JP4608666B2 - Deterioration diagnosis device for iron-based structures - Google Patents

Deterioration diagnosis device for iron-based structures Download PDF

Info

Publication number
JP4608666B2
JP4608666B2 JP2005155212A JP2005155212A JP4608666B2 JP 4608666 B2 JP4608666 B2 JP 4608666B2 JP 2005155212 A JP2005155212 A JP 2005155212A JP 2005155212 A JP2005155212 A JP 2005155212A JP 4608666 B2 JP4608666 B2 JP 4608666B2
Authority
JP
Japan
Prior art keywords
magneto
impedance effect
magnetic field
effect element
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005155212A
Other languages
Japanese (ja)
Other versions
JP2006329855A (en
Inventor
一実 豊田
和幸 井澤
佐加枝 高木
哲 中山
正徳 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Hitachi High Tech Science Corp
Original Assignee
Tohoku Electric Power Co Inc
SII NanoTechnology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, SII NanoTechnology Inc filed Critical Tohoku Electric Power Co Inc
Priority to JP2005155212A priority Critical patent/JP4608666B2/en
Publication of JP2006329855A publication Critical patent/JP2006329855A/en
Application granted granted Critical
Publication of JP4608666B2 publication Critical patent/JP4608666B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明は鉄系構造物の劣化診断装置に関し、例えば送電線の鉄塔として使用されているパイプ状構造物や鉄系輸送管の内面の腐食・減肉検査に有用なものである。   The present invention relates to a deterioration diagnosis apparatus for iron-based structures, and is useful for, for example, inspection of corrosion and thinning of inner surfaces of pipe-shaped structures and iron-based transport pipes used as power towers.

例えば、送電線の鉄塔等に使用されているようなパイプ状構造物は鉄系であるためにパイプ内面が腐食したり、減肉したりすることがある。このような内面の腐食・減肉に対しては目視検査を行い得ず、非破壊的に検査する場合は、例えばファイバスコープを用いる方法が知られている。
しかしながら、この検査方法では、先端に取付けた対物レンズがパイプ内面の錆び等で汚れ易く、更にパイプ内面が錆化のために凹凸化されておりファイバスコープのスムーズなパイプ内への挿通が困難である等、精度や作業性に問題がある。
For example, pipe-like structures such as those used in power transmission towers are iron-based, and therefore the pipe inner surface may be corroded or thinned. For such corrosion / thinning of the inner surface, visual inspection cannot be performed, and in the case of non-destructive inspection, for example, a method using a fiberscope is known.
However, with this inspection method, the objective lens attached to the tip tends to become dirty due to rust on the inner surface of the pipe, and the inner surface of the pipe is uneven due to rusting, making it difficult to smoothly insert the fiberscope into the pipe. There are problems with accuracy and workability.

近来、磁気センサとして磁気インピーダンス効果を利用したセンサが開発されている。 この磁気インピーダンス効果を利用したセンサは、ホールセンサ、磁気抵抗素子、フラックスゲートセンサ等に較べて小型、高感度、高空間分解能、高速応答性であり、このセンサを利用した磁気検出方法が提案されている(特許文献1)。
特開2000−258402号公報
Recently, sensors using the magneto-impedance effect have been developed as magnetic sensors. Sensors using this magneto-impedance effect are smaller, more sensitive, have higher spatial resolution, and faster response than Hall sensors, magnetoresistive elements, fluxgate sensors, etc., and a magnetic detection method using this sensor has been proposed. (Patent Document 1).
JP 2000-258402 A

また、磁気インピーダンス効果型センサを使用して漏洩磁束探傷試験方法により鋼板内部の欠陥を検出することも報告されている(非特許文献1)。
藤本 幸二、毛利 佳年雄,MAG−98−86,p39〜43
It has also been reported that a defect inside a steel plate is detected by a leakage magnetic flux flaw detection test method using a magneto-impedance effect type sensor (Non-Patent Document 1).
Koji Fujimoto, Yoshio Mohri, MAG-98-86, p39-43

この検査方法は、磁気インピーダンス効果型センサの高感度磁界検出性能を利用するものであり、被検査体に磁界を印加することが必要であり、高所での作業には不適切である。   This inspection method uses the high-sensitivity magnetic field detection performance of the magneto-impedance effect type sensor, and it is necessary to apply a magnetic field to the object to be inspected, which is inappropriate for work at a high place.

ところで、本発明者等の鋭意検討結果によれば、鉄系の被検査体を磁化することなく磁気インピーダンス効果型センサでスキャニングするだけでも、被検査体の欠陥を充分な精度で検出できることが確認された。
このように漏洩磁束探傷試験方法とは異なり、磁化することなく欠陥を検出できることは、磁気インピーダンス効果素子に印加するバイアス磁界が磁性体である鉄系被検査体にバイパスし、被検査体の欠陥に応じた被検査体のリラクタンス変化によりそのバイアス磁界が変化してセンサ出力が変化されることが関与している。
By the way, according to the results of intensive studies by the present inventors, it has been confirmed that the defect of the object to be inspected can be detected with sufficient accuracy even by scanning the iron-based object to be inspected with a magneto-impedance effect type sensor without magnetizing. It was done.
In this way, unlike the magnetic flux leakage testing method, the defect can be detected without being magnetized. The bias magnetic field applied to the magneto-impedance effect element is bypassed to the iron-based object to be inspected and the defect of the object to be inspected. It is involved that the sensor output is changed by changing the bias magnetic field due to the change in reluctance of the object to be inspected.

本発明の目的は、鉄系構造物の壁内面の腐食等の欠陥を壁の外面から充分な精度で容易に検査できる鉄系構造物の劣化診断装置を提供することにある。   An object of the present invention is to provide an iron-based structure deterioration diagnosis apparatus capable of easily inspecting defects such as corrosion on the inner surface of an iron-based structure from the outer surface of the wall with sufficient accuracy.

請求項1に係る鉄系構造物の劣化診断装置は、磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせる欠陥検出装置であり、被検査物に摺動可能な程度の巻き締めで巻装されるフレキシブル基板部を有し、このフレキシブル基板部に磁気インピーダンス効果素子及びバイアス磁界用コイルが実装されていることを特徴とする。
請求項2に係る鉄系構造物の劣化診断装置は、磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせる欠陥検出装置であり、被検査物に摺動可能な程度の巻き締めで巻装されるフレキシブル基板部を有し、このフレキシブル基板部の被検査物側端に磁気インピーダンス効果素子及びバイアス磁界用コイルが連結支持されていることを特徴とする。
According to a first aspect of the present invention, there is provided an apparatus for diagnosing deterioration of an iron-based structure, comprising a magneto-impedance effect element provided with a bias magnetic field coil and a detection circuit for detecting the output of the element through a detection circuit. A defect detection apparatus for scanning an impedance effect element in a state of approaching, and having a flexible substrate portion wound by tightening to a degree that can be slid on an object to be inspected , and a magnetic impedance effect element on the flexible substrate portion And a bias magnetic field coil is mounted.
According to a second aspect of the present invention, there is provided an iron-based structure deterioration diagnosis device comprising a magneto-impedance effect element provided with a coil for a bias magnetic field and a detection circuit for detecting the output of the element through a detection circuit. It is a defect detection device that scans an impedance effect element in a close state, and has a flexible substrate portion wound by tightening so that it can slide on the inspection object , and the inspection substrate side of this flexible substrate portion A magneto-impedance effect element and a bias magnetic field coil are connected and supported at the ends.

請求項3に係る鉄系構造物の劣化診断装置は、磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせる欠陥検出装置であり、被検査物に摺動可能な程度の巻き締めで巻装されるフレキシブル基板部を有し、このフレキシブル基板に磁気インピーダンス効果素子及びバイアス磁界用コイル並びに検出回路が実装されていることを特徴とする。
請求項4に係る鉄系構造物の劣化診断装置は、請求項1〜3何れかの鉄系構造物の劣化診断装置において、被検査物がパイプであることを特徴とする。
A degradation diagnosis apparatus for an iron-based structure according to claim 3 includes a detection circuit for detecting a bias magnetic field coil attached to a magneto-impedance effect element and detecting the output of the element through a detection circuit, Is a defect detection device that scans in a state where the magneto-impedance effect element is in close proximity, and has a flexible board portion that is wound around the object to be inspected so as to be slidable. The magneto-impedance effect is applied to the flexible board. An element, a bias magnetic field coil, and a detection circuit are mounted.
According to a fourth aspect of the present invention, there is provided the iron structure deterioration diagnosis apparatus according to any one of the first to third aspects, wherein the object to be inspected is a pipe.

請求項5に係る鉄系構造物の劣化診断装置は、請求項1〜4何れかの鉄系構造物の劣化診断装置において、バイアス磁界用コイルを付設した磁気インピーダンス効果素子の出力を検波回路に通して検出するチャンネルを複数チャンネル備え、複数チャンネルの磁気インピーダンス効果素子を並列に配置したことを特徴とする。   The iron structure deterioration diagnosis device according to claim 5 is the iron structure deterioration diagnosis device according to any one of claims 1 to 4, wherein the output of the magneto-impedance effect element provided with the bias magnetic field coil is used as a detection circuit. A plurality of channels are provided to detect through, and a plurality of channels of magneto-impedance effect elements are arranged in parallel.

請求項6に係る鉄系構造物の劣化診断装置は、請求項1〜5何れかの鉄系構造物の劣化診断装置において、バイアス磁界用コイル付き磁気インピーダンス効果素子が対とされ、その両素子に対する検波回路の検波信号の差を検出する差動部が検出回路に設けられていることを特徴とする。
請求項7に係る鉄系構造物の劣化診断装置は、請求項5または6の鉄系構造物の劣化診断装置において、各チャンネルの検出信号を無線で送信する手段を備えていることを特徴とする。
An iron-based structure deterioration diagnosis device according to claim 6 is the iron-based structure deterioration diagnosis device according to any one of claims 1 to 5, wherein a magneto-impedance effect element with a bias magnetic field coil is paired, and both elements The detection circuit is provided with a differential section for detecting a difference between detection signals of the detection circuit with respect to.
An iron-based structure deterioration diagnosis device according to claim 7 is the iron-based structure deterioration diagnosis device according to claim 5 or 6, further comprising means for wirelessly transmitting a detection signal of each channel. To do.

(1)磁気インピーダンス効果素子としてのアモルファスワイヤにおいては、円周方向に易磁化性の外殻郭を有し、励磁電流による円周方向磁界が円周方向からずらされると、周方向透磁率μθが変化し、インダクタンス及び表皮効果に基づく抵抗の変化によりインピーダンスが変化し、磁気インピーダンス効果素子の出力が変化する。而るに、鉄系壁の裏面の腐食によりFe(赤錆)やFe(黒錆)が発生し、または擦損のために減肉され、その部分の透磁性が変化し、壁表面に移動されつつある磁気インピーダンス効果素子の励磁電流による円周方向磁界が前記壁裏面の腐食・減肉による磁気インピーダンス効果素子近傍電磁場の透磁性の変化によりその円周方向からずらされて磁気インピーダンス効果素子の出力が変化される。従って、その出力変化を腐食・減肉情報として壁裏面の腐食・減肉程度を判定できる。
(2)バイアス磁界用コイルが発生するバイアス磁界に対し、鉄系壁もその磁界の回路の一部となり、バイアス磁界の強さが壁裏面の腐食・減肉の程度に応じて変化する。このバイアス磁界が磁気インピーダンス効果素子としてのアモルファスワイヤ内を軸方向に通過するから、励磁電流による円周方向磁界が円周方向からずらされ、そのずれの程度が壁裏面の腐食・減肉の程度に応じて変化される。従って、磁気インピーダンス効果素子の出力変化が壁裏面の腐食・減肉の程度に相関し、その出力変化から壁裏面の腐食・減肉の程度を判定できる。
(3)バイアス磁界用コイル付の磁気インピーダンス効果素子をフレキシブル基板部に実装するか、フレキシブル基板部の先端から突出して連結支持してあるから、被検査物がパイプ状であっても、フレキシブル基板部をパイプ上に摺動可能な程度の巻き締めで巻装することにより、異なるパイプ径や先細りに対してもスキャニングできる。
また、被検査物の表面に障害物があっても、例えばパイプ継手部が在っても、あるいは被検査物の表面が凹凸面であっても、フレキシブル基板部の弾性と可撓性のためにスキャニングを可能とし、磁気インピーダンス効果素子と被検査物表面との近接をよく保持できるから、被検査物の表面に障害物等がある場合でも、前記(1)(2)の効果を保障できる。
(4)磁気インピーダンス効果素子の複数箇を並設してあり、その配設方向と直交方向に劣化診断装置をスキャニングするにあたりスキャニング回数を少なくできるから、作業工数を減少できる。
(5)多チャンネル化しており、鉄系構造物が高所に存在する場合でも、各チャンネルの検出信号を無線方式でコンピュータに送信して鉄系構造物の劣化状態を容易に検出できる。
これら(1)〜(5)により、鉄系構造物の壁裏面の腐食等の欠陥を壁表面側から容易に、高精度で検査できる。
(1) An amorphous wire as a magneto-impedance effect element has an easily magnetizable outer shell in the circumferential direction, and when the circumferential magnetic field by the excitation current is shifted from the circumferential direction, the circumferential permeability μ θ changes, impedance changes due to changes in resistance based on inductance and skin effect, and the output of the magneto-impedance effect element changes. Therefore, Fe 2 O 3 (red rust) and Fe 3 O 4 (black rust) are generated due to corrosion of the back surface of the iron-based wall, or are thinned due to abrasion, and the permeability of the portion changes. The magnetic field in the circumferential direction due to the excitation current of the magneto-impedance effect element being moved to the wall surface is shifted from the circumferential direction by the change in the permeability of the electromagnetic field in the vicinity of the magneto-impedance effect element due to corrosion and thinning of the wall back surface. The output of the magneto-impedance effect element is changed. Therefore, it is possible to determine the degree of corrosion / thinning on the back surface of the wall using the output change as corrosion / thinning information.
(2) With respect to the bias magnetic field generated by the bias magnetic field coil, the iron-based wall also becomes a part of the circuit of the magnetic field, and the strength of the bias magnetic field changes according to the degree of corrosion / thinning of the wall back surface. Since this bias magnetic field passes through the amorphous wire as the magneto-impedance effect element in the axial direction, the circumferential magnetic field due to the excitation current is shifted from the circumferential direction, and the degree of the shift is the degree of corrosion / thinning of the back surface of the wall. Depending on Therefore, the change in output of the magneto-impedance effect element correlates with the degree of corrosion / thinning on the back surface of the wall, and the degree of corrosion / thinning on the back surface of the wall can be determined from the change in output.
(3) Since the magneto-impedance effect element with the bias magnetic field coil is mounted on the flexible substrate part or protrudes from the tip of the flexible substrate part and is connected and supported, even if the object to be inspected is a pipe, the flexible substrate By winding the part with a winding that can slide on the pipe, scanning can be performed for different pipe diameters and tapering.
Even if there is an obstacle on the surface of the object to be inspected, for example, there is a pipe joint part, or the surface of the object to be inspected is an uneven surface, the flexibility and flexibility of the flexible substrate part Scanning can be performed and the proximity of the magneto-impedance effect element and the surface of the object to be inspected can be well maintained, so that the effects (1) and (2) can be ensured even when there are obstacles on the surface of the object to be inspected. .
(4) Since a plurality of magneto-impedance effect elements are arranged side by side and the deterioration diagnosis apparatus is scanned in the direction orthogonal to the arrangement direction, the number of scanning operations can be reduced, so that the number of work steps can be reduced.
(5) Even if the structure is multi-channel and the iron-based structure exists at a high place, the deterioration signal of the iron-based structure can be easily detected by transmitting the detection signal of each channel to the computer in a wireless manner.
By these (1) to (5), defects such as corrosion on the wall back surface of the iron-based structure can be easily inspected from the wall surface side with high accuracy.

