JP4604572B2 - Light source device and light intensity monitor used for it - Google Patents

Light source device and light intensity monitor used for it Download PDF

Info

Publication number
JP4604572B2
JP4604572B2 JP2004189404A JP2004189404A JP4604572B2 JP 4604572 B2 JP4604572 B2 JP 4604572B2 JP 2004189404 A JP2004189404 A JP 2004189404A JP 2004189404 A JP2004189404 A JP 2004189404A JP 4604572 B2 JP4604572 B2 JP 4604572B2
Authority
JP
Japan
Prior art keywords
light
guide rod
amount
light guide
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004189404A
Other languages
Japanese (ja)
Other versions
JP2005233927A (en
Inventor
藤 明 博 北
塚 宏 樹 大
哲 夫 小久保
川 大 輔 小
井 雅 寛 酒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwasaki Denki KK
Original Assignee
Iwasaki Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwasaki Denki KK filed Critical Iwasaki Denki KK
Priority to JP2004189404A priority Critical patent/JP4604572B2/en
Publication of JP2005233927A publication Critical patent/JP2005233927A/en
Application granted granted Critical
Publication of JP4604572B2 publication Critical patent/JP4604572B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/42Measurement or testing during manufacture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/40Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity
    • F21V9/45Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters with provision for controlling spectral properties, e.g. colour, or intensity by adjustment of photoluminescent elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2101/00Point-like light sources
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • G01N2021/8835Adjustable illumination, e.g. software adjustable screen

Description

本発明は、光量コントローラを備えた光源装置に関し、特に、CCDカメラ等を使用した画像処理検査装置等のように検査対象物に照射される光量を一定に維持する必要のある検査装置の光源に用いて好適なものである。   The present invention relates to a light source device including a light amount controller, and more particularly to a light source of an inspection device that needs to maintain a constant light amount irradiated to an inspection object such as an image processing inspection device using a CCD camera or the like. It is suitable for use.

例えばフラットパネルディスプレイ製造工程では、従来より、検査対象物となるガラス板や塗料塗布面に光を照射し、これをCCDカメラ等で観察して傷や塗装不良等の欠陥を検知する画像処理検査装置が使用されている。   For example, in the flat panel display manufacturing process, conventionally, image processing inspection that detects defects such as scratches and paint defects by irradiating light on the glass plate or paint coating surface that is the inspection object and observing this with a CCD camera etc. The device is in use.

その際、光源装置に要求される条件として、検査対象物(被照射物)への光量は少なくとも検査時間中は変化しないこと、また、使用するカメラの受光感度性能レベルに応じて必要な光量の光を照射できることなどが挙げられる。   At that time, as a condition required for the light source device, the amount of light to the inspection object (object to be irradiated) does not change at least during the inspection time, and the necessary amount of light according to the light receiving sensitivity performance level of the camera to be used. For example, it can be irradiated with light.

画像処理検査用の光源装置の光源としては、ハロゲンランプ、LED等の固体光素子、水銀ランプおよびメタルハライドランプ等放電灯が使用されており、中でも、水銀ランプやメタルハライドランプ等の放電灯は、立ち上り時間が遅いものの高光量が得られることから、この種の光源として最適である。
しかしながら、これらの放電灯は1000〜2000時間点灯させると検査対象物への照射光量が次第に減衰していくために、使用するにあたっては、カメラ側の明るさが変わらぬようにその都度光量調整が必要となる。
As light sources for light source devices for image processing inspection, solid-state light elements such as halogen lamps and LEDs, discharge lamps such as mercury lamps and metal halide lamps are used, among which discharge lamps such as mercury lamps and metal halide lamps are Although it is slow in time, a high amount of light can be obtained, so it is optimal as this type of light source.
However, when these discharge lamps are lit for 1000 to 2000 hours, the amount of light irradiated to the inspection object gradually attenuates. Therefore, when using these lamps, the amount of light can be adjusted each time so that the brightness on the camera side does not change. Necessary.

そのため従来は、図11に示すように、ランプ31から照射されて赤外線カットフィルタ37を透過した光の光量分布を均一化してバンドルファイバ32に導くミキシングロッド33の光出射端33outに検出用光ファイバ34の一端を接続し、該検出用光ファイバ34の他端に接続した受光素子35で検出された光量に基づいて駆動回路36から出力されるランプ31の供給電力をコントロールしている。
特開2001ー307523
Therefore, conventionally, as shown in FIG. 11, a detection optical fiber is provided at the light emitting end 33 out of the mixing rod 33 that equalizes the light amount distribution of the light irradiated from the lamp 31 and transmitted through the infrared cut filter 37 and leads to the bundle fiber 32. One end of 34 is connected, and the power supplied to the lamp 31 output from the drive circuit 36 is controlled based on the amount of light detected by the light receiving element 35 connected to the other end of the detection optical fiber 34.
JP 2001-307523 A

ところが、発明者の実験によれば、ミキシングロッド33の光出射端33outから出射される光の光量を検出した場合、ランプ自体31の発光量の変化を精度よく検出することができるものの、実際にラインに使用してみると、検査対象物への照射光量が変化しているにも拘わらず、この照射光量変化を検出できない場合があることが判明した。
さらに原因を追求したところ、検査対象物への照射光量が経時的に減衰していく原因は、ランプ31自体の発光量の変化よりも、むしろ電極の変化に伴い放電箇所が変化したり、発光点が第一焦点から外れてしまうなど、ランプの光量分布パターンの変化による影響の方が強いことが判明した。
すなわち、ランプ31の発光量にはほとんど変化が無くても、光量分布パターンが変化すると、バンドルファイバ等を介して検査対象物に照射される照射光量に変化を生じるのである。
However, according to the inventor's experiment, when the amount of light emitted from the light emitting end 33out of the mixing rod 33 is detected, the change in the amount of light emitted from the lamp itself 31 can be accurately detected. When it was used for a line, it was found that there are cases where this change in the amount of irradiated light cannot be detected even though the amount of light applied to the inspection object has changed.
Furthermore, when the cause was pursued, the cause of the amount of light irradiating the test object being attenuated over time was not due to the change in the light emission amount of the lamp 31 itself, but rather the change in the discharge location or the light emission due to the change in the electrode. It has been found that the influence of the change in the light quantity distribution pattern of the lamp is stronger, such as the point deviating from the first focus.
That is, even if there is almost no change in the light emission amount of the lamp 31, if the light amount distribution pattern changes, the irradiation light amount irradiated to the inspection object via the bundle fiber or the like changes.

そして、ミキシングロッド33の光出射端33outから光を導出させてその光量を検出する場合、発光点が第一焦点からずれるなどして照射光量が変化しても、ランプ31自体の発光量に変化がなければこれを検出することができず、結局、検査対象物への照射光量を一定に維持することができないという致命的な欠陥を生じた。
これは、ランプ31から照射された強い光の一部が、光出射端部33outの検出用光ファイバ34を接続する部分にも直接照射されてしまうことが原因と考えられる。
When light is derived from the light exit end 33out of the mixing rod 33 and the amount of light is detected, the amount of light emitted from the lamp 31 itself changes even if the amount of light emitted changes due to the light emission point deviating from the first focal point. Without this, this could not be detected, resulting in a fatal defect that the amount of light applied to the inspection object could not be kept constant.
This is considered to be caused by the fact that a part of the strong light emitted from the lamp 31 is also directly emitted to the portion connecting the detection optical fiber 34 of the light emitting end portion 33out.

現に、この装置では、ランプ31により光量分布パターンが異なっても、バンドルファイバ32に入射される光量と、検出用光ファイバの光量との比が変化しないという特性を有しているため、光量分布パターンの変化に起因する照射光量の変化を検出することは到底不可能であった。   In fact, this apparatus has a characteristic that the ratio between the amount of light incident on the bundle fiber 32 and the amount of light of the optical fiber for detection does not change even if the light amount distribution pattern differs depending on the lamp 31. It has been impossible to detect a change in the amount of irradiation light caused by a change in pattern.

そこで本発明は、ランプ光量変化に起因する照射光量変化があっても、光量分布パターンの変化に起因する照射光量変化があっても、これを正確に検出して、照射光量を一定に維持できるようにすることを課題としている。   Therefore, the present invention can accurately detect an irradiation light amount change caused by a lamp light amount change or a light amount distribution pattern change caused by a change in the light amount distribution pattern, and can maintain the irradiation light amount constant. The challenge is to do so.

この課題を解決するために、本発明は、ランプの光を反射鏡で集光して光出射口から出射させ、直接的又は間接的に被照射物に対し所定の照射光量で照射する際に、反射鏡で集光された光を光入射端面から入射させ、光出射端面から光出射口に導く光路となる導光ロッドからの漏光量を検出する光センサを備えた光量モニタと、その検出光量に応じて前記照射光量をフィードバック制御する光量コントローラを備えた光源装置において、
前記導光ロッドは、その周面に、光センサで検出する漏光を外部に導き出す部分を除いて、遮光材となる遮光パイプが外装されると共に、
導光ロッドの光入射側端面に、その周縁部を覆うと共に当該導光ロッドの口径より小径の透光部が形成されたアパーチャが取り付けられ、
その光出射端面に、導光ロッドを透過する光の一部を導光ロッド内に戻すフロスト処理が施され
前記遮光パイプの内周面周方向に沿って形成された環状凹溝の内面が光拡散面で形成され、当該環状凹溝が導光ロッドからの漏光を拡散させる光拡散空間に形成されると共に、
前記光センサがその光検出面を導光ロッドの周面に対向させて前記光拡散空間に取り付けられたことを特徴としている。
In order to solve this problem, the present invention condenses the light of the lamp with a reflecting mirror, emits it from the light exit, and directly or indirectly irradiates the irradiated object with a predetermined irradiation light amount. , A light amount monitor equipped with an optical sensor for detecting the amount of light leaked from the light guide rod that is an optical path that makes the light collected by the reflecting mirror enter from the light incident end surface and guide it from the light exit end surface to the light exit port, and its detection In a light source device including a light amount controller that feedback-controls the irradiation light amount according to the light amount,
The light guide rod has a light shielding pipe as a light shielding material on its outer surface, except for a portion that guides light leakage detected by an optical sensor to the outside.
On the light incident side end face of the light guide rod, an aperture is attached that covers the peripheral edge portion and has a light-transmitting portion having a diameter smaller than the diameter of the light guide rod,
Frost treatment is performed on the light emitting end face to return a part of the light transmitted through the light guide rod into the light guide rod ,
An inner surface of an annular groove formed along the circumferential direction of the inner peripheral surface of the light shielding pipe is formed as a light diffusion surface, and the annular groove is formed in a light diffusion space for diffusing light leakage from the light guide rod. ,
The optical sensor is attached to the light diffusion space with its light detection surface facing the peripheral surface of the light guide rod .

導光ロッドには無数の内部欠陥があるだけでなく、その外表面にも細かなキズがあるので、反射鏡で集光された光が導光ロッドに入射されると、内部欠陥やキズで乱反射を起こし、その光の一部が周面から漏れる。
特に本発明では、導光ロッドの光出射端面に照射光量に影響を与えない程度にフロスト処理を施こされているので、導光ロッドを透過する光の一部が導光ロッド内に戻され、戻り光が導光ロッドの内部欠陥やキズで乱反射を起こし、その一部が漏光となるので、漏光の光量が大きくなり検出精度が向上する。
そして、発明者の実験によれば、この導光ロッドの周面に光センサを設けて導光ロッドからの漏光量と、導光ロッドの光出射口に接続したバンドルファイバ先端から被照射物への照射光量を検出したところ、ランプ自体の発光量変化に起因する照射光量変化はもちろんのこと、光量分布パターンの変化に起因する照射光量変化があっても、これを正確に検出することができた。
The light guide rod not only has countless internal defects, but also has fine scratches on its outer surface, so if the light collected by the reflector is incident on the light guide rod, it will cause internal defects and scratches. Diffuse reflection occurs, and a part of the light leaks from the peripheral surface.
In particular, in the present invention, the light emitting end face of the light guide rod is frosted to such an extent that it does not affect the amount of irradiation light, so that part of the light transmitted through the light guide rod is returned into the light guide rod. The return light causes irregular reflection due to internal defects or scratches in the light guide rod, and part of the light becomes leaked light, so that the amount of leaked light is increased and the detection accuracy is improved.
And according to the experiment of the inventor, an optical sensor is provided on the peripheral surface of the light guide rod, the amount of light leaked from the light guide rod, and the tip of the bundle fiber connected to the light exit port of the light guide rod to the irradiated object As a result of detecting the amount of irradiating light, it is possible to accurately detect not only the amount of irradiating light caused by the change in the amount of light emitted from the lamp itself, but also the amount of irradiating light caused by the change in the light amount distribution pattern. It was.

すなわち、原因は不明でも、導光ロッドからの漏光量は、被照射物へ照射される照射光量と対応しているので、漏光量を検出することにより、被照射物に照射される光の照射光量の変化を確実に検出することができた。
したがって、検出光量が変化したときに、ランプから導光ロッドへ入射される光量を調整すれば、光量が一定に維持することができる。 この場合に、光量調整は、例えば、調光フィルタにより導光ロッドへの入射光量を可変制御すればよい。
That is, even if the cause is unknown, the amount of light leaked from the light guide rod corresponds to the amount of light irradiated to the irradiated object. The change in the amount of light could be detected reliably.
Therefore, if the amount of light incident on the light guide rod from the lamp is adjusted when the amount of detected light changes, the amount of light can be kept constant. In this case, the light amount adjustment may be performed by variably controlling the amount of light incident on the light guide rod using a dimming filter, for example .

なお、光量モニタの導光ロッドの周面が、光センサで検出する漏光を外部に導き出す部分を除き遮光材で覆われているので、外部から入射される光の影響を受けることなく正確に光量を検出することができる。
The peripheral surface of the light guide rod of the light quantity monitor is covered with a light shielding material except for the part that introduces the leakage light detected by the optical sensor to the outside, so the light quantity can be accurately measured without being affected by the light incident from the outside. Can be detected.

た、光センサの光検出面を導光ロッドの周面に対向して配し、導光ロッドの周面と光検出面との間に光拡散空間を形成すれば、その光拡散空間内に漏れ出た光が平均化されるので、より正確に検出できる。 Also, disposed in the light detection surface of the optical sensor faces the peripheral surface of the light guiding rod, by forming a light diffusion space between the circumferential surface and the light detecting surface of the light guide rod, the light diffusing space Since the light leaked into is averaged, it can be detected more accurately.

さらに、導光ロッドに外装される遮光パイプの内周面に形成した環状凹溝からなる光拡散空間を形成して、その光拡散空間に光センサを取り付ければ、導光ロッドの全周からの漏光が光拡散空間内で拡散されて、その全体の漏光量を光センサで検出できるので、検出精度が向上する。 Furthermore, the light guide rod to form a light diffusion space of annular grooves formed on the inner peripheral surface of the shielding pipe is exterior, by attaching a light sensor in the light diffusion space, from the entire circumference of the light guide rod The light leakage is diffused in the light diffusion space and the entire amount of light leakage can be detected by the optical sensor, so that the detection accuracy is improved.

導光ロッドの端面周縁部には大きな欠けやキズが生じやすく、そのような欠けやキズがあると検出精度に影響を与えるため、導光ロッドの口径より小径の透光部が形成されたアパーチャを導光ロッドの光入射側端面に取り付けて、その端面周縁部を覆うようにすれば、その欠けやキズを透過する光を遮断することができ、結果として検出精度が向上する。

Tends to occur a large chips and scratches in the end face periphery of the light guiding rod, because that affects the the detection accuracy is such chipping and scratches, the light-transmitting portion of smaller diameter than the diameter of the light guide rod is formed If the aperture is attached to the light incident side end face of the light guide rod so as to cover the peripheral edge of the end face, the light passing through the chip and scratches can be blocked, resulting in improved detection accuracy.

本例では、ランプ自体の発光量変化に起因する照射光量変化はもちろんのこと、光量分布パターンの変化に起因する照射光量変化があっても、これを正確に検出して、照射光量を一定に維持するという課題を極めて簡単な構成で実現した。   In this example, not only the change in the amount of light emitted due to the change in the amount of light emitted from the lamp itself, but also the change in the amount of light emitted due to the change in the light amount distribution pattern is detected accurately to keep the amount of light emitted constant. The task of maintaining was realized with a very simple configuration.

図1は本発明に係る光源装置を示す説明図、図2は調光フィルタを示す説明図、図3〜図8は光量モニタを示す説明図、図9はフロスト処理による光損失と検出光量及び照射光量の関係を示すグラフ、図10は照射光量と検出光量の関係を示すグラフである。   FIG. 1 is an explanatory view showing a light source device according to the present invention, FIG. 2 is an explanatory view showing a dimming filter, FIGS. 3 to 8 are explanatory views showing a light quantity monitor, and FIG. FIG. 10 is a graph showing the relationship between the irradiation light amount and the detected light amount.

図1に示す光源装置1は、例えば検査対象物(被照射物)の表面を撮像して画像処理により製品検査を行う際に、バンドルファイバ2を介して検査対象物に照明光を照射するために用いられる。
この光源装置1は、筐体3内に配されたメタルハライドランプ4から照射された光を楕円反射鏡5で集光して、赤外線カットフィルタ20を透過させて、光出射口6から出射させ、光出射口6に接続されたバンドルファイバ2を介して検査対象物に照射するようになっている。
The light source device 1 shown in FIG. 1 irradiates illumination light to the inspection object via the bundle fiber 2 when, for example, imaging the surface of the inspection object (object to be irradiated) and performing product inspection by image processing. Used for.
The light source device 1 condenses the light emitted from the metal halide lamp 4 disposed in the housing 3 by the elliptical reflecting mirror 5, transmits the infrared cut filter 20, and emits the light from the light exit port 6. The inspection object is irradiated through the bundle fiber 2 connected to the light exit port 6.

また、筐体3内には、反射鏡5で集光された光を光出射口6に導く光路となる導光ロッド8からの漏光量を検出する光量モニタMと、その検出光量に応じて照射光量をフィードバック制御する光量コントローラ7が設けられている他、ランプ4の点灯回路21、冷却ファン22が配されている。
Further, in the housing 3, a light amount monitor M that detects a light amount leaked from the light guide rod 8 that becomes an optical path for guiding the light collected by the reflecting mirror 5 to the light exit port 6, and according to the detected light amount. In addition to a light amount controller 7 for feedback control of the amount of irradiation light, a lighting circuit 21 for the lamp 4 and a cooling fan 22 are provided.

光量モニタMは、反射鏡5で集光された光を光出射口6に導く光路となる導光ロッド8と、その導光ロッド8の周面8aからの漏光量を検出するシリコンフォトセルなどの光電変換型の光センサ9とを備えている。
導光ロッド8は透光性のガラス体で形成され、本例では、直径12.4mm,長さ40mmの円柱ロッドで構成し、光入射端面8inの中心に反射鏡5の第二焦点が位置するように取り付けられている。
The light quantity monitor M includes a light guide rod 8 that serves as an optical path for guiding the light collected by the reflecting mirror 5 to the light exit 6, a silicon photocell that detects the amount of light leaked from the peripheral surface 8 a of the light guide rod 8, and the like. The photoelectric conversion type optical sensor 9 is provided.
The light guide rod 8 is formed of a translucent glass body. In this example, the light guide rod 8 is a cylindrical rod having a diameter of 12.4 mm and a length of 40 mm, and the second focal point of the reflecting mirror 5 is located at the center of the light incident end face 8in. It is attached to do.

光量コントローラ7は、その入力側に光量モニタMの光センサ9が接続されると共に、出力側に調光フィルタ10を所定角度回転させるステップモータ11を備えている。
この調光フィルタ10は、開口率が徐々に変化する多数のスリットが円周上に配列形成され(図2参照)、回転に伴ってその回転方向に応じて透過光量が漸増/漸減するようになっている。
The light quantity controller 7 is connected to the optical sensor 9 of the light quantity monitor M on the input side, and includes a step motor 11 that rotates the dimming filter 10 by a predetermined angle on the output side.
In this light control filter 10, a large number of slits whose aperture ratios gradually change are arranged on the circumference (see FIG. 2), and the amount of transmitted light gradually increases / decreases in accordance with the rotation direction as it rotates. It has become.

図3〜図8は試作した光量モニタM 〜M の例であり、図7及び図8が本発明に係る光量モニタM 及びM の例である。
図3(a)に示す光量モニタMは、導光ロッド8の周面8aに光センサ9の光検出面9aを当接させている。
これにより、導光ロッド8内を透過する光が、図3(b)に示すように、その導光ロッド8内の欠陥Cに当ったり、導光ロッド8内を全反射しながら進行する光が周面8a上のキズに当ったりして乱反射すると、その一部が光センサ9側に漏れるので、光センサ9ではその漏光量が検出される。
3 to 8 are examples of light quantity monitors M 1 to M 6 that have been prototyped , and FIGS. 7 and 8 are examples of light quantity monitors M 5 and M 6 according to the present invention .
In the light amount monitor M 1 shown in FIG. 3A, the light detection surface 9 a of the optical sensor 9 is brought into contact with the peripheral surface 8 a of the light guide rod 8.
As a result, as shown in FIG. 3B, the light transmitted through the light guide rod 8 hits the defect C in the light guide rod 8 or travels while totally reflecting in the light guide rod 8. When the light hits a scratch on the peripheral surface 8a and diffusely reflects, a part of the light leaks to the optical sensor 9 side, and the optical sensor 9 detects the amount of leakage light.

図4(a)に示す光量モニタMは、光センサ9を装着する装着孔12を管壁13aに貫通形成した遮光パイプ(遮光材)13が導光ロッド8に外装されて、光センサ9により検出する漏光を外部に導き出す部分を除き、導光ロッド8の周面8aが遮光材で覆われている。
これによれば、光センサ9で漏光量が検出されるのは光量モニタMと同様であるが、図4(b)に示すように周面8aが、導光ロッド8外の明るさの変化や、筐体3内に漏れて入ってくる外光の影響を受けることがない。
また、装着孔12の内面が光拡散面12aで形成され、光センサ9の光検出面9aを導光ロッド8の周面8aに対向して装着したときに、光検出面9aと導光ロッド8の周面8aとの隙間(例えば8mm程度)が光拡散面12aで囲まれた光拡散空間14になっている。
これにより、装着孔12からの漏光が光拡散空間14で散乱して平均化されるので、より検出精度が高くなると考えられる。
Intensity monitor M 2 shown in FIG. 4 (a), a mounting hole 12 for mounting the optical sensor 9 shielding pipe which is formed through the wall 13a (light shielding member) 13 is fitted on the guiding rod 8, the optical sensor 9 The peripheral surface 8a of the light guide rod 8 is covered with a light-shielding material, except for the part that guides light leakage detected by the above.
According to this, but the amount of light leakage at the optical sensor 9 is detected is the same as the light quantity monitor M 1, the peripheral surface 8a as shown in FIG. 4 (b), the outer guiding rod 8 brightness It is not affected by changes or external light leaking into the housing 3.
Further, when the inner surface of the mounting hole 12 is formed by the light diffusion surface 12a and the light detection surface 9a of the light sensor 9 is mounted facing the peripheral surface 8a of the light guide rod 8, the light detection surface 9a and the light guide rod A gap (e.g., about 8 mm) between the eight peripheral surfaces 8a is a light diffusion space 14 surrounded by the light diffusion surface 12a.
Thereby, since the light leakage from the mounting hole 12 is scattered and averaged in the light diffusion space 14, it is considered that the detection accuracy becomes higher.

図5(a)に示す光量モニタMは、導光ロッド8に外装される遮光パイプ15の内周面に、その周方向に沿って形成された環状凹溝16の内面を光拡散面16aとする環状の光拡散空間17が形成され、光センサ9が導光ロッド8の周面に対向して所定の隙間(例えば8mm程度)をもって光拡散空間17に取り付けられている。
これによれば、図5(b)に示すように、導光ロッド8の周面8aの全周にわたって光拡散空間17が形成されており、光センサ9に対向する部分のみならず、導光ロッド8の全周からの漏光が光拡散空間17内で拡散されて、その全体の漏光量を光センサで検出できるので、検出精度が向上する。
Figure 5 intensity monitor M 3 shown in (a), the inner peripheral surface of the shielding pipe 15 which is fitted on guide rod 8, the inner surface of the light diffusion surface 16a of the annular groove 16 formed along the circumferential direction The light sensor 9 is attached to the light diffusion space 17 with a predetermined gap (for example, about 8 mm) facing the peripheral surface of the light guide rod 8.
According to this, as shown in FIG. 5B, the light diffusion space 17 is formed over the entire circumference of the peripheral surface 8 a of the light guide rod 8, and not only the portion facing the optical sensor 9 but also the light guide. Light leakage from the entire circumference of the rod 8 is diffused in the light diffusion space 17 and the entire amount of light leakage can be detected by the optical sensor, so that the detection accuracy is improved.

図6(a)に示す光量モニタMは、前記光量モニタMの導光ロッド8の光入射端面8inに、導光ロッド8の口径より小径の透光部18aが形成されたアパーチャ18が装着され、これにより導光ロッド8の光入射側端面周縁部8bが覆われている。
これによれば、図6(b)に示すように、導光ロッド8の端面周縁部8bに大きな欠けやキズが生じていても、その欠けやキズを透過する光を遮断することができるので、検出精度に悪影響を及ぼすことがなく、結果として検出精度が向上する。
The light quantity monitor M 4 shown in FIG. 6A has an aperture 18 in which a light transmitting end 18 a having a diameter smaller than the diameter of the light guide rod 8 is formed on the light incident end face 8 in of the light guide rod 8 of the light quantity monitor M 3. The light incident side end face peripheral edge 8b of the light guide rod 8 is covered by this.
According to this, as shown in FIG. 6 (b), even if a large chip or scratch is generated in the end face peripheral portion 8b of the light guide rod 8, light transmitted through the chip or scratch can be blocked. Therefore, the detection accuracy is not adversely affected, and as a result, the detection accuracy is improved.

図7(a)に示す光量モニタMは、前記光量モニタMの導光ロッド8の光出射端面8outに、照射光量が著しく低下しない程度に、導光ロッド8を透過する光の一部を導光ロッド8内に戻すフロスト処理を施してなる。
これによれば、図7(b)に示すように、導光ロッド8を透過する光の一部が導光ロッド8内に戻され、戻り光が導光ロッド8の内部欠陥やキズで乱反射を起こし、その一部が漏光となるので、漏光量が大きくなり、より検出精度が向上する。
フロスト処理は、光出射端面8outを粗すことにより形成されるが、フロスト処理することにより光出射端面8outを通過する光は乱反射されて光量ロスを生じるが、その分、検出光量が向上する。
Light amount monitoring M 5 shown in FIG. 7 (a), the light emitting end face 8out of the light guide rod 8 of the light amount monitor M 3, to the extent that the irradiation light amount is not significantly reduced, a part of the light transmitted through the light guiding rod 8 Frost processing is performed to return the light into the light guide rod 8.
According to this, as shown in FIG. 7B, a part of the light transmitted through the light guide rod 8 is returned into the light guide rod 8, and the return light is irregularly reflected by internal defects or scratches of the light guide rod 8. And a part thereof becomes light leakage, so that the amount of light leakage increases and the detection accuracy is further improved.
The frost process is formed by roughening the light emitting end face 8out. However, the light passing through the light emitting end face 8out is irregularly reflected by the frost process to cause a light quantity loss, but the detected light quantity is improved accordingly.

図9はフロスト処理による光損失に対する検出光量及び照射光量の変化を示すグラフで、横軸がフロスト処理を施したときの導光ロッドの透過光の光損失、縦軸左側のスケールが照射光量、縦軸右側のスケールが検出光量で、いずれもフロスト処理を行わなかった場合(光損失0)を100%としたときの光量を示している。
これによれば、フロスト処理により表面が粗されて光損失大になるほど、検出光量が上昇して検出精度は向上するが、バンドルファイバ2からの照射光量は低下する。
したがって、例えば、照射光量を90%以上確保し、検出光量を200%以上確保しようとすると、フロスト処理による光損失は4.5〜5.5%程度に抑える必要がある。
FIG. 9 is a graph showing changes in the detected light amount and the irradiated light amount with respect to the light loss due to the frost processing, where the horizontal axis represents the light loss of the light transmitted through the light guide rod when the frost processing is performed, the left scale of the vertical axis represents the irradiated light amount, The scale on the right side of the vertical axis is the detected light amount, and in all cases, the light amount when the frost process is not performed (light loss 0) is defined as 100%.
According to this, as the surface is roughened by the frost processing and the light loss is increased, the detected light amount is increased and the detection accuracy is improved, but the irradiated light amount from the bundle fiber 2 is decreased.
Therefore, for example, if the irradiation light quantity is secured at 90% or more and the detection light quantity is secured at 200% or more, the light loss due to the frost process needs to be suppressed to about 4.5 to 5.5%.

さらに、図8(a)に示す光量モニタMは、前記光量モニタMの導光ロッド8の光入射端面8inに、光量モニタMで用いたアパーチャ18を装着してなる。
これによれば、図8(b)に示すように、アパーチャ18により外乱が除かれ、さらに、フロスト処理により漏光量が大きくなり、より検出精度が向上する。
Further, the light quantity monitor M 6 shown in FIG. 8 (a), the light incident end face 8in of the light guide rod 8 of the light amount monitor M 5, made by mounting the aperture 18 used in the light quantity monitor M 4.
According to this, as shown in FIG. 8B, the disturbance is removed by the aperture 18, and the amount of leakage light is increased by the frost processing, and the detection accuracy is further improved.

図10はこのように形成された各光量モニタM〜Mを用いて、バンドルファイバ2から照射された照射光量と、光量モニタM〜Mの検出光量を示すグラフである。
照射光量の変化は、大きく分けて、ランプ4の光量変化に起因する場合と、バンドルファイバ2に入射される光量分布の変化に起因する場合がある。
そこで、ランプ4から導光ロッド8へ入射される光量を変化させたときの照射光量に対する光量モニタM〜Mの検出光量を測定すると共に、反射鏡5の第二焦点の位置を導光ロッド8の中心からずらすことにより光量分布を変化させたときの照射光量に対する検出光量を測定した。
10 using the intensity monitor M 1 ~M 6 formed to this is a graph showing the light quantity irradiated from the bundle fiber 2, the detection light amount of the light amount monitor M 1 ~M 6.
The change in the amount of irradiated light can be broadly divided into a case caused by a change in the light amount of the lamp 4 and a case caused by a change in the light amount distribution incident on the bundle fiber 2.
Therefore, the light quantity detected by the light quantity monitors M 1 to M 6 is measured with respect to the irradiation light quantity when the light quantity incident on the light guide rod 8 from the lamp 4 is changed, and the position of the second focal point of the reflecting mirror 5 is guided. The detected light amount with respect to the irradiation light amount when the light amount distribution was changed by shifting from the center of the rod 8 was measured.

グラフの横軸は照射光量、縦軸は検出光量を表わし、照射光量はランプ4を定格電圧で点灯させたときに、バンドルファイバ2の光出射端に配した光センサにより検出された光量を100として正規化した値、検出光量は照射光量100のときの光量モニタM〜Mにより検出された光量を100として正規化した値である。 The horizontal axis of the graph represents the amount of irradiation light, the vertical axis represents the amount of detection light, and the amount of irradiation light is the amount of light detected by the optical sensor disposed at the light exit end of the bundle fiber 2 when the lamp 4 is lit at the rated voltage. The detected light quantity is a value normalized with the light quantity detected by the light quantity monitors M 1 to M 6 when the irradiation light quantity is 100 as 100.

破線Lは、調光フィルタ10を回転させて導光ロッド8への入射光量を変化させたときの照射光量に対する光量モニタM〜Mの検出光量を示している。
この場合は、どの光量モニタM〜Mも測定結果は一致し、検出光量は照射光量に正確に追従している。
A broken line L 0 indicates the detected light amount of the light amount monitors M 1 to M 6 with respect to the irradiation light amount when the light control filter 10 is rotated to change the incident light amount to the light guide rod 8.
In this case, the measurement results of all the light quantity monitors M 1 to M 6 are the same, and the detected light quantity accurately follows the irradiation light quantity.

また、実線L〜Lは、反射鏡5の第二焦点の位置を導光ロッド8の中心からずらすことにより変化する照射光量変化に対する光量モニタM〜Mの検出光量変化を示す。
この場合、導光ロッド8の光入射端面8inにアパーチャ18を装着し、光出射端面8outにフロスト処理を施した光量モニタMの検出光量が照射光量に正確に追従している(実線L参照)。
したがって、光量モニタMは照射光量の変化がランプ4の光量変化に起因する場合も、光量分布変化に起因する場合も漏光量を検出しこれに基づいて照射光量を制御することが可能となる。
Solid lines L 1 to L 6 indicate changes in the detected light amounts of the light amount monitors M 1 to M 6 with respect to changes in the amount of irradiated light that changes by shifting the position of the second focal point of the reflecting mirror 5 from the center of the light guide rod 8.
In this case, the aperture 18 is attached to the light incident end face 8in of the light guide rod 8, the detection light amount of the light amount monitor M 6 subjected to frost treatment to the light emitting end face 8out are accurately follow the irradiation light amount (solid line L 6 reference).
Therefore, the light amount monitor M 6 can detect the amount of leakage light and control the amount of irradiation light based on whether the change in the amount of irradiation light is caused by the light amount change of the lamp 4 or the light amount distribution change. .

また、それ以外の光量モニタM〜Mは、全範囲にわたって検出光量が照射光量に正確に追従するものではないが、照射光量100%近傍の範囲では、光量モニタMと同様、検出光量が照射光量に正確に追従している(実線L〜L参照)。
すなわち、光センサ9で検出される漏光量は、バンドルファイバ2から照射される照射光量と対応しているので、照射光量変化がランプ4の光量変化に起因する場合も、光量分布変化に起因する場合も、漏光量に基づいて照射光量を制御することが可能となる。


Further, the other light quantity monitors M 1 to M 5 do not accurately follow the irradiation light quantity over the entire range, but in the range near the irradiation light quantity 100%, the detected light quantity is the same as the light quantity monitor M 6. There has been accurately follow irradiation light amount (see a solid line L 1 ~L 5).
That is, the leakage light amount detected by the optical sensor 9 corresponds to the irradiation light amount irradiated from the bundle fiber 2, and therefore, even when the change in the irradiation light amount is caused by the light amount change of the lamp 4, it is also caused by the light amount distribution change. Even in this case, it is possible to control the irradiation light amount based on the leakage light amount.


以上が本発明の一構成例であって、次にその作用について説明する。
1500〜2000時間点灯後の照射光量は、初期光量と比して40%程度の減光が予想されるので、当初より調光フィルタ10でランプ4の光量を60%程度の光量に落としておく。
この状態で光量モニタM(M〜M)の光センサ9で検出された検出光量Qを100%として光量コントローラ7に記憶しておき、検出光量Qが変化したときに当初記憶した検出光量Qに等しくなるように調光フィルタ10を回転させる。
検出光量Qは経時的に低下する傾向にあるので、例えば検出光量Qが1%低下したときに、調光フィルタ10をそのスリット10aが大きくなる方向に回転させて、検出光量Q=100(%)となるように光量調整を行う。
The above is one configuration example of the present invention, and the operation thereof will be described next.
Since the irradiation light amount after lighting for 1500 to 2000 hours is expected to be reduced by about 40% compared to the initial light amount, the light amount of the lamp 4 is reduced to about 60% by the dimming filter 10 from the beginning. .
In this state, the detected light quantity Q 0 detected by the optical sensor 9 of the light quantity monitor M (M 1 to M 6 ) is stored in the light quantity controller 7 as 100%, and the detection initially stored when the detected light quantity Q changes. rotating the dimming filter 10 equal to the quantity Q 0.
Since the detected light quantity Q tends to decrease with time, for example, when the detected light quantity Q decreases by 1%, the dimming filter 10 is rotated in the direction in which the slit 10a becomes larger, and the detected light quantity Q = 100 (% ) Adjust the amount of light so that

この場合に、検出光量Qは常に100(%)に維持されており、検出光量Qが1%変化するたびに光量調整されるので、検出光量Qは常に100(%)近傍で変化し、したがって、どの光量モニタM〜Mを使用する場合も、照射光量変化を正確に検出することができる。
しかも、その原因がランプ4の光量変化に起因するものであっても、光量分布の変化に起因するものであっても、その原因にかかわらず照射光量を正確に検出できる。
In this case, the detected light quantity Q is always maintained at 100 (%), and the light quantity is adjusted every time the detected light quantity Q changes by 1%. Therefore, the detected light quantity Q always changes in the vicinity of 100 (%). Even when any of the light quantity monitors M 1 to M 6 is used, a change in the quantity of irradiated light can be accurately detected.
Moreover, even if the cause is caused by a change in the light amount of the lamp 4 or a change in the light amount distribution, the amount of irradiation light can be accurately detected regardless of the cause.

このようにして、検出光量に応じて徐々に調光フィルタ10により導光ロッド8への入射光量を増大させることにより、1500〜2000時間点灯後でも、当初照射光量と略等しい光量で照射することができる。   In this way, by gradually increasing the amount of light incident on the light guide rod 8 by the dimming filter 10 according to the detected amount of light, even after lighting for 1500 to 2000 hours, irradiation is performed with a light amount substantially equal to the initial irradiation light amount. Can do.

なお上述の説明では、光量コントローラ7として導光ロッド8への入射光量を可変制御する調光フィルタ10を用いたが、本発明はこれに限らず、ランプ光量を可変制御する調光回路であってもよい。
また、本発明は、可視光を照射するランプ4を用いる場合に限らず、紫外線ランプ、赤外線ランプを光源とする光照射装置にも適用し得る。
In the above description, the light control filter 10 that variably controls the amount of light incident on the light guide rod 8 is used as the light amount controller 7. May be.
Further, the present invention is not limited to the case of using the lamp 4 that irradiates visible light, but can also be applied to a light irradiation apparatus that uses an ultraviolet lamp or an infrared lamp as a light source.

以上述べたように、本発明に係る光源装置によれば、ランプ光量の変化に起因する照射光量変化も、光量分布の変化に起因する照射光量変化も同様に検出することができるので、その検出光量に基づいて照射光量を一定に維持するようにコントロールすることができるという大変優れた効果を奏する。   As described above, according to the light source device of the present invention, it is possible to detect both the irradiation light amount change caused by the lamp light amount change and the irradiation light amount change caused by the light amount distribution change. There is an excellent effect that the irradiation light quantity can be controlled to be kept constant based on the light quantity.

本発明は、検査対象物(被照射物)への光量は少なくとも検査時間中は変化しないこと、また、使用するカメラの受光感度性能レベルに応じて必要な光量の光を照射できることが要請される画像処理検査装置等の光源装置等に用途に適用できる。   The present invention requires that the amount of light to the inspection object (object to be irradiated) does not change at least during the inspection time, and that it can irradiate with the necessary amount of light according to the light receiving sensitivity performance level of the camera used. The present invention can be applied to light source devices such as image processing inspection devices.

本発明に係る光源装置を示す説明図。Explanatory drawing which shows the light source device which concerns on this invention. 調光フィルタを示す説明図。Explanatory drawing which shows a light control filter. 光量モニタを示す説明図。Explanatory drawing which shows a light quantity monitor. 光量モニタを示す説明図。Explanatory drawing which shows a light quantity monitor. 光量モニタを示す説明図。Explanatory drawing which shows a light quantity monitor. 光量モニタを示す説明図。Explanatory drawing which shows a light quantity monitor. 光量モニタを示す説明図。Explanatory drawing which shows a light quantity monitor. 光量モニタを示す説明図。Explanatory drawing which shows a light quantity monitor. フロスト処理による光損失と検出光量及び照射光量の関係を示すグラフ。The graph which shows the relationship between the light loss by a frost process, a detected light quantity, and an irradiation light quantity. 照射光量と検出光量の関係を示すグラフ。The graph which shows the relationship between irradiation light quantity and detection light quantity. 従来装置を示す説明図。Explanatory drawing which shows a conventional apparatus.

符号の説明Explanation of symbols

1 光源装置
4 ランプ
5 反射鏡5
6 光出射口6
M(M〜M) 光量モニタ
7 光量コントローラ
8 導光ロッド
8a 周面
9 光センサ
9a 光検出面
10 調光フィルタ
12a、16a 光拡散面
13、15 遮光パイプ(遮光材)13
14、17 光拡散空間
16 環状凹溝
18 アパーチャ


1 Light source device 4 Lamp 5 Reflector 5
6 Light exit 6
M (M 1 to M 6 ) Light quantity monitor 7 Light quantity controller
8 Light guide rod 8a Peripheral surface 9 Optical sensor 9a Light detection surface 10 Light control filters 12a and 16a Light diffusion surfaces 13 and 15 Light shielding pipe (light shielding material) 13
14, 17 Light diffusion space 16 Annular groove 18 Aperture


Claims (2)

ランプの光を反射鏡で集光して光出射口から出射させ、直接的又は間接的に被照射物に対し所定の照射光量で照射する際に、反射鏡で集光された光を光入射端面から入射させ、光出射端面から光出射口に導く光路となる導光ロッドからの漏光量を検出する光センサを備えた光量モニタと、その検出光量に応じて前記照射光量をフィードバック制御する光量コントローラを備えた光源装置において、
前記導光ロッドは、その周面に、光センサで検出する漏光を外部に導き出す部分を除いて、遮光材となる遮光パイプが外装されると共に、
導光ロッドの光入射側端面に、その周縁部を覆うと共に当該導光ロッドの口径より小径の透光部が形成されたアパーチャが取り付けられ、
その光出射端面に、導光ロッドを透過する光の一部を導光ロッド内に戻すフロスト処理が施され
前記遮光パイプの内周面周方向に沿って形成された環状凹溝の内面が光拡散面で形成され、当該環状凹溝が導光ロッドからの漏光を拡散させる光拡散空間に形成されると共に、
前記光センサがその光検出面を導光ロッドの周面に対向させて前記光拡散空間に取り付けられたことを特徴とする光源装置。
When the light from the lamp is condensed by the reflecting mirror and emitted from the light exit, and the object is irradiated directly or indirectly with a predetermined amount of light, the light collected by the reflecting mirror is incident on the light. A light quantity monitor equipped with a light sensor that detects the amount of light leaked from the light guide rod, which is an optical path that enters from the end face and leads from the light exit end face to the light exit opening, and the light quantity for feedback control of the irradiation light quantity according to the detected light quantity In a light source device equipped with a controller,
The light guide rod has a light shielding pipe as a light shielding material on its outer surface, except for a portion that guides light leakage detected by an optical sensor to the outside.
On the light incident side end face of the light guide rod, an aperture is attached that covers the peripheral edge portion and has a light-transmitting portion having a diameter smaller than the diameter of the light guide rod,
Frost treatment is performed on the light emitting end face to return a part of the light transmitted through the light guide rod into the light guide rod ,
An inner surface of an annular groove formed along the circumferential direction of the inner peripheral surface of the light shielding pipe is formed as a light diffusion surface, and the annular groove is formed in a light diffusion space for diffusing light leakage from the light guide rod. ,
The light source device, wherein the light sensor is attached to the light diffusion space with its light detection surface facing the peripheral surface of the light guide rod .
光源から出射された光を導く光路となる導光ロッドと、その導光ロッドの周面からの漏光量を検出する光センサとを備えた光量モニタにおいて、
前記導光ロッドは、その周面に、光センサで検出する漏光を外部に導き出す部分を除いて、遮光材となる遮光パイプが外装されると共に、
導光ロッドの光入射側端面に、その周縁部を覆うと共に当該導光ロッドの口径より小径の透光部が形成されたアパーチャが取り付けられ、
その光出射端面に、導光ロッドを透過する光の一部を導光ロッド内に戻すフロスト処理が施され
前記遮光パイプの内周面周方向に沿って形成された環状凹溝の内面が光拡散面で形成され、当該環状凹溝が導光ロッドからの漏光を拡散させる光拡散空間に形成されると共に、
前記光センサがその光検出面を導光ロッドの周面に対向させて前記光拡散空間に取り付けられたことを特徴とする光量モニタ。
In a light amount monitor comprising a light guide rod that becomes an optical path for guiding light emitted from a light source, and a light sensor that detects a leakage light amount from the peripheral surface of the light guide rod,
The light guide rod has a light shielding pipe as a light shielding material on its outer surface, except for a portion that guides light leakage detected by an optical sensor to the outside.
On the light incident side end face of the light guide rod, an aperture is attached that covers the peripheral edge portion and has a light-transmitting portion having a diameter smaller than the diameter of the light guide rod,
Frost treatment is performed on the light emitting end face to return a part of the light transmitted through the light guide rod into the light guide rod ,
An inner surface of an annular groove formed along the circumferential direction of the inner peripheral surface of the light shielding pipe is formed as a light diffusion surface, and the annular groove is formed in a light diffusion space for diffusing light leakage from the light guide rod. ,
The light sensor according to claim 1, wherein the light sensor is mounted in the light diffusion space with its light detection surface facing the peripheral surface of the light guide rod .
JP2004189404A 2003-07-02 2004-06-28 Light source device and light intensity monitor used for it Expired - Fee Related JP4604572B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004189404A JP4604572B2 (en) 2003-07-02 2004-06-28 Light source device and light intensity monitor used for it

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003190430 2003-07-02
JP2004015767 2004-01-23
JP2004189404A JP4604572B2 (en) 2003-07-02 2004-06-28 Light source device and light intensity monitor used for it

Publications (2)

Publication Number Publication Date
JP2005233927A JP2005233927A (en) 2005-09-02
JP4604572B2 true JP4604572B2 (en) 2011-01-05

Family

ID=34593882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004189404A Expired - Fee Related JP4604572B2 (en) 2003-07-02 2004-06-28 Light source device and light intensity monitor used for it

Country Status (4)

Country Link
JP (1) JP4604572B2 (en)
KR (1) KR100655638B1 (en)
CN (1) CN100441941C (en)
TW (1) TWI268326B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728732B2 (en) * 2005-08-02 2011-07-20 株式会社モリテックス Lighting device
JP4853823B2 (en) * 2005-12-15 2012-01-11 岩崎電気株式会社 Light intensity monitor and light source device using the same
JP2008305710A (en) * 2007-06-08 2008-12-18 Olympus Corp Light source device for illumination
US7984999B2 (en) * 2007-10-17 2011-07-26 Xicato, Inc. Illumination device with light emitting diodes and moveable light adjustment member
JP2014000301A (en) * 2012-06-20 2014-01-09 Fujifilm Corp Light source device and endoscope system
CN108375023B (en) * 2016-11-16 2020-02-07 财团法人车辆研究测试中心 Intelligent laser car lamp system and detection method thereof
CN106525234A (en) * 2016-12-08 2017-03-22 中国科学院合肥物质科学研究院 Multi-wing shaped deuterium lamp UV light source
CN107782733B (en) * 2017-09-30 2021-03-16 中国船舶重工集团公司第七一九研究所 Image recognition nondestructive detection device and method for metal surface defects
US11493365B2 (en) * 2018-08-28 2022-11-08 Mitsubishi Electric Corporation Light irradiation device
JP7198659B2 (en) * 2018-12-26 2023-01-04 株式会社オーク製作所 Exposure device
CN115614692B (en) * 2022-12-15 2023-05-23 宁波精华电子科技股份有限公司 Vehicle-mounted atmosphere lamp capable of intelligently changing brightness
CN116001679B (en) * 2023-01-09 2023-06-27 浙江百康光学股份有限公司 Method and system for controlling atmosphere lamp in vehicle
CN116242481B (en) * 2023-05-12 2023-08-29 中国计量科学研究院 Deuterium lamp light source system and calibration method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175706A (en) * 1986-01-30 1987-08-01 Furukawa Electric Co Ltd:The Contrasting method for tape type optical fiber core
JPH05288937A (en) * 1992-04-09 1993-11-05 Nippon Sekiei Glass Kk Light source device
JPH07234341A (en) * 1994-02-23 1995-09-05 Nec Corp Coupling structure of semiconductor laser and optical fiber
JPH09230030A (en) * 1996-02-26 1997-09-05 Koden Electron Co Ltd Light transmitting and intercepting device and light-intercepting device
JP2000173330A (en) * 1998-12-08 2000-06-23 Nissei Denki Kk Optical source device
JP2001307523A (en) * 2000-04-19 2001-11-02 Mitsubishi Rayon Co Ltd Illuminating apparatus
JP2003014986A (en) * 2001-04-24 2003-01-15 Mitsubishi Rayon Co Ltd Method for connecting plastic optical fiber to light source
JP2003309273A (en) * 2002-04-15 2003-10-31 Hoya−Schott株式会社 Light quantity detection means, and illuminator and sensor device having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3212373B2 (en) * 1992-08-27 2001-09-25 信越化学工業株式会社 Inspection method and inspection device for air bubbles and foreign matter in optical fiber preform
JPH09311109A (en) * 1996-05-22 1997-12-02 Matsushita Electric Ind Co Ltd Defect inspection method and device utilizing light
CN2482082Y (en) * 1999-12-10 2002-03-13 信息产业部电子第四十六研究所 Polished surface detecting instrument
JP2001174410A (en) * 1999-12-21 2001-06-29 Nkk Corp Lighting apparatus
JP2002323404A (en) * 2001-04-26 2002-11-08 Matsushita Electric Ind Co Ltd Surface inspection device
JP2003130801A (en) * 2001-10-22 2003-05-08 Ushio Inc Method and device for phosphor inspection

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62175706A (en) * 1986-01-30 1987-08-01 Furukawa Electric Co Ltd:The Contrasting method for tape type optical fiber core
JPH05288937A (en) * 1992-04-09 1993-11-05 Nippon Sekiei Glass Kk Light source device
JPH07234341A (en) * 1994-02-23 1995-09-05 Nec Corp Coupling structure of semiconductor laser and optical fiber
JPH09230030A (en) * 1996-02-26 1997-09-05 Koden Electron Co Ltd Light transmitting and intercepting device and light-intercepting device
JP2000173330A (en) * 1998-12-08 2000-06-23 Nissei Denki Kk Optical source device
JP2001307523A (en) * 2000-04-19 2001-11-02 Mitsubishi Rayon Co Ltd Illuminating apparatus
JP2003014986A (en) * 2001-04-24 2003-01-15 Mitsubishi Rayon Co Ltd Method for connecting plastic optical fiber to light source
JP2003309273A (en) * 2002-04-15 2003-10-31 Hoya−Schott株式会社 Light quantity detection means, and illuminator and sensor device having the same

Also Published As

Publication number Publication date
CN1576690A (en) 2005-02-09
TWI268326B (en) 2006-12-11
KR100655638B1 (en) 2006-12-11
TW200502508A (en) 2005-01-16
KR20050004094A (en) 2005-01-12
CN100441941C (en) 2008-12-10
JP2005233927A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
JP4853823B2 (en) Light intensity monitor and light source device using the same
JP4604572B2 (en) Light source device and light intensity monitor used for it
KR20080058181A (en) Oil mist detector
JP5088605B2 (en) Light intensity monitor and light source device using the same
JP4575202B2 (en) Defect inspection method and defect inspection apparatus for transparent plate-like body
JP2006284211A (en) Unevenness inspection device and unevenness inspection method
JP2013036948A (en) Defect inspection device
JPWO2018142958A1 (en) Heat treatment apparatus, heat treatment method, and method of manufacturing semiconductor device
US7088423B2 (en) Edge exposing apparatus
JP4429177B2 (en) Transparent container defect inspection method and apparatus
JP2009080078A (en) Light quantity monitor and light source apparatus using the same
JP2007101465A (en) Luminous energy monitor, and light source device using the same
CN115516361A (en) Apparatus and method for rotating an optical objective
JP5646922B2 (en) Inspection device
JP2008298667A (en) Device for inspecting transparent film
JP4618720B2 (en) Unevenness inspection apparatus and unevenness inspection method
JP2009092481A (en) Lighting device for visual inspection and visual inspection device
JP2015102364A (en) Visual inspection device
JP2002323404A (en) Surface inspection device
KR100658915B1 (en) Apparatus for micro defects inspection of semiconductor using optic inspection
TWI683073B (en) Light box structure
JP2010203922A (en) Lighting device for inspection
JPH08278259A (en) Surface inspection apparatus
JP2010133714A (en) Illuminator and surface inspecting apparatus
KR101880398B1 (en) An apparatus and method for inspecting mura of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141015

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees