WO2012005357A1 - Photovoltaic power collection cable - Google Patents

Photovoltaic power collection cable Download PDF

Info

Publication number
WO2012005357A1
WO2012005357A1 PCT/JP2011/065709 JP2011065709W WO2012005357A1 WO 2012005357 A1 WO2012005357 A1 WO 2012005357A1 JP 2011065709 W JP2011065709 W JP 2011065709W WO 2012005357 A1 WO2012005357 A1 WO 2012005357A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
cable
mass ratio
resin
tensile strength
Prior art date
Application number
PCT/JP2011/065709
Other languages
French (fr)
Japanese (ja)
Inventor
丈 八木澤
智 山崎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN2011800036012A priority Critical patent/CN102483974B/en
Publication of WO2012005357A1 publication Critical patent/WO2012005357A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes

Definitions

  • the present invention relates to a solar current collecting cable, and more particularly to a solar current collecting cable covered with an insulating layer having a two-layer structure.
  • the PSE standard In addition to the requirements for conductors and insulators, the PSE standard requires physical properties (elongation, tensile strength, residual elongation ratio after aging and residual tensile strength ratio) and heat deformation in addition to the requirements for the sheath (sheath). There are items to prescribe. Furthermore, in order to prevent the fire from spreading through the cable in the event of a fire accident, the PSE standard requires flame retardancy. As a flame-retardant electric wire, there is a non-halogen flame-retardant electric wire described in Patent Document 1.
  • the present invention has been made by paying attention to the above-mentioned problems in conventional solar current collecting cables, and its purpose is to provide physical properties (elongation, tensile strength, aging after aging) required for the jacket according to the PSE standard.
  • An object of the present invention is to provide a solar power collecting cable that has a good appearance that does not cause so-called whitening due to rubbing or the like while satisfying elongation residual ratio and tensile strength residual ratio), heat deformability, and flame retardancy.
  • the inventors of the present invention incorporated a synthetic magnesium hydroxide into a resin constituting the outer insulating layer at a certain ratio in a cable in which a conductor is double-coated with an insulating layer. And it discovered that the said objective can be achieved by making the composition of resin which comprises an outer side insulating layer into a specific thing, and came to complete this invention.
  • the solar collector cable of the present invention is a solar collector cable in which a conductor is coated with an insulating layer having a two-layer structure including an outer insulating layer and an inner insulating layer made of polyethylene,
  • the styrenic thermoplastic elastomer is SEBS (styrene-ethylenebutylene-styrene copolymer).
  • FIG. 1 is a schematic cross-sectional perspective view showing an example of the solar current collecting cable of the present invention.
  • the solar collector cable 1 has a shape in which the conductor 10 is covered with a double-structured insulating layer including an inner insulating layer 20 and an outer insulating layer 30 laminated on the outer periphery thereof.
  • a double-structured insulating layer including an inner insulating layer 20 and an outer insulating layer 30 laminated on the outer periphery thereof.
  • one having a length of about 1.5 m is usually used as a set of two.
  • the size of the conductor 10 is preferably a cross-sectional area of 2.0 to 6.0 mm 2 , and considering the PSE standard, the nominal cross-sectional area is 2.0 mm 2 and 3.5 mm 2 , and the configuration is 7 strands. / The strand diameter is preferably 0.6 mm, 7 strands / strand diameter is preferably 0.8 mm.
  • the material can be, for example, annealed copper.
  • the inner insulating layer 20 preferably has a thickness of 0.7 to 1.2 mm and an outer diameter of 3.4 to 5.1 mm.
  • the material of the inner insulating layer 20 is polyethylene. By making the inner insulating layer 20 pure polyethylene, good electrical characteristics can be realized.
  • the outer insulating layer 30 preferably has a thickness of 1.5 mm and a finished outer diameter of 6.4 to 8.1 mm.
  • the outer insulating layer 30 contains synthetic magnesium hydroxide as a flame retardant.
  • synthetic magnesium hydroxide examples include Kisuma (trademark) manufactured by Kyowa Chemical Industry Co., Ltd.
  • Kisuma trademark
  • the synthetic magnesium hydroxide may be surface-treated.
  • normally used metal oxides such as aluminum hydroxide and natural magnesium hydroxide are effective for obtaining flame retardancy, but when an amount capable of obtaining flame retardancy is added, the abrasion point of the cable Since it becomes white, it is impossible to achieve both flame retardancy and good appearance.
  • the synthetic magnesium hydroxide is contained at a mass ratio of 1 to 1.6 with respect to the base resin of the outer insulating layer 30. If it is less than 1, the desired flame retardancy cannot be obtained, and if it exceeds 1.6, the extrudability during molding deteriorates.
  • the base resin of the outer insulating layer 30 contains a polyolefin resin (C) and a styrene thermoplastic elastomer (D).
  • the content ratio of the polyolefin resin exceeds 90% by mass of the total amount of the polyolefin resin and the styrene thermoplastic elastomer, the flame retardancy tends to be inferior and a desired tensile strength cannot be obtained.
  • the content is less than 70% by mass, the outer insulating layer 30 is whitened.
  • the polypropylene-based resin is not particularly limited, but an ethylene-propylene copolymer or polypropylene obtained by melt-kneading ethylene-propylene rubber (EPDM, EPR) is preferable.
  • ethylene propylene copolymer obtained by melt-kneading EPDM or EPR. This is because flexibility that facilitates work during wiring can be provided while having sufficient heat resistance and strength.
  • a reactor TPO type can be used in addition to the compound TPO type (TPO: olefinic thermoplastic elastomer) synthesized by melt-kneading the resin component and the rubber component as described above.
  • Reactor TPO is an olefinic thermoplastic elastomer in which a rubber component, which is a soft part, is dispersed in a matrix resin, which is a hard part, during polymer polymerization, and a compound TPO that is synthesized by melting and kneading the above resin component and rubber component.
  • the resin component and the rubber component are polymerized in the same polymerization field to obtain TPO.
  • a matrix part having polypropylene can be used.
  • the styrene-based thermoplastic elastomer is not particularly limited, but is preferably SEBS (styrene-ethylenebutylene-styrene copolymer) or SEBC (styrene-ethylenebutylene-olefin crystal block copolymer).
  • SEBS styrene-ethylenebutylene-styrene copolymer
  • SEBC styrene-ethylenebutylene-olefin crystal block copolymer
  • the ethylene-ethyl acrylate copolymer is not particularly limited, but preferably has an ethyl acrylate content of 10 to 25% by mass, and an ethyl acrylate content of about 15% by mass. Is particularly preferred. This is because the dispersibility of magnesium hydroxide is improved. When the content of ethyl acrylate is small, magnesium hydroxide cannot be sufficiently dispersed, and elongation cannot be obtained, and aggregation of magnesium hydroxide occurs.
  • the base resin of the outer insulating layer 30 may further include a plasticizer, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a lubricant, a colorant, a filler, a processability improver, and other modifiers as necessary. It can also be used individually or in combination of 2 or more types.
  • the solar collector cable 1 is obtained by covering the conductor 10 in the order of the inner insulating layer 20 and the outer insulating layer 30 by extrusion coating.
  • the polyethylene used for the inner insulating layer 20 is preferably crosslinked by a method such as electron beam or ultraviolet irradiation.
  • the extrusion coating the respective compositions are kneaded with a roll, a banbury, an extruder, etc., and the obtained pellet compound and conductor are subjected to wire coating extrusion molding with a conventionally known wire extruder provided with a crosshead die. It can be done by things.
  • Flame retardancy was evaluated by 60 ° tilted flame retardancy. About 60 degree inclination flame-retardant, the flame was applied to the cable for 30 seconds, the flame was removed immediately after ignition, and the case where it disappeared within 60 seconds was set as the pass.
  • the outer insulating layer portion was taken out from the cable and measured according to JIS C3005: 2000 4.16.
  • the test machine specified in JIS B 7721 was used.
  • a tubular test piece was attached to the chuck of the testing machine, and the pulling speed was 200 mm / min.
  • the length between the marked lines at the time of cutting and cutting was measured, and the elongation was calculated by the following formula.
  • (l 1 ⁇ l 0 / l 0 ) ⁇ 100
  • is elongation (%)
  • l 1 is the length between marked lines (mm) at the time of cutting
  • l 0 is the length (mm) between marked lines.
  • Examples 1 to 4 are physical properties (elongation, tensile strength, residual elongation rate after tensile aging and residual tensile strength rate) required for the jacket according to the PSE standard, heat distortion, flame retardancy, and good appearance characteristics that do not cause whitening. Good results excellent in any of the above can be obtained.
  • Comparative Examples 1 and 2 since natural magnesium hydroxide was used, whitening occurred. Furthermore, about Comparative Example 2, since homopolypropylene was used as the polypropylene-based resin, the result was that the elongation was inferior together with flame retardancy compared to Comparative Example 1 using the ethylene-propylene block copolymer. Since Comparative Example 3 does not contain SEBS, which is a styrenic thermoplastic elastomer, no tensile strength can be obtained. On the other hand, if SEBS, which is a styrenic thermoplastic elastomer, is added too much as in Comparative Example 4, whitening occurs.
  • SEBS which is a styrenic thermoplastic elastomer
  • Comparative Example 3 does not contain SEBS, which is a styrene thermoplastic elastomer, flame retardant is a problem because the blending ratio of the polypropylene resin and the ethylene-ethyl acrylate copolymer in the polyolefin resin is good. There is no level. Comparative Examples 5 and 6 are experimental examples in which the blending ratio of the polypropylene resin and the ethylene-ethyl acrylate copolymer in the polyolefin resin was changed.
  • Comparative Example 5 containing a polypropylene resin exceeding a specific ratio, While the flame retardancy is inferior and the elongation is poor, Comparative Example 6 containing an ethylene-ethyl acrylate copolymer in excess of the specific ratio results in inferior tensile strength.
  • SYMBOLS 1 Solar collector cable, 10 ... Conductor, 20 ... Inner insulating layer, 30 ... Outer insulating layer.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Insulated Conductors (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Photovoltaic Devices (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

Provided is a photovoltaic power collection cable which satisfies the physical characteristics (elongation, tensile strength, and retentions of elongation and tensile strength after aging), thermal deformation resistance and flame retardance as stipulated in PSE standards for the sheath. Even when scratched, the photovoltaic power collection cable does not suffer from whitening and thus has excellent surface appearance. A photovoltaic power collection cable (1) configured in such a manner that a conductor (10) is covered with an insulation layer of double wall structure which comprises both an outer insulation layer (30) and an inner insulation layer (20) made of polyethylene, wherein the outer insulation layer (30) comprises synthetic magnesium hydroxide (A) and a base resin (B) at an (A)/(B) mass ratio of 1 to 1.6, and the base resin comprises a polyolefin resin (C) and a styrenic thermoplastic elastomer (D) at a (C)/(D) mass ratio of 70/30 to 90/10, said polyolefin resin (C) comprising a polypropylene resin (E) and an ethylene/ethyl acrylate copolymer (F) at an (E)/(F) mass ratio of 2/6 to 3/5.

Description

太陽光集電ケーブルSolar collector cable
 本発明は太陽光集電ケーブルに係り、詳細には二層構造の絶縁層で被覆された太陽光集電ケーブルに関する。 The present invention relates to a solar current collecting cable, and more particularly to a solar current collecting cable covered with an insulating layer having a two-layer structure.
 近年、エネルギー資源の枯渇や大気中のCO2増加のような環境問題及びエネルギー問題への関心の高まりから、クリーンなエネルギーの開発が望まれており、なかでも太陽電池を用いた太陽光発電システムは新しいエネルギー源として実用化が進められている。
 このような太陽光発電システムに用いられる太陽光集電ケーブルは、屋外環境での使用が前提となるため、使用可能温度の広さ、耐紫外線性、フレキシブル性に加え、機械的強度や、二重絶縁又は強化絶縁であることが要求されており、また該太陽光集電ケーブルは、電気用品安全法(PSE規格)に適合したケーブルであることも求められている。
In recent years, the development of clean energy has been demanded due to the growing interest in environmental issues and energy issues such as depletion of energy resources and increased CO 2 in the atmosphere. In particular, solar power generation systems using solar cells Is being put to practical use as a new energy source.
Since a solar current collecting cable used in such a photovoltaic power generation system is assumed to be used in an outdoor environment, in addition to the wide usable temperature, UV resistance, flexibility, mechanical strength, It is required to be heavy insulation or reinforced insulation, and the solar collector cable is also required to be a cable that complies with the Electrical Appliance and Material Safety Law (PSE standard).
 PSE規格が要求する項目には、導体や絶縁体についての要求項目のほかに、外被(シース)について、物理特性(伸び、抗張力、老化後の伸び残率と抗張力残率)と加熱変形を規定する項目がある。さらに発火事故などに際してケーブルを伝って火が広がることを防ぐため、PSE規格では難燃性であることを求めている。
 難燃性電線としては、特許文献1に記載のノンハロゲン難燃電線がある。
In addition to the requirements for conductors and insulators, the PSE standard requires physical properties (elongation, tensile strength, residual elongation ratio after aging and residual tensile strength ratio) and heat deformation in addition to the requirements for the sheath (sheath). There are items to prescribe. Furthermore, in order to prevent the fire from spreading through the cable in the event of a fire accident, the PSE standard requires flame retardancy.
As a flame-retardant electric wire, there is a non-halogen flame-retardant electric wire described in Patent Document 1.
日本国特開2001-160324号公報Japanese Unexamined Patent Publication No. 2001-160324
 しかしながら、これらのケーブルでは、上述の難燃性を実現するために外層に水酸化アルミニウムや水酸化マグネシウムなどの金属酸化物を混和する必要があり、この金属酸化物を含有するケーブルは、擦れたときにその部分が白くなる現象、いわゆる白化が起こるために外観不良となる問題点を有する。 However, in these cables, it is necessary to mix a metal oxide such as aluminum hydroxide or magnesium hydroxide in the outer layer in order to realize the above flame retardancy, and the cable containing this metal oxide was rubbed. There is a problem that the appearance becomes poor because a phenomenon that the portion becomes white sometimes, so-called whitening occurs.
 本発明は、従来の太陽光集電ケーブルにおける上記課題に着目してなされたものであって、その目的とするところは、PSE規格で外被に求められる物理特性(伸び、抗張力、老化後の伸び残率と抗張力残率)及び加熱変形性と、難燃性とを満たしつつ、擦過等によるいわゆる白化が生じない良好な外観を有する太陽光集電ケーブルを提供することにある。 The present invention has been made by paying attention to the above-mentioned problems in conventional solar current collecting cables, and its purpose is to provide physical properties (elongation, tensile strength, aging after aging) required for the jacket according to the PSE standard. An object of the present invention is to provide a solar power collecting cable that has a good appearance that does not cause so-called whitening due to rubbing or the like while satisfying elongation residual ratio and tensile strength residual ratio), heat deformability, and flame retardancy.
 本発明者らは、上記目的を達成するため鋭意検討を重ねた結果、導体に絶縁層を二重被覆したケーブルにおいて、外側絶縁層を構成する樹脂に一定の比率で合成水酸化マグネシウムを含有させ、且つ、外側絶縁層を構成する樹脂の組成を特定のものとすることで、上記目的が達成できることを見出し、本発明を完成するに至った。 As a result of intensive studies to achieve the above-mentioned object, the inventors of the present invention incorporated a synthetic magnesium hydroxide into a resin constituting the outer insulating layer at a certain ratio in a cable in which a conductor is double-coated with an insulating layer. And it discovered that the said objective can be achieved by making the composition of resin which comprises an outer side insulating layer into a specific thing, and came to complete this invention.
 即ち、本発明の太陽光集電ケーブルは、外側絶縁層と、ポリエチレンからなる内側絶縁層とを備えた二層構造の絶縁層で導体が被覆された太陽光集電ケーブルであって、前記外側絶縁層が、合成水酸化マグネシウム(A)とベース樹脂(B)とを(A)/(B)=1~1.6の質量比で含有し、該ベース樹脂が、ポリオレフィン系樹脂(C)とスチレン系熱可塑性エラストマー(D)とを(C)/(D)=70/30~90/10の質量比で含有し、該ポリオレフィン系樹脂が、ポリプロピレン系樹脂(E)とエチレン‐アクリル酸エチル共重合体(F)とを(E)/(F)=2/6~3/5の質量比で含有する。 That is, the solar collector cable of the present invention is a solar collector cable in which a conductor is coated with an insulating layer having a two-layer structure including an outer insulating layer and an inner insulating layer made of polyethylene, The insulating layer contains synthetic magnesium hydroxide (A) and base resin (B) in a mass ratio of (A) / (B) = 1 to 1.6, and the base resin is a polyolefin resin (C) And styrene-based thermoplastic elastomer (D) in a mass ratio of (C) / (D) = 70/30 to 90/10, and the polyolefin-based resin is a polypropylene-based resin (E) and ethylene-acrylic acid The ethyl copolymer (F) is contained in a mass ratio of (E) / (F) = 2/6 to 3/5.
 また、本発明の太陽光集電ケーブルは、前記スチレン系熱可塑性エラストマーが、SEBS(スチレン‐エチレンブチレン‐スチレン共重合体)であることが好ましい。 In the solar current collecting cable of the present invention, it is preferable that the styrenic thermoplastic elastomer is SEBS (styrene-ethylenebutylene-styrene copolymer).
本発明の太陽光集電ケーブルの一例を示す概略断面斜視図である。It is a general | schematic cross-section perspective view which shows an example of the solar collector cable of this invention.
 以下、本発明の太陽光集電ケーブルについて、図面を参照して詳細に説明する。
 図1は、本発明の太陽光集電ケーブルの一例を示す概略断面斜視図である。
 太陽光集電ケーブル1は、内側絶縁層20と、その外周に積層された外側絶縁層30とを備えた二重構造の絶縁層によって、導体10が被覆された形状を有する。太陽光発電システムにおいては、通常、1.5m程度の長さのものが、二本一組で用いられる。
Hereinafter, the solar current collecting cable of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional perspective view showing an example of the solar current collecting cable of the present invention.
The solar collector cable 1 has a shape in which the conductor 10 is covered with a double-structured insulating layer including an inner insulating layer 20 and an outer insulating layer 30 laminated on the outer periphery thereof. In the solar power generation system, one having a length of about 1.5 m is usually used as a set of two.
 導体10のサイズは、断面積が2.0~6.0mmであることが好ましく、PSE規格を考慮すると、公称断面積が2.0mm、3.5mm、その構成は、7本撚り/素線径0.6mm、7本撚り/素線径0.8mmであることが好ましい。材質は、例えば軟銅とすることができる。 The size of the conductor 10 is preferably a cross-sectional area of 2.0 to 6.0 mm 2 , and considering the PSE standard, the nominal cross-sectional area is 2.0 mm 2 and 3.5 mm 2 , and the configuration is 7 strands. / The strand diameter is preferably 0.6 mm, 7 strands / strand diameter is preferably 0.8 mm. The material can be, for example, annealed copper.
 内側絶縁層20のサイズは、PSE規格を考慮すると、厚さが0.7~1.2mm、外径が3.4~5.1mmであることが好ましい。内側絶縁層20の材質はポリエチレンである。内側絶縁層20を純粋なポリエチレンとすることで、良好な電気特性を実現することができる。 In consideration of the PSE standard, the inner insulating layer 20 preferably has a thickness of 0.7 to 1.2 mm and an outer diameter of 3.4 to 5.1 mm. The material of the inner insulating layer 20 is polyethylene. By making the inner insulating layer 20 pure polyethylene, good electrical characteristics can be realized.
 外側絶縁層30のサイズは、PSE規格を考慮すると、厚さが1.5mmであることが好ましく、仕上外径が6.4~8.1mmであることが好ましい。 In consideration of the PSE standard, the outer insulating layer 30 preferably has a thickness of 1.5 mm and a finished outer diameter of 6.4 to 8.1 mm.
 外側絶縁層30は、難燃剤として合成水酸化マグネシウムを含有する。市販されている合成水酸化マグネシウムとしては、例えば協和化学工業(株)製のキスマ(商標)を挙げることができる。ここで、難燃剤を合成水酸化マグネシウムと限定したのは、特定の含有割合となるように添加することによって、ケーブルが擦れた場合の白化を生じることなく難燃性を実現できるからである。合成水酸化マグネシウムは表面処理されていてもよい。一方、通常使用される水酸化アルミニウムや天然水酸化マグネシウムなどの金属酸化物は、難燃性を得るためには有効であるが、難燃性が得られる量を添加した場合、ケーブルの擦過箇所が白くなるため、難燃性と外観の良さを両立することができない。
 合成水酸化マグネシウムは、外側絶縁層30のベース樹脂に対して1~1.6の質量比、で含有される。1未満では所望の難燃性を得ることができず、1.6を超えると成形時の押出性が悪くなる。
The outer insulating layer 30 contains synthetic magnesium hydroxide as a flame retardant. Examples of commercially available synthetic magnesium hydroxide include Kisuma (trademark) manufactured by Kyowa Chemical Industry Co., Ltd. Here, the reason why the flame retardant is limited to the synthetic magnesium hydroxide is that the flame retardancy can be realized without causing whitening when the cable is rubbed by adding the flame retardant to a specific content ratio. The synthetic magnesium hydroxide may be surface-treated. On the other hand, normally used metal oxides such as aluminum hydroxide and natural magnesium hydroxide are effective for obtaining flame retardancy, but when an amount capable of obtaining flame retardancy is added, the abrasion point of the cable Since it becomes white, it is impossible to achieve both flame retardancy and good appearance.
The synthetic magnesium hydroxide is contained at a mass ratio of 1 to 1.6 with respect to the base resin of the outer insulating layer 30. If it is less than 1, the desired flame retardancy cannot be obtained, and if it exceeds 1.6, the extrudability during molding deteriorates.
 外側絶縁層30のベース樹脂は、ポリオレフィン系樹脂(C)とスチレン系熱可塑性エラストマー(D)とを含有する。その質量比は、(C)/(D)=70/30~90/10である。ポリオレフィン系樹脂の含有比率が、ポリオレフィン系樹脂とスチレン系熱可塑性エラストマーの合計量の90質量%を超えると、難燃性に劣る傾向が見られるとともに所望の抗張力が得られない。一方、70質量%未満であると外側絶縁層30に白化が発生する。 The base resin of the outer insulating layer 30 contains a polyolefin resin (C) and a styrene thermoplastic elastomer (D). The mass ratio is (C) / (D) = 70/30 to 90/10. When the content ratio of the polyolefin resin exceeds 90% by mass of the total amount of the polyolefin resin and the styrene thermoplastic elastomer, the flame retardancy tends to be inferior and a desired tensile strength cannot be obtained. On the other hand, when the content is less than 70% by mass, the outer insulating layer 30 is whitened.
 上記ポリオレフィン系樹脂は、ポリプロピレン系樹脂(E)とエチレン‐アクリル酸エチル共重合体(F)とを(E)/(F)=2/6~3/5の質量比で含有する。ポリプロピレン系樹脂の含有比率が、ポリプロピレン系樹脂とエチレン‐アクリル酸エチル共重合体の合計量の2/8未満では、所望の抗張力を得ることができず、3/8を超えると難燃性と伸びに劣るものとなる。
 ポリプロピレン系樹脂としては、特に限定はされないが、エチレンプロピレン共重合体またはポリプロピレンにエチレン-プロピレンゴム(EPDM、EPR)を溶融混練したものが好ましい。エチレンプロピレン共重合体にEPDM、EPRを溶融混練したものが特に好ましい。十分な耐熱性や強度を有しながら、配線時に作業しやすい柔軟性を付与できるためである。ポリプロピレン系樹脂としては上記のような樹脂成分とゴム成分を溶融混練して合成するコンパウンドTPOタイプ(TPO:オレフィン系熱可塑性エラストマー)の他に、リアクターTPOタイプも用いることができる。リアクターTPOは、ポリマー重合時にハード部であるマトリックス樹脂にソフト部であるゴム成分を分散させたオレフィン系熱可塑性エラストマーであり、上記の樹脂成分とゴム成分を溶融混練して合成するコンパウンドTPOに対して、樹脂成分とゴム成分を同一の重合場で重合させてTPOとするものである。本発明においてはマトリックス部分がポリプロピレンのものを使用することができる。
The polyolefin resin contains a polypropylene resin (E) and an ethylene-ethyl acrylate copolymer (F) in a mass ratio of (E) / (F) = 2/6 to 3/5. If the content ratio of the polypropylene resin is less than 2/8 of the total amount of the polypropylene resin and the ethylene-ethyl acrylate copolymer, the desired tensile strength cannot be obtained. It will be inferior in growth.
The polypropylene-based resin is not particularly limited, but an ethylene-propylene copolymer or polypropylene obtained by melt-kneading ethylene-propylene rubber (EPDM, EPR) is preferable. Particularly preferred is an ethylene propylene copolymer obtained by melt-kneading EPDM or EPR. This is because flexibility that facilitates work during wiring can be provided while having sufficient heat resistance and strength. As the polypropylene resin, a reactor TPO type can be used in addition to the compound TPO type (TPO: olefinic thermoplastic elastomer) synthesized by melt-kneading the resin component and the rubber component as described above. Reactor TPO is an olefinic thermoplastic elastomer in which a rubber component, which is a soft part, is dispersed in a matrix resin, which is a hard part, during polymer polymerization, and a compound TPO that is synthesized by melting and kneading the above resin component and rubber component. Thus, the resin component and the rubber component are polymerized in the same polymerization field to obtain TPO. In the present invention, a matrix part having polypropylene can be used.
 上記スチレン系熱可塑性エラストマーとしては、特に限定はされないが、SEBS(スチレン‐エチレンブチレン‐スチレン共重合体)またはSEBC(スチレン-エチレンブチレン-オレフィン結晶ブロック共重合体)であることが好ましい。スチレン成分の芳香環が入ることで、燃焼時の殻作り性が向上し、難燃試験に合格しやすくなる。また、エチレン-ブタジエン成分を有するため、ポリオレフィン系樹脂と混合したときにポリオレフィン系樹脂の伸びや強度を悪化させることがなく、ポリオレフィン系樹脂を単独で使用した場合よりも抗張力を良化することができる。 The styrene-based thermoplastic elastomer is not particularly limited, but is preferably SEBS (styrene-ethylenebutylene-styrene copolymer) or SEBC (styrene-ethylenebutylene-olefin crystal block copolymer). By containing an aromatic ring of a styrene component, the shell-making property at the time of combustion is improved and it becomes easy to pass the flame retardant test. Also, since it has an ethylene-butadiene component, it does not deteriorate the elongation and strength of the polyolefin resin when mixed with the polyolefin resin, and the tensile strength can be improved as compared with the case where the polyolefin resin is used alone. it can.
 上記エチレン‐アクリル酸エチル共重合体としては、特に限定されないが、アクリル酸エチルの含有割合が10~25質量%のものを好適に挙げられ、アクリル酸エチルの含有割合が15質量%程度のものが特に好ましい。水酸化マグネシウムの分散性が向上するためである。アクリル酸エチルの含有量が少ない場合十分に水酸化マグネシウムを分散させることができず、伸びが得られない、水酸化マグネシウムの凝集が発生するなどの問題が発生する。 The ethylene-ethyl acrylate copolymer is not particularly limited, but preferably has an ethyl acrylate content of 10 to 25% by mass, and an ethyl acrylate content of about 15% by mass. Is particularly preferred. This is because the dispersibility of magnesium hydroxide is improved. When the content of ethyl acrylate is small, magnesium hydroxide cannot be sufficiently dispersed, and elongation cannot be obtained, and aggregation of magnesium hydroxide occurs.
 外側絶縁層30のベース樹脂は、更に必要に応じて、可塑剤、紫外線吸収剤、光安定剤、老化防止剤、滑剤、着色剤、充填剤、加工性改良剤、その他の改質剤などを単独で又は2種以上を組み合わせて用いることもできる。 The base resin of the outer insulating layer 30 may further include a plasticizer, an ultraviolet absorber, a light stabilizer, an anti-aging agent, a lubricant, a colorant, a filler, a processability improver, and other modifiers as necessary. It can also be used individually or in combination of 2 or more types.
 上記太陽光集電ケーブル1は、押出被覆により内側絶縁層20、外側絶縁層30の順に導体10を被覆することによって得られる。また、内側絶縁層20に用いられるポリエチレンは、電子線や紫外線照射等の方法により架橋されることが好ましい。
 なお、押出被覆は、それぞれの組成物をロール、バンバリー、押出機などで混練し、得られたペレットコンパウンドと導体とをクロスヘッドダイを付設した従来公知の電線用押出機で電線被覆押出成形することなどにより行うことができる。
The solar collector cable 1 is obtained by covering the conductor 10 in the order of the inner insulating layer 20 and the outer insulating layer 30 by extrusion coating. The polyethylene used for the inner insulating layer 20 is preferably crosslinked by a method such as electron beam or ultraviolet irradiation.
In the extrusion coating, the respective compositions are kneaded with a roll, a banbury, an extruder, etc., and the obtained pellet compound and conductor are subjected to wire coating extrusion molding with a conventionally known wire extruder provided with a crosshead die. It can be done by things.
 以下、本発明を実施例及び比較例により更に詳細に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(1)太陽光集電ケーブルの作製
 表1に示す組成による外被をそれぞれ外側絶縁層として用いた実施例1~5及び比較例1~6の太陽光集電ケーブルを作製した。各ケーブルにつき、表2に示す仕上がり外径の異なる2種のケーブル(ケーブル1、2)をそれぞれ作製した。
(1) Manufacture of solar collector cables Solar collector cables of Examples 1 to 5 and Comparative Examples 1 to 6 using jackets having the compositions shown in Table 1 as outer insulating layers were prepared. For each cable, two types of cables (cables 1 and 2) having different finished outer diameters shown in Table 2 were produced.
(2)作製した太陽光集電ケーブルの評価
 得られた各ケーブルおよび評価を表1に示す。尚、実施例1~5及び比較例1~6のいずれについても、仕上がり外径の異なるケーブル(ケーブル1、2)であっても同じ結果となるため、纏めて表1に示す。
(2) Evaluation of produced solar collector cable Table 1 shows the obtained cables and evaluation. It should be noted that in all of Examples 1 to 5 and Comparative Examples 1 to 6, the same result is obtained with cables (cables 1 and 2) having different finished outer diameters.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 上記各例の太陽光集電ケーブルについて行った各種特性の評価方法は、下記の通りである。 The evaluation methods for various characteristics performed on the solar current collecting cables in the above examples are as follows.
[難燃試験]
 難燃性は、60°傾斜難燃により評価した。
 60°傾斜難燃については、ケーブルに炎を30秒間当て、着火したら直ぐに炎を取り去り、60秒以内に消えた場合を合格とした。
[Flame retardant test]
Flame retardancy was evaluated by 60 ° tilted flame retardancy.
About 60 degree inclination flame-retardant, the flame was applied to the cable for 30 seconds, the flame was removed immediately after ignition, and the case where it disappeared within 60 seconds was set as the pass.
[外被の伸び]
 ケーブルから外側絶縁層部分を取出し、JIS C3005:2000の4.16に従って測定した。試験機はJIS B 7721に規定された試験機を用いた。管状試験片を試験機のチャックに取り付け、引っ張り速さ200mm/min.で引張り、切断時の標線間の長さを測定し、以下の式により伸びを算出し、350%を超えたものを合格とした。試験は室温で行い、n=3で判定した。
 (式)ε=(l-l/l)×100
 上記式中、εは伸び(%)、lは切断時の標線間の長さ(mm)、lは標線間の長さ(mm)である。
[Extension of outer cover]
The outer insulating layer portion was taken out from the cable and measured according to JIS C3005: 2000 4.16. The test machine specified in JIS B 7721 was used. A tubular test piece was attached to the chuck of the testing machine, and the pulling speed was 200 mm / min. The length between the marked lines at the time of cutting and cutting was measured, and the elongation was calculated by the following formula. The test was performed at room temperature and judged with n = 3.
(Expression) ε = (l 1 −l 0 / l 0 ) × 100
In the above formula, ε is elongation (%), l 1 is the length between marked lines (mm) at the time of cutting, and l 0 is the length (mm) between marked lines.
[外被の老化後伸び残率]
 ケーブルから取出した外側絶縁層について、老化(90℃×4日)後、伸びを測定、算出し、老化前の伸びと比して残率が65%を超えたものを合格とした。なお残率は以下の式により算出し、n=3で行い判定した。
 (式)X=(C/C)×100
 上記式中、Xは残率(%)、Cは老化後の値、Cは老化前の平均値である。
[Residual growth rate after aging of jacket]
For the outer insulating layer taken out from the cable, the elongation was measured and calculated after aging (90 ° C. × 4 days), and the residual ratio exceeded 65% compared with the elongation before aging was regarded as acceptable. The residual rate was calculated by the following formula, and was determined by n = 3.
(Formula) X = (C 1 / C 0 ) × 100
In the above formula, X is a residual rate (%), C 1 is a value after aging, and C 0 is an average value before aging.
[外被の抗張力]
 ケーブルから外側絶縁層部分を取出し、JIS C3005:2000の4.16に従って測定した。試験機はJIS B 7721に規定された試験機を用いた。管状試験片を試験機のチャックに取り付け、引っ張り速さ200mm/min.で引張り、最大引張荷重を測定し、以下の式により抗張力を算出し、10MPaを超えたものを合格とした。試験は室温で行い、n=3で判定した。
 (式)δ=F/A
 上記式中、δは抗張力(MPa)、Fは最大引張荷重(N)、Aは試験片の断面積(mm)である。
[Strength of jacket]
The outer insulating layer portion was taken out from the cable and measured according to JIS C3005: 2000 4.16. The test machine specified in JIS B 7721 was used. A tubular test piece was attached to the chuck of the testing machine, and the pulling speed was 200 mm / min. The tensile strength was measured by the following formula, and the tensile strength was calculated by the following formula. The test was performed at room temperature and judged with n = 3.
(Formula) δ = F / A
In the above formula, δ is the tensile strength (MPa), F is the maximum tensile load (N), and A is the cross-sectional area (mm 2 ) of the test piece.
[外被の老化後抗張力残率]
 ケーブルから取出した外側絶縁層について、老化(90℃×4日)後、抗張力を測定、算出し、老化前の抗張力と比して残率が80%を超えたものを合格とした。なお抗張力の算出にあたって、試験片の断面積は老化前の値を用いた。また残率は以下の式により算出し、n=3で行い判定した。
 (式)X=(C/C)×100
 上記式中、Xは残率(%)、Cは老化後の値、Cは老化前の平均値である。
[Residual tensile strength after aging of jacket]
For the outer insulating layer taken out from the cable, the tensile strength was measured and calculated after aging (90 ° C. × 4 days), and the residual ratio exceeded 80% compared with the tensile strength before aging. In calculating the tensile strength, the cross-sectional area of the test piece was the value before aging. Further, the remaining rate was calculated by the following equation, and the determination was made with n = 3.
(Formula) X = (C 1 / C 0 ) × 100
In the above formula, X is a residual rate (%), C 1 is a value after aging, and C 0 is an average value before aging.
[外被の加熱変形]
 ケーブルを30mmの長さに切断し、導線及び内側絶縁層を取り除いて、外側絶縁層の管状試験片を得た。該管状試験片を、JISC3005:2000 4.23に従って加熱温度75℃、荷重1kgとして加熱変形を測定した。残率が90%を超えたものを合格とした。n=3で行い判定した。
[Heat deformation of jacket]
The cable was cut into a length of 30 mm, and the lead wire and the inner insulating layer were removed to obtain a tubular test piece of the outer insulating layer. The tubular test piece was measured for heat deformation according to JISC3005: 2000 4.23 at a heating temperature of 75 ° C. and a load of 1 kg. Those with a remaining rate exceeding 90% were regarded as acceptable. The determination was made at n = 3.
[白化の有無]
 ケーブルを製造してボビンに巻き取った。ボビンの胴を抜いて束として10mを目視観察して白化箇所を探した。1mあたり白化箇所が1カ所または観察されないものを白化無し(OK)とした。それを超える白化箇所が観察されたものは白化有り(NG)とした。
[Presence of whitening]
A cable was manufactured and wound on a bobbin. The bobbin body was pulled out, and 10 m was visually observed as a bundle to find a whitened portion. No whitening was observed (OK) when there was one whitening spot per 1 m or where no whitening was observed. The thing where the whitening part exceeding it was observed was made into whitening (NG).
[評価考察]
 実施例1~4は、PSE規格で外被に求められる物理特性(伸び、抗張力、老化後の伸び残率と抗張力残率)、加熱変形性、難燃性、白化が生じない良好な外観特性のいずれにも優れる良好な結果が得られる。
[Evaluation considerations]
Examples 1 to 4 are physical properties (elongation, tensile strength, residual elongation rate after tensile aging and residual tensile strength rate) required for the jacket according to the PSE standard, heat distortion, flame retardancy, and good appearance characteristics that do not cause whitening. Good results excellent in any of the above can be obtained.
 比較例1および比較例2は、天然の水酸化マグネシウムを使用したため白化が生じる結果となる。さらに比較例2については、ポリプロピレン系樹脂としてホモポリプロピレンを使用したため、エチレンプロピレンブロック共重合体を用いた比較例1に対して難燃性とともに伸びが劣る結果となる。
 比較例3はスチレン系熱可塑性エラストマーであるSEBSを含まないことから抗張力が得られず、一方、比較例4のようにスチレン系熱可塑性エラストマーであるSEBSを入れすぎると白化が生じる結果となる。尚、比較例3はスチレン系熱可塑性エラストマーであるSEBSは含まないものの、ポリオレフィン系樹脂中におけるポリプロピレン系樹脂とエチレン-アクリル酸エチル共重合体の配合比率が良好であるため、難燃性は問題ないレベルである。
 比較例5および6は、ポリオレフィン系樹脂中におけるポリプロピレン系樹脂とエチレン-アクリル酸エチル共重合体の配合比率を変えた実験例であり、ポリプロピレン系樹脂を特定比率を超えて含有する比較例5では難燃性に劣るとともに伸びが悪く、一方、エチレン-アクリル酸エチル共重合体を特定比率を超えて含有する比較例6では抗張力に劣る結果となる。
In Comparative Examples 1 and 2, since natural magnesium hydroxide was used, whitening occurred. Furthermore, about Comparative Example 2, since homopolypropylene was used as the polypropylene-based resin, the result was that the elongation was inferior together with flame retardancy compared to Comparative Example 1 using the ethylene-propylene block copolymer.
Since Comparative Example 3 does not contain SEBS, which is a styrenic thermoplastic elastomer, no tensile strength can be obtained. On the other hand, if SEBS, which is a styrenic thermoplastic elastomer, is added too much as in Comparative Example 4, whitening occurs. Although Comparative Example 3 does not contain SEBS, which is a styrene thermoplastic elastomer, flame retardant is a problem because the blending ratio of the polypropylene resin and the ethylene-ethyl acrylate copolymer in the polyolefin resin is good. There is no level.
Comparative Examples 5 and 6 are experimental examples in which the blending ratio of the polypropylene resin and the ethylene-ethyl acrylate copolymer in the polyolefin resin was changed. In Comparative Example 5 containing a polypropylene resin exceeding a specific ratio, While the flame retardancy is inferior and the elongation is poor, Comparative Example 6 containing an ethylene-ethyl acrylate copolymer in excess of the specific ratio results in inferior tensile strength.
 また、比較例1~6は白化箇所が1mあたり数個(5個程度)観察された。ケーブルを巻き取るときにケーブルどうしが擦れたり、ケーブルがガイドローラと擦れることでケーブルに白い筋(数cmの長さ)が付くことがあるが、それを白化箇所とした。 Further, in Comparative Examples 1 to 6, several (about 5) whitening portions were observed per 1 m. When the cables are wound, the cables are rubbed with each other or the cables are rubbed with the guide roller, and white streaks (length of several centimeters) may be attached to the cable.
 本発明によれば、外側絶縁層と、ポリエチレンからなる内側絶縁層とを備えた二層構造の絶縁層で導体が被覆され、前記外側絶縁層が、合成水酸化マグネシウム(A)とベース樹脂(B)とを(A)/(B)=1~1.6の質量比で含有し、該ベース樹脂が、ポリオレフィン系樹脂(C)とスチレン系熱可塑性エラストマー(D)とを(C)/(D)=70/30~90/10の質量比で含有し、該ポリオレフィン系樹脂が、ポリプロピレン系樹脂(E)とエチレン‐アクリル酸エチル共重合体(F)とを(E)/(F)=2/6~3/5の質量比で含有することで、PSE規格で外被に求められる物理特性(伸び、抗張力、老化後の伸び残率と抗張力残率)及び加熱変形性と、難燃性とを満たしつつ、擦過等によるいわゆる白化が生じない良好な外観を有する太陽光集電ケーブルを提供することができる。 According to the present invention, the conductor is covered with an insulating layer having a two-layer structure including an outer insulating layer and an inner insulating layer made of polyethylene, and the outer insulating layer is made of synthetic magnesium hydroxide (A) and a base resin ( B) is contained in a mass ratio of (A) / (B) = 1 to 1.6, and the base resin comprises a polyolefin resin (C) and a styrene thermoplastic elastomer (D) (C) / (D) = 70/30 to 90/10 in a mass ratio, and the polyolefin resin comprises a polypropylene resin (E) and an ethylene-ethyl acrylate copolymer (F) (E) / (F ) = 2/6 to 3/5 in a mass ratio, physical properties (elongation, tensile strength, residual elongation rate after tensile aging and residual tensile strength rate) and heat deformability required for the jacket according to PSE standards, So-called whitening due to scratching does not occur while satisfying flame retardancy It is possible to provide a solar collector cable having a good appearance.
1…太陽光集電ケーブル、10…導体、20…内側絶縁層、30…外側絶縁層。 DESCRIPTION OF SYMBOLS 1 ... Solar collector cable, 10 ... Conductor, 20 ... Inner insulating layer, 30 ... Outer insulating layer.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2010年7月8日付で出願された日本特許出願(特願2010-155766)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the invention has been described in detail with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
Note that this application is based on a Japanese patent application filed on July 8, 2010 (Japanese Patent Application No. 2010-155766), which is incorporated by reference in its entirety. Also, all references cited herein are incorporated as a whole.

Claims (2)

  1.  外側絶縁層と、ポリエチレンからなる内側絶縁層とを備えた二層構造の絶縁層で導体が被覆された太陽光集電ケーブルであって、
     前記外側絶縁層が、合成水酸化マグネシウム(A)とベース樹脂(B)とを(A)/(B)=1~1.6の質量比で含有し、
     該ベース樹脂が、ポリオレフィン系樹脂(C)とスチレン系熱可塑性エラストマー(D)とを(C)/(D)=70/30~90/10の質量比で含有し、
     該ポリオレフィン系樹脂が、ポリプロピレン系樹脂(E)とエチレン‐アクリル酸エチル共重合体(F)とを(E)/(F)=2/6~3/5の質量比で含有する太陽光集電ケーブル。
    A solar collector cable in which a conductor is coated with an insulating layer having a two-layer structure including an outer insulating layer and an inner insulating layer made of polyethylene,
    The outer insulating layer contains synthetic magnesium hydroxide (A) and base resin (B) in a mass ratio of (A) / (B) = 1 to 1.6,
    The base resin contains a polyolefin resin (C) and a styrene thermoplastic elastomer (D) in a mass ratio of (C) / (D) = 70/30 to 90/10,
    The solar radiation collection in which the polyolefin resin contains a polypropylene resin (E) and an ethylene-ethyl acrylate copolymer (F) in a mass ratio of (E) / (F) = 2/6 to 3/5 Electric cable.
  2.  前記スチレン系熱可塑性エラストマーが、SEBS(スチレン‐エチレンブチレン‐スチレン共重合体)である請求項1に記載の太陽光集電ケーブル。 The solar power collecting cable according to claim 1, wherein the styrenic thermoplastic elastomer is SEBS (styrene-ethylenebutylene-styrene copolymer).
PCT/JP2011/065709 2010-07-08 2011-07-08 Photovoltaic power collection cable WO2012005357A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011800036012A CN102483974B (en) 2010-07-08 2011-07-08 Photovoltaic power collection cable

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-155766 2010-07-08
JP2010155766A JP2012018830A (en) 2010-07-08 2010-07-08 Photovoltaic power collecting cable

Publications (1)

Publication Number Publication Date
WO2012005357A1 true WO2012005357A1 (en) 2012-01-12

Family

ID=45441333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/065709 WO2012005357A1 (en) 2010-07-08 2011-07-08 Photovoltaic power collection cable

Country Status (3)

Country Link
JP (1) JP2012018830A (en)
CN (1) CN102483974B (en)
WO (1) WO2012005357A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5659970B2 (en) * 2011-07-06 2015-01-28 三菱電機株式会社 Solar panel
CN103694548B (en) * 2013-12-06 2016-03-02 上海至正道化高分子材料股份有限公司 150 DEG C of cross-linking radiation antiblocking halogen-free flame retardant insulation materials and preparation method thereof
CN104900307A (en) * 2015-06-09 2015-09-09 上海宝宇电线电缆制造有限公司 Solar photovoltaic cable

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186011A (en) * 2002-12-04 2004-07-02 Yazaki Corp Flame resisting electric wire and cable
JP2004335263A (en) * 2003-05-07 2004-11-25 Hitachi Cable Ltd Non-halogen flame retardant insulated wire
JP2007052983A (en) * 2005-08-17 2007-03-01 Fujikura Ltd Insulated electric wire
JP2007246726A (en) * 2006-03-16 2007-09-27 Furukawa Electric Co Ltd:The Flame-retardant resin composition, manufacturing method of the resin composition, and insulated wire coated with the resin composition
JP2007277530A (en) * 2006-03-16 2007-10-25 Furukawa Electric Co Ltd:The Flame-retardant resin composition and insulated wire coated with the resin composition
JP2009054388A (en) * 2007-08-25 2009-03-12 Furukawa Electric Co Ltd:The Insulated electric cable excellent in weatherability
JP2009176475A (en) * 2008-01-22 2009-08-06 Autonetworks Technologies Ltd Insulated wire
JP2009199783A (en) * 2008-02-19 2009-09-03 Furukawa Electric Co Ltd:The Insulated wire excellent in heat resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160324A (en) * 1999-12-03 2001-06-12 Hitachi Cable Ltd Nonhalogen flame-resistant electric cable

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186011A (en) * 2002-12-04 2004-07-02 Yazaki Corp Flame resisting electric wire and cable
JP2004335263A (en) * 2003-05-07 2004-11-25 Hitachi Cable Ltd Non-halogen flame retardant insulated wire
JP2007052983A (en) * 2005-08-17 2007-03-01 Fujikura Ltd Insulated electric wire
JP2007246726A (en) * 2006-03-16 2007-09-27 Furukawa Electric Co Ltd:The Flame-retardant resin composition, manufacturing method of the resin composition, and insulated wire coated with the resin composition
JP2007277530A (en) * 2006-03-16 2007-10-25 Furukawa Electric Co Ltd:The Flame-retardant resin composition and insulated wire coated with the resin composition
JP2009054388A (en) * 2007-08-25 2009-03-12 Furukawa Electric Co Ltd:The Insulated electric cable excellent in weatherability
JP2009176475A (en) * 2008-01-22 2009-08-06 Autonetworks Technologies Ltd Insulated wire
JP2009199783A (en) * 2008-02-19 2009-09-03 Furukawa Electric Co Ltd:The Insulated wire excellent in heat resistance

Also Published As

Publication number Publication date
JP2012018830A (en) 2012-01-26
CN102483974A (en) 2012-05-30
CN102483974B (en) 2013-10-23

Similar Documents

Publication Publication Date Title
US7586043B2 (en) Non-halogenous insulated wire and a wiring harness
JP5659450B2 (en) Non-halogen flame retardant wire / cable
JP5780477B2 (en) Phosphorus-free non-halogen flame retardant insulated wires and phosphorus-free non-halogen flame retardant cables
JP4255368B2 (en) Cross-linked flame retardant resin composition, insulated wire and wire harness using the same
JP6902205B2 (en) cable
US10703889B2 (en) Insulated electric wire and insulating resin composition
JP2006179452A (en) Nonhalogen electric wire, electric wire bundle, and automobile wire harness
JP2018092889A (en) Insulated wire and cable using non-halogen flame-retardant resin composition
WO2015159788A1 (en) Insulating resin composition and insulated wire
JP2004335263A (en) Non-halogen flame retardant insulated wire
WO2012005357A1 (en) Photovoltaic power collection cable
JP2017066345A (en) Non-halogen flame retardant resin composition and insulated wire and cable using the same
JP5889252B2 (en) Flame retardant resin composition and flame retardant article including flame retardant resin molded article formed by molding the same
JP2017171889A (en) Flame-retardant crosslinked resin composition and wiring material
JP2012124061A (en) Flame retardant wire/cable
JP2013194214A (en) Non-halogen flame-retardant resin composition, and wire and cable produced by using the same
EP3675140B1 (en) Resin composition, sheated cable, and wire harness
JP2006244894A (en) Nonhalogen flame-retardant electric wire and cable
JP2014227447A (en) Flame-retardant resin composition and flame-retardant object including flame-retardant resin molding obtained by molding the same
JP6756692B2 (en) Insulated wire
JP2004256748A (en) Non-halogen flame-retardant composition and flame-retardant power cord
JP2011084683A (en) Flame-retardant resin composition, insulated wire and cable
JP6631157B2 (en) Railway vehicle electric wire and railway vehicle cable using phosphorus-free non-halogen flame-retardant resin composition
EP3480829B1 (en) Insulated electric wire
JP2011049116A (en) Fire-resistant composition for electric cable coating, and electric cable

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180003601.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1201000803

Country of ref document: TH

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11803691

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11803691

Country of ref document: EP

Kind code of ref document: A1