason why such a blending amount is used is that when the amount is less than 60 parts by mass, the trauma resistance is good but the flame retardancy is inferior, and when it exceeds 130 parts by mass, the trauma resistance is inferior. .

なお、この水酸化マグネシウムも、シランカップリング剤によって表面処理することが好ましい。シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン等が使用できる。表面処理の方法としては、水酸化マグネシウムとシランカップリング剤を混合し、或いは混練することにより行なうことができる。また前記シランカップリング剤は、水酸化マグネシウムに対して0.1〜5質量%の範囲で用いるのが好ましい。このような表面処理水酸化マグネシウムは、耐外傷性樹脂組成物中への分散性が改善され、外層として被覆する際の押出加工性に優れると共に、機械特性を向上させ難燃性をさらに高めることになる。   This magnesium hydroxide is also preferably surface-treated with a silane coupling agent. As silane coupling agents, vinyltrimethoxysilane, vinyltriethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl Triethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, N-2 (aminoethyl) 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropyltriethoxysilane, 3 -Aminopropyltrimethoxysilane or the like can be used. As the surface treatment method, it can be carried out by mixing or kneading magnesium hydroxide and a silane coupling agent. Moreover, it is preferable to use the said silane coupling agent in 0.1-5 mass% with respect to magnesium hydroxide. Such surface-treated magnesium hydroxide has improved dispersibility in the scratch-resistant resin composition, has excellent extrudability when coated as an outer layer, and improves mechanical properties and further increases flame retardancy. become.

以上の難燃性を有する耐外傷性樹脂組成物は、各ベース樹脂および難燃剤の所定量を、ドライブレンドし、二軸混練押出機、バンバリーミキサー、ニーダー、ロール等の通常用いられる混練機で溶融混練することによって得られる。またこの耐外傷性樹脂組成物には、必要に応じて他の添加剤、例えば、紫外線吸収剤、酸化防止剤、老化防止剤、銅害防止剤、顔料、滑剤、相溶化剤等を、本発明の目的を損なわない範囲で適宜配合しても良く、また、場合により他の難燃助剤(赤燐、ポリ燐酸化合物、ヒドロキシ錫酸亜鉛等)を併用しても良い。そして以上の3層構造の絶縁体層は、通常各層の合計厚さとして0.9mm以下程度とされる。またこの絶縁電線は、電子線照射等によって架橋を行なっても良い。機械特性が向上されると共に、耐熱性や耐外傷性をさらに向上することができる。   The above-mentioned flame-resistant resin composition having flame retardancy is obtained by dry blending a predetermined amount of each base resin and flame retardant, and using a kneader usually used such as a twin-screw kneading extruder, a Banbury mixer, a kneader, and a roll. It can be obtained by melt-kneading. The trauma resistant resin composition may contain other additives such as UV absorbers, antioxidants, antioxidants, copper damage inhibitors, pigments, lubricants, compatibilizers, etc. as necessary. As long as the object of the invention is not impaired, it may be blended as appropriate, and in some cases, other flame retardant aids (red phosphorus, polyphosphate compound, zinc hydroxytinate, etc.) may be used in combination. The insulator layer having the above three-layer structure is generally set to about 0.9 mm or less as the total thickness of each layer. The insulated wire may be cross-linked by electron beam irradiation or the like. The mechanical properties are improved, and the heat resistance and the damage resistance can be further improved.

このような3層の絶縁体層を形成した絶縁電線は、請求項2に記載されるように、前記絶縁体層の厚さを各層の合計厚さをTとした時に、第1絶縁体層が、厚さが0.05mm以下でかつ<1/3T、第2絶縁体層が>1/3T、第3絶縁体層が<1/3Tとなるように厚さを形成することによって、高絶縁特性、耐外傷性および高難燃性を有する電子機器類用の絶縁電線として有用となる。また、第1絶縁体層にポリオレフィン系の樹脂を用いているので、口出し作業性等にも優れた絶縁電線となる。   As described in claim 2, the insulated wire in which the three insulator layers are formed has the first insulator layer when the total thickness of each insulator layer is T. However, by forming the thickness so that the thickness is 0.05 mm or less and <1 / 3T, the second insulator layer is> 1 / 3T, and the third insulator layer is <1 / 3T, It becomes useful as an insulated wire for electronic equipment having insulating properties, damage resistance and high flame resistance. In addition, since a polyolefin-based resin is used for the first insulator layer, the insulated wire has excellent lead-out workability and the like.

すなわち、3層の絶縁体層の合計厚さをTとした時に、特に第2絶縁体層をその他の層よりも十分厚く(1/3Tを超える厚さ)することによって、特に高い難燃性が得られ、第1絶縁体層および第3絶縁体層と共に、絶縁特性並びに耐外傷性を十分維持することができるようになる。なお絶縁体層の厚さTは、通常0.09mm程度以下とされる。図1によって説明する。1は導体で、銅、銅合金などの単線または撚り線によって構成され、導体径は通常0.3〜3.1mm程度のものである。2は第1絶縁体層の絶縁体層で、その厚さは0.05mm以上でかつ1/3Tよりも薄く形成される。このことによって、絶縁電線の絶縁特性として、30℃の水道水に24時間浸漬したとの絶縁抵抗が10MΩ・km以上の特性が得られる。3は第2絶縁体層の絶縁体層で、1/3Tを超える厚さとすることによって、高難燃性、具体的にはUL規格1581のVW−1試験に合格する難燃性が得られる。4は第3絶縁体層の絶縁体層で、1/3Tよりも薄く形成することによって、R=0.5のダイヤモンド圧指、荷重100gによる引掻き試験を行なっても白化が見られない耐外傷性が得られることになる。さらには、第1絶縁体層にポリオレフィン系樹脂を用いたことにより、口出し作業性等にも優れた絶縁電線となる。   That is, when the total thickness of the three insulator layers is T, particularly the second insulator layer is made sufficiently thicker than the other layers (thickness exceeding 1 / 3T), and thereby particularly high flame retardancy. Thus, it is possible to sufficiently maintain the insulation characteristics and the damage resistance together with the first insulator layer and the third insulator layer. Note that the thickness T of the insulator layer is usually about 0.09 mm or less. This will be described with reference to FIG. Reference numeral 1 denotes a conductor, which is composed of a single wire or a stranded wire such as copper or a copper alloy, and the conductor diameter is usually about 0.3 to 3.1 mm. Reference numeral 2 denotes an insulator layer of the first insulator layer, and the thickness thereof is 0.05 mm or more and thinner than 1 / 3T. As a result, as the insulation characteristic of the insulated wire, a characteristic that the insulation resistance when immersed in tap water at 30 ° C. for 24 hours is 10 MΩ · km or more is obtained. 3 is an insulator layer of the second insulator layer. By setting the thickness to more than 1 / 3T, high flame retardancy, specifically, flame retardance that passes the VW-1 test of UL standard 1581 is obtained. . 4 is an insulator layer of the third insulator layer. By forming the insulator layer to be thinner than 1 / 3T, no whitening is observed even when a scratch test is performed with a diamond finger of R = 0.5 and a load of 100 g. Sex will be obtained. Furthermore, by using a polyolefin-based resin for the first insulator layer, an insulated wire excellent in lead-out workability and the like is obtained.

以下に、実施例、比較例を示して本発明の効果を述べる。実施例を示す表1或いは比較例を示す表2に記載の絶縁電線を作製した。すなわち、表1および表2に記載した各材料をブレンドし、バンバリーミキサーを用いて160〜190℃で溶融混練し、第2絶縁体層および第3絶縁体層用の樹脂組成物を、AWG26(7/0.16TA)導体上に形成した0.08mm厚さの第1絶縁体層の上に、順じ0.27mm(第2絶縁体層)、0.05mm(第3絶縁体層)厚さに被覆した。なお、第1絶縁体層のPEは日本ユニカー社のLLDPE、ポリオレフィン系樹脂としてはプライムポリマー社のJ232WA(PP、MFRが1.5)を、また第2絶縁体層および第3絶縁体層用の樹脂としては、EVAとして三井・デュポンケミカル社製の商品名EV180、AEMとして三井・デュポンケミカル社製の商品名VAMAC DP、SEBエラストマーとして日本合成ゴム社製の商品名ダイナロン4630P、SEEPSとしてはクラレ社製の商品名セプトン4033、酸変性LLDPEは、日本ポリエチレン社製の商品名アドテックスL6100Mを使用した。また水酸化マグネシウムは、シランカップリング剤表面処理水酸化マグネシウムとして協和化学社製のキスマ5Pおよびキスマ5Lを使用した。さらに、酸化防止剤としてチバスペシャリティケミカルズ社製のイルガノックス1010を、メラミンシアヌレートは日産化学社製の商品名MC−860をそれぞれ使用した。   The effects of the present invention will be described below with reference to examples and comparative examples. The insulated wire of Table 1 which shows an Example, or Table 2 which shows a comparative example was produced. That is, the materials described in Table 1 and Table 2 were blended, melt-kneaded at 160 to 190 ° C. using a Banbury mixer, and the resin composition for the second insulator layer and the third insulator layer was converted to AWG26 ( 7 / 0.16TA) On the first insulator layer having a thickness of 0.08 mm formed on the conductor, the thicknesses are 0.27 mm (second insulator layer) and 0.05 mm (third insulator layer) in order. Coated. The PE of the first insulator layer is LLDPE of Nihon Unicar Co., Ltd., J232WA (PP, MFR is 1.5) of Prime Polymer Co., as the polyolefin resin, and for the second insulator layer and the third insulator layer. As the resin, EVA is a product name EV180 manufactured by Mitsui DuPont Chemical Co., Ltd., AEM is a product name VAMAC DP manufactured by Mitsui DuPont Chemical Co., Ltd., and SEB elastomer is a product name Dynalon 4630P manufactured by Nippon Synthetic Rubber Co., Ltd. The product name Adtex L6100M manufactured by Nippon Polyethylene Co., Ltd. was used as the product name Septon 4033 and acid-modified LLDPE manufactured by the company. As magnesium hydroxide, Kisuma 5P and Kisuma 5L manufactured by Kyowa Chemical Co., Ltd. were used as silane coupling agent surface-treated magnesium hydroxide. Further, Irganox 1010 manufactured by Ciba Specialty Chemicals was used as an antioxidant, and trade name MC-860 manufactured by Nissan Chemical Co., Ltd. was used for melamine cyanurate.

上記の絶縁電線について、破断強度および破断伸びをUL規格1581により測定し、破断強度は10.3MPa以上、破断伸びは150%以上のものを合格、それ以外を不合格として記載した。また耐外傷性については、R=0.5mmのダイヤモンド圧指、荷重100gによる引掻き試験を行ない被覆層の白化の有無を判定した。白化が見られないものを合格、白化が見られるものを不合格として記載した。さらに難燃性として、UL規格1581の垂直燃焼試験のVW−1試験を行ない、この試験をクリアしたものを合格とした。また、絶縁特性として30℃の水道水に24時間浸漬した後の絶縁抵抗を測定し、絶縁抵抗が10MΩ・km以上を合格とした。実施例の結果を表1に、比較例の結果を表2に示した。   About said insulated wire, breaking strength and breaking elongation were measured by UL specification 1581, and breaking strength was described as pass with the breaking strength being 10.3 MPa or more and breaking elongation of 150% or more, and others being rejected. Further, regarding the scratch resistance, a scratch test with a diamond finger of R = 0.5 mm and a load of 100 g was performed to determine whether or not the coating layer was whitened. Those in which whitening was not observed were described as acceptable, and those in which whitening was observed were described as rejected. Further, as flame retardancy, the VW-1 test of the vertical combustion test of UL standard 1581 was conducted, and the test that passed this test was regarded as acceptable. Moreover, the insulation resistance after being immersed in 30 degreeC tap water for 24 hours as an insulation characteristic was measured, and the insulation resistance set 10 Mohm * km or more as the pass. The results of the examples are shown in Table 1, and the results of the comparative examples are shown in Table 2.

Figure 2007052983
Figure 2007052983

Figure 2007052983
Figure 2007052983

結果は、表1の実施例から明らかなとおり、導体上に3層構造の絶縁体層が形成された絶縁電線として、導体上に、PEまたは水浸漬100時間の体積抵抗率が1×1014Ω・cmを下回ることがないポリオレフィン系樹脂からなる第1絶縁体層を形成し、またEVA45〜55質量部、AEM35〜45質量部およびSEBエラストマー5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウムが250〜350質量部配合された難燃性樹脂組成物からなる第2絶縁体層を形成し、EVA60〜80質量部、SEEPS15〜25質量部、AEM5〜10質量部および酸変性LLDPE5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウム50〜100質量部およびメラミンシアヌレート10〜30質量部からなる難燃剤の合計量が60〜130質量部となる範囲で配合した耐外傷性樹脂組成物からなる第3絶縁体層を形成したので、優れた高絶縁特性を有し、高難燃性、具体的にはノンハロゲンでUL規格1581のVW−1試験に合格すると共に、高い耐外傷性を有する絶縁電線が得られることが判る。 As is apparent from the examples in Table 1, the volume resistivity of 100 hours of PE or water immersion on the conductor is 1 × 10 14 as an insulated wire in which an insulator layer having a three-layer structure is formed on the conductor. A first insulator layer made of polyolefin resin that does not fall below Ω · cm is formed, and 100 parts by mass of base resin consisting of 45 to 55 parts by mass of EVA, 35 to 45 parts by mass of AEM and 5 to 10 parts by mass of SEB elastomer On the other hand, a second insulator layer made of a flame retardant resin composition containing 250 to 350 parts by weight of magnesium hydroxide is formed, EVA 60 to 80 parts by weight, SEEPS 15 to 25 parts by weight, AEM 5 to 10 parts by weight, and acid Magnesium hydroxide 50-100 parts by weight and melamine cyanurate 10 with respect to 100 parts by weight of the base resin consisting of 5-10 parts by weight of modified LLDPE Since the third insulator layer made of the scratch-resistant resin composition blended in the range where the total amount of the flame retardant consisting of 30 parts by mass is 60 to 130 parts by mass, it has excellent high insulation characteristics, and high It can be seen that an insulated wire having flame resistance, specifically, non-halogen and having passed the VW-1 test of UL standard 1581 and having high damage resistance can be obtained.

詳細に説明する。実施例1〜12に示されるように、第1絶縁体層にPEを施し、第2絶縁体層として、EVAが45〜55質量部、AEMが35〜45質量部、SEBエラストマーが5〜10質量部に、キスマ5Lを250〜300質量部の範囲で配合した難燃性樹脂組成物を用い、また第3絶縁体層として、EVAが60〜80質量部、SEEPSが15〜25質量部、AEMが5〜10質量部、酸変性LLDPE5〜10質量部に、キスマ5Pを50〜100質量部並びにメラミンシアヌレート10〜30質量部の割合で、合計量が60〜130質量部配合した耐外傷性樹脂組成物を形成した絶縁電線は、絶縁抵抗が10MΩ・km以上であり、耐外傷性については傷ないし傷による白化は認められず、また破断強度が10.3MPa以上、破断伸びは150%以上であった。さらに難燃性に関しても、UL規格1581に規定されているVW−1規格に合格する優れた難燃性を示した。また、実施例13として記載した第1絶縁体層に体積抵抗率が1×1014Ω・cmを下回ることがないポリオレフィン系樹脂を使用した絶縁電線も、絶縁抵抗が10MΩ・km以上であり、傷ないし傷による白化が認められない耐外傷性を有し、破断強度が10.3MPa以上、破断伸びは150%以上で、難燃性に関しても、UL規格1581に規定されているVW−1規格に合格する優れた難燃性の絶縁電線であった。またこれ等の絶縁電線は、口出し作業性等にも優れていた。 This will be described in detail. As shown in Examples 1 to 12, PE is applied to the first insulator layer, and as the second insulator layer, 45 to 55 parts by mass of EVA, 35 to 45 parts by mass of AEM, and 5 to 10 of SEB elastomer are used. A flame retardant resin composition in which Kisuma 5L is blended in a range of 250 to 300 parts by mass is used as parts by mass, and as the third insulator layer, EVA is 60 to 80 parts by mass, SEEPS is 15 to 25 parts by mass, 5-10 parts by mass of AEM, 5-10 parts by mass of acid-modified LLDPE, 50-100 parts by mass of Kisuma 5P and 10-30 parts by mass of melamine cyanurate, total amount of 60-130 parts by mass The insulated wire formed with the conductive resin composition has an insulation resistance of 10 MΩ · km or more, and no damage or whitening due to scratches is observed with respect to the damage resistance, and the breaking strength is 10.3 MPa or more. It was equal to or greater than 50%. Furthermore, regarding flame retardancy, excellent flame retardancy that passed the VW-1 standard defined in UL standard 1581 was exhibited. In addition, an insulated wire using a polyolefin-based resin whose volume resistivity does not fall below 1 × 10 14 Ω · cm for the first insulator layer described as Example 13 also has an insulation resistance of 10 MΩ · km or more, VW-1 standard as defined in UL standard 1581 with respect to flame resistance, having a scratch resistance that does not cause whitening due to scratches or scratches, has a breaking strength of 10.3 MPa or more, a breaking elongation of 150% or more It was an excellent flame retardant insulated wire that passed Moreover, these insulated wires were excellent in lead-out workability.

これに対し、表2の比較例1〜11に示した本発明範囲から外れた例の場合には、絶縁特性、破断強度、破断伸び、難燃性並びに耐外傷性のいずれかが不合格となった。すなわち、比較例1のように第2絶縁体層の水酸化マグネシウムの配合量が240質量部と少ないと、難燃性に合格しなかった。また比較例2のように水酸化マグネシウムの総量が360質量部となると、破断伸びが不合格となった。さらに比較例3のように第2絶縁体層のEVA量が45質量部と少なく、AEMが50質量部と多いと、破断強度不合格となった。また比較例4に示されるように、AEMが30質量部と少ないと難燃性が不合格となり、さらに比較例5に示されるように第3絶縁体層のEVAが45質量部で、酸変性LLDPEが20質量と多いと、破断伸びが不合格となる。また比較例6のように第3絶縁体層に酸変性LLDPEを添加しない場合には、破断強度が不合格となる。さらに比較例7および8のように、第3絶縁体層のSEEPSの添加量が少ないと、耐外傷性並びに破断強度が不合格となる。また比較例9にように、第3絶縁体層のキスマ5Pの添加量が多く、メラミンシヌレートの添加量が少ないと、耐外傷性が不合格となる。また比較例10のように、第2絶縁体層のSEBエラストマーの添加量が多いと、難燃性が不合格となる。さらにまた比較例11にように、第1絶縁体層がポリオレフィン系樹脂の場合も第3絶縁体層のEVAの添加量が少なく、SEEPSの添加量が多いと難燃性が不合格となることが判った。   On the other hand, in the case of an example outside the scope of the present invention shown in Comparative Examples 1 to 11 in Table 2, any of the insulating properties, breaking strength, breaking elongation, flame retardancy and trauma resistance is rejected. became. That is, when the compounding quantity of magnesium hydroxide in the second insulator layer was as small as 240 parts by mass as in Comparative Example 1, the flame retardancy was not passed. Moreover, when the total amount of magnesium hydroxide was 360 parts by mass as in Comparative Example 2, the elongation at break failed. Further, as in Comparative Example 3, when the amount of EVA in the second insulator layer was as small as 45 parts by mass and the amount of AEM was as large as 50 parts by mass, the fracture strength was rejected. Further, as shown in Comparative Example 4, when the AEM is as small as 30 parts by mass, the flame retardancy is rejected. Further, as shown in Comparative Example 5, the EVA of the third insulator layer is 45 parts by mass, and the acid modification When there is much LLDPE as 20 mass, elongation at break will be disqualified. Moreover, when acid-modified LLDPE is not added to the third insulator layer as in Comparative Example 6, the breaking strength is rejected. Further, as in Comparative Examples 7 and 8, when the added amount of SEEPS in the third insulator layer is small, the trauma resistance and the breaking strength are rejected. In addition, as in Comparative Example 9, when the amount of Kisuma 5P added to the third insulator layer is large and the amount of melamine cinnurate added is small, the trauma resistance is rejected. Moreover, when there is much addition amount of the SEB elastomer of a 2nd insulator layer like the comparative example 10, a flame retardance will be disqualified. Furthermore, as in Comparative Example 11, when the first insulator layer is a polyolefin-based resin, the amount of EVA added to the third insulator layer is small, and if the amount of SEEPS added is large, the flame retardancy is rejected. I understood.

つぎに、表3に記載した各絶縁体層の厚さを種々変えた絶縁電線を作製して、その特性を調べた。すなわち、第1絶縁体層のPEは日本ユニカー社のLLDPEを、また第2絶縁体層および第3絶縁体層用の樹脂としては、EVAとして三井・デュポンケミカル社製の商品名EV180、AEMとして三井・デュポンケミカル社製の商品名VAMAC DP、SEBエラストマーとして日本合成ゴム社製の商品名ダイナロン4630P、SEEPSとしてはクラレ社製の商品名セプトン4033、酸変性LLDPEは、日本ポリエチレン社製の商品名アドテックスL6100Mを使用した。また水酸化マグネシウムは、シランカップリング剤表面処理水酸化マグネシウムとして協和化学社製のキスマ5Pおよびキスマ5Lを使用した。さらに、酸化防止剤としてチバスペシャリティケミカルズ社製のイルガノックス1010を、メラミンシアヌレートは日産化学社製の商品名MC−860をそれぞれ使用した各種樹脂組成物を用い、全体の絶縁体層(T)の厚さを0.8mmとし、第1絶縁体層、第2絶縁体層および第3絶縁体層の厚さをそれぞれ変えて種々の絶縁電線を作製した。この絶縁電線について表1および表2と同様に、破断強度、破断伸び、耐外傷性、難燃性および絶縁特性の試験を行なった。結果を表3に示した。   Next, the insulated wire which changed the thickness of each insulator layer described in Table 3 variously was produced, and the characteristic was investigated. That is, the PE of the first insulator layer is LLDPE manufactured by Nihon Unicar, and the resin for the second insulator layer and the third insulator layer is EVA as trade names EV180 and AEM manufactured by Mitsui DuPont Chemical Co., Ltd. Trade name VAMAC DP manufactured by Mitsui DuPont Chemical Co., trade name Dynalon 4630P manufactured by Nippon Synthetic Rubber Co., Ltd. as SEB elastomer, trade name Septon 4033 manufactured by Kuraray Co., Ltd., and acid-modified LLDPE manufactured by Nippon Polyethylene Co., Ltd. Adtex L6100M was used. As magnesium hydroxide, Kisuma 5P and Kisuma 5L manufactured by Kyowa Chemical Co., Ltd. were used as silane coupling agent surface-treated magnesium hydroxide. Further, Irganox 1010 manufactured by Ciba Specialty Chemicals was used as an antioxidant, and various resin compositions using the product name MC-860 manufactured by Nissan Chemical Co., respectively, were used as melamine cyanurate, and the entire insulator layer (T) A thickness of 0.8 mm was used, and various insulated wires were manufactured by changing the thicknesses of the first insulator layer, the second insulator layer, and the third insulator layer. As with Tables 1 and 2, the insulated wires were tested for breaking strength, breaking elongation, damage resistance, flame retardancy, and insulating properties. The results are shown in Table 3.

Figure 2007052983
Figure 2007052983

表3の実施例から明らかなとおり、絶縁体層の各層の合計厚さをT(0.8mm)とした時に、第1絶縁体層が<1/3T、第2絶縁体層が>1/3T、第3絶縁体層が<1/3Tとなるように形成することにより、高絶縁特性、耐外傷性および高難燃性の絶縁電線が得られることが判る。すなわち、実施例14〜19として記載したように、各絶縁体層の厚さが前記条件の範囲内の場合は、絶縁抵抗が10MΩ・km以上であり、耐外傷性については傷乃至傷による白化は認められず、また破断強度が10.3MPa以上、破断伸びは150%以上であった。さらに難燃性に関しても、UL規格1581に規定されているVW−1規格に合格する優れた難燃性を示した。さらにこの絶縁電線は、口出し作業性等にも優れていた。これに対して、比較例12のように第1絶縁体層、第2絶縁体層および第3絶縁体層の厚さを全て同じにすると、難燃性が不合格となる。また比較例13のように、第1絶縁体層の厚さを第2絶縁体層の厚さよりも厚くすると、やはり難燃性が不合格となる。さらに比較例14のように、第3絶縁体層の厚さを第2絶縁体層の厚さよりも厚くすると、比較例1や2と同様に難燃性が不合格となる。   As is clear from the examples in Table 3, when the total thickness of each insulator layer is T (0.8 mm), the first insulator layer is <1 / 3T and the second insulator layer is> 1 / It can be seen that by forming 3T and the third insulator layer to be <1 / 3T, it is possible to obtain an insulated wire having high insulation characteristics, damage resistance, and high flame resistance. That is, as described in Examples 14 to 19, when the thickness of each insulator layer is within the range of the above conditions, the insulation resistance is 10 MΩ · km or more, and the resistance to trauma is whitening due to scratches or scratches. The breaking strength was 10.3 MPa or more, and the breaking elongation was 150% or more. Furthermore, regarding flame retardancy, excellent flame retardancy that passed the VW-1 standard defined in UL standard 1581 was exhibited. Furthermore, this insulated wire was also excellent in lead workability. On the other hand, if the thicknesses of the first insulator layer, the second insulator layer, and the third insulator layer are all the same as in Comparative Example 12, the flame retardancy is rejected. Further, as in Comparative Example 13, if the thickness of the first insulator layer is made larger than the thickness of the second insulator layer, the flame retardancy is also rejected. Further, as in Comparative Example 14, if the thickness of the third insulator layer is made larger than the thickness of the second insulator layer, the flame retardancy is rejected as in Comparative Examples 1 and 2.

さらに、特に絶縁特性を確認するために第1絶縁層の厚さについて検討した。すなわち、第4表に示す構成の絶縁電線を作製してその特性を調べた。各絶縁体層は、表3に示した絶縁材料を用い第3絶縁体層の厚さを0.2mmで一定にし、第1絶縁体層の厚さを変えて絶縁電線を作製した。また、第1および第2絶縁体層の厚さの合計が0.6mmとなるように第2絶縁体層の厚さを調整した。この絶縁電線について表3と同様に、破断強度、破断伸び、耐外傷性、難燃性および絶縁特性の試験を行なった。結果を表4に示した。   Furthermore, the thickness of the first insulating layer was examined in order to particularly confirm the insulating characteristics. That is, an insulated wire having the configuration shown in Table 4 was produced and its characteristics were examined. For each insulator layer, the insulating material shown in Table 3 was used, the thickness of the third insulator layer was kept constant at 0.2 mm, and the thickness of the first insulator layer was changed to produce an insulated wire. Further, the thickness of the second insulator layer was adjusted so that the total thickness of the first and second insulator layers was 0.6 mm. The insulated wire was tested in the same manner as in Table 3 for breaking strength, breaking elongation, damage resistance, flame retardancy, and insulating properties. The results are shown in Table 4.

Figure 2007052983
Figure 2007052983

表4の実施例20および21から明らかなとおり、第1絶縁体層の厚さは0.05mm以上とすることが好ましいことが判る。すなわち比較例15に示すように、第1絶縁体層の厚さが0.04mmであると、絶縁抵抗が10MΩ・km未満となって不合格となるためである。   As is clear from Examples 20 and 21 in Table 4, it can be seen that the thickness of the first insulator layer is preferably 0.05 mm or more. That is, as shown in Comparative Example 15, when the thickness of the first insulator layer is 0.04 mm, the insulation resistance becomes less than 10 MΩ · km, which is rejected.

本発明の絶縁電線は、優れた絶縁特性とノンハロゲンの高難燃性を有すると共に、耐外傷性にも優れているので、特に電子機器等に用いられる絶縁配線として有用である。   The insulated wire of the present invention has excellent insulation characteristics and non-halogen high flame retardancy, and is also excellent in damage resistance. Therefore, the insulated wire is particularly useful as an insulated wiring used in electronic devices and the like.

本発明の絶縁電線の概略断面図である。It is a schematic sectional drawing of the insulated wire of this invention.

符号の説明Explanation of symbols

1 導体
2 第1絶縁体層
3 第2絶縁体層
4 第3絶縁体層
DESCRIPTION OF SYMBOLS 1 Conductor 2 1st insulator layer 3 2nd insulator layer 4 3rd insulator layer

Claims (2)

導体上に、3層構造の絶縁体層が形成された絶縁電線であって、導体上から順次、ポリエチレン樹脂または水浸漬100時間の体積抵抗率が1×1014Ω・cmを下回ることがないポリオレフィン系樹脂からなる第1絶縁体層、エチレン・酢酸ビニル共重合体45〜55質量部、エチレン・アクリルゴム35〜45質量部およびスチレン・エチレン・ブチレン共重合体エラストマー5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウムが250〜350質量部配合された難燃性樹脂組成物からなる第2絶縁体層、エチレン・酢酸ビニル共重合体60〜80質量部、スチレン・エチレン・エチレンプロピレン・スチレン共重合体15〜25質量部、エチレン・アクリルゴム5〜10質量部および酸変性直鎖状低密度ポリエチレン5〜10質量部からなるベース樹脂100質量部に対し、水酸化マグネシウム50〜100質量部およびメラミンシアヌレート10〜30質量部からなる難燃剤の合計量が60〜130質量部となる範囲で配合した耐外傷性樹脂組成物からなる第3絶縁体層が形成されたことを特徴とする絶縁電線。 An insulated wire in which an insulator layer having a three-layer structure is formed on a conductor, and the volume resistivity after 100 hours of immersion in polyethylene resin or water does not fall below 1 × 10 14 Ω · cm sequentially from the conductor. First insulator layer made of polyolefin resin, 45 to 55 parts by mass of ethylene / vinyl acetate copolymer, 35 to 45 parts by mass of ethylene / acrylic rubber, and 5 to 10 parts by mass of styrene / ethylene / butylene copolymer elastomer. Second insulator layer comprising a flame retardant resin composition in which 250 to 350 parts by mass of magnesium hydroxide is blended with respect to 100 parts by mass of base resin, 60 to 80 parts by mass of ethylene / vinyl acetate copolymer, styrene / ethylene・ 15-25 parts by mass of ethylene propylene / styrene copolymer, 5-10 parts by mass of ethylene / acrylic rubber, and acid-modified linear low density polymer In a range where the total amount of the flame retardant consisting of 50 to 100 parts by mass of magnesium hydroxide and 10 to 30 parts by mass of melamine cyanurate is 60 to 130 parts by mass with respect to 100 parts by mass of the base resin consisting of 5 to 10 parts by mass of ethylene. An insulated electric wire characterized in that a third insulator layer made of a blended trauma resistant resin composition is formed. 前記絶縁体層の厚さは、各絶縁体層の合計厚さをTとした時に、第1絶縁体層は厚さが0.05mm以上でかつ<1/3T、第2絶縁体層は>1/3T、また第3絶縁体層が<1/3Tとなるように形成したことを特徴とする請求項1に記載の絶縁電線。   As for the thickness of the insulator layer, when the total thickness of each insulator layer is T, the first insulator layer has a thickness of 0.05 mm or more and <1 / 3T, the second insulator layer> 2. The insulated wire according to claim 1, wherein the insulated wire is formed to be 1 / 3T and the third insulator layer is <1 / 3T.
JP2005236590A 2005-08-17 2005-08-17 Insulated electric wire Pending JP2007052983A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005236590A JP2007052983A (en) 2005-08-17 2005-08-17 Insulated electric wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005236590A JP2007052983A (en) 2005-08-17 2005-08-17 Insulated electric wire

Publications (1)

Publication Number Publication Date
JP2007052983A true JP2007052983A (en) 2007-03-01

Family

ID=37917284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005236590A Pending JP2007052983A (en) 2005-08-17 2005-08-17 Insulated electric wire

Country Status (1)

Country Link
JP (1) JP2007052983A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005357A1 (en) * 2010-07-08 2012-01-12 住友電気工業株式会社 Photovoltaic power collection cable
JP2019116582A (en) * 2017-12-27 2019-07-18 古河電気工業株式会社 Silane crosslinked acrylic rubber molded body and manufacturing method therefor, silane crosslinked acrylic rubber composition, and oil resistant product

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005357A1 (en) * 2010-07-08 2012-01-12 住友電気工業株式会社 Photovoltaic power collection cable
JP2012018830A (en) * 2010-07-08 2012-01-26 Sumitomo Electric Ind Ltd Photovoltaic power collecting cable
JP2019116582A (en) * 2017-12-27 2019-07-18 古河電気工業株式会社 Silane crosslinked acrylic rubber molded body and manufacturing method therefor, silane crosslinked acrylic rubber composition, and oil resistant product

Similar Documents

Publication Publication Date Title
US7586043B2 (en) Non-halogenous insulated wire and a wiring harness
US9305678B2 (en) Composition for wire coating member, insulated wire, and wiring harness
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP5780477B2 (en) Phosphorus-free non-halogen flame retardant insulated wires and phosphorus-free non-halogen flame retardant cables
JP2013177610A (en) Non-halogen flame-retardant resin composition, and non-halogen flame-retardant electric wire and cable
US20090301756A1 (en) Insulated Wire and a Wiring Harness
JP4255368B2 (en) Cross-linked flame retardant resin composition, insulated wire and wire harness using the same
JP5202570B2 (en) Insulated wire
JP2008277142A (en) Insulated wire, and wiring harness
JP5436994B2 (en) Flame retardant resin composition and molded article using the same
JP2008097918A (en) Non-halogen flame-resistant wire excelling in terminal workability
WO2013140692A1 (en) Non-halogen flame retardant resin composition, and electric wire and cable using same
JP2014194893A (en) Phosphorus-free non-halogen flame-retardant insulation wire and phosphorus-free non-halogen flame-retardant insulation cable
JP2007052983A (en) Insulated electric wire
JP2005346941A (en) Cross-linked, external-damage resistant and flame retardant insulating wire
JP2010111760A (en) Non-halogen resin composition, non-halogen insulated electrical wire, and non-halogen cable
JP2010157413A (en) Non-halogen flame retardant electric wire/cable
JP2008037927A (en) Flame-retardant resin composition and insulated wire
JP2005322474A (en) Cross-linked external-fault resistant fire retardant insulated wire
JP5794216B2 (en) Non-halogen flame retardant resin composition and method for producing the same, insulated wire and cable using the same
JP6860833B2 (en) Flame-retardant insulated wires and flame-retardant cables
WO2013002114A1 (en) Flame retardant resin composition and molded article
JP5692619B2 (en) Phosphorus-free non-halogen flame-retardant insulated wires and phosphorus-free non-halogen flame-retardant insulated cables
JP2004256748A (en) Non-halogen flame-retardant composition and flame-retardant power cord
JP2005044596A (en) Nonphosphate high-flame-resistance high-strength nonhalogen insulated wire