以下、図面を参照しつつ本発明の実施の形態について説明する。
図1は本発明に係る劣化診断装置の一チャンネル分の検出回路を示している。
図1において、1は磁気インピーダンス効果素子であり、自発磁化の方向がワイヤ周方向に対し互いに逆方向の磁区が交互に磁壁で隔てられた構成の外殻部を有する、零磁歪乃至は負磁歪のアモルファス合金ワイヤが使用される。かかる零磁歪乃至は負磁歪のアモルファス磁性ワイヤに高周波励磁電流を流したときに発生するワイヤ両端間出力電圧中のインダクタンス電圧分は、ワイヤの横断面内に生じる円周方向磁束によって上記の円周方向に易磁化性の外殻部が円周方向に磁化されることに起因して発生する。従って、周方向透磁率μθは同外殻部の円周方向の磁化に依存する。而るに、この通電中のアモルファスワイヤの軸方向に信号磁界を作用させると、上記通電による円周方向磁束と信号磁界磁束との合成により、上記円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずれ、それだけ円周方向への磁化が生じ難くなり、上記周方向透磁率μθが変化し、上記インダクタンス電圧分が変動することになる。この変動現象は磁気インダクタンス効果と称され、これは上記高周波励磁電流(搬送波)が信号磁界(信号波)で変調される現象ということができる。更に、上記通電電流の周波数がMHzオ−ダになると、高周波表皮効果が大きく現れ、表皮深さδ=(2ρ/wμθ1/2(μθは前記した通り円周方向透磁率、ρは電気抵抗率、wは角周波数をそれぞれ示す)がμθにより変化し、このμθが前記した通り、信号磁界によって変化するので、ワイヤ両端間出力電圧中の抵抗電圧分も信号磁界で変動するようになる。この変動現象は磁気インピーダンス効果と称され、これは上記高周波励磁電流(搬送波)が信号磁界(信号波)で変調される現象ということができる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a detection circuit for one channel of a deterioration diagnosis apparatus according to the present invention.
In FIG. 1, reference numeral 1 denotes a magneto-impedance effect element, which has a zero magnetostriction or a negative magnetostriction having an outer shell portion in which magnetic domains whose spontaneous magnetization directions are opposite to each other in the circumferential direction of the wire are alternately separated by domain walls. Amorphous alloy wire is used. The inductance voltage component in the output voltage between both ends of the wire generated when a high-frequency excitation current is passed through an amorphous magnetic wire having zero magnetostriction or negative magnetostriction is obtained by the circumferential magnetic flux generated in the cross section of the wire. This occurs due to the magnetization of the easily magnetizable outer shell in the circumferential direction. Therefore, the circumferential magnetic permeability mu theta depends on the circumferential direction of magnetization of Dosotokara portion. Thus, when a signal magnetic field is applied in the axial direction of the amorphous wire being energized, the outer shell portion having the easily magnetizable property in the circumferential direction is obtained by synthesizing the circumferential magnetic flux and the signal magnetic field magnetic flux by the energization. direction of magnetic flux acting deviates from the circumferential direction, correspondingly hardly occur magnetization in the circumferential direction, the circumferential permeability mu theta changes, the inductance voltage content will vary to. This fluctuation phenomenon is called a magnetic inductance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a signal magnetic field (signal wave). Further, when the frequency of the energization current is in the order of MHz, a high-frequency skin effect appears greatly, and the skin depth δ = (2ρ / wμ θ ) 1/2θ is the circumferential permeability, ρ as described above. electrical resistivity, w is shows the angular frequency, respectively) is changed by mu theta, so changed by this as μθ is the signal magnetic field, the resistance voltage of the in wire ends between the output voltage also varies with the signal magnetic field It becomes like this. This fluctuation phenomenon is called a magneto-impedance effect, which can be said to be a phenomenon in which the high-frequency excitation current (carrier wave) is modulated by a signal magnetic field (signal wave).

図1において、2は磁気インピーダンス効果素子に高周波励磁電流を加えるための高周波電流源回路、3は磁気インピーダンス効果素子の軸方向に作用する信号磁界(信号波)で前記高周波励磁電流(搬送波)を変調させた被変調波を復調する検波回路、4は復調波を増幅する増幅回路、6は負帰還用コイル、7はバイアス磁界用コイルである。
磁気インピーダンス効果素子1には、零磁歪乃至は負磁歪のアモルファスワイヤの外、アモルファスリボン、アモルファススパッタ膜等も使用できる。
In FIG. 1, 2 is a high-frequency current source circuit for applying a high-frequency excitation current to the magneto-impedance effect element, 3 is a signal magnetic field (signal wave) acting in the axial direction of the magneto-impedance effect element, and the high-frequency excitation current (carrier wave). A detector circuit that demodulates the modulated modulated wave, 4 an amplifier circuit that amplifies the demodulated wave, 6 a negative feedback coil, and 7 a bias magnetic field coil.
For the magneto-impedance effect element 1, an amorphous ribbon, an amorphous sputtered film, or the like can be used in addition to an amorphous wire having zero magnetostriction or negative magnetostriction.

磁気インピーダンス効果素子1においては、前記した通り励磁電流に基づく円周方向磁束と信号磁界による軸方向磁束との合成により、円周方向に易磁化性を有する外殻部に作用する磁束の方向が円周方向からずらされるために、周方向透磁率μθが変化し、インダクタンスが変動され、この円周方向透磁率μθの高周波表皮効果の表皮深さの変化でインピーダンスが変動される。従って、信号磁界の±により上記合成磁界による周方向ずれφも±φになるが、周方向の磁界の減少倍率cos(±φ)は変わらず、従ってμθの減少度は信号磁界の方向の正負によっては変化されない。従って、信号磁界−出力特性は、図2の(イ)のように信号磁界をx軸に、出力をy軸にとると、y軸に対してほぼ左右対称となる。この信号磁界−出力特性は非線形である。非線形特性では、不安定であり、高感度の測定も困難である。そこで、負帰還用コイルで負帰還をかけて図2の(ロ)に示すように出力特性を直線化している。図2の(ロ)において、Δwは、負帰還無しのときの利得が非常に大きく帰還率βのみにより利得が定まるリニア範囲である。しかし、この出力特性では、信号磁界の極性判別を行ない得ないので、バイアス用コイル7でバイアス磁界をかけ、図2の(ハ)に示すように極性判別可能としている。すなわち、図2の(ロ)の特性を、図2の(ハ)に示すようにバイアス磁界−Hbによりx軸のマイナス方向に移動させ、信号磁界の最大検出範囲を単斜め線領域の範囲内−Hmax〜+Hmaxに納めている。
図2の(ハ)から、バイアス磁界の変化ΔHbによって信号磁界Hexが0のときの出力が変化することが理解できる。
In the magneto-impedance effect element 1, as described above, the direction of the magnetic flux acting on the outer shell portion that is easily magnetized in the circumferential direction is obtained by combining the circumferential magnetic flux based on the excitation current and the axial magnetic flux due to the signal magnetic field. Since the circumferential permeability μ θ is changed from the circumferential direction, the inductance is changed, and the impedance is changed by changing the skin depth of the high frequency skin effect of the circumferential permeability μ θ . Therefore, it is also circumferentially displaced by the synthesized magnetic field by ± signal magnetic field phi becomes ± phi, the circumferential direction of the magnetic field reduction ratio cos (± phi) is unchanged, the degree of reduction in thus mu theta is the direction of the signal magnetic field It is not changed by positive or negative. Therefore, the signal magnetic field-output characteristic is substantially symmetrical with respect to the y axis when the signal magnetic field is taken on the x axis and the output is taken on the y axis as shown in FIG. This signal magnetic field-output characteristic is non-linear. Non-linear characteristics are unstable and high-sensitivity measurement is difficult. Therefore, negative feedback is applied by a negative feedback coil to linearize the output characteristics as shown in FIG. In FIG. 2B, Δw is a linear range where the gain without negative feedback is very large and the gain is determined only by the feedback rate β. However, with this output characteristic, since the polarity of the signal magnetic field cannot be determined, a bias magnetic field is applied by the bias coil 7 so that the polarity can be determined as shown in FIG. That is, the characteristic of (b) in FIG. 2 is moved in the negative direction of the x-axis by the bias magnetic field -Hb as shown in (c) of FIG. 2, and the maximum detection range of the signal magnetic field is within the range of the single diagonal line region. -Hmax to + Hmax.
From FIG. 2C, it can be understood that the output when the signal magnetic field Hex is 0 is changed by the change ΔHb of the bias magnetic field.

図1において、81は検出信号をディジタル化しディジタル化した信号で所定周波数の搬送波を変調するA/D変換・変調機器、82は無線方式で送信する送信部、83は受信部である。利用できる無線の方式としては、SS無線、ブルーテゥース、無線LAN、赤外線等を挙げることができ、特に、無線LANの使用が好ましい。   In FIG. 1, reference numeral 81 denotes an A / D conversion / modulation device that modulates a carrier wave of a predetermined frequency with a digitized signal obtained by digitizing a detection signal, 82 denotes a transmission unit that transmits in a wireless manner, and 83 denotes a reception unit. Examples of wireless systems that can be used include SS wireless, Bluetooth, wireless LAN, infrared, and the like, and wireless LAN is particularly preferable.

上記磁気インピーダンス効果素子1としては、遷移金属と非金属の合金で非金属が10〜30原子%組成のもの、特に遷移金属と非金属との合金で非金属量が10〜30原子%を占め、遷移金属がFeとCoで非金属がBとSiであるかまたは遷移金属がFeで非金属がBとSiである組成のものを使用することができ、例えば、組成Co70.515Si10Fe4.5、長さ2000μm〜6000μm、外径30μm〜50μmφのものを使用できる。 The magneto-impedance effect element 1 is an alloy of transition metal and non-metal having a non-metal composition of 10 to 30 atomic%, particularly an alloy of transition metal and non-metal, and the amount of non-metal accounts for 10 to 30 atomic%. The transition metal is Fe and Co and the nonmetal is B and Si, or the transition metal is Fe and the nonmetal is B and Si. For example, the composition Co 70.5 B 15 can be used. Si 10 Fe 4.5 having a length of 2000 μm to 6000 μm and an outer diameter of 30 μm to 50 μmφ can be used.

上記において、高周波励磁電流には、例えば連続正弦波、パスル波、三角波等の通常の高周波を使用でき、高周波励磁電流源としては、例えばハートレー発振回路、コルピッツ発振回路、コレクタ同調発振回路、ベース同調発振回路のような通常の発振回路の外、水晶発振器の矩形波出力を直流分カットコンデンサを経て積分回路で積分しこの積分出力の三角波を増幅回路で増幅する三角波発生器、COMS−ICを発振部として使用した三角波発生器等を使用できる。   In the above, a normal high frequency such as a continuous sine wave, a pulse wave, or a triangular wave can be used as the high frequency excitation current, and examples of the high frequency excitation current source include a Hartley oscillation circuit, a Colpitts oscillation circuit, a collector tuning oscillation circuit, and a base tuning oscillation. In addition to a normal oscillation circuit such as an oscillation circuit, a square wave generator that integrates the square wave output of a crystal oscillator through an integration circuit via a DC cut capacitor and amplifies the triangular wave of the integration output by an amplification circuit, and oscillates a COMS-IC The triangular wave generator etc. which were used as a part can be used.

上記の検波回路としては、例えば被変調波を演算増幅回路で半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成、被変調波をダイオードで半波整流しこの半波整流波を並列RC回路またはRCローパスフィルターで処理して半波整流波の包絡線出力を得る構成等を使用できる。
また、被変調波(周波数fs)に同調させた周波数fsの方形波を被変調波に乗算して信号波をサンプリングする同調検波を使用することができる。
上記の実施例では、被変調波の復調によって被検出磁界を取り出しているが、これに限定されず、磁気インピーダンス効果素子に作用する信号磁界(信号波)で変調された高周波励磁電流波(搬送波)から信号磁界を検波し得るものであれば、適宜の検波手段を使用できる。
As the above detection circuit, for example, a configuration in which a modulated wave is half-wave rectified by an operational amplifier circuit and this half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave, A configuration in which the modulated wave is half-wave rectified by a diode and the half-wave rectified wave is processed by a parallel RC circuit or an RC low-pass filter to obtain an envelope output of the half-wave rectified wave can be used.
Further, it is possible to use tuning detection in which a signal wave is sampled by multiplying the modulated wave by a square wave having a frequency fs tuned to the modulated wave (frequency fs).
In the above embodiment, the detected magnetic field is extracted by demodulating the modulated wave. However, the present invention is not limited to this, and the high-frequency excitation current wave (carrier wave) modulated by the signal magnetic field (signal wave) acting on the magneto-impedance effect element. Any suitable detecting means can be used as long as it can detect the signal magnetic field.

前記負帰還用コイル及びバイアス磁界用コイルは磁気インピーダンス効果素子に巻き付けることができる。また、図3に示すように磁気インピーダンス効果素子とループ磁気回路を構成する鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻き付けることもできる。 図3の(イ)は鉄芯コイル付き磁気インピーダンス効果ユニットの一例を示す側面図、図3の(ロ)は同じく底面図、図3の(ハ)は図3の(ロ)におけるハ−ハ断面図である。
図3において、100は基板チツプであり、例えばセラミックス板を使用できる。101は基板片の片面に設けた電極であり、磁気インピーダンス効果素子接続用突部102を備えている。この電極は導電ペースト、例えば銀ペーストの印刷・焼付けにより設けることができる。1xは電極101,101の突部102,102間にはんだ付けや溶接により接続した磁気インピーダンス効果素子であり、前記した通り零磁歪乃至負磁歪のアモルファスワイヤ、アモルファスリボン、スパッタ膜等を使用できる。103は鉄やフェライト等からなるC型鉄芯、6xはC型鉄芯に巻装した負帰還用コイル、7xは同じくバイアス磁界用コイルであり、磁気インピーダンス効果素子1xとC型鉄芯103とでループ磁気回路を構成するように、C型鉄芯103の両端を基板片100の他面に接着剤等で固定してある。鉄芯材料としては、残留磁束密度の小さい磁性体であればよく、例えば、パーマロイ、フェライト、鉄、アモルファス磁性合金の他、磁性体粉末混合プラスチック等を挙げることができる。
The negative feedback coil and the bias magnetic field coil can be wound around a magneto-impedance effect element. Further, as shown in FIG. 3, a negative feedback coil and a bias magnetic field coil can be wound around an iron core constituting a magneto-impedance effect element and a loop magnetic circuit. 3 (a) is a side view showing an example of a magneto-impedance effect unit with an iron core coil, FIG. 3 (b) is a bottom view, and FIG. 3 (c) is a cross-sectional view of FIG. It is sectional drawing.
In FIG. 3, reference numeral 100 denotes a substrate chip, and for example, a ceramic plate can be used. Reference numeral 101 denotes an electrode provided on one side of the substrate piece, and includes a magneto-impedance effect element connecting projection 102. This electrode can be provided by printing and baking a conductive paste, for example, a silver paste. 1x is a magneto-impedance effect element connected between the protrusions 102 and 102 of the electrodes 101 and 101 by soldering or welding, and an amorphous wire, amorphous ribbon, sputtered film, or the like having zero or negative magnetostriction can be used as described above. 103 is a C-type iron core made of iron or ferrite, 6x is a negative feedback coil wound around the C-type iron core, 7x is a bias magnetic field coil, and the magneto-impedance effect element 1x and the C-type iron core 103 The both ends of the C-type iron core 103 are fixed to the other surface of the substrate piece 100 with an adhesive or the like so as to constitute a loop magnetic circuit. The iron core material may be a magnetic material having a small residual magnetic flux density. Examples thereof include permalloy, ferrite, iron, amorphous magnetic alloy, magnetic powder mixed plastic, and the like.

図4−1は本発明に係る劣化診断装置の回路図を示している。
図4−1において、C〜Cは図1により説明したチャンネル検出系であり、1〜1は磁気インピーダンス効果素子を、7〜7は各磁気インピーダンス効果素子に対するバイアス磁界用コイルを、3〜3は各磁気インピーダンス効果素子に対する検波回路を、4〜4は増幅回路を、6〜6は負帰還用コイルをそれぞれ示している。
81〜81は各チャンネルの検出信号をディジタル化し各ディジタル信号で各チャンネルの周波数の搬送波を変調する多チャンネルA/D変換・変調器、82は変調信号波を無線方式で送信する多チャンネル送信器、83は受信器、84は受信波を復調してディジタル信号を取出したうえで解析するコンピュータである。
FIG. 4A is a circuit diagram of the deterioration diagnosis apparatus according to the present invention.
4A, C 1 to C n are the channel detection systems described with reference to FIG. 1, 1 1 to 1 n are magneto-impedance effect elements, and 7 1 to 7 n are bias magnetic fields for the respective magneto-impedance effect elements. Reference numerals 3 1 to 3 n denote detection circuits for the magneto-impedance effect elements, 4 1 to 4 n denote amplification circuits, and 6 1 to 6 n denote negative feedback coils.
81 1 to 81 n are multi-channel A / D converters / modulators that digitize the detection signals of the respective channels and modulate the carrier waves of the frequencies of the respective channels with the respective digital signals, and 82 is a multi-channel that transmits the modulated signal wave in a wireless manner. A transmitter, 83 is a receiver, and 84 is a computer that demodulates the received wave and extracts a digital signal for analysis.

図4−2の(イ)は同劣化診断装置の外観図を、図4−2の(ロ)は図4−2の(イ)におけるローロ断面図をそれぞれ示している。
図4−2において、Pはフレキシブル基板であり、ポリエステルフィルム等のプラスチックフィルムに所定の導体パターンを印刷してある。Sはフレキシブル基板の巾片端側に貼着した高剛性基板であり、基板をフレキシブル部Fと剛体部Hとに分けている。この高剛性基板には、セラミックス板、エポキシ・ガラス積層板、アルミ板等を使用できる。1u〜1uは図3に示した鉄芯コイル付の磁気インピーダンス効果ユニットであり、チャンネル数分の本数をフレキシブル部Fの縁端部に縦方向の向きで並列に実装してある。Bは励磁電流源回路や全チャンネルの検波回路及び増幅回路を集積したIC回路であり、剛体部Hに実装してある。Eは励磁電流源回路に対する+Vcc電源やバイアス磁界用コイルの+Vcc電源や増幅回路の+Vcc電源としてのバッテリー例えばリチウムイオン電池であり、剛体部Hに搭載してある。このバッテリーは基板に搭載せずに携帯型のものを可撓性コードを介し基板に接続するようにしてもよい。810は各チャンネルの検出信号をディジタル化する多チャンネルA/D変換器であり、剛体部Hに搭載してある。820は各ディジタル信号で各チャンネルの周波数の搬送波を変調して無線方式で送信する多チャンネル送信器であり、ケーブルにより多チャンネルA/D変換器に接続してある。834は変調波を受信し復調してディジタル信号を取出し解析するコンピュータである。
図4−3の(イ)は同劣化診断装置の別実施例の外観図を、図4−3の(ロ)は図4−3の(イ)におけるローロ断面図をそれぞれ示している。
図4−3において、Pはフレキシブル基板であり、ポリエステルフィルム等のプラスチックフィルムに所定の導体パターンを印刷してある。Sはフレキシブル基板の巾片端側に貼着した高剛性基板であり、基板をフレキシブル部Fと剛体部Hとに分けている。この高剛性基板には、セラミックス板、エポキシ・ガラス積層板、アルミ板等を使用できる。1u〜1uは図3に示した鉄芯コイル付の磁気インピーダンス効果ユニットであり、チャンネル数分の本数をフレキシブル部Fの被検査物に臨まされる縁端部に縦方向の向きで並列に剛体導体バーやピンpで連結支持してある。eはフレキシブル部Fの導体パターンの磁気インピーダンス効果ユニット接続用電極である。Bは励磁電流源回路や全チャンネルの検波回路及び増幅回路を集積したIC回路であり、剛体部Hに実装してある。Eは励磁電流源回路に対する+Vcc電源やバイアス磁界用コイルの+Vcc電源や増幅回路の+Vcc電源としてのバッテリー例えばリチウムイオン電池であり、剛体部Hに搭載してある。このバッテリーは基板に搭載せずに携帯型のものを可撓性コードを介し基板に接続するようにしてもよい。810は各チャンネルの検出信号をディジタル化する多チャンネルA/D変換器であり、剛体部Hに搭載してある。820は各ディジタル信号で各チャンネルの周波数の搬送波を変調して無線方式で送信する多チャンネル送信器であり、ケーブルにより多チャンネルA/D変換器に接続してある。834は変調波を受信し復調してディジタル信号を取出し解析するコンピュータである。
FIG. 4B is an external view of the deterioration diagnosis apparatus, and FIG. 4B is a cross-sectional view of FIG. 4B.
In FIG. 4B, P is a flexible substrate, and a predetermined conductor pattern is printed on a plastic film such as a polyester film. S is a high-rigidity substrate attached to the width end of the flexible substrate, and the substrate is divided into a flexible portion F and a rigid portion H. As this high-rigidity substrate, a ceramic plate, an epoxy / glass laminated plate, an aluminum plate, or the like can be used. 1u 1 ~1u n is a magnetic impedance effect unit with iron core coils shown in FIG. 3, it is mounted a number of several channels minutes in parallel with the longitudinal direction of the orientation edge of the flexible portion F. B is an IC circuit in which an exciting current source circuit, a detection circuit for all channels, and an amplifier circuit are integrated, and is mounted on the rigid body portion H. E is a battery such as a lithium ion battery as a + Vcc power source for the exciting current source circuit, a + Vcc power source for the bias magnetic field coil, and a + Vcc power source for the amplifier circuit, and is mounted on the rigid body H. A portable battery may be connected to the substrate via a flexible cord without being mounted on the substrate. 810 is a multi-channel A / D converter that digitizes the detection signal of each channel, and is mounted on the rigid part H. Reference numeral 820 denotes a multi-channel transmitter that modulates a carrier wave having a frequency of each channel with each digital signal and transmits it in a wireless manner, and is connected to the multi-channel A / D converter by a cable. A computer 834 receives and demodulates the modulated wave to extract and analyze the digital signal.
Fig. 4-3 (a) shows an external view of another embodiment of the deterioration diagnostic apparatus, and Fig. 4-3 (b) shows a cross-sectional view of Fig. 4-3 (b).
In FIG. 4-3, P is a flexible substrate, and a predetermined conductor pattern is printed on a plastic film such as a polyester film. S is a high-rigidity substrate attached to the width end of the flexible substrate, and the substrate is divided into a flexible portion F and a rigid portion H. As this high-rigidity substrate, a ceramic plate, an epoxy / glass laminated plate, an aluminum plate, or the like can be used. 1u 1 ~1u n is a magnetic impedance effect unit with iron core coils shown in FIG. 3, parallel longitudinal orientation edge which is facing the number of several channels minutes the specimen in the flexible portion F Are connected and supported by rigid conductor bars and pins p. e is an electrode for connecting the magnetic impedance effect unit of the conductor pattern of the flexible portion F. B is an IC circuit in which an exciting current source circuit, a detection circuit for all channels, and an amplifier circuit are integrated, and is mounted on the rigid body portion H. E is a battery such as a lithium ion battery as a + Vcc power source for the exciting current source circuit, a + Vcc power source for the bias magnetic field coil, and a + Vcc power source for the amplifier circuit, and is mounted on the rigid body H. A portable battery may be connected to the substrate via a flexible cord without being mounted on the substrate. 810 is a multi-channel A / D converter that digitizes the detection signal of each channel, and is mounted on the rigid part H. Reference numeral 820 denotes a multi-channel transmitter that modulates a carrier wave having a frequency of each channel with each digital signal and transmits it in a wireless manner, and is connected to the multi-channel A / D converter by a cable. A computer 834 receives and demodulates the modulated wave to extract and analyze the digital signal.

本発明の劣化診断装置により鉄系構造物、例えば鉄系パイプ内面の劣化診断を行うには、図5−1に示すように劣化診断装置のフレキシブル基板部FをパイプPに摺動可能な程度の巻き締めで巻装し、パイプ表面を長手方向に磁気インピーダンス効果ユニット1u〜1uの磁気インピーダンス効果素子11,…でスキャニングしていく。フレキシブル基板部Fの実装面をパイプ表面に向けてもよく、またはその反対面をパイプ表面に向けてもよい。
図5−2に示すように劣化診断装置のフレキシブル基板部FをパイプPに摺動可能なように巻き回し、かつ磁気インピーダンス効果ユニット1u〜1uの磁気インピーダンス効果素子11,…1nをパイプ表面に垂直に向けるようにフレキシブル基板部Fで折り曲げるようにして装着し、パイプ表面を長手方向に磁気インピーダンス効果素子11,…でスキャニングしていくこともできる。
これら場合、パイプに巻回される部分は磁気インピーダンス効果素子を実装したフレキシブル基板部だけであり、IC回路部品は剛体部に実装されており歪を受けないから、IC回路部品を安全に保持できる。
図4の劣化診断装置では、図5−3に示すように劣化診断装置のフレキシブル基板部FをパイプPに摺動可能な程度の巻き締めで巻装し、パイプ表面を長手方向に磁気インピーダンス効果ユニット1u〜1uの磁気インピーダンス効果素子11,…1nでスキャニングしていく。この場合、フレキシブル基板部Fが躯体となって磁気インピーダンス効果ユニット1u〜1uを支持しているから、磁気インピーダンス効果ユニット1u〜1uの位置がフレキシブル基板部Fの変形に伴って変化されて磁気インピーダンス効果ユニット1u〜1uがパイプ表面に近接される。
In order to perform the deterioration diagnosis of the iron-based structure, for example, the inner surface of the iron-based pipe by the deterioration diagnosis apparatus of the present invention, the degree to which the flexible substrate portion F of the deterioration diagnosis apparatus can slide on the pipe P as shown in FIG. wound in seaming a magnetic impedance effect unit pipe surface in the longitudinal direction 1u 1 ~1u n of the magneto-impedance effect element 11, ... continue to scan in. The mounting surface of the flexible board F may be directed to the pipe surface, or the opposite surface may be directed to the pipe surface.
Figure 5-2 flexible board portion F of the deterioration diagnosis apparatus as shown in winding so as to be slidable in the pipe P, and magnetic impedance effect unit 1u 1 ~1u n of the magneto-impedance effect element 11, pipes ... 1n It is also possible to bend the flexible substrate F so as to be perpendicular to the surface, and to scan the pipe surface with the magneto-impedance effect elements 11 in the longitudinal direction.
In these cases, the portion wound around the pipe is only the flexible substrate portion on which the magneto-impedance effect element is mounted, and since the IC circuit component is mounted on the rigid body portion and is not distorted, the IC circuit component can be safely held. .
In the deterioration diagnosis apparatus of FIG. 4, the flexible substrate F of the deterioration diagnosis apparatus is wound around the pipe P by winding so as to be slidable as shown in FIG. magneto-impedance effect element 11 of the unit 1u 1 ~1u n, continue to scan in ... 1n. Change this case, since the flexible substrate portion F is supporting the magneto-impedance effect unit 1u 1 ~1u n becomes skeleton, the position of the magneto-impedance effect unit 1u 1 ~1u n is with the deformation of the flexible substrate portion F has been magneto-impedance effect unit 1u 1 ~1u n is close to the pipe surface.

図6−1及び図6−2は図5−1及び図5−2におけるスキャニング中でのバイアス磁界の作用状態を示している。
(1)図6−1及び図6−2において、1xは図3に示した鉄芯コイル付き磁気インピーダンス効果ユニットの磁気インピーダンス効果素子を、103は鉄芯を、7xはバイアス磁界用コイルを、Gは鉄系被検査壁をそれぞれ示しており、被検査壁Gが磁性体であるから、バイアス磁界が被検査壁Gをバイパスし、被検査壁内面の劣化に基づく磁気的変化、すなわちリラクタンスの変化のためにバイアス磁界の強度が変化される。
而して、図2の(ハ)において、一点鎖線で示すように、バイアス磁界の変化ΔHbに応じ出力特性がシフトされるために外部磁界Hexが0でも検出出力が変化する。
(2)前述した通り、磁気インピーダンス効果素子としてのアモルファスワイヤに励磁電流を流したときに発生する磁界は、電磁場の透磁率に応じて変わり、磁界発生源である磁気インピーダンス効果素子近傍の電磁場の透磁性が局所的に変化すると、その箇所での磁界の変化が磁界の連続性のために磁気インピーダンス効果素子内部の磁界にまで波及し、磁気インピーダンス効果素子内の磁界も変歪される。
従って、励磁電流を流すことにより発生する磁気インピーダンス効果素子1x内の円周方向磁界が、磁気インピーダンス効果素子に近接の壁裏面の劣化に基づく近傍電磁場の透磁性の変化で変歪され、励磁電流に基づく磁気インピーダンス効果素子内の円周方向磁界が壁裏面の腐食・減肉に応じ円周方向からずらされる結果、励磁電流に基づく搬送波が壁裏面の劣化に応じた情報で変調されることになる。
このように磁気インピーダンス効果素子にバイアス磁界を印加し、磁気インピーダンス効果素子に励磁電流を通電し、該素子端出力の検波分をセンサ出力とする磁気インピーダンス効果型センサを鉄系壁表面に沿って移動させることにより、壁裏面の劣化に応じた信号を発生させることができる。
FIGS. 6A and 6B show the action state of the bias magnetic field during scanning in FIGS. 5A and 5B.
(1) In FIGS. 6A and 6B, 1x is a magneto-impedance effect element of the magneto-impedance effect unit with iron core coil shown in FIG. 3, 103 is an iron core, 7x is a coil for bias magnetic field, G denotes an iron-based wall to be inspected, and since the wall to be inspected G is a magnetic body, a bias magnetic field bypasses the wall to be inspected G, and a magnetic change based on deterioration of the inner surface of the wall to be inspected, that is, reluctance Due to the change, the intensity of the bias magnetic field is changed.
Thus, in FIG. 2C, as indicated by the alternate long and short dash line, the output characteristics are shifted in accordance with the change ΔHb in the bias magnetic field, so that the detection output changes even when the external magnetic field Hex is zero.
(2) As described above, the magnetic field generated when an exciting current is passed through an amorphous wire as a magneto-impedance effect element changes according to the permeability of the electromagnetic field, and the electromagnetic field near the magneto-impedance effect element that is the magnetic field generation source When the magnetic permeability changes locally, the change in the magnetic field at that point spreads to the magnetic field inside the magneto-impedance effect element due to the continuity of the magnetic field, and the magnetic field in the magneto-impedance effect element is also distorted.
Therefore, the circumferential magnetic field in the magneto-impedance effect element 1x generated by flowing the excitation current is distorted by the change in permeability of the near electromagnetic field based on the deterioration of the back wall near the magneto-impedance effect element, and the excitation current As a result, the magnetic field in the circumferential direction in the magneto-impedance effect element is shifted from the circumferential direction in accordance with the corrosion / thinning of the wall back surface. As a result, the carrier wave based on the excitation current is modulated with information corresponding to the deterioration of the wall back surface. Become.
In this way, a magneto-impedance effect sensor is applied along the surface of the iron-based wall by applying a bias magnetic field to the magneto-impedance effect element, applying an exciting current to the magneto-impedance effect element, and detecting the element end output as a sensor output. By moving it, a signal corresponding to the deterioration of the back surface of the wall can be generated.

図7の曲線(イ)は裏面に錆が発生している古い鉄板表面に磁気インピーダンス効果素子を速度10cm/秒で移動させたときの出力を、図7の曲線(ロ)は錆が殆ど発生していない新しい鉄板表面に磁気インピーダンス効果素子を速度10cm/秒で移動させたときの出力をそれぞれ示し、本発明によれば充分な精度で錆の発生の有無や位置を検出できることを確認できた。   The curve (b) in Fig. 7 shows the output when the magneto-impedance effect element is moved at a speed of 10 cm / sec to the old iron plate surface where rust is generated on the back surface, and the curve (b) in Fig. 7 shows almost no rust. The output when moving the magneto-impedance effect element at a speed of 10 cm / second on the surface of a new iron plate that has not been performed is shown, and according to the present invention, it has been confirmed that the presence or absence and position of rust can be detected with sufficient accuracy. .

本発明ではチャンネルに対応した周波数の搬送波をこの各チャンネルの検出信号で変調して無線方式でコンピュータに送信し、各チャンネルの変調波を復調して各チャンネルの信号をコンピュータで解析しており、劣化の程度や劣化場所を把握することができる。   In the present invention, a carrier wave having a frequency corresponding to a channel is modulated with a detection signal of each channel and transmitted to a computer in a wireless manner, a modulated wave of each channel is demodulated, and a signal of each channel is analyzed by the computer. It is possible to grasp the degree of degradation and the location of degradation.

上記の劣化診断装置では、並列配置の磁気インピーダンス効果素子の向きをスキャニング方向としているが、スキャニング方向と直角の方向またはこれら両方向の中間方向とすることも可能である。   In the above-described degradation diagnosis apparatus, the direction of the magneto-impedance effect elements arranged in parallel is set as the scanning direction. However, it is possible to set the direction perpendicular to the scanning direction or an intermediate direction between these two directions.

本発明に係る劣化診断装置では、磁気インピーダンス効果素子によるスキャニングに先行して欠陥部を磁化し、その磁化の程度からも欠陥の軽重を評価するために並設磁気インピーダンス効果素子群の先方のフレキシブル基板部箇所に磁化用コイルを実装することもできる。   In the deterioration diagnosis apparatus according to the present invention, the defect portion is magnetized prior to the scanning by the magneto-impedance effect element, and the flexible of the other end of the parallel magneto-impedance effect element group is evaluated in order to evaluate the weight of the defect from the degree of the magnetization. A magnetizing coil can also be mounted on the substrate portion.

上記の実施例では、バイアス磁界用コイル付き磁気インピーダンス効果素子を実装したフレキシブル基板部を被検査物に巻装してスキャニングしているが、図8−1や図8−2に示すように、磁気インピーダンス効果ユニットを先端部に実装したフレキシブル基板部Fの先端部を被検査物Gの表面にフレキシブル基板部Fの曲げ反力で圧接し、または磁気インピーダンス効果ユニットを連結支持したフレキシブル基板部Fの先端部を被検査物Gの表面にフレキシブル基板部Fの曲げ反力で圧接して磁気インピーダンス効果ユニットの磁気インピーダンス効果素子1〜1と被検査物Gの表面とを接近させてスキャニングさせることもできる。 In the above embodiment, the flexible substrate portion on which the magneto-impedance effect element with the bias magnetic field coil is mounted is wound around the object to be inspected, but as shown in FIGS. 8-1 and 8-2, The flexible substrate portion F in which the tip portion of the flexible substrate portion F having the magneto-impedance effect unit mounted on the tip portion is pressed against the surface of the inspection object G by the bending reaction force of the flexible substrate portion F, or the magneto-impedance effect unit is connected and supported. The tip of the substrate is pressed against the surface of the inspection object G by the bending reaction force of the flexible substrate F, and the magneto-impedance effect elements 1 1 to 1 n of the magneto-impedance effect unit are brought close to the surface of the inspection object G for scanning. It can also be made.

本発明に係る劣化診断装置では、図9−1の(イ)または(ロ)に示すように、各チャンネルのバイアス磁界用コイル付き磁気インピーダンス効果素子を所定の間隔を隔てて配設した2箇の1m1,1m2(m=1〜n)とし、図9−2に示すように各チャンネルの2箇の各磁気インピーダンス効果素子1m1,1m2(m=1〜n)の各出力を各検波回路3m1,3m2(m=1〜n)で検波し、その検波信号を差動増幅回路4(m=1〜n)で増幅し、その増幅出力を各チャンネルのA/D変換・変調器81(m=1〜n)でディジタル化・変調を行い、その変調波を送信器82で送信することもできる。図9−2において、83は受信器を、84は受信変調波を復調してディジタル信号を取出し解析するコンピュータを、6(m=1〜n)は各チャンネルの負帰還用コイルを、7,7(m=1〜n)は各チャンネルの両磁気インピーダンス効果素子1m1,1m2(m=1〜n)のそれぞれのバイアス磁界用コイルを示している。
図9−3は2箇の素子1m1,1m2をスキャンニング方向に距離を隔てて配設した場合の1チャンネルでの検出波形を示し、そのチャンネルでの2箇の磁気インピーダンス効果素子のスキャニング方向の間隔をd、スキャニング速度をvとすれば、スキャニング前方の磁気インピーダンス効果素子の検出信号pから時間d/v後にスキャニング後方の磁気インピーダンス効果素子の検出信号p’が現れ、その極性はpと逆極性である。この方式では、外部磁界ノイズや内部ノイズを差動のために打ち消すことができる。
2箇の素子1m1,1m2 (m=1〜n)のうち一方の素子を信号を検出しない位置に配設しても、外部磁界ノイズや内部ノイズを差動のために打ち消すことができる。
例えば、図9−4に示す例では、劣化診断装置のフレキシブル基板部FをパイプPに摺動可能なように巻き回し、かつ2個の磁気インピーダンス効果素子1m1,1m2(m=1〜n)をパイプ表面に垂直に向けるようにフレキシブル基板部Fで折り曲げるようにして装着し、かつ素子1m2(m=1〜n)はパイプの欠陥を検知しない位置に配設してある。
また、共通の基板チツプの片面に二個の磁気インピーダンス効果素子を設け、この基板チツプの他面に前記各磁気インピーダンス効果素子とでループ磁気回路を形成する各C型鉄芯を設け、各C型鉄芯に負帰還用コイル及びバイアス磁界用コイルを巻装した磁気インピーダンス効果素子対ユニットを使用することもできる。
In the deterioration diagnosis apparatus according to the present invention, as shown in FIG. 9-1 (A) or (B), two magneto-impedance effect elements with a bias magnetic field coil for each channel are arranged at predetermined intervals. 1 m1 , 1 m2 (m = 1 to n), and as shown in FIG. 9-2, the outputs of the two magneto-impedance effect elements 1 m1 and 1 m2 (m = 1 to n) of each channel Each detection circuit 3 m1 , 3 m2 (m = 1 to n) is detected, the detection signal is amplified by a differential amplifier circuit 4 m (m = 1 to n), and the amplified output is A / D of each channel. The conversion / modulator 81 m (m = 1 to n) may be digitized and modulated, and the modulated wave may be transmitted by the transmitter 82. 9-2, 83 is a receiver, 84 is a computer that demodulates a received modulation wave and extracts and analyzes a digital signal, 6 m (m = 1 to n) is a negative feedback coil of each channel, 7 m and 7 m (m = 1 to n) indicate the respective bias magnetic field coils of the magneto-impedance effect elements 1 m1 and 1 m2 (m = 1 to n) of each channel.
FIG. 9-3 shows a detection waveform in one channel when two elements 1 m1 and 1 m2 are arranged at a distance in the scanning direction, and scanning of the two magneto-impedance effect elements in that channel. If the interval in the direction is d and the scanning speed is v, the detection signal p ′ of the magneto-impedance effect element after scanning appears after time d / v from the detection signal p of the magneto-impedance effect element in front of the scan, and its polarity is p And reverse polarity. In this method, external magnetic field noise and internal noise can be canceled for differential.
Even if one of the two elements 1 m1 and 1 m2 (m = 1 to n) is disposed at a position where no signal is detected, the external magnetic field noise and the internal noise can be canceled for differential. .
For example, in the example shown in FIG. 9-4, the flexible substrate portion F of the deterioration diagnosis apparatus is wound around the pipe P so as to be slidable, and two magneto-impedance effect elements 1 m1 , 1 m2 (m = 1 to 2). n) is mounted so as to be bent by the flexible substrate portion F so as to be perpendicular to the pipe surface, and the element 1 m2 (m = 1 to n) is disposed at a position where a defect of the pipe is not detected.
Also, two magneto-impedance effect elements are provided on one side of a common substrate chip, and each C-type iron core that forms a loop magnetic circuit with each of the magneto-impedance effect elements is provided on the other side of the substrate chip. A magneto-impedance effect element pair unit in which a negative feedback coil and a bias magnetic field coil are wound around a mold iron core can also be used.

本発明に係る鉄系構造物の劣化診断装置は、上記の実施例に限定されるものではなく、スキャニング巾を多チャンネル分の複数箇の並設磁気インピーダンス効果素子で占め、これらの磁気インピーダンス効果素子を実装するフレキシブル基板部を被検査物に巻装またはフレキシブル基板部の先端部を被検査物の表面に圧接したときに前記の全磁気インピーダンス効果素子を被検査物表面に接近させ得、IC回路部分を変形を受けない基板部分に搭載するものであれば、適宜の構成で実施できる。   The deterioration diagnosis apparatus for an iron-based structure according to the present invention is not limited to the above embodiment, and the scanning width is occupied by a plurality of parallel magneto-impedance effect elements for multiple channels, and these magneto-impedance effects When the flexible substrate portion on which the element is mounted is wound around the object to be inspected or the tip of the flexible substrate portion is pressed against the surface of the object to be inspected, the above-mentioned all magneto-impedance effect element can be brought close to the surface of the object to be inspected. As long as the circuit portion is mounted on the substrate portion that is not deformed, it can be implemented with an appropriate configuration.

本発明に係る鉄系構造物の劣化診断装置の1チャンネル検出系を示す回路図である。It is a circuit diagram which shows the 1 channel detection system of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 磁気インピーダンス効果素子の検出特性を示す図面である。It is drawing which shows the detection characteristic of a magneto-impedance effect element. 本発明に係る劣化診断装置において使用した鉄芯コイル付き磁気インピーダンス効果ユニットを示す図面である。It is drawing which shows the magneto-impedance effect unit with an iron core coil used in the deterioration diagnostic apparatus based on this invention. 本発明に係る鉄系構造物の劣化診断装置の回路図を示す図面である。It is drawing which shows the circuit diagram of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 本発明に係る鉄系構造物の劣化診断装置の外観を示す図面である。It is drawing which shows the external appearance of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 本発明に係る鉄系構造物の劣化診断装置の別実施例の外観を示す図面である。It is drawing which shows the external appearance of another Example of the deterioration diagnosis apparatus of the iron-type structure based on this invention. 本発明に係る鉄系構造物の劣化診断装置のスキャニング状態を示す図面である。It is drawing which shows the scanning state of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 本発明に係る鉄系構造物の劣化診断装置のスキャニング状態を示す図面である。It is drawing which shows the scanning state of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 本発明に係る鉄系構造物の劣化診断装置の別実施例のスキャニング状態を示す図面である。It is drawing which shows the scanning state of another Example of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 図5−1のスキャニング状態での本発明に係る鉄系構造物の劣化診断装置の動作機構を示す図面である。It is drawing which shows the operation | movement mechanism of the deterioration diagnosis apparatus of the iron-type structure based on this invention in the scanning state of FIGS. 図5−2のスキャニング状態での本発明に係る鉄系構造物の劣化診断装置の動作機構を示す図面である。It is drawing which shows the operation | movement mechanism of the deterioration diagnosis apparatus of the iron-type structure based on this invention in the scanning state of FIGS. 磁気インピーダンス効果素子による鉄板の錆の検出結果を示す図面である。It is drawing which shows the detection result of the rust of the iron plate by a magneto-impedance effect element. 本発明に係る鉄系構造物の劣化診断装置の前記とは別のスキャニング状態を示す図面である。It is drawing which shows the scanning state different from the above of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 本発明に係る鉄系構造物の劣化診断装置の前記とは別のスキャニング状態を示す図面である。It is drawing which shows the scanning state different from the above of the deterioration diagnosis apparatus of the iron-type structure which concerns on this invention. 請求項6の鉄系構造物の劣化診断装置の要部を示す図面である。It is drawing which shows the principal part of the deterioration diagnosis apparatus of the iron-type structure of Claim 6. 請求項6の鉄系構造物の劣化診断装置の電気回路を示す図面である。It is drawing which shows the electric circuit of the deterioration diagnosis apparatus of the iron-type structure of Claim 6. 請求項6の鉄系構造物の劣化診断装置の検出波形を示す図面である。It is drawing which shows the detection waveform of the deterioration diagnosis apparatus of the iron-type structure of Claim 6. 請求項6の鉄系構造物の劣化診断装置の別例の要部を示す図面である。It is drawing which shows the principal part of another example of the deterioration diagnosis apparatus of the iron-type structure of Claim 6.

符号の説明Explanation of symbols

C1〜Cn 一チャンネル分の検出回路
11〜1n 磁気インピーダンス効果素子
71〜7n バイアス磁界用コイル
811〜81n A/D変換・変調器
82 無線式送信器
834 コンピュータ
F フレキシブル基板部
H 剛体基板部
G 被検査物
C1-Cn Detection circuits 11-1n for one channel Magneto-impedance effect elements 71-7n Coil for bias magnetic field 811-81n A / D converter / modulator 82 Wireless transmitter 834 Computer F Flexible substrate portion H Rigid substrate portion G Covered Inspection

Claims (7)

磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせる欠陥検出装置であり、被検査物に摺動可能な程度の巻き締めで巻装されるフレキシブル基板部を有し、このフレキシブル基板部に磁気インピーダンス効果素子及びバイアス磁界用コイルが実装されていることを特徴とする鉄系構造物の劣化診断装置。 A defect detection device that includes a detection circuit for detecting a bias magnetic field coil attached to a magneto-impedance effect element and passing the detection element through a detection circuit, and scanning the magneto-impedance effect element close to the surface to be inspected. A flexible board portion wound by tightening to a degree that can be slid on the object to be inspected, and a magneto-impedance effect element and a bias magnetic field coil mounted on the flexible board portion. Deterioration diagnosis device for iron-based structures. 磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせる欠陥検出装置であり、被検査物に摺動可能な程度の巻き締めで巻装されるフレキシブル基板部を有し、このフレキシブル基板部の被検査物側端に磁気インピーダンス効果素子及びバイアス磁界用コイルが連結支持されていることを特徴とする鉄系構造物の劣化診断装置。 A defect detection device that includes a detection circuit for detecting a bias magnetic field coil attached to a magneto-impedance effect element and passing the detection element through a detection circuit, and scanning the magneto-impedance effect element close to the surface to be inspected. There is a flexible board portion wound by tightening to the extent that it can slide on the object to be inspected, and a magneto-impedance effect element and a bias magnetic field coil are connected and supported at the inspected object side end of this flexible board portion. Deterioration diagnosis device for iron-based structures characterized by 磁気インピーダンス効果素子にバイアス磁界用コイルを付設し、その素子の出力を検波回路に通して検出する検出する検出回路を備え、被検査面に磁気インピーダンス効果素子を接近させた状態でスキャニングさせる欠陥検出装置であり、被検査物に摺動可能な程度の巻き締めで巻装されるフレキシブル基板部を有し、このフレキシブル基板に磁気インピーダンス効果素子及びバイアス磁界用コイル並びに検出回路が実装されていることを特徴とする鉄系構造物の劣化診断装置。 Defect detection in which a bias magnetic field coil is attached to a magneto-impedance effect element and a detection circuit that detects the output of the element through a detection circuit is detected, and scanning is performed with the magneto-impedance effect element approaching the surface to be inspected. The apparatus has a flexible substrate portion wound by tightening to a degree that can be slid on the object to be inspected , and a magneto-impedance effect element, a bias magnetic field coil, and a detection circuit are mounted on the flexible substrate. An iron structure deterioration diagnosis device characterized by 被検査物がパイプであることを特徴とする請求項1〜3何れか記載の鉄系構造物の劣化診断装置。 The deterioration diagnosis apparatus for an iron-based structure according to any one of claims 1 to 3, wherein the object to be inspected is a pipe. バイアス磁界用コイルを付設した磁気インピーダンス効果素子の出力を検波回路に通して検出するチャンネルを複数チャンネル備え、複数チャンネルの磁気インピーダンス効果素子を並設したことを特徴とする請求項1〜4何れか記載の鉄系構造物の劣化診断装置。 5. The magnetic impedance effect element according to claim 1, further comprising a plurality of channels for detecting the output of the magneto-impedance effect element provided with a bias magnetic field coil through a detection circuit, wherein the multi-channel magneto-impedance effect elements are arranged in parallel. Deterioration diagnosis apparatus for iron-based structures as described. バイアス磁界用コイル付き磁気インピーダンス効果素子が対とされ、その対の両素子に対する検波回路の検波信号の差を検出する差動部が検出回路に設けられていることを特徴とする請求項1〜5何れか記載の鉄系構造物の劣化診断装置。 The magneto-impedance effect element with a coil for bias magnetic field is made into a pair, and the differential part which detects the difference of the detection signal of the detection circuit with respect to both elements of the pair is provided in the detection circuit. 5. The deterioration diagnosis apparatus for iron-based structures according to any one of 5 above. 各チャンネルの検出信号を無線で送信する手段を備えていることを特徴とする請求項5または6記載の鉄系構造物の劣化診断装置。 7. The deterioration diagnosis apparatus for an iron-based structure according to claim 5, further comprising means for wirelessly transmitting a detection signal of each channel.
JP2005155212A 2005-05-27 2005-05-27 Deterioration diagnosis device for iron-based structures Expired - Fee Related JP4608666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005155212A JP4608666B2 (en) 2005-05-27 2005-05-27 Deterioration diagnosis device for iron-based structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005155212A JP4608666B2 (en) 2005-05-27 2005-05-27 Deterioration diagnosis device for iron-based structures

Publications (2)

Publication Number Publication Date
JP2006329855A JP2006329855A (en) 2006-12-07
JP4608666B2 true JP4608666B2 (en) 2011-01-12

Family

ID=37551685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005155212A Expired - Fee Related JP4608666B2 (en) 2005-05-27 2005-05-27 Deterioration diagnosis device for iron-based structures

Country Status (1)

Country Link
JP (1) JP4608666B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142205A (en) * 1991-05-06 1993-06-08 General Electric Co <Ge> Eddy-current surface measuring arrangement
JPH08101167A (en) * 1994-09-30 1996-04-16 Tokyo Gas Co Ltd Non-destructive inspection sensor and its manufacture
JPH0933488A (en) * 1995-07-20 1997-02-07 Daido Steel Co Ltd Eddy current flaw detection probe and manufacture thereof
JPH1151905A (en) * 1997-08-04 1999-02-26 Tokyo Gas Co Ltd Flaw detecting coil array for eddy current flaw detector and eddy current flaw detection method using flaw detecting coil array
JPH11211803A (en) * 1998-01-21 1999-08-06 Maitec Kk Magnetic sensor with magnetic impedance element
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002062280A (en) * 2000-08-22 2002-02-28 Daido Steel Co Ltd Probe for hot eddy current examination
JP2004333330A (en) * 2003-05-08 2004-11-25 Tokyo Gas Co Ltd Sensor for eddy current flaw

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142205A (en) * 1991-05-06 1993-06-08 General Electric Co <Ge> Eddy-current surface measuring arrangement
JPH08101167A (en) * 1994-09-30 1996-04-16 Tokyo Gas Co Ltd Non-destructive inspection sensor and its manufacture
JPH0933488A (en) * 1995-07-20 1997-02-07 Daido Steel Co Ltd Eddy current flaw detection probe and manufacture thereof
JPH1151905A (en) * 1997-08-04 1999-02-26 Tokyo Gas Co Ltd Flaw detecting coil array for eddy current flaw detector and eddy current flaw detection method using flaw detecting coil array
JPH11211803A (en) * 1998-01-21 1999-08-06 Maitec Kk Magnetic sensor with magnetic impedance element
JP2002022706A (en) * 2000-07-12 2002-01-23 Uchihashi Estec Co Ltd Magnetic sensor, magnetic leakage flux flaw detection method, and its device
JP2002062280A (en) * 2000-08-22 2002-02-28 Daido Steel Co Ltd Probe for hot eddy current examination
JP2004333330A (en) * 2003-05-08 2004-11-25 Tokyo Gas Co Ltd Sensor for eddy current flaw

Also Published As

Publication number Publication date
JP2006329855A (en) 2006-12-07

Similar Documents

Publication Publication Date Title
US9170234B2 (en) Magnetic sensor array and apparatus for detecting defect using the magnetic sensor array
US6636037B1 (en) Super sensitive eddy-current electromagnetic probe system and method for inspecting anomalies in conducting plates
US7495433B2 (en) Device for detecting defects in electrically conductive materials in a nondestructive manner
JP2009527745A (en) Method and apparatus for nondestructive evaluation of defects in metal objects
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
JP4495635B2 (en) Magneto-impedance effect sensor and method of using magneto-impedance effect sensor
JP4917812B2 (en) Deterioration diagnosis method for iron-based structures
JP4619884B2 (en) Diagnosis method for ferrous materials in concrete structures embedded in ferrous materials
JP4608666B2 (en) Deterioration diagnosis device for iron-based structures
JP4476746B2 (en) Corrosion / thinning inspection method for the back of steel walls
JP3748852B2 (en) Magnetic flaw detector
JP4878903B2 (en) Magnetic sensor for pillar transformer diagnosis
JP5085123B2 (en) Magnetic detection method for magnetic metal pieces
JPH0815229A (en) High resolution eddy current flaw detector
JP4520188B2 (en) Method for detecting conductor defects in electric wires
JP4286686B2 (en) Sensor for detecting conductor defects in electric wires
JP4286693B2 (en) Method for detecting conductor defects in electric wires
JP4619864B2 (en) Defect detection method for metal body and scanning magnetic detector
JP4600989B2 (en) Defect detection method for metal body and scanning magnetic detector
JP4722717B2 (en) Current sensor
JP4698958B2 (en) Sensor for detecting conductor defects in electric wires
JP2006337040A (en) Defect-detecting method of metal body, and scanning type magnetic detector
JP4739097B2 (en) Diagnosis method of pole transformer
JP4598601B2 (en) Defect detection method for metal body and scanning type defect detector
JP2008203164A (en) Detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees