JP2004333330A - Sensor for eddy current flaw - Google Patents

Sensor for eddy current flaw Download PDF

Info

Publication number
JP2004333330A
JP2004333330A JP2003130470A JP2003130470A JP2004333330A JP 2004333330 A JP2004333330 A JP 2004333330A JP 2003130470 A JP2003130470 A JP 2003130470A JP 2003130470 A JP2003130470 A JP 2003130470A JP 2004333330 A JP2004333330 A JP 2004333330A
Authority
JP
Japan
Prior art keywords
coil
eddy current
flaw detection
coil bobbin
current flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003130470A
Other languages
Japanese (ja)
Other versions
JP4101110B2 (en
Inventor
Takeshi Abe
健 安部
Yasuhiko Shinosawa
康彦 篠澤
Shigeru Mizuguchi
茂 水口
Atsuhiro Kajiura
敦裕 梶浦
Yasushi Torii
康司 鳥井
Koichi Doge
孝一 道下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Tokyo Gas Co Ltd
Kobelco Wire Co Ltd
Original Assignee
Shinko Wire Co Ltd
Kobelco Research Institute Inc
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Wire Co Ltd, Kobelco Research Institute Inc, Tokyo Gas Co Ltd filed Critical Shinko Wire Co Ltd
Priority to JP2003130470A priority Critical patent/JP4101110B2/en
Publication of JP2004333330A publication Critical patent/JP2004333330A/en
Application granted granted Critical
Publication of JP4101110B2 publication Critical patent/JP4101110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sensor for eddy current flaw capable of inspecting the rust or damage of an object to be measured on the spot in a non-destructive manner, while reducing noise. <P>SOLUTION: This sensor for eddy current flaw has a flaw-detecting coil element 1, which has a wiring pattern 20 comprising a plurality of respectively independent wirings provided on a flexible board 10, the connection parts provided to both end parts of the flexible board and the connection terminals, respectively connected not only to both ends of a plurality of the wirings, but also to the connection parts, and a coil bobbin 50 which is formed into a hollow cylindrical shape using a non-magnetic material, has a coil winding part 51 on which the thickness of the bobbin is set to R/π or higher, when the outer diameter of the coil bobbin is set to 2R and can be divided lengthwise into two parts. After the coil bobbin 50 is mounted on an object 90 to be measured, the flaw-detecting coil element 1 is wound around the coil bobbin; and both connection parts thereof are connected by a connector 40, to constitute the sensor for eddy current flaw 5. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、橋梁などを支える鋼線(ワイヤーロープ)などにおける錆の有無、欠損・断線などを検出する渦流探傷センサに関する。
【0002】
【従来の技術】
ケーブル(鋼線)の錆を検出する方法として、渦流探傷装置からなるセンサを用いたケーブルの錆検出方法がある。これは鋼線のパスライン上に渦流探傷装置のセンサを配置して、センサを貫通して通過する鋼線の錆などを電磁気的に検出する技術である(例えば、特許文献1参照)。
【0003】
また、架空されている活線状態にある電線の錆の発生を非破壊検査する電線検査装置として、開閉できるように分割したコイルをケーブルの周囲を取り囲むように配置して、検査する装置が提案されている(例えば、特許文献2参照)。
【0004】
さらに、本出願人は、可撓性基板の両端部に設けた接続部と、該接続部間に設けたそれぞれ独立した複数本の配線からなる配線パターンと、該複数本の配線の両端に配置した接続部にそれぞれ接続された接続端子とを設けた可撓性基板からなる探傷検査用コイル素子を、パイプに巻きつけたりパイプに装着したボビンに巻きつけ探傷用検査コイルを形成することを提案している(特許文献3参照)。
【0005】
【特許文献1】
特開平6−34608号公報
【特許文献2】
特開2001−128328号公報
【特許文献3】
特許第3247666号公報
【0006】
【発明が解決しようとする課題】
上記特許文献1に記載された鋼線の検査方法は、中空孔54に鋼線が貫通するようにセンサコイル1を巻きつけたコイルボビン50を配置しているので、図7(A)に示すように鋼線束90の全周囲に所定の間隔dを保ってコイルボビン50が位置するときには、センサコイル1と鋼線束90の表面の距離は等しくd+Tとなり少ない誤差で鋼線の錆や腐食や傷などを検出することができるが、図7(B)に示すようにコイルボビンと鋼線束を相対的に移動させる必要からコイルボビンの中空孔54の内径が鋼線束90の外径より大きく設定されているので、鋼線束を移動するときの生じる偏心によって鋼線束の外周とセンサコイルの内周との間隔が変動して、センサコイル1と鋼線束90の表面の距離は最大で2d+T、最小でTとなり、いわゆる渦流探傷法におけるガタ信号と呼ばれるノイズ信号を生成して検査に影響するという問題を有している。さらに、表面をモールド材でモールドした鋼線束において、モールド材の内部で鋼線束が偏在するような場合には、モールド材の表面がセンサコイルと一定の間隔を維持していてもセンサと鋼線束の間隔が変化し、前述のノイズ信号を生成して検査に影響を与えるおそれがある。
【0007】
また、特許文献2に記載される電線検査装置は、切れ目の無い鋼線にセンサを取りつける作業が困難であるという問題点を有しており、また、巻きつけない場合でも周囲に分割したコイルを多数配置する構成は、センサの構造を複雑にするという問題を有している。
【0008】
同様に、特許文献3に記載される可撓性基板を用いたコイルをボビンに巻いた場合にも、特許文献1と同様に管とボビンとの間隙が偏心して誤差を生じる問題がある。
【0009】
本発明は、上記問題に鑑み、特許文献3に示される可撓性基板からなるコイル素子を使用して、例えば橋梁などを支える鋼線などの磁性体の線状体の錆や傷などを、現場においてノイズを低減して非破壊検査することができる渦流探傷センサを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、本発明は、測定対象の錆や傷を検出する渦流探傷センサであって、測定対象の外側で相対的に移動可能に配置されるコイルボビンと、該コイルボビンの表面に巻回される探傷用検査コイルを有し、前記コイルボビンが、非磁性体材料を用いて中空円筒状に構成されるとともに、コイルボビンの外径を2Rとしたときに外径と内径との差が2R/π以上で、測定対象に装着したコイルボビンに前記探傷用検査コイルを巻きつけてセンサコイルを形成するようにした。
【0011】
さらに、本発明は、上記渦流探傷センサにおいて、前記渦流探傷検査用コイルを、可撓性基板に設けたそれぞれ独立した複数本の配線からなる配線パターンおよび前記可撓性基板の両端部に設けた接続部ならびに前記複数本の配線の両端にそれぞれ接続されるとともに前記接続部にそれぞれ接続された接続端子を有するコイル素子として形成し、前記コイルボビンを縦に分割可能に構成した。
【0012】
【発明の実施の形態】
本発明にかかる渦流探傷センサの構成を、鋼線の錆や傷を検査する場合を例にして、図1を用いて説明する。図1は本発明にかかる渦流探傷センサを鋼線に装着して錆や傷などを検査する状態を模式的に示す概念図である。図2は図1に示す渦流探傷センサのコイルボビン中央部付近で長手方向に直交する面での断面図である。
【0013】
本発明にかかる渦流探傷センサ5は、鋼線(測定対象)90に装着したコイルボビン50に渦流探傷検査用コイル1を巻きつけて構成される。ここで、コイルの巻きつけを現場で容易にするために、コイルボビン50に溝部51から成るコイル巻きつけ部を設けても良く、さらに可撓性基板に設けたそれぞれ独立した複数本の配線からなる配線パターンおよび前記可撓性基板の両端部に設けた接続部ならびに前記複数本の配線の両端にそれぞれ接続されるとともに前記接続部にそれぞれ接続された接続端子を有するコイル素子を用いてコイルを構成してもよい。
【0014】
合成樹脂などの非磁性体で構成されたコイルボビン50は、中空孔54を有し、両端部にフランジ57が、中間部に渦流探傷検査用コイル素子1を巻きつける溝部51が形成された中空円筒状に形成されており、フランジ57に設けた蝶番56で開閉自在にされた分割面52を有しており、軸方向に2分割して、鋼線90を挟み込んで装着されるように構成されている。
【0015】
ここで、測定対象90がコイルの内側に位置する場所によって、どのようにがたつきによるノイズの影響を受けるかについて検討する。本発明の渦流探傷センサが利用する渦流探傷方法は、以下の二つの原理を利用していると考えられる。すなわち、(ア)コイル内を貫通する磁束の変化を計測する、(イ)測定対象の表面に渦電流を発生させてその変化を計測する(渦流探傷法)。ただし、本発明が使用する方法は、測定対象の物理的な変化(錆や傷の発生など)に基づくコイルのインダクタンス変化を検知するものであるが、双方の原理ともコイルのインダクタンスが変化するので、二つの原理を明確に区別して探傷しているわけではない。
【0016】
上記(ア)の方法では、コイル内のどの位置に測定対象があっても比較的同じような信号を得ることができるのに対し、(イ)の方法では、コイルと測定対象が接近(通常の渦流探傷法では1〜2mm程度が望ましい)していないと錆や傷を正確に計測することができない。したがって、本発明は、(ア)の方法を主として(イ)の方法による影響を少なくする方法を用いた渦流探傷センサを提供するものである。
【0017】
図3および図4を用いて、(イ)の方法(渦流探傷法)による影響がコイル内のどの位置まで及ぶかを下記(1)、(2)式により定義する。(イ)の渦流探傷法が影響する範囲は、コイルに流れる電流が作り出す磁場が測定対象に影響を及ぼす範囲である。そのためには、コイル内の磁場の分布を知る必要がある。コイルを流れる電流(円形電流)がコイルの内部でどのような磁場を形成するかを一般的に簡単に示すことはできない。そこでコイル内部の磁場を次の様に近似して求めることとした。図3(A)に示すように、コイル半径:R、透磁率:μとすると、電流値Iの円形電流がコイルの中心に作る磁場Bは、下記(1)式となる。また、図3(B)に示すように、コイルに流れる直線電流Iによって電線から距離r離れたところに作る磁場Bは下記(2)式となる
【0018】
B=μI/2R・・・・(1)
B=μI/2πr・・・(2)
【0019】
コイルの中心部では距離の変化による磁場の変動が少ない(1)式に従い、コイル巻き線の近傍では距離の変化による磁場の変動が大きい(2)式が支配的であると考えられる。図4は、半径Rの円形電流線上を原点0とし、中心に向かってどのように磁場が変化するかを近似的に示したものである。円形電流内部の磁場変化は、0からR/πの範囲では距離によって磁場が大きく変化する(2)式に従い、R/πからRの範囲では距離によって磁場が変化しない(1)式に従うと近似できる。すなわち、(1)式に従う磁場が一定の範囲では、距離の変動が前述の(イ)の方法に対して影響を及ぼさないのに対して、(2)式に従う磁場が変動する範囲では、距離の変動が前述の(イ)の方法に対して大きな影響を与える。したがって、前述の(イ)の方法による影響が少なく、前述(ア)の方法が支配的となる部分は、図3(C)に示すように、コイルの線上からR/π以上離れた斜線以外の部分になる。
【0020】
すなわち、本発明では、コイルボビンのコイル巻きつけ部の外径を2Rとしたときにコイル巻きつけ部の厚みをR/π以上として、前述の(イ)の方法による影響を押さえて、(ア)の方法が支配的となるようなセンサの構成とした。
【0021】
この条件が適切であるか否かを図5および図6に示す実測結果を用いて説明する。図5は、半径Rが27mmのコイルの内部に半径8mmの鉄棒を挿入し、この鉄棒をコイルの内壁からコイルの中心へ向けて移動させたときの渦流探傷装置を介して見たセンサの出力を示している。鉄棒がコイルの内壁に接している場合を距離0mmとし、19mm移動した場合には鉄棒はコイル中心に達する。コイルの出力は、鉄棒がコイルの内壁に接しているときには0.46Vであったが、コイルの内壁から6mm離れたところでは0.23V、8mm離れたところでは0.19V、10mm離れたところでは0.16V、12mm離れたところでは0.15V、鉄棒がコイルの中心にあるときは0.13Vであった。6mmから8mmで鉄棒が動いたときの出力変化が0.04Vあるのに対して、10mmから12mmの間で鉄棒が動いたときの出力変化は、0.01Vである。コイルの半径Rが27mmの場合、R/πは8.6mmとなり、コイル線上からR/π以上離れたときの鉄棒の位置によるセンサ出力変化量は極めて小さくなることがわかる。
【0022】
図6を用いて、コイルを用いて亜鉛メッキ鋼線を渦流探傷方法により実測した例を説明する。半径Rが27mmのコイルの内部に直径が15mmの亜鉛メッキ鋼線を挿入し長手方向にコイルを移動する。コイルボビンの厚みを1mm、10mm、20mmの3通りとして探傷を行い、がたつきによる影響を調べた。亜鉛メッキ鋼線は長手方向の位置Aにおいて、亜鉛メッキ部分を除去しているものを使用した。曲線BC00Yは図2に示すコイルボビンの厚みが1mmの場合であり、曲線BC10Yは図2に示すコイルボビンの厚みが10mmの場合であり、曲線BC20Yは図2に示すコイルボビンの厚みが20mmの場合である。コイルボビンの厚みが1mmの場合は、信号強度は大きいがコイルボビンを移動させたときのがたつきによるノイズが大きく亜鉛メッキ鋼線の亜鉛メッキの有無による出力の変化を容易に見出すことは困難である。コイルボビンの厚みが10mmの場合は、信号強度が多少減少するもののコイルボビンを移動させたときのがたつきによるノイズは1mmの場合よりも小さくなり、亜鉛メッキの有無による出力の変化を見出すことができる。さらに、コイルボビンの厚みが20mmの場合は、亜鉛メッキ除去による信号強度は1mmのおよそ7割程度に減少するがコイルボビンを移動させたときのがたつきによるノイズは極めて小さく亜鉛メッキの有無による出力の変化を容易に見出すことができる。
【0023】
以上の説明では、橋梁の支持鋼索用鋼線を測定対象とした場合について説明したが、測定対象は上記鋼線に限らず、磁性体を用いた、鋳造配管、エレベータケーブルやクレーンブルなどの鋼線束、その他磁性体からなる線状体の錆や腐食などを検査することができる。
【0024】
また、渦流探傷センサ5のコイルボビン50における溝部51の肉厚を厚くする手法としては、コイルボビンを肉厚に一体に形成する手法だけに限らず、溝部51に取り付けることが可能な非磁性体からなるスペーサを別途設け、これを溝部に取りつけることによって、間隙dと肉厚Tの比を任意にかつ容易に変更することができる。
【0025】
【発明の効果】
以上のように、本発明によれば、渦流探傷センサのコイルと測定対象との間に一定の距離をとることで、測定対象がコイルボビンの中空孔内で偏心することによるノイズ信号を小さくすることができる。このとき、渦流探傷センサのコイルと測定対象の距離を取ることによる検知能力の減少はほとんど無く偏心によるノイズ信号を大きく減少させることができる。
【0026】
さらに、渦流探傷センサのコイルを、両端に接続部を有する可撓性プリント基板を用い、接続具によって接続して構成することによって、切れ目のない生きたままの測定対象に対して、渦流探傷センサを簡単に勝つ迅速に装着し、検査することができる。
【図面の簡単な説明】
【図1】本発明にかかる渦流探傷装置の構成の概要を説明する概念図。
【図2】本発明にかかる渦流探傷装置の渦流探傷センサの測定原理を説明する断面図。
【図3】本発明にかかる渦流探傷装置の測定原理を説明する図。
【図4】図3の(1)式と(2)式の特性図。
【図5】本発明にかかる渦流センサ素子の出力コイル内での測定対象の位置に依存した出力の実測図。
【図6】本発明を用いた渦流センサ素子の鋼線束の渦流探傷実測図。
【図7】従来の渦流探傷装置の渦流探傷センサの測定原理を説明する断面図。
【符号の説明】
1 渦流探傷検査用コイル素子
20 配線パターン
3 渦流探傷演算部
40 接続具
5 渦流探傷センサ
50 コイルボビン
51 溝部(コイル巻きつけ部)
52 分割面
54 中空孔
56 蝶番
57 フランジ部
90 測定対象(鋼線)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an eddy current detection sensor for detecting the presence or absence of rust, breakage, disconnection, and the like in a steel wire (wire rope) supporting a bridge or the like.
[0002]
[Prior art]
As a method of detecting rust of a cable (steel wire), there is a method of detecting rust of a cable using a sensor including an eddy current flaw detector. This is a technology in which a sensor of an eddy current flaw detector is arranged on a steel wire pass line and electromagnetically detects rust or the like of the steel wire passing through the sensor (for example, see Patent Document 1).
[0003]
In addition, as an electric wire inspection device that non-destructively inspects the generation of rust on electric wires in an alive state that is overhead, a device that inspects by arranging coils that can be opened and closed so as to surround the periphery of the cable is proposed. (For example, see Patent Document 2).
[0004]
Further, the applicant has disclosed a connecting portion provided at both ends of a flexible substrate, a wiring pattern formed of a plurality of independent wires provided between the connecting portions, and a wiring pattern provided at both ends of the plurality of wires. It is proposed to form a flaw detection inspection coil by winding a flaw detection coil element comprising a flexible substrate provided with connection terminals respectively connected to the connected portions, around a pipe or a bobbin mounted on the pipe. (See Patent Document 3).
[0005]
[Patent Document 1]
JP-A-6-34608 [Patent Document 2]
JP 2001-128328 A [Patent Document 3]
Japanese Patent No. 3247666
[Problems to be solved by the invention]
In the method of inspecting a steel wire described in Patent Document 1, since the coil bobbin 50 around which the sensor coil 1 is wound is arranged so that the steel wire passes through the hollow hole 54, as shown in FIG. When the coil bobbin 50 is positioned at a predetermined distance d around the entire circumference of the steel wire bundle 90, the distance between the sensor coil 1 and the surface of the steel wire bundle 90 is equal to d + T. 7B, the inner diameter of the hollow hole 54 of the coil bobbin is set to be larger than the outer diameter of the steel wire bundle 90 because it is necessary to relatively move the coil bobbin and the steel wire bundle as shown in FIG. The distance between the outer circumference of the steel wire bundle and the inner circumference of the sensor coil fluctuates due to the eccentricity generated when moving the steel wire bundle, and the distance between the sensor coil 1 and the surface of the steel wire bundle 90 is 2d + T at the maximum and T at the minimum, It has a problem that affects the examination to generate a noise signal called backlash signal in so-called eddy current flaw detection method. Further, in a steel wire bundle whose surface is molded with a molding material, if the steel wire bundle is unevenly distributed inside the molding material, even if the surface of the molding material maintains a certain distance from the sensor coil, the sensor and the steel wire bundle are not removed. May change, and the above-mentioned noise signal may be generated to affect the inspection.
[0007]
Further, the electric wire inspection device described in Patent Document 2 has a problem that it is difficult to attach a sensor to a continuous steel wire, and a coil that is divided around even when it is not wound is used. The configuration in which a large number is arranged has a problem that the structure of the sensor is complicated.
[0008]
Similarly, when a coil using a flexible substrate described in Patent Literature 3 is wound around a bobbin, there is a problem that the gap between the tube and the bobbin is eccentric as in Patent Literature 1, causing an error.
[0009]
In view of the above problems, the present invention uses a coil element formed of a flexible substrate disclosed in Patent Literature 3 to remove, for example, rust or scratches on a magnetic linear body such as a steel wire supporting a bridge or the like. An object of the present invention is to provide an eddy current flaw detection sensor capable of performing non-destructive inspection while reducing noise on site.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention is an eddy current flaw detection sensor for detecting rust or a flaw of a measurement object, and a coil bobbin that is relatively movably arranged outside the measurement object, and a coil bobbin on a surface of the coil bobbin. The coil bobbin has a hollow cylindrical shape using a non-magnetic material, and the difference between the outer diameter and the inner diameter when the outer diameter of the coil bobbin is 2R. At a rate of 2R / π or more, the inspection coil for flaw detection was wound around a coil bobbin mounted on a measurement object to form a sensor coil.
[0011]
Further, according to the present invention, in the eddy current flaw detection sensor, the eddy current flaw detection coil is provided on both ends of the wiring pattern formed of a plurality of independent wirings provided on the flexible substrate and the flexible substrate. The coil bobbin is formed as a coil element having connection terminals and connection terminals connected to both ends of the plurality of wirings and connected to the connection portions, respectively, so that the coil bobbin can be divided vertically.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
The configuration of the eddy current detection sensor according to the present invention will be described with reference to FIG. FIG. 1 is a conceptual diagram schematically showing a state in which an eddy current flaw detection sensor according to the present invention is mounted on a steel wire and inspected for rust, flaws, and the like. FIG. 2 is a cross-sectional view of the eddy current flaw detection sensor shown in FIG. 1 taken along a plane orthogonal to the longitudinal direction near the center of the coil bobbin.
[0013]
The eddy current flaw detection sensor 5 according to the present invention is configured by winding the eddy current flaw detection inspection coil 1 around a coil bobbin 50 mounted on a steel wire (measurement target) 90. Here, in order to facilitate the winding of the coil on site, the coil bobbin 50 may be provided with a coil winding portion including a groove portion 51, and furthermore, each of the coil bobbins 50 includes a plurality of independent wirings provided on a flexible substrate. A coil is formed by using a coil element having a wiring pattern and connection portions provided at both ends of the flexible substrate, and a coil element having connection terminals connected to both ends of the plurality of wires and connected to the connection portions, respectively. May be.
[0014]
A coil bobbin 50 made of a non-magnetic material such as a synthetic resin has a hollow hole 54, a hollow cylinder formed with a flange 57 at both ends and a groove 51 around which the coil element 1 for eddy current inspection is wound at an intermediate portion. It has a divided surface 52 which can be opened and closed by a hinge 56 provided on a flange 57, is divided into two in the axial direction, and is mounted so as to sandwich a steel wire 90. ing.
[0015]
Here, how the rattling noise is affected by the location where the measurement target 90 is located inside the coil will be discussed. It is considered that the eddy current flaw detection method used by the eddy current flaw detection sensor of the present invention utilizes the following two principles. That is, (a) a change in magnetic flux penetrating through the coil is measured, and (b) an eddy current is generated on the surface of the measurement object and the change is measured (eddy current flaw detection method). However, the method used by the present invention detects a change in the inductance of the coil based on a physical change (such as the occurrence of rust or a flaw) of the measurement object, but both principles change the inductance of the coil. However, the two principles are not clearly distinguished for flaw detection.
[0016]
In the method (A), a relatively similar signal can be obtained regardless of the position of the measurement target in the coil, whereas in the method (A), the coil and the measurement target are close (normally). Rust and flaws cannot be accurately measured unless the eddy current flaw detection method is about 1-2 mm). Therefore, the present invention provides an eddy current flaw detection sensor using the method (A) mainly by using the method of reducing the influence of the method (A).
[0017]
With reference to FIGS. 3 and 4, the position in the coil to which the effect of the method (a) (eddy current flaw detection) reaches is defined by the following equations (1) and (2). The range affected by the eddy current flaw detection method (a) is the range in which the magnetic field generated by the current flowing through the coil affects the measurement target. For that purpose, it is necessary to know the distribution of the magnetic field in the coil. It cannot generally simply indicate what magnetic field is formed by the current flowing through the coil (circular current) inside the coil. Therefore, the magnetic field inside the coil was determined by approximation as follows. As shown in FIG. 3A, assuming that the coil radius is R and the magnetic permeability is μ, the magnetic field B generated at the center of the coil by the circular current having the current value I is represented by the following equation (1). Further, as shown in FIG. 3B, a magnetic field B generated at a distance r from the electric wire by the linear current I flowing through the coil is represented by the following equation (2).
B = μI / 2R (1)
B = μI / 2πr (2)
[0019]
It is considered that the equation (2) in which the change in the magnetic field due to the change in distance is small at the center of the coil and the fluctuation in the magnetic field due to the change in the distance is large near the coil winding is dominant. FIG. 4 schematically shows how the magnetic field changes toward the center on the circular current line having the radius R as the origin 0. The change in the magnetic field inside the circular current is approximated according to the formula (2) in which the magnetic field greatly changes depending on the distance in the range of 0 to R / π, and in accordance with the formula (1) in which the magnetic field does not change with the distance in the range of R / π to R. it can. That is, in the range where the magnetic field according to the equation (1) is constant, the variation of the distance does not affect the method (a), whereas in the range where the magnetic field according to the equation (2) varies, the distance varies. Has a great effect on the above-mentioned method (a). Therefore, the effect of the above-mentioned method (a) is small, and the above-mentioned method (a) is dominant except for the diagonal lines apart from the coil line by R / π or more as shown in FIG. 3 (C). Part.
[0020]
That is, in the present invention, when the outer diameter of the coil winding portion of the coil bobbin is 2R, the thickness of the coil winding portion is set to R / π or more, and the influence of the above-mentioned method (a) is suppressed. The configuration of the sensor is such that the above method becomes dominant.
[0021]
Whether or not this condition is appropriate will be described with reference to actual measurement results shown in FIGS. FIG. 5 shows the output of the sensor as viewed through the eddy current flaw detector when an iron rod having a radius R of 8 mm was inserted into a coil having a radius R of 27 mm and the iron rod was moved from the inner wall of the coil toward the center of the coil. Is shown. When the iron bar is in contact with the inner wall of the coil, the distance is 0 mm. When the iron bar is moved 19 mm, the iron bar reaches the center of the coil. The output of the coil was 0.46 V when the iron bar was in contact with the inner wall of the coil, but was 0.23 V at a distance of 6 mm from the inner wall of the coil, 0.19 V at a distance of 8 mm and 10 mm at a distance of 10 mm. 0.16 V, 0.15 V at a distance of 12 mm, and 0.13 V when the iron bar was at the center of the coil. The output change when the iron bar moves from 6 mm to 8 mm is 0.04 V, whereas the output change when the iron bar moves from 10 mm to 12 mm is 0.01 V. When the radius R of the coil is 27 mm, R / π is 8.6 mm, and it can be seen that the amount of change in the sensor output due to the position of the iron bar at a distance of R / π or more from the coil wire becomes extremely small.
[0022]
An example in which a galvanized steel wire is actually measured by an eddy current flaw detection method using a coil will be described with reference to FIG. A galvanized steel wire having a diameter of 15 mm is inserted into a coil having a radius R of 27 mm, and the coil is moved in the longitudinal direction. Flaw detection was performed with the coil bobbin having three thicknesses of 1 mm, 10 mm, and 20 mm, and the influence of rattling was examined. The galvanized steel wire used had a galvanized portion removed at position A in the longitudinal direction. Curve BC00Y shows the case where the thickness of the coil bobbin shown in FIG. 2 is 1 mm, curve BC10Y shows the case where the thickness of the coil bobbin shown in FIG. 2 is 10 mm, and curve BC20Y shows the case where the thickness of the coil bobbin shown in FIG. . When the thickness of the coil bobbin is 1 mm, the signal strength is large, but noise due to rattling when the coil bobbin is moved is large, and it is difficult to easily find a change in output due to the presence or absence of galvanization of the galvanized steel wire. . When the thickness of the coil bobbin is 10 mm, the noise due to rattling when the coil bobbin is moved is smaller than that when the coil bobbin is moved to 1 mm, but the output change due to the presence or absence of zinc plating can be found. . Further, when the thickness of the coil bobbin is 20 mm, the signal intensity due to the zinc plating removal is reduced to about 70% of 1 mm, but the noise due to rattling when the coil bobbin is moved is extremely small, and the output due to the presence or absence of zinc plating is small. Changes can be easily found.
[0023]
In the above description, the case where the steel wire for the supporting steel cable of the bridge was measured was described. However, the measurement target is not limited to the above-mentioned steel wire, and the magnetic material may be used to cast steel pipes such as cast pipes, elevator cables and crane bulls. It can inspect rust, corrosion, etc. of a wire bundle and other linear materials made of a magnetic material.
[0024]
The method of increasing the thickness of the groove portion 51 of the coil bobbin 50 of the eddy current flaw detection sensor 5 is not limited to the method of integrally forming the coil bobbin with the thickness, but may be made of a non-magnetic material that can be attached to the groove portion 51. By separately providing a spacer and attaching it to the groove, the ratio between the gap d and the thickness T can be arbitrarily and easily changed.
[0025]
【The invention's effect】
As described above, according to the present invention, it is possible to reduce a noise signal due to the measurement object being eccentric in the hollow hole of the coil bobbin by keeping a fixed distance between the coil of the eddy current detection sensor and the measurement object. Can be. At this time, there is almost no decrease in the detection ability due to the distance between the coil of the eddy current detection sensor and the object to be measured, and the noise signal due to eccentricity can be greatly reduced.
[0026]
Furthermore, the coil of the eddy current flaw detection sensor is configured by connecting with a connector using a flexible printed circuit board having connection portions at both ends, so that the eddy current flaw detection sensor can be used for an unbroken measurement object that is continuous. The quick win can be quickly installed and inspected.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram illustrating an outline of a configuration of an eddy current flaw detection apparatus according to the present invention.
FIG. 2 is a cross-sectional view illustrating the measurement principle of the eddy current detection sensor of the eddy current inspection device according to the present invention.
FIG. 3 is a view for explaining the measurement principle of the eddy current flaw detector according to the present invention.
FIG. 4 is a characteristic diagram of equations (1) and (2) of FIG. 3;
FIG. 5 is an actual measurement diagram of an output depending on a position of a measurement target in an output coil of the eddy current sensor element according to the present invention.
FIG. 6 is an eddy current flaw detection measurement diagram of a steel wire bundle of the eddy current sensor element using the present invention.
FIG. 7 is a cross-sectional view illustrating a measurement principle of an eddy current detection sensor of a conventional eddy current inspection device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Eddy current flaw detection coil element 20 Wiring pattern 3 Eddy current flaw detection calculation part 40 Connector 5 Eddy current flaw detection sensor 50 Coil bobbin 51 Groove (coil winding part)
52 Division surface 54 Hollow hole 56 Hinge 57 Flange 90 Measurement target (steel wire)

Claims (3)

測定対象の錆や傷を検出する渦流探傷センサであって、
測定対象の外側で相対的に移動可能に配置されるコイルボビンと、
該コイルボビンの表面に巻回される探傷用検査コイルを有し、
前記コイルボビンが、非磁性体材料を用いて中空円筒状に構成されるとともに、コイルボビンの外径を2Rとしたときに外径と内径との差が2R/π以上であり、
測定対象に装着したコイルボビンに前記探傷用検査コイルを巻きつけることを特徴とする渦流探傷センサ。
An eddy current flaw detection sensor that detects rust and scratches on the measurement object,
A coil bobbin arranged relatively movably outside the measurement object,
Having a flaw detection inspection coil wound on the surface of the coil bobbin,
The coil bobbin is formed in a hollow cylindrical shape using a non-magnetic material, and when the outer diameter of the coil bobbin is 2R, the difference between the outer diameter and the inner diameter is 2R / π or more,
An eddy current flaw detection sensor, wherein the flaw detection inspection coil is wound around a coil bobbin mounted on a measurement object.
前記探傷用検査コイルが、可撓性基板に設けたそれぞれ独立した複数本の配線からなる配線パターンおよび前記可撓性基板の両端部に設けた接続部ならびに前記複数本の配線の両端にそれぞれ接続されるとともに前記接続部にそれぞれ接続された接続端子を有する探傷用検査コイル素子であることを特徴とする請求項1に記載の渦流探傷センサ。The inspection coil for flaw detection includes a wiring pattern formed of a plurality of independent wirings provided on a flexible substrate, connection portions provided at both ends of the flexible substrate, and connected to both ends of the plurality of wirings, respectively. The eddy current flaw detection sensor according to claim 1, wherein the flaw detection inspection coil element is provided and has a connection terminal connected to each of the connection portions. 前記コイルボビンが縦に分割可能に構成されていることを特徴とする請求項1または請求項2に記載の渦流探傷センサ。The eddy current flaw detection sensor according to claim 1 or 2, wherein the coil bobbin is configured to be vertically splittable.
JP2003130470A 2003-05-08 2003-05-08 Eddy current flaw detection sensor Expired - Fee Related JP4101110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003130470A JP4101110B2 (en) 2003-05-08 2003-05-08 Eddy current flaw detection sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003130470A JP4101110B2 (en) 2003-05-08 2003-05-08 Eddy current flaw detection sensor

Publications (2)

Publication Number Publication Date
JP2004333330A true JP2004333330A (en) 2004-11-25
JP4101110B2 JP4101110B2 (en) 2008-06-18

Family

ID=33505992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003130470A Expired - Fee Related JP4101110B2 (en) 2003-05-08 2003-05-08 Eddy current flaw detection sensor

Country Status (1)

Country Link
JP (1) JP4101110B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329855A (en) * 2005-05-27 2006-12-07 Uchihashi Estec Co Ltd Degradation diagnosis device of iron-based structure
JP2007271495A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Corrosion evaluation method using eddy current test
JP2010038724A (en) * 2008-08-05 2010-02-18 Central Res Inst Of Electric Power Ind Tool for eddy current flaw sensor and eddy current flaw sensor
JP2010085264A (en) * 2008-09-30 2010-04-15 Central Res Inst Of Electric Power Ind Guide for connector of eddy current flaw detection coil, eddy current flaw detection coil connector, and eddy current flaw detection sensor
JP2010230500A (en) * 2009-03-27 2010-10-14 Central Res Inst Of Electric Power Ind Connector of coil for eddy current flaw detection, and eddy current flaw detection sensor
JP2013500488A (en) * 2009-07-30 2013-01-07 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Device for detecting at least one defect in a concave or convex structure
JP5436776B2 (en) * 2006-05-25 2014-03-05 三菱電機株式会社 Elevator equipment
KR101851346B1 (en) 2017-07-17 2018-04-24 한국건설기술연구원 Band of Solenoid Coil for Measuring Tensile Stress and Section Loss in Bar, and Rapping Method of Solenoid Coin outside of Bar using such Band
CN109870502A (en) * 2019-03-01 2019-06-11 南京维格无损检测有限公司 A kind of portable eddy-current detection case
KR20190110416A (en) * 2018-03-20 2019-09-30 한양대학교 에리카산학협력단 Sensor assembly for detecting corrosion of building structure and corrosion detecting method using the same
CN110455910A (en) * 2019-08-21 2019-11-15 西南大学 Cable-stayed bridge cable corrosion monitoring system and monitoring method based on magnetic field gradient tensor
CN116399942A (en) * 2023-06-07 2023-07-07 西南石油大学 Online detection method for full circumferential defects of differential vortex coiled tubing
US11884516B2 (en) 2018-06-25 2024-01-30 Otis Elevator Company Health monitoring of elevator system tension members

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006329855A (en) * 2005-05-27 2006-12-07 Uchihashi Estec Co Ltd Degradation diagnosis device of iron-based structure
JP4608666B2 (en) * 2005-05-27 2011-01-12 双日マシナリー株式会社 Deterioration diagnosis device for iron-based structures
JP2007271495A (en) * 2006-03-31 2007-10-18 Central Res Inst Of Electric Power Ind Corrosion evaluation method using eddy current test
JP5436776B2 (en) * 2006-05-25 2014-03-05 三菱電機株式会社 Elevator equipment
JP2010038724A (en) * 2008-08-05 2010-02-18 Central Res Inst Of Electric Power Ind Tool for eddy current flaw sensor and eddy current flaw sensor
JP2010085264A (en) * 2008-09-30 2010-04-15 Central Res Inst Of Electric Power Ind Guide for connector of eddy current flaw detection coil, eddy current flaw detection coil connector, and eddy current flaw detection sensor
JP2010230500A (en) * 2009-03-27 2010-10-14 Central Res Inst Of Electric Power Ind Connector of coil for eddy current flaw detection, and eddy current flaw detection sensor
JP2013500488A (en) * 2009-07-30 2013-01-07 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ Device for detecting at least one defect in a concave or convex structure
KR101851346B1 (en) 2017-07-17 2018-04-24 한국건설기술연구원 Band of Solenoid Coil for Measuring Tensile Stress and Section Loss in Bar, and Rapping Method of Solenoid Coin outside of Bar using such Band
KR20190110416A (en) * 2018-03-20 2019-09-30 한양대학교 에리카산학협력단 Sensor assembly for detecting corrosion of building structure and corrosion detecting method using the same
KR102125246B1 (en) * 2018-03-20 2020-06-24 한양대학교 에리카산학협력단 Sensor assembly for detecting corrosion of building structure and corrosion detecting method using the same
US11360051B2 (en) 2018-03-20 2022-06-14 Industry-University Cooperation Foundation Hanyang University Erica Campus Construction structure corrosion measurement sensor assembly and method for measuring corrosion by using same
US11884516B2 (en) 2018-06-25 2024-01-30 Otis Elevator Company Health monitoring of elevator system tension members
CN109870502A (en) * 2019-03-01 2019-06-11 南京维格无损检测有限公司 A kind of portable eddy-current detection case
CN110455910A (en) * 2019-08-21 2019-11-15 西南大学 Cable-stayed bridge cable corrosion monitoring system and monitoring method based on magnetic field gradient tensor
CN116399942A (en) * 2023-06-07 2023-07-07 西南石油大学 Online detection method for full circumferential defects of differential vortex coiled tubing
CN116399942B (en) * 2023-06-07 2023-08-29 西南石油大学 Online detection method for full circumferential defects of differential vortex coiled tubing

Also Published As

Publication number Publication date
JP4101110B2 (en) 2008-06-18

Similar Documents

Publication Publication Date Title
US5414353A (en) Method and device for nondestructively inspecting elongated objects for structural defects using longitudinally arranged magnet means and sensor means disposed immediately downstream therefrom
KR101192286B1 (en) Device for detecting LF and LMA of wire rope
CA2747053C (en) Magnetic inspection device
JP4101110B2 (en) Eddy current flaw detection sensor
JP4968859B2 (en) Wire rope flaw detector
US4659991A (en) Method and apparatus for magnetically inspecting elongated objects for structural defects
CA2835681C (en) Magnetic inspection device and method
EP1674861A1 (en) Eddy current probe and inspection method comprising a pair of sense coils
JPS63133054A (en) Flux leakage probe used for nondestructive inspection
JP2008292213A (en) Flaw detection device of wire rope
KR20140133402A (en) Through-coil arrangement, test apparatus with through-coil arrangement and testing method
RU2204129C2 (en) Method of nondestructive test of cross-section and detection of local flaws in extended ferromagnetic objects and facility to carry it out
JP5219650B2 (en) Wire rope damage detector
CN109459488A (en) Continuous pipe on-line measuring device
KR102267712B1 (en) Apparatus for Inspecting Defect of Wire Rope
JP2009092388A (en) Eddy current test probe
CN1808112A (en) Inside-through type low frequency electromagnetic detection sensor
US20220113283A1 (en) Method and apparatus for the detection of corrosion under insulation (cui), corrosion under fireproofing (cuf), and far side corrosion on carbon steel piping and plates
CN209311392U (en) Continuous pipe on-line measuring device
JP7143690B2 (en) Magnetic material inspection system, magnetic material inspection apparatus, and magnetic material inspection method
JP6778522B2 (en) Device for detecting magnetic metal foreign matter
JP2009265008A (en) Flow detector for wire rope
JP2009236695A (en) Eddy current flaw detection method and sensor
JP2005164423A (en) Magnetic flaw detection apparatus for wire rope, and pulley with magnetic flaw detection apparatus
JP7061791B2 (en) Wire rope flaw detection inspection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070919

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071217

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080318

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4101110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110328

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120328

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130328

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140328

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees