JP7198659B2 - Exposure device - Google Patents

Exposure device Download PDF

Info

Publication number
JP7198659B2
JP7198659B2 JP2018243033A JP2018243033A JP7198659B2 JP 7198659 B2 JP7198659 B2 JP 7198659B2 JP 2018243033 A JP2018243033 A JP 2018243033A JP 2018243033 A JP2018243033 A JP 2018243033A JP 7198659 B2 JP7198659 B2 JP 7198659B2
Authority
JP
Japan
Prior art keywords
light
rod lens
rod
amount
exposure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018243033A
Other languages
Japanese (ja)
Other versions
JP2020106603A (en
Inventor
裕樹 六川
智大 濱脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orc Manufacturing Co Ltd
Original Assignee
Orc Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orc Manufacturing Co Ltd filed Critical Orc Manufacturing Co Ltd
Priority to JP2018243033A priority Critical patent/JP7198659B2/en
Priority to TW108130421A priority patent/TWI791125B/en
Priority to KR1020190105366A priority patent/KR102683743B1/en
Publication of JP2020106603A publication Critical patent/JP2020106603A/en
Application granted granted Critical
Publication of JP7198659B2 publication Critical patent/JP7198659B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70275Multiple projection paths, e.g. array of projection systems, microlens projection systems or tandem projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70241Optical aspects of refractive lens systems, i.e. comprising only refractive elements

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Electronic Switches (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

本発明は、照明装置に適用される露光装置に関する。
The present invention relates to an exposure apparatus applied to a lighting system.

例えば露光装置に使用される照明装置(光学装置)の光量をモニターし、光量変動を抑えるようにすることが知られている。光量をモニターする一つの方法として、露光ステージに光量センサの受光部を設け、基板を露光していない時に光量の測定を行うものがある。この方法では、露光時、非露光時にかかわらず光量モニターを行うことができない。光量モニターを露光時にも行うためには、特許文献1又は特許文献2に記載の光量モニターを行う照明装置を使用することが必要である。 For example, it is known to monitor the amount of light of an illumination device (optical device) used in an exposure apparatus to suppress variations in the amount of light. As one method for monitoring the amount of light, there is a method in which a light receiving portion of a light amount sensor is provided on the exposure stage and the amount of light is measured when the substrate is not exposed. With this method, the amount of light cannot be monitored regardless of whether it is during exposure or during non-exposure. In order to monitor the amount of light during exposure, it is necessary to use an illumination device that monitors the amount of light described in Patent Document 1 or Patent Document 2.

特許文献1は、撮像素子の製造工程における撮像素子の検査に好適な照明光学装置に関するもので、インテグレータロッド(ロッドレンズと以下称する)を有する。ロッドレンズの内部では、光入射面から入射した光が、その入射角度に応じた回数で内面反射を繰り返し、光出射面に向けて伝搬する。そして光出射面では、反射回数の異なる光が重なり、光量分布が均一化される。特許文献1の構成では、ロッドレンズの光出射面の近傍に、ロッドレンズを斜め45度に横断するような光分岐面が設けられる。光分岐面は、ハーフミラーコートが施された平面である。光分岐面で光出射面とは異なる方向に分岐し、ロッドレンズの側面から外部に導かれ、光量モニター用の光検出器に導かれるようになされている。 Patent Document 1 relates to an illumination optical device suitable for inspection of an image pickup device in the manufacturing process of the image pickup device, and has an integrator rod (hereinafter referred to as a rod lens). Inside the rod lens, the light incident from the light incident surface repeats internal reflection the number of times corresponding to the incident angle, and propagates toward the light exit surface. Then, on the light exit surface, lights with different numbers of reflections are overlapped, and the light quantity distribution is made uniform. In the configuration of Patent Document 1, a light branching surface is provided in the vicinity of the light exit surface of the rod lens so as to cross the rod lens at an angle of 45 degrees. The light branching surface is a plane coated with a half-mirror coat. The light is branched at the light branching surface in a direction different from the light exit surface, guided to the outside from the side surface of the rod lens, and guided to a photodetector for light amount monitoring.

特許文献2には、検査対象物の表面を撮像して画像処理により製品検査を行う際に、光ファイバを介して検査対象物に照明光を照射するために用いられる光源装置が記載されている。照射される照明光の照射光量を検出する光量モニタは、光源から被照射物に至る光路中に、光入射端面から入射した光を均一化して光出射端面から出射するロッドレンズから成る導光ロッドを備えている。 Patent Literature 2 describes a light source device that is used to irradiate an object to be inspected with illumination light through an optical fiber when performing product inspection by imaging the surface of the object to be inspected and performing image processing. . A light intensity monitor for detecting the intensity of illumination light emitted is a light guide rod consisting of a rod lens that homogenizes the light incident from the light incident end face and emits it from the light exit end face in the optical path from the light source to the object to be illuminated. It has

導光ロッドの光出射端面と光ファイバの光入射端面は、間隔を有して配置され、遮光ケースに収納されている。光ファイバの光入射端面に照射されると共に、反射した光を光センサが受け、その検出光量に応じて光量コントローラにより照射光量を制御している。 The light emitting end face of the light guide rod and the light incident end face of the optical fiber are arranged with a gap therebetween and housed in a light shielding case. The optical sensor receives the light that is irradiated onto the light incident end surface of the optical fiber and reflected, and the amount of irradiation light is controlled by the light amount controller according to the amount of detected light.

特開2005-195348号公報JP 2005-195348 A 特開2007-163358号公報JP 2007-163358 A

特許文献1に記載の照明装置は、撮像素子の検査用の照明装置に用いられるもので、露光装置に用いられるものではない。また、光量モニターを行うために、ハーフミラー面で光を分岐するため、光量の損失が発生する。さらに、ロッドレンズ端面のテーパー加工や、ハーフミラーコートなど、コストが高くなる問題がある。 The illumination device described in Patent Document 1 is used as an illumination device for inspecting image sensors, and is not used as an exposure device. In addition, since the light is branched at the half mirror surface in order to monitor the amount of light, loss of the amount of light occurs. Furthermore, there is a problem that the cost is increased due to taper processing of rod lens end faces, half-mirror coating, and the like.

特許文献2に記載の照明装置は、画像処理検査装置の光源装置に用いられるもので、露光装置に用いられるものではない。また、光センサに入射する光量が少なく、測定誤差が多くなる。さらに、導光ロッドと光ファイバとの間にある程度広い間隔が必要であるため漏れ光が多く、光を効率的に利用できない問題がある。 The illumination device described in Patent Document 2 is used for a light source device of an image processing inspection device, not for an exposure device. Also, the amount of light incident on the optical sensor is small, and measurement errors increase. Furthermore, since a certain wide space is required between the light guide rod and the optical fiber, there is a problem that much light leaks and the light cannot be used efficiently.

したがって、本発明の目的は、基板の露光中にも露光量を確認でき、露光光量の損失が少ない露光装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to provide an exposure apparatus capable of confirming the amount of exposure even during exposure of a substrate and reducing the loss of the amount of exposure light.

本発明は、光源と、光源の光を照射する光学系を有し、
光学系は、
直列に配置された少なくとも2つのロッドレンズと、
少なくとも2つのロッドレンズを収納するロッドレンズホルダと、
ロッドレンズホルダの少なくとも2つのロッドレンズの端面同士が対向する位置の少なくとも一箇所に形成された取光口と、
取光口から出射した光を受光する受光部と
を備え、
端面同士が対向する位置に、端面同士が当接する側から取光口に向かって拡がる間隙を有する露光装置である。
The present invention has a light source and an optical system for irradiating light from the light source,
The optical system
at least two rod lenses arranged in series;
a rod lens holder housing at least two rod lenses;
a light intake opening formed in at least one position where end faces of at least two rod lenses of the rod lens holder face each other;
a light-receiving part that receives the light emitted from the light-receiving opening;
with
The exposure device has a gap at a position where the end faces face each other, the gap expanding from the side where the end faces abut toward the light receiving opening .

少なくとも一つの実施形態によれば、ロッドレンズ間から出射した光を受光部によって受光することができ、例えば定照度制御を行うことができる。露光時でも,光量モニターが可能である。なお、ここに記載された効果は必ずしも限定されるものではなく、本発明中に記載されたいずれかの効果又はそれらと異質な効果であっても良い。 According to at least one embodiment, the light emitted from between the rod lenses can be received by the light receiving section, and for example, constant illumination control can be performed. It is possible to monitor the amount of light even during exposure. Note that the effects described herein are not necessarily limited, and may be any effect described in the present invention or an effect different from them.

図1は、本発明の一実施形態に係る露光装置の構成を示す図である。FIG. 1 is a diagram showing the configuration of an exposure apparatus according to one embodiment of the present invention. 図2(a)及び図2(b)は、一実施の形態における光量測定部の第1の例の断面部及び一部平面図である。2(a) and 2(b) are a cross-sectional view and a partial plan view of a first example of a light amount measuring section according to one embodiment. 図3(a)、図3(b)及び図3(c)は、一実施の形態における2つのロッドレンズの配置の例を示す略線図である。3(a), 3(b), and 3(c) are schematic diagrams showing an example of arrangement of two rod lenses in one embodiment. 図4は、一実施の形態における光量測定部の第3の例の断面部である。FIG. 4 is a cross-sectional view of a third example of the light amount measuring section in one embodiment. 図5は、一実施の形態における光量測定部の第4の例の断面部である。FIG. 5 is a cross-sectional view of a fourth example of the light amount measuring section according to one embodiment.

以下、本発明の実施形態等について図面を参照しながら説明する。以下に説明する実施の形態等は本発明の好適な具体例であり、本発明の内容がこれらの実施形態等に限定されるものではない。 Hereinafter, embodiments of the present invention and the like will be described with reference to the drawings. The embodiments and the like described below are preferred specific examples of the present invention, and the content of the present invention is not limited to these embodiments and the like.

図1は本発明を適用することができる露光装置の概略構成図である。露光装置は、光源1と、光源1の出射光を均一な照度の照明光としてレチクル3を照明するための照明光学系2と、パターンの原版であるレチクル(フォトマスク)3と、レチクル3の像を基板Wに投影する投影光学系としての投影レンズ4と、基板Wを載置する露光ステージ5を備える。なお、図1の各要素は主要な光軸に沿った断面図で表示されており、一部を除きハッチングは省略されている。 FIG. 1 is a schematic configuration diagram of an exposure apparatus to which the present invention can be applied. The exposure apparatus includes a light source 1, an illumination optical system 2 for illuminating a reticle 3 with the light emitted from the light source 1 as illumination light with uniform illuminance, a reticle (photomask) 3 as a pattern original, and a reticle 3. A projection lens 4 as a projection optical system for projecting an image onto the substrate W and an exposure stage 5 on which the substrate W is placed are provided. Each element in FIG. 1 is shown in a cross-sectional view along the main optical axis, and hatching is omitted except for some parts.

光源1は、g、h、i線を含むブロードバンドな光を放射するUVランプである。また、楕円ミラーが設けられており、ロッドレンズ11aの入口に向けて光を集光する。光源1に対して駆動用の電源18が設けられている。 A light source 1 is a UV lamp that emits broadband light including g-, h-, and i-lines. An elliptical mirror is also provided to condense light toward the entrance of the rod lens 11a. A power source 18 for driving the light source 1 is provided.

照明光学系2は、直列に配置したロッドレンズ11a、11bと、光量測定部を構成する光量センサ12と、レンズ群15(図1では省略して単レンズで表している)を備える。光量センサ12は、例えばフォトダイオードによって構成される。 The illumination optical system 2 includes rod lenses 11a and 11b arranged in series, a light amount sensor 12 constituting a light amount measuring section, and a lens group 15 (not shown in FIG. 1 and represented by a single lens). The light intensity sensor 12 is composed of, for example, a photodiode.

光量センサ12で測定した光量データは、システムコントローラ19に送信される。システムコントローラ19は、露光装置の全体の動作を制御するためのもので、光源1に対する電源18の制御も行っている。システムコントローラ19は、送信された光量データを基に露光に関する制御を行う。例えば、基板のフォトレジスト層に照射する積算光量の管理、あるいは、光源の出力変動の監視や、定照度コントロールに用いる。 Light amount data measured by the light amount sensor 12 is transmitted to the system controller 19 . A system controller 19 controls the overall operation of the exposure apparatus, and also controls the power source 18 for the light source 1 . The system controller 19 controls exposure based on the transmitted light amount data. For example, it is used for managing the integrated amount of light irradiated to the photoresist layer of the substrate, monitoring the output fluctuation of the light source, and controlling the constant illuminance.

ロッドレンズ11a、11bのそれぞれは、多角形の断面を有する透明体であり、内面反射によってオプティカルインテグレータ(照明光均一化手段)として機能する。また、照明光学系2は、ロッドレンズ11bの出射側端面の近傍に設けられた遮光板13と遮光板移動機構14を備えている。 Each of the rod lenses 11a and 11b is a transparent body having a polygonal cross section, and functions as an optical integrator (illumination light homogenizing means) by internal reflection. The illumination optical system 2 also includes a light shielding plate 13 and a light shielding plate moving mechanism 14 provided in the vicinity of the exit-side end face of the rod lens 11b.

基板Wを移動させて順次パターンを露光するステップアンドリピート方式では、基板Wのステップ移動と露光とが交互に繰り返される。露光位置が基板エッジ(周辺部)にきた際に、エッジ端から所定の範囲を露光しない機能が存在する。このような基板周辺非露光機能は、WEM(基板エッジマスキング)と称される。WEMのために、レチクル共役位置に遮光板移動機構14によって非露光位置に位置決めされる遮光板13が設けられる。 In the step-and-repeat method in which the substrate W is moved to sequentially expose patterns, step movement of the substrate W and exposure are alternately repeated. There is a function of not exposing a predetermined range from the edge edge when the exposure position reaches the substrate edge (periphery). Such a substrate perimeter non-exposure function is called WEM (substrate edge masking). For WEM, a light shielding plate 13 is positioned at a non-exposure position by a light shielding plate moving mechanism 14 at a reticle conjugate position.

レチクル3は、所定のパターンが描画された透過型のフォトマスクである。レチクル3は、不図示のレチクルステージに支持されている。 The reticle 3 is a transmissive photomask on which a predetermined pattern is drawn. The reticle 3 is supported by a reticle stage (not shown).

投影レンズ4は、投影光学系を構成し、レチクル3のパターンを露光面(基板上面)に投影する。図1ではレンズ群を省略して1つの投影レンズ4のみを示しているが、実際は複数のレンズが設けられている。 A projection lens 4 constitutes a projection optical system and projects the pattern of the reticle 3 onto an exposure surface (upper surface of the substrate). In FIG. 1, the lens group is omitted and only one projection lens 4 is shown, but a plurality of lenses are actually provided.

基板Wは、半導体ウエハ(シリコン基板)、プリント配線板(有機基板)、液晶基板(ガラス基板)等であり、基板の表面にはフォトレジスト層が形成されている。基板Wは、露光ステージ5に吸着保持されている。 The substrate W is a semiconductor wafer (silicon substrate), a printed wiring board (organic substrate), a liquid crystal substrate (glass substrate), or the like, and a photoresist layer is formed on the surface of the substrate. The substrate W is held by suction on the exposure stage 5 .

露光ステージ5がステージ移動機構によって、X,Y,θ方向に移動される。基板Wの表面 (二次元平面)をX方向及びY方向で規定し、回転方向をθで規定する。 The exposure stage 5 is moved in the X, Y and .theta. directions by the stage moving mechanism. The surface (two-dimensional plane) of the substrate W is defined by the X and Y directions, and the rotation direction is defined by θ.

図2(a)及び図2(b)は、ロッドレンズおよび光量測定部の拡大断面図及び拡大平面図である。図2(b)では、光量センサ12が省略されている。ロッドレンズホルダ16は、少なくとも2つのロッドレンズ11a及び11bを所定の位置に固定する筒状ケースである。ロッドレンズホルダ16は、複数のロッドレンズ(図2では第1のロッドレンズ11aおよび第2のロッドレンズ11b)を直列に配置するように保持する。ここでいう直列とは、ロッドレンズ11aの出射端面とロッドレンズ11bの入射端面とが対向しており、ロッドレンズ11aの出射端面から出た光が、直接ロッドレンズ11bの入射端面に入射する配置を意味する。 2(a) and 2(b) are an enlarged sectional view and an enlarged plan view of the rod lens and the light amount measuring section. In FIG. 2B, the light amount sensor 12 is omitted. The rod lens holder 16 is a cylindrical case that fixes at least two rod lenses 11a and 11b in place. The rod lens holder 16 holds a plurality of rod lenses (the first rod lens 11a and the second rod lens 11b in FIG. 2) arranged in series. The term "in-line" as used herein means an arrangement in which the output end face of the rod lens 11a faces the incident end face of the rod lens 11b, and the light emitted from the output end face of the rod lens 11a is directly incident on the incident end face of the rod lens 11b. means

ロッドレンズホルダ16は、ロッドレンズ11a及び11bを所定幅の間隙(空気ギャップ)G1を隔てて配置する。すなわち、入射側のロッドレンズ11aの出射端面と、出射側のロッドレンズ11bの入射端面が間隙G1を挟んで平行して対向するようになされている。 The rod lens holder 16 arranges the rod lenses 11a and 11b with a gap (air gap) G1 having a predetermined width therebetween. That is, the exit end face of the rod lens 11a on the incident side and the incident end face of the rod lens 11b on the exit side face each other in parallel with a gap G1 interposed therebetween.

ロッドレンズホルダ16においてロッドレンズ11a及び11bが隣接する位置(すなわち、間隙G1の位置)に対応する上面(又は側面)の箇所に例えば円形の開口(取光口17)が形成される。光量センサ12は、その受光部がロッドレンズホルダ16の取光口17から出た光を受光可能なように位置決めされる。 In the rod lens holder 16, for example, a circular opening (light intake opening 17) is formed at a portion of the upper surface (or side surface) corresponding to the position where the rod lenses 11a and 11b are adjacent (that is, the position of the gap G1). The light amount sensor 12 is positioned so that its light receiving portion can receive light emitted from the light receiving opening 17 of the rod lens holder 16 .

光量センサ12は、所定の波長の光量(照度)を測定するセンサであり、例えば436nm (g線)、405nm(h線)、365nm(i線)のいずれかの波長の成分の光量を測定する。 The light amount sensor 12 is a sensor that measures the amount of light (illuminance) at a predetermined wavelength, and measures the amount of light with a wavelength component of, for example, 436 nm (g-line), 405 nm (h-line), or 365 nm (i-line). .

図3は、ロッドレンズホルダ16によって保持されるロッドレンズ11a及び11bを拡大した図である。なお、図3では、光量センサ12やロッドレンズホルダ16等は省略している。隣接するロッドレンズ11a及び11bの間には微小な間隔(空気ギャップ)G1が設けられる。光量センサ12は、この間隙G1を伝わって取口光17に到達した光を受光する。つまり、第1ロッドレンズ11aの出射端面と第2ロッドレンズ11bの入射端面の間で多重的に反射した光を受光する。間隙G1は、広すぎれば露光に用いる光量のロスとなるので、なるべく小さい方が良い。ただし、ギャップが0では光量センサ12に光が伝播しない。好ましくは、間隙G1の幅は,例えば0.05mm~1mmとされている。 FIG. 3 is an enlarged view of the rod lenses 11a and 11b held by the rod lens holder 16. FIG. Note that the light amount sensor 12, the rod lens holder 16, and the like are omitted in FIG. A small space (air gap) G1 is provided between the adjacent rod lenses 11a and 11b. The light amount sensor 12 receives the light that reaches the inlet light 17 through the gap G1. That is, the light reflected multiple times between the output end face of the first rod lens 11a and the incident end face of the second rod lens 11b is received. If the gap G1 is too wide, the amount of light used for exposure will be lost, so it is preferable that the gap G1 is as small as possible. However, when the gap is 0, light does not propagate to the light quantity sensor 12 . Preferably, the width of the gap G1 is, for example, 0.05 mm to 1 mm.

隣接するロッドレンズ11a、11bの端面は、必ずしも垂直面である必要はなく、図3(b)に示すように傾斜していても良い。あるいは、隣接するロッドレンズ11a、11bの端面は、図3(c)のように平行でなくてもよい。その場合では、ロッドレンズ11aの出射端面とロッドレンズ11bの入射端面が一部で接触してもよい。 The end surfaces of the adjacent rod lenses 11a and 11b are not necessarily vertical surfaces, and may be inclined as shown in FIG. 3(b). Alternatively, the end faces of adjacent rod lenses 11a and 11b may not be parallel as shown in FIG. 3(c). In that case, the exit end face of the rod lens 11a and the entrance end face of the rod lens 11b may partially contact each other.

図4は、光量測定部の第2の例を示す。例えば2本の光ファイバ21a及び21bの入射端面がロッドレンズホルダ16の取光口17に対して配置される。光ファイバ21a及び21bは、光ファイバホルダ22によって位置決めされる。光ファイバ21a及び21bを通った光が光量センサ23a及び23bに導かれる。光量センサ23a及び23bは、互いに異なる波長の光の光量を検出するものである。なお、光ファイバ及び光量センサをそれぞれ一つとし、特定の波長の光量を検出するようにしてもよい。さらに、取光口と光量センサの間に切り替え式の光学的バンドパスフィルタを設け、一つの光量センサで複数の波長の光量を測定するようにしても良い。 FIG. 4 shows a second example of the light amount measuring section. For example, the incident end surfaces of the two optical fibers 21 a and 21 b are arranged with respect to the light intake opening 17 of the rod lens holder 16 . Optical fibers 21 a and 21 b are positioned by optical fiber holder 22 . Light passing through the optical fibers 21a and 21b is guided to light amount sensors 23a and 23b. The light intensity sensors 23a and 23b detect the light intensity of light with wavelengths different from each other. Alternatively, one optical fiber and one light amount sensor may be used to detect the light amount of a specific wavelength. Furthermore, a switchable optical bandpass filter may be provided between the light intake and the light amount sensor so that one light amount sensor can measure light amounts of a plurality of wavelengths.

図5は、光量測定部の第3の例を示す。角筒状ケースのロッドレンズホルダ16にロッドレンズ11a及び11bが間隙G1を介して対向配置されている。ロッドレンズホルダ16の上面の間隔G1に対応する位置にスリット状(長穴状)の開口である取光口24が形成される。間隙G1から出射される光は、線状をしているので、取光口24を通じて線状光を収束して光量センサに導くことで、受光光量を増加させて光量測定の精度を高くすることができる。 FIG. 5 shows a third example of the light quantity measuring section. Rod lenses 11a and 11b are opposed to each other with a gap G1 in a rod lens holder 16 in the form of a square tubular case. A slit-shaped (long hole-shaped) opening 24 is formed at a position corresponding to the gap G1 on the upper surface of the rod lens holder 16 . Since the light emitted from the gap G1 is linear, the linear light is converged through the light inlet 24 and led to the light amount sensor, thereby increasing the amount of received light and improving the accuracy of light amount measurement. can be done.

取光口24から光を取り出して光量センサ25の受光部26に導くために、例えばバンドルファイバが使用される。バンドルファイバは、高い透過率の光ファイバを複数本束ねて収束ガイド部27を構成し、収束ガイド部27の両端に端末部を設けたライトガイドである。入射側の端末部28は、光ファイバの結束を解いて取光口24の形状にほぼ一致した入射端面を持つように成形される。収束ガイド部27の出射側は、結束状態の光ファイバを光量センサ25の受光部26に対向又は密着するようになされる。なお、収束ガイド部27は、反射ミラー、プリズム,レンズ等を用いて線状光をスポット光に変換する光学系でもよい。 A bundle fiber, for example, is used to extract light from the light intake port 24 and guide it to the light receiving section 26 of the light amount sensor 25 . A bundle fiber is a light guide in which a plurality of optical fibers with high transmittance are bundled to form a convergence guide portion 27, and terminal portions are provided at both ends of the convergence guide portion 27. FIG. The terminal portion 28 on the incident side is formed so as to have an incident end surface that substantially matches the shape of the light inlet 24 by unbundling the optical fibers. The output side of the convergence guide portion 27 is arranged so that the bundled optical fibers face or come into close contact with the light receiving portion 26 of the light quantity sensor 25 . Note that the convergence guide section 27 may be an optical system that converts linear light into spot light using a reflecting mirror, a prism, a lens, or the like.

以上、本技術の一実施の形態について具体的に説明したが、本発明は、上述の一実施の形態に限定されるものではなく、本発明の技術的思想に基づく各種の変形が可能である。また、上述の実施形態において挙げた構成、方法、工程、形状、材料及び数値などはあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料及び数値などを用いてもよい。 An embodiment of the present technology has been specifically described above, but the present invention is not limited to the above-described embodiment, and various modifications are possible based on the technical idea of the present invention. . In addition, the configurations, methods, processes, shapes, materials, numerical values, etc., given in the above-described embodiments are merely examples, and if necessary, different configurations, methods, processes, shapes, materials, numerical values, etc. may be used. good too.

例えば3個以上のロッドレンズを直列に配置するようにしてもよい。この場合、間隙を複数形成して各間隔に対応する位置に取光口を設けるようにしてもよい。複数の取光口を形成する場合、各取光口に対して感度波長の異なる複数の光量センサを設置してもよい。さらに、本発明は、半導体露光装置に限らず、照度分布均一化にロッドレンズを用いる装置に対して適用することができる。例えば、フォトマスクを基板に密着させるコンタクト露光装置や、レチクルを用いないダイレクト露光装置にて本発明を使用して光量をモニターすることができる。さらに、光源はUVランプに限定せず、例えばLED光源を用いても良い。 For example, three or more rod lenses may be arranged in series. In this case, a plurality of gaps may be formed and a light intake opening may be provided at a position corresponding to each gap. When forming a plurality of light intake openings, a plurality of light amount sensors having different sensitivity wavelengths may be installed for each light intake opening. Furthermore, the present invention can be applied not only to semiconductor exposure apparatuses, but also to apparatuses using rod lenses for making the illuminance distribution uniform. For example, the present invention can be used to monitor the amount of light in a contact exposure apparatus that brings a photomask into close contact with a substrate or a direct exposure apparatus that does not use a reticle. Furthermore, the light source is not limited to a UV lamp, and an LED light source, for example, may be used.

W・・・基板、G1,G2,G3・・・間隙、1・・・光源、2・・・照明光学系、
3・・・レチクル、11a,11b・・・ロッドレンズ、12・・・光量センサ、
13・・・遮光板、16・・・ロッドレンズホルダ、17・・・取光口、18・・・電源
W... substrate, G1, G2, G3... gap, 1... light source, 2... illumination optical system,
3 Reticle 11a, 11b Rod lens 12 Light sensor
13... light shielding plate, 16... rod lens holder, 17... light intake port, 18... power supply

Claims (4)

光源と、前記光源の光を照射する光学系を有し、
前記光学系は、
直列に配置された少なくとも2つのロッドレンズと、
前記少なくとも2つのロッドレンズを収納するロッドレンズホルダと、
前記ロッドレンズホルダの前記少なくとも2つのロッドレンズの端面同士が対向する位置の少なくとも一箇所に形成された取光口と、
前記取光口から出射した光を受光する受光部と
を備え、
前記端面同士が対向する位置に、前記端面同士が当接する側から前記取光口に向かって拡がる間隙を有する露光装置。
Having a light source and an optical system for irradiating light from the light source,
The optical system is
at least two rod lenses arranged in series;
a rod lens holder that houses the at least two rod lenses;
a light intake opening formed in at least one position where the end surfaces of the at least two rod lenses of the rod lens holder face each other;
a light-receiving portion that receives light emitted from the light-receiving opening;
with
An exposure device having, at a position where the end faces face each other, a gap extending from a side where the end faces contact each other toward the light intake opening.
前記間隙の拡がっている側の幅が1mm以下である請求項1に記載の露光装置。 2. An exposure apparatus according to claim 1, wherein the widening side of said gap has a width of 1 mm or less. 前記取光口がスリット状の開口であり、
前記開口から出射される線状光が入射され、スポット光を前記受光部に対して出射するライトガイドを備える請求項1に記載の露光装置。
The light intake is a slit-shaped opening,
2. The exposure apparatus according to claim 1, further comprising a light guide into which linear light emitted from said opening is incident and which emits spot light to said light receiving section.
前記ロッドレンズホルダの照明光出射側の端部に近接して可動遮光板が配置された請求項1に記載の露光装置。 2. The exposure apparatus according to claim 1, wherein a movable light shielding plate is arranged close to the end of the rod lens holder on the side from which the illumination light is emitted .
JP2018243033A 2018-12-26 2018-12-26 Exposure device Active JP7198659B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018243033A JP7198659B2 (en) 2018-12-26 2018-12-26 Exposure device
TW108130421A TWI791125B (en) 2018-12-26 2019-08-26 Exposure device
KR1020190105366A KR102683743B1 (en) 2018-12-26 2019-08-27 Optical device and exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018243033A JP7198659B2 (en) 2018-12-26 2018-12-26 Exposure device

Publications (2)

Publication Number Publication Date
JP2020106603A JP2020106603A (en) 2020-07-09
JP7198659B2 true JP7198659B2 (en) 2023-01-04

Family

ID=71448955

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018243033A Active JP7198659B2 (en) 2018-12-26 2018-12-26 Exposure device

Country Status (3)

Country Link
JP (1) JP7198659B2 (en)
KR (1) KR102683743B1 (en)
TW (1) TWI791125B (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033259A (en) 2000-07-17 2002-01-31 Nikon Corp Method and device for projection alignment, and illuminating optical device
JP2003243279A (en) 2002-02-13 2003-08-29 Nikon Corp Drive device, stage device, exposure method and aligner
JP2003297744A (en) 2003-04-25 2003-10-17 Nikon Corp Aligner
JP2004363589A (en) 2003-05-30 2004-12-24 Asml Netherlands Bv Lithography apparatus
JP2005032909A (en) 2003-07-10 2005-02-03 Fuji Photo Film Co Ltd Lighting optical system and aligner using it
JP2005233927A (en) 2003-07-02 2005-09-02 Iwasaki Electric Co Ltd Light source apparatus and light quantity monitor using it
JP2007163358A (en) 2005-12-15 2007-06-28 Iwasaki Electric Co Ltd Light quantity monitor and light source device therewith
JP2009130071A (en) 2007-11-22 2009-06-11 Canon Inc Illumination optical system, exposure apparatus, and method of manufacturing device
CN107966882A (en) 2017-08-10 2018-04-27 上海微电子装备(集团)股份有限公司 Exposure sources and exposure method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195348A (en) 2003-12-26 2005-07-21 Nikon Corp Illumination optical apparatus
JP2006243680A (en) * 2004-03-22 2006-09-14 Fuji Photo Film Co Ltd Pattern forming process
JP2007041239A (en) * 2005-08-02 2007-02-15 Fujifilm Corp Method for producing color filter, the color filter and liquid crystal display
JP6395968B2 (en) * 2016-03-01 2018-09-26 三菱電機株式会社 Image reading device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002033259A (en) 2000-07-17 2002-01-31 Nikon Corp Method and device for projection alignment, and illuminating optical device
JP2003243279A (en) 2002-02-13 2003-08-29 Nikon Corp Drive device, stage device, exposure method and aligner
JP2003297744A (en) 2003-04-25 2003-10-17 Nikon Corp Aligner
JP2004363589A (en) 2003-05-30 2004-12-24 Asml Netherlands Bv Lithography apparatus
JP2005233927A (en) 2003-07-02 2005-09-02 Iwasaki Electric Co Ltd Light source apparatus and light quantity monitor using it
JP2005032909A (en) 2003-07-10 2005-02-03 Fuji Photo Film Co Ltd Lighting optical system and aligner using it
JP2007163358A (en) 2005-12-15 2007-06-28 Iwasaki Electric Co Ltd Light quantity monitor and light source device therewith
JP2009130071A (en) 2007-11-22 2009-06-11 Canon Inc Illumination optical system, exposure apparatus, and method of manufacturing device
CN107966882A (en) 2017-08-10 2018-04-27 上海微电子装备(集团)股份有限公司 Exposure sources and exposure method

Also Published As

Publication number Publication date
TWI791125B (en) 2023-02-01
KR20200080117A (en) 2020-07-06
JP2020106603A (en) 2020-07-09
KR102683743B1 (en) 2024-07-11
TW202024798A (en) 2020-07-01

Similar Documents

Publication Publication Date Title
JP4555847B2 (en) Angle-resolved spectroscopic lithography characterization method and device
JP4660533B2 (en) Scatterometer and focus analysis method
JP4787232B2 (en) Measuring method, inspection apparatus, and lithography apparatus
WO1999002977A1 (en) Device and method for inspecting surface
TWI383269B (en) An optical focus sensor, an inspection apparatus and a lithographic apparatus
KR100623260B1 (en) Lithographic apparatus and device manufacturing method
JP2011145232A5 (en)
KR20080087734A (en) Method of forming a substrate for use in calibrating a metrology tool, calibration substrate and metrology tool calibration method
KR20110139138A (en) Catadioptric illumination system for metrology
JP5112385B2 (en) Particle detection on patterning devices with arbitrary patterns
JP7198659B2 (en) Exposure device
JP6917751B2 (en) Drawing device
TWI397780B (en) Exposure apparatus, exposure method, and device fabrication method
JPH09189520A (en) Position detection device
TWI539246B (en) Drawing apparatus
TW202202829A (en) Contaminant analyzing metrology system, lithographic apparatus, and methods thereof
JP4521548B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
KR20200041779A (en) Foreign substance detection apparatus, exposure apparatus and manufacturing method of article
JP4883817B2 (en) Inspection apparatus, inspection method, and pattern substrate manufacturing method
TWI815479B (en) Method and apparatus for characterization of a microlithography mask
JP2008118061A5 (en)
JPH11260689A (en) Uniform optical system, pattern tester and pattern testing method therefor
JP2004053972A (en) Apparatus for foreign matter inspection, exposure device mounted with the same device, and exposure method using the same exposure device
JP2022175005A (en) Inspection device
JPH05259020A (en) Projection aligner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211029

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221219

R150 Certificate of patent or registration of utility model

Ref document number: 7198659

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150