JP2002323404A - Surface inspection device - Google Patents

Surface inspection device

Info

Publication number
JP2002323404A
JP2002323404A JP2001128868A JP2001128868A JP2002323404A JP 2002323404 A JP2002323404 A JP 2002323404A JP 2001128868 A JP2001128868 A JP 2001128868A JP 2001128868 A JP2001128868 A JP 2001128868A JP 2002323404 A JP2002323404 A JP 2002323404A
Authority
JP
Japan
Prior art keywords
light
measured
face
irradiation
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001128868A
Other languages
Japanese (ja)
Inventor
Makoto Kai
誠 甲斐
Makoto Horiuchi
誠 堀内
Satoyuki Seki
関  智行
Takeshi Ichibagase
剛 一番ヶ瀬
Shuji Tamaru
修治 田丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2001128868A priority Critical patent/JP2002323404A/en
Publication of JP2002323404A publication Critical patent/JP2002323404A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface inspection device detectable of reflection light with sufficient sensitivity in measuring reflectivity by irradiating light to a reflection mirror formed with a part of a rotary ellipse surface being a surface to be measured and detecting the reflection light. SOLUTION: The end surface of a light guide means 16 for irradiation on the surface to be measured is placed at the more distant focus of the two from the surface to be measured and a light guide means 17 for detection on the surface to be measured is formed around the end surface of the light guide means 16 for irradiation on the surface to be measured. By this, the reflection light can be sufficiently introduced in the detector 14 and this can detect the reflection light detected with sufficient detection sensitivity.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は反射鏡付き光源にお
ける、回転楕円面の一部から形成された反射鏡の集光度
合いを検査する表面検査装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface inspection apparatus for inspecting the degree of convergence of a reflector formed from a part of a spheroid in a light source with a reflector.

【0002】[0002]

【従来の技術】データプロジェクタやプロジェクション
テレビなどに用いられる光源は、アーク長が1.0〜
1.5mmといったショートアークタイプの高圧放電ラ
ンプが用いられている。これらランプは回転放物面や回
転楕円面の一部から形成された反射鏡の焦点位置にアー
ク発光部が設置され、所望の方向に光を照射し利用して
いる。図7にデータプロジェクタにおける照射光学系の
概略を示す。図7における反射鏡1は、楕円の2つの焦
点間を結ぶ直線を回転軸として楕円を回転させた形状の
一部から形成された凹面鏡における凹部を反射面とした
反射鏡1である。反射鏡1に設置されたランプ2は発光
管3と電極4とを備え、電極4間に発生するアーク発光
部が反射鏡1の第一焦点5を含む位置になるようランプ
2が設置される。アーク発光部から放出された光は反射
鏡1の反射面で反射し、反射した光は、第二焦点6に集
光し、凸レンズ7によって平行光に変換され、投写用レ
ンズ8を介してスクリーンに投写される。ここで、第一
焦点5は被測定面から近い方の焦点であり、第二焦点6
は被測定面から遠い方の焦点である。
2. Description of the Related Art Light sources used in data projectors and projection televisions have an arc length of 1.0 to 1.0.
A high pressure discharge lamp of a short arc type such as 1.5 mm is used. In these lamps, an arc light-emitting portion is provided at a focal position of a reflecting mirror formed from a part of a paraboloid of revolution or a part of a spheroid, and irradiates light in a desired direction for use. FIG. 7 shows an outline of an irradiation optical system in the data projector. The reflecting mirror 1 in FIG. 7 is a reflecting mirror 1 in which a concave portion of a concave mirror formed from a part of a shape obtained by rotating an ellipse around a straight line connecting two focal points of the ellipse is used as a reflecting surface. The lamp 2 installed on the reflecting mirror 1 includes an arc tube 3 and an electrode 4, and the lamp 2 is installed such that an arc emitting portion generated between the electrodes 4 is located at a position including the first focal point 5 of the reflecting mirror 1. . The light emitted from the arc light emitting portion is reflected by the reflecting surface of the reflecting mirror 1, and the reflected light is condensed at the second focal point 6, is converted into parallel light by the convex lens 7, and is converted through the projection lens 8 into the screen. Projected on Here, the first focus 5 is a focus closer to the surface to be measured, and the second focus 6
Is a focus far from the surface to be measured.

【0003】ランプ2から発せられた光を損失なく有効
にスクリーンに投写するためには、光がスクリーン到達
までに透過、反射する光学部品での損失を低減する必要
がある。特に反射鏡1の反射面上の微小凹凸が不慮に生
じていたりすると、光は反射面での反射した後、設計し
た光線軌跡上を進行せずに散乱し、光が有効に利用され
ない。このようなことから、反射鏡1の反射面における
凹凸の仕上がり具合は、ランプ2から出た光を集光する
上で非常に重要である。
In order to effectively project the light emitted from the lamp 2 onto the screen without any loss, it is necessary to reduce the loss in optical components that transmit and reflect the light until it reaches the screen. In particular, if minute irregularities on the reflecting surface of the reflecting mirror 1 are inadvertently generated, the light is reflected on the reflecting surface and then scattered without traveling on the designed ray trajectory, so that the light is not used effectively. For this reason, the finished condition of the irregularities on the reflecting surface of the reflecting mirror 1 is very important in condensing the light emitted from the lamp 2.

【0004】検査対象物に光を照射し、反射してきた光
の強度から検査対象物の表面状態を検査する装置は、例
えば特開平08−110964号公報に開示されてい
る。これは検査対象物から反射してきた反射光の光路を
ビームスプリッタなどで照射光と分岐し、受光部を斜存
させる構成としている。
An apparatus for irradiating an inspection object with light and inspecting the surface state of the inspection object from the intensity of the reflected light is disclosed in, for example, JP-A-08-110964. In this configuration, the optical path of the reflected light reflected from the inspection object is branched from the irradiation light by a beam splitter or the like, and the light receiving unit is obliquely disposed.

【0005】[0005]

【発明が解決しようとする課題】検査対象物が図7のよ
うな楕円を回転させた形状をもつ反射鏡1の場合、光は
第二焦点6の位置に集光するため、反射鏡1の反射面に
おける凹凸の仕上がりを検査する装置は、例えば図8の
ような構成になる。光源9から照射された光は、凸レン
ズ10で平行光に変換され、ビームスプリッタ11を通
過し、凸レンズ7に照射される。凸レンズ7に照射され
た光は、反射鏡1の第二焦点6の位置に絞り口がくるよ
うに配置された絞り12の絞り口を通過するように、凸
レンズ7で絞られ、反射鏡1の反射面に照射される。反
射鏡1の被測定面において反射した光は、再び絞り12
の絞り口を通過し、凸レンズ7において平行光に変換さ
れ、ビームスプリッタ11に戻ってくる。戻ってきた光
はビームスプリッタ11において進む向きを変化させら
れ、凸レンズ13に入射する。凸レンズ13に入射した
平行光は、凸レンズ13によって光検出器につながれた
検出部14に入射し、検出器で測定される。なお、図8
の1’はランプの差し込み穴を示している。
When the object to be inspected is the reflecting mirror 1 having a shape obtained by rotating an ellipse as shown in FIG. An apparatus for inspecting the finish of unevenness on the reflection surface has a configuration as shown in FIG. 8, for example. Light emitted from the light source 9 is converted into parallel light by the convex lens 10, passes through the beam splitter 11, and is emitted to the convex lens 7. The light applied to the convex lens 7 is converged by the convex lens 7 so as to pass through the aperture of the aperture 12 arranged so that the aperture is located at the position of the second focal point 6 of the reflecting mirror 1. The light is applied to the reflecting surface. The light reflected on the surface to be measured of the reflecting mirror 1 returns to the stop 12
, And is converted into parallel light by the convex lens 7 and returns to the beam splitter 11. The returned light has its traveling direction changed in the beam splitter 11 and enters the convex lens 13. The parallel light that has entered the convex lens 13 enters a detection unit 14 connected to a photodetector by the convex lens 13 and is measured by the detector. FIG.
1 ′ indicates a lamp insertion hole.

【0006】図8の場合、凸レンズ7および絞り12が
光学素子として必要となり、反射鏡1の開口面と絞り1
2との距離L1、および、絞り12と凸レンズ7との距
離L2との間の距離の位置合わせの精度が必要となる。
In the case of FIG. 8, the convex lens 7 and the stop 12 are required as optical elements, and the aperture surface of the reflecting mirror 1 and the stop 1
Accuracy of positioning the distance L1 to the lens 2 and the distance L2 to the stop 12 and the convex lens 7 is required.

【0007】また、反射鏡1の反射面が光を散乱させる
ことなく第二焦点6の位置に反射光を集められるかを検
査するため、反射鏡1に照射する光は点光源に近くする
必要がある。そのため絞り12はできるだけ絞ることが
有効である。しかし、絞り12を絞りすぎると反射して
くる光がわずかでも散乱していると、絞り12を通過す
る光量が減り、検出感度が低くなるという問題が発生す
る。
Further, in order to inspect whether or not the reflecting surface of the reflecting mirror 1 can collect the reflected light at the position of the second focal point 6 without scattering the light, the light to be irradiated on the reflecting mirror 1 needs to be close to a point light source. There is. Therefore, it is effective to reduce the aperture 12 as much as possible. However, if the reflected light is slightly scattered when the aperture 12 is too narrow, the amount of light passing through the aperture 12 is reduced, and the detection sensitivity is lowered.

【0008】一方、反射鏡1の反射面の仕上がりを検査
する装置の他の構成として、例えば図9に示すように、
第二焦点6に光源9を設置する方法も考えられる。この
場合、第二焦点6と反射鏡1の開口面との距離が短くな
り、開口部分の径が大きい場合には、第二焦点6と反射
鏡1の開口面との間に、照射光および反射光が透過でき
る寸法のビームスプリッタ11を設置することが空間的
に困難となる。図9は反射鏡1の開口面と第二焦点6と
の距離が十分にとれない場合であり、小さな寸法のビー
ムスプリッタ11しか設置できず、反射鏡の一部の反射
面からのみの反射光しか検出できない様子を示してい
る。
On the other hand, as another configuration of the apparatus for inspecting the finish of the reflecting surface of the reflecting mirror 1, for example, as shown in FIG.
A method of installing the light source 9 at the second focal point 6 is also conceivable. In this case, the distance between the second focal point 6 and the opening surface of the reflecting mirror 1 becomes short, and when the diameter of the opening portion is large, the irradiation light and the It becomes spatially difficult to install the beam splitter 11 having a size capable of transmitting the reflected light. FIG. 9 shows a case where the distance between the opening surface of the reflecting mirror 1 and the second focal point 6 cannot be sufficiently set, only the beam splitter 11 having a small size can be installed, and reflected light only from a part of the reflecting surface of the reflecting mirror. This shows a state in which only detection can be performed.

【0009】本発明は、回転楕円面の一部から形成され
た反射鏡1の反射面(以降、被測定面と称す)に照射光
を照射し、反射してくる反射光を検出して被測定面の集
光度合いを測定する表面検査装置において、反射光を十
分な検出感度で検出できる装置を提供することを目的と
する。
The present invention irradiates a reflecting surface (hereinafter referred to as a measured surface) of a reflecting mirror 1 formed from a part of a spheroid with irradiation light, detects reflected light, and detects reflected light. It is an object of the present invention to provide a surface inspection device that measures the degree of light collection on a measurement surface and that can detect reflected light with sufficient detection sensitivity.

【0010】[0010]

【課題を解決するための手段】前記課題を解決するため
に、請求項1に係る発明は、光源と、検出器と、光源か
ら出力された光を被測定面に導く照射光用導光手段と、
被測定面において反射した光を検出器に導く検出光用導
光手段とを備え、被測定面が、楕円の2つの焦点間を結
ぶ直線を回転軸として楕円を回転させた形状の一部を利
用した凹面鏡の凹の面であり、被測定面の側における照
射光用導光手段の端面が、被測定面における2つの焦点
のうちで被測定面から遠い方の焦点に設置されており、
被測定面の側における検出光用導光手段の端面が、被測
定面の側における照射光用導光手段の端面の周囲に形成
された表面検査装置である。
According to a first aspect of the present invention, there is provided a light source, a detector, and a light guiding means for illuminating light for guiding light output from the light source to a surface to be measured. When,
Light detection means for guiding light reflected on the surface to be measured to the detector, wherein the surface to be measured has a part of a shape obtained by rotating the ellipse about a straight line connecting two focal points of the ellipse as a rotation axis. The concave surface of the concave mirror used, the end face of the light guide means for irradiation light on the side of the surface to be measured is installed at a focal point farthest from the surface to be measured among two focal points on the surface to be measured,
This is a surface inspection apparatus in which the end face of the light guide means for detection light on the side of the measured surface is formed around the end face of the light guide means for irradiation light on the side of the measured face.

【0011】被測定面における2つの焦点のうちで被測
定面から遠い方の焦点に照射光用導光手段の端面を配置
し、照射光用導光手段の端面の周囲に検出光用導光手段
の端面を設置することにより、照射光を絞るために従来
必要であった遠い方の焦点の位置の絞りがなくなる。絞
りがなくなることによって、被測定面から反射されてく
てる光が絞り部分でカットされることがなくなり、検出
器に十分な光を入射させることができ、検出感度を向上
できる。
The end face of the irradiation light guiding means is disposed at a focal point farthest from the measured surface among the two focal points on the measured surface, and the detection light guiding means is provided around the end face of the irradiation light guiding means. By providing the end face of the means, the distant focus position conventionally required for reducing the irradiation light is eliminated. By eliminating the stop, the light reflected from the surface to be measured is not cut at the stop, and sufficient light can be incident on the detector, and the detection sensitivity can be improved.

【0012】請求項2に係る発明は、請求項1に係る発
明において、被測定面の側における照射光用導光手段の
端面が被測定面の側における検出光用導光手段の端面と
同一平面上に形成された表面検査装置である。
According to a second aspect of the present invention, in the first aspect, the end face of the irradiation light guiding means on the side of the measured surface is the same as the end face of the detection light guiding means on the measured surface side. This is a surface inspection device formed on a flat surface.

【0013】請求項3に係る発明は、請求項1に係る発
明において、被測定面の側における照射光用導光手段の
端面が曲面状であって、かつ、被測定面の側における検
出光用導光手段の端面に対して隆起した表面検査装置で
ある。照射光用導光手段の端面を曲面状に隆起させるこ
とによって、照射光の広がり角度を大きくすることがで
き、被測定面全面に照射光を照射できる。
According to a third aspect of the present invention, in the first aspect of the present invention, the end face of the light guide means for irradiation light on the side of the surface to be measured is curved and the detection light on the side of the surface to be measured is detected. It is a surface inspection device which is raised with respect to the end face of the light guide means for use. By bulging the end surface of the irradiation light guide means into a curved shape, the spread angle of the irradiation light can be increased, and the entire surface to be measured can be irradiated with the irradiation light.

【0014】請求項4に係る発明は、請求項1から請求
項3までのいずれか一項に係る発明において、照射光用
導光手段から照射された光の配光を調整する遮光手段を
備えた表面検査装置である。遮光手段を設けることによ
り、被測定面の部分的な位置の反射光の検出ができ、被
測定面の部分的な表面検査が可能となる。
According to a fourth aspect of the present invention, there is provided any one of the first to third aspects of the present invention, further comprising a light shielding means for adjusting a light distribution of light emitted from the irradiation light guiding means. Surface inspection device. By providing the light shielding means, reflected light at a partial position of the measured surface can be detected, and a partial surface inspection of the measured surface can be performed.

【0015】請求項5に係る発明は、請求項4に係る発
明において、遮光手段が可動である表面検査装置であ
る。
A fifth aspect of the present invention is the surface inspection apparatus according to the fourth aspect, wherein the light shielding means is movable.

【0016】請求項6に係る発明は、検出光用導光手段
が複数あって、その複数の検出光用導光手段が照射光用
導光手段を中心として周状に形成されており、光の強度
を測定する検出器が各検出光用導光手段に少なくとも一
つ設置された表面検査装置である。複数の検出光用導光
手段を照射光用導光手段を中心として周状に形成するこ
とで、照射光用導光手段から周囲側に向かっての光の強
度分布を把握することができ、分布の様子から被測定面
の局所的な集光度合いを評価することが可能となる。
According to a sixth aspect of the present invention, there are provided a plurality of light guiding means for detecting light, and the plurality of light guiding means for detecting light are formed circumferentially around the light guiding means for irradiation light. This is a surface inspection device in which at least one detector for measuring the intensity of the light is installed in each light guide means for detection light. By forming a plurality of light guide means for detection light in a circumferential shape around the light guide means for irradiation light, it is possible to grasp the intensity distribution of light from the light guide means for irradiation light toward the surrounding side, It is possible to evaluate the degree of local light focusing on the surface to be measured from the state of distribution.

【0017】請求項7に係る発明は、請求項1から請求
項6までのいずれかに係る発明において、照射光用導光
手段と検出光用導光手段とのうち少なくとも一つが光フ
ァイバである表面検査装置である。
According to a seventh aspect of the present invention, in any one of the first to sixth aspects, at least one of the irradiation light guiding means and the detection light guiding means is an optical fiber. It is a surface inspection device.

【0018】[0018]

【発明の実施の形態】本発明の、表面検査装置の実施の
形態について図面を参照しながら説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a surface inspection apparatus according to the present invention will be described with reference to the drawings.

【0019】(実施の形態1)図1は本発明における表
面検査装置の構成図を示したものである。出力が安定し
た光源9から供給される照射光を照明光用導光手段とし
て用いた光ファイバ(以降、照射光用光ファイバ16と
称す)を通じて被測定面である反射鏡1に照射する。こ
こで、反射鏡1とは、開いた楕円における2つの焦点間
を結ぶ直線を回転軸として、開いた楕円を回転させた形
状を有した凹面鏡であり、被測定面は凹面鏡の凹面であ
る。被測定面において反射してきた反射光は検出光用導
光手段として用いた光ファイバ(以降、検出光用光ファ
イバ17と称す)に導かれ、検出器14において反射光
の強度を測定される。なお、なお、図8の1‘はランプ
の差し込み穴を示している。
(Embodiment 1) FIG. 1 shows a configuration diagram of a surface inspection apparatus according to the present invention. Irradiation light supplied from the light source 9 whose output is stabilized is irradiated to the reflection mirror 1 which is a surface to be measured through an optical fiber (hereinafter, referred to as an irradiation light optical fiber 16) used as a light guiding means for illumination light. Here, the reflecting mirror 1 is a concave mirror having a shape obtained by rotating an open ellipse around a straight line connecting two focal points of the open ellipse as a rotation axis, and the surface to be measured is a concave surface of the concave mirror. The reflected light reflected on the surface to be measured is guided to an optical fiber (hereinafter, referred to as an optical fiber 17 for detection light) used as a light guiding means for detection light, and the detector 14 measures the intensity of the reflected light. In addition, 1 'of FIG. 8 has shown the insertion hole of a lamp.

【0020】この構成において、照射光用光ファイバ1
6の端面と検出光用光ファイバ17の端面は、照射光用
光ファイバ16の端面が中央側、検出光用光ファイバ1
7の端面が周囲側となる同心円状の同一平面を形成し、
その平面上における照射光用光ファイバ16の端面が被
測定面の第二焦点(被測定面における2つの焦点のうち
で被測定面から遠い方の焦点)を含む位置に設置されて
いる。ここで、照射光用光ファイバ16と検出光用光フ
ァイバ17とは、光ファイバを束ねて形成されており、
それぞれの光ファイバの束が束ねられて光源9と検出器
14とに接続されている。
In this configuration, the optical fiber for irradiation light 1
6 and the end face of the optical fiber 17 for detection light, the end face of the optical fiber 16 for irradiation light is on the center side, and the end face of the optical fiber
7 form a concentric coplanar surface with the end face on the periphery side,
The end face of the irradiation light optical fiber 16 on the plane is set at a position including the second focus of the measured surface (the one of the two focuses on the measured surface that is farthest from the measured surface). Here, the irradiation light optical fiber 16 and the detection light optical fiber 17 are formed by bundling optical fibers,
Each bundle of optical fibers is bundled and connected to the light source 9 and the detector 14.

【0021】図2(a)に照射光用光ファイバ16と検
出光用光ファイバ17との端面の様子を示す。同心円状
の中央側が照射光用光ファイバ16の端面で、周囲側が
検出光用光ファイバの端面17である。各部寸法は照射
光用光ファイバ16の端面の直径D1はφ3mm、検出
光用光ファイバ17の端面の直径D2はφ7mmであ
る。
FIG. 2A shows the state of the end face of the optical fiber 16 for irradiation light and the optical fiber 17 for detection light. The concentric center side is the end face of the irradiation light optical fiber 16 and the surrounding side is the end face 17 of the detection light optical fiber. The diameter D1 of the end face of the optical fiber 16 for irradiation light is φ3 mm, and the diameter D2 of the end face of the optical fiber 17 for detection light is φ7 mm.

【0022】図2(b)に被測定面の凹凸による光路の
違いを示す。反射鏡1の開口の寸法L3はφ68mmで
ある。起点位置Oから反射鏡1の第一焦点5までの距離
L4は12mm、起点位置Oから第二焦点6までの距離
L5は92mm、反射鏡1の開口面と照射光用光ファイ
バ16の端面との距離L6は38mmである。ここで、
第一焦点5は、被測定面における2つの焦点のうちで被
測定面から近い方の焦点である。
FIG. 2B shows the difference in the optical path due to the unevenness of the surface to be measured. The dimension L3 of the opening of the reflecting mirror 1 is φ68 mm. The distance L4 from the starting position O to the first focal point 5 of the reflecting mirror 1 is 12 mm, the distance L5 from the starting position O to the second focal point 6 is 92 mm, and the distance between the opening surface of the reflecting mirror 1 and the end surface of the optical fiber 16 for irradiation light. Is 38 mm. here,
The first focus 5 is a focus closer to the measured surface among the two focuses on the measured surface.

【0023】図2(b)において、照射光用光ファイバ
16の端面から発せられた照射光を追ってみる。第二焦
点6から発せられた照射光は、被測定面において散乱が
なければ基本的には同じ第二焦点6に戻ってくる。しか
し、実用的にはそのような例は少なく、いくらかの散乱
が発生する。発せられた光aは理想的には被測定面部位
Aで散乱なく反射し、被測定面部位Bで散乱なく反射
し、第二焦点位置6に戻る(実線で表示)。しかし、被
測定面部位Bにおいて表面の微小な凹凸により散乱する
場合、発せられた光aは被測定面部位Bにおいてその後
光a’となり第二焦点5には戻らない。このような散乱
が、被測定面内各部で生じている場合、同心円状周囲側
に検出光用光ファイバ17の端面を設置することで、散
乱して反射してきた検出光を検出することができる。つ
まり、被測定面の各部いずれにおいても散乱が生じない
鏡面の場合は、反射光はすべて照射光用光ファイバ16
の端面に戻り検出光は理想的にはゼロである。一方、散
乱が少しでも生じると、同心円状周辺側の検出光用光フ
ァイバ17の端面には強い反射光が検出され、被測定面
の散乱の程度が大きくなるにつれ、限られた検出光用光
ファイバ17の端面の面積内に戻ってくる検出光の光量
は少なくなっていく。すなわち、直線反射率の相対値と
検査装置照度との関係の概略図は図3のようになる。こ
こで、直線反射率の相対値とは、照射光用光ファイバ1
6から照射された光が、第二焦点6に戻ってくる割合を
示す相対的な値であり、照射光がすべて照射光用光ファ
イバ16に戻ってきたときはゼロとなる。なお、図3の
aとbとに示すように、同一の検査装置照度において直
線反射率の相対値が良いものと悪いものが存在する。こ
の場合は、照射光用光ファイバ16の位置を少し動かす
ことができる構造にすることで、aの場合は検査装置照
度が急激に変化するのに対してbの場合はなだらかに変
化するので、aとbとを区別できる。
In FIG. 2B, the irradiation light emitted from the end face of the irradiation light optical fiber 16 will be traced. Irradiation light emitted from the second focal point 6 returns to the basically same second focal point 6 if there is no scattering on the surface to be measured. However, in practice, such examples are few and some scattering occurs. The emitted light a is ideally reflected at the measured surface portion A without scattering, reflected at the measured surface portion B without scattering, and returns to the second focal position 6 (indicated by a solid line). However, in the case where the light a is scattered due to minute irregularities on the surface of the surface B to be measured, the emitted light a becomes light a ′ at the surface B of the measurement surface and does not return to the second focal point 5. When such scattering occurs in each part in the surface to be measured, by installing the end face of the optical fiber for detection light 17 on the concentric peripheral side, it is possible to detect the detection light that has been scattered and reflected. . In other words, in the case of a mirror surface in which scattering does not occur in any part of the surface to be measured, all the reflected light is emitted from the irradiation optical fiber 16.
And the detection light is ideally zero. On the other hand, if any scattering occurs, strong reflected light is detected at the end face of the detection light optical fiber 17 on the concentric peripheral side, and as the degree of scattering on the surface to be measured increases, the amount of detection light limited. The amount of detection light returning within the area of the end face of the fiber 17 decreases. That is, a schematic diagram of the relationship between the relative value of the linear reflectance and the illuminance of the inspection apparatus is as shown in FIG. Here, the relative value of the linear reflectance refers to the irradiation light optical fiber 1.
This is a relative value indicating the rate at which the light emitted from 6 returns to the second focal point 6, and becomes zero when all of the irradiation light returns to the optical fiber 16 for irradiation light. As shown in FIGS. 3A and 3B, there are a case where the relative value of the linear reflectance is good and a case where the relative value of the linear reflectivity is bad at the same inspection device illuminance. In this case, by adopting a structure in which the position of the optical fiber 16 for irradiation light can be slightly moved, the illuminance of the inspection device changes abruptly in the case of a, whereas it changes gently in the case of b. a and b can be distinguished.

【0024】ところで、照射光用光ファイバ16の端面
の大きさは、スクリーンに投写されるまでの投写光学系
によって定められる利用したい光の取り込み角度によっ
て決定されるものである。得られた光の強度の判断は、
反射性能の基準となる被測定対象を用意し、それとの相
対比較で行なう。図4は本実施の形態1にの構成におけ
る表面検査装置での測定照度に対する実際のスクリーン
投写時の照度をグラフ化したものである。本検査装置で
の測定値と投写時の照度がほぼ比例相関となることが確
認でき、本検査装置を利用することによって反射鏡1に
おけるスクリーン投写の良し悪しを予測できる。
By the way, the size of the end face of the irradiation light optical fiber 16 is determined by a light take-in angle desired by the projection optical system until it is projected on the screen. The judgment of the intensity of the obtained light is
An object to be measured as a reference of the reflection performance is prepared, and the measurement is performed by relative comparison. FIG. 4 is a graph showing the illuminance at the time of actual screen projection with respect to the illuminance measured by the surface inspection apparatus in the configuration according to the first embodiment. It can be confirmed that the measured value of the present inspection apparatus and the illuminance at the time of projection have a substantially proportional correlation, and the use of the present inspection apparatus can predict the quality of the screen projection on the reflecting mirror 1.

【0025】なお、同心円状に配置するのは被測定面が
回転面であるためで、被測定面上の各部から反射してき
た光を均等に受光しやすくするためである。また、大き
く拡散して反射してきた光を選択的に検出できないよう
に検出光用光ファイバ17の端面の径を適切に決定した
り、あるいは、少なく拡散して反射してきた光を検出で
きるように照射光用光ファイバ16の端面の径を適切に
小さくすることで、多様な条件に応じた被測定面の表面
検査が可能となる。
The concentric arrangement is used because the surface to be measured is a rotating surface, and is to make it easier to uniformly receive light reflected from each part on the surface to be measured. Further, the diameter of the end face of the optical fiber for detection light 17 is appropriately determined so that the light that has been diffused and reflected cannot be selectively detected, or the light that has been diffused and reflected less can be detected. By appropriately reducing the diameter of the end surface of the irradiation light optical fiber 16, the surface inspection of the surface to be measured according to various conditions becomes possible.

【0026】本実施の形態は、被測定面における2つの
焦点のうちで被測定面から遠い方に焦点に照射光用光フ
ァイバ16の端面を配置し、照射光用光ファイバ16の
端面の周囲に検出光用光ファイバ17の端面を設置した
構成である。この構成により、照射光を絞るために第二
焦点6の位置に従来例の図8で必要であった絞りが必要
なくなる。絞りがなくなることによって、被測定面から
反射される光が絞り部分でカットされることがなくな
り、検出器14に十分な光を入射させることができ、検
出感度が向上できる。また、同心円状に検出光用光ファ
イバ17を設置することにより図9で課題となった空間
的狭さも不問となる。
In the present embodiment, the end face of the irradiation light optical fiber 16 is arranged at the one of the two focal points on the measured surface that is farther from the measured surface. In this configuration, the end face of the optical fiber 17 for detection light is installed. This configuration eliminates the need for the stop required in FIG. 8 of the conventional example at the position of the second focal point 6 to stop the irradiation light. By eliminating the stop, the light reflected from the surface to be measured is not cut at the stop, and sufficient light can be made incident on the detector 14, and the detection sensitivity can be improved. Further, by arranging the optical fibers 17 for detection light in a concentric manner, the spatial narrowness which has been a problem in FIG. 9 does not matter.

【0027】(実施の形態2)照射光用光ファイバ16
の端面から照射される光の配光が問題となる場合があ
る。図5は図2の構成において例えば用意した光ファイ
バの照射配光角が40°だった場合に被測定面が照射さ
れる範囲を示したものである。これでは被測定面全面に
おける集光度合いを検査したい場合に照射されない面が
発生してしまう。このような場合は、図6に示すように
照射光用光ファイバ16の端面を検出光用光ファイバ1
7の端面に対し隆起した椀状の曲面を形成するようにす
ればよい。各ファイバ一本の配光角が狭角であっても各
ファイバ端部の方向を椀状に配置することで被測定面全
面に照射光を照射できるようになる。さらに、照射角度
を精密にコントロールしたい場合は、図6に示すように
反射鏡1の開口面に開口径を制御する遮光手段18を取
り付けても良い。図6のような構成にすることで被測定
面の検査したい部位を特定して検査することも可能とな
る。
(Embodiment 2) Optical fiber 16 for irradiation light
There is a case where the light distribution of the light emitted from the end face of the light source becomes a problem. FIG. 5 shows a range in which the measured surface is irradiated when the irradiation light distribution angle of the prepared optical fiber is 40 ° in the configuration of FIG. In this case, when it is desired to inspect the degree of convergence on the entire surface to be measured, a surface that is not irradiated occurs. In such a case, as shown in FIG. 6, the end face of the irradiation light optical fiber 16 is connected to the detection light optical fiber 1.
A raised bowl-shaped curved surface may be formed with respect to the end face 7. Even if the light distribution angle of each fiber is a narrow angle, arranging the directions of the ends of the fibers in a bowl shape makes it possible to irradiate the entire surface to be measured with irradiation light. Further, when it is desired to precisely control the irradiation angle, a light shielding means 18 for controlling the opening diameter may be attached to the opening surface of the reflecting mirror 1 as shown in FIG. With the configuration as shown in FIG. 6, it is also possible to specify a part to be inspected on the surface to be measured and perform the inspection.

【0028】なお、図6に示した遮光手段18は反射鏡
1の開口面に接するように設したが、照射光用光ファイ
バ16の端面に近接して、照射光を被測定面の一部にの
み照射可能とする遮光手段18を設けることにより、被
測定面の部分的な位置の表面検査が可能となる。また、
遮光手段の開口径および位置を可動とすることにより、
さらに被測定面における表面状態の分布検査を詳細に行
うことができる。
The light shielding means 18 shown in FIG. 6 is provided so as to be in contact with the opening surface of the reflecting mirror 1. By providing the light-shielding means 18 that can irradiate only the surface, the surface inspection of a partial position of the surface to be measured can be performed. Also,
By making the opening diameter and position of the light shielding means movable,
Further, the distribution inspection of the surface state on the surface to be measured can be performed in detail.

【0029】なお、実施の形態1では、照明光用光ファ
イバ16の端面と検出光用光ファイバ17の端面とが同
心円状の同一平面としたが、必ずしも同一平面状に限定
されるものではない。
In the first embodiment, the end face of the optical fiber 16 for illumination light and the end face of the optical fiber 17 for detection light are coplanar and coplanar, but are not necessarily limited to the same plane. .

【0030】また、検出器14として照度計を用いる
と、視感物理量として光強度を検出できるため、プロジ
ェクタなどの映像機器の評価に好適する。
When an illuminometer is used as the detector 14, the light intensity can be detected as a visual physical quantity, which is suitable for evaluation of video equipment such as a projector.

【0031】また、周囲側に配置される検出光用光ファ
イバ17の端面を複数の周状に形成した多分岐ファイバ
とし、各多分岐ファイバに各検出光の強度を測定する検
出器を設置してもよい。各多分岐ファイバの検出光の強
度を測定するための検出器14は複数であっても、1つ
の検出器14をタイムシェアリングしてもよい。各多分
岐ファイバの構成により、より端面中央側に形成された
ファイバ端面から周囲側のファイバ端面に向かって各々
の検出光の強度から強度分布を把握することができ、分
布の様子から被測定面の局所的な集光度合いを評価する
ことが可能となる。
The end face of the detection light optical fiber 17 disposed on the peripheral side is a multi-branch fiber formed in a plurality of circumferential shapes, and a detector for measuring the intensity of each detection light is installed in each multi-branch fiber. You may. A plurality of detectors 14 for measuring the intensity of the detection light of each multi-branch fiber may be provided, or one detector 14 may be time-shared. With the configuration of each multi-branch fiber, it is possible to grasp the intensity distribution from the intensity of each detection light from the fiber end face formed closer to the center of the end face toward the surrounding fiber end face, and from the distribution state, the measured surface Can be evaluated locally.

【0032】また、光源9として単色可変光源を用意す
ると、相対分光反射検査が可能となる。
If a monochromatic variable light source is prepared as the light source 9, a relative spectral reflection inspection can be performed.

【0033】[0033]

【発明の効果】本発明の表面検査装置は、被測定面にお
ける2つの焦点のうちで被測定面から遠い方に焦点に照
射光用導光手段の端面を配置し、照射光用導光手段の端
面の周囲に検出光用導光手段の端面を設置した構成であ
る。この構成により、照射光を絞るために第二焦点の位
置に従来必要であった絞りが必要なくなる。絞りがなく
なることによって、被測定面から反射される光が絞り部
分でカットされることがなくなり、検出器に十分な光を
入射させることができ、検出感度が向上できる。
According to the surface inspection apparatus of the present invention, the end face of the irradiation light guiding means is disposed at the one of the two focal points on the surface to be measured which is farther from the surface to be measured. And the end face of the light guide means for detection light is set around the end face of the light guide means. This configuration eliminates the need for a conventionally required stop at the position of the second focal point to stop the irradiation light. By eliminating the stop, the light reflected from the surface to be measured is not cut at the stop, and sufficient light can be incident on the detector, and the detection sensitivity can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における表面検査装置の構成図FIG. 1 is a configuration diagram of a surface inspection apparatus according to the present invention.

【図2】(a)本発明における照射光用光ファイバと検
出光用光ファイバとの端面の構成図 (b)本発明における表面検査装置の光路の様子を示す
部分拡大図
2A is a configuration diagram of an end face of an optical fiber for irradiation light and an optical fiber for detection light according to the present invention. FIG. 2B is a partially enlarged view showing an optical path of a surface inspection apparatus according to the present invention.

【図3】本発明の実施の形態1における直線反射率の相
対値と検査装置照度との関係を示す図
FIG. 3 is a diagram illustrating a relationship between a relative value of a linear reflectance and illuminance of an inspection device according to the first embodiment of the present invention.

【図4】本発明の実施の形態1における検査照度値とス
クリーン照度値との相関グラフ
FIG. 4 is a correlation graph between an inspection illuminance value and a screen illuminance value according to the first embodiment of the present invention.

【図5】本発明の実施の形態1における表面検査装置の
配光角の説明図
FIG. 5 is an explanatory diagram of a light distribution angle of the surface inspection device according to the first embodiment of the present invention.

【図6】本発明の実施の形態2における開口面に遮光手
段が設置された表面検査装置の部分拡大図
FIG. 6 is a partially enlarged view of a surface inspection apparatus in which light blocking means is provided on an opening surface according to the second embodiment of the present invention.

【図7】プロジェクションシステムにおける照射光学系
の概略図
FIG. 7 is a schematic view of an irradiation optical system in the projection system.

【図8】絞りが存在する従来例を示す図FIG. 8 is a diagram showing a conventional example in which an aperture exists.

【図9】絞りのない従来例を示す図FIG. 9 is a diagram showing a conventional example without a stop.

【符号の説明】[Explanation of symbols]

1 反射鏡 2 ランプ 5 第一焦点 6 第二焦点 9 光源 14 検出器 16 照射光用光ファイバ 17 検出光用光ファイバ 18 遮光手段 DESCRIPTION OF SYMBOLS 1 Reflecting mirror 2 Lamp 5 First focus 6 Second focus 9 Light source 14 Detector 16 Optical fiber for irradiation light 17 Optical fiber for detection light 18 Shielding means

フロントページの続き (72)発明者 関 智行 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 一番ヶ瀬 剛 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 田丸 修治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G065 AB04 AB22 BB02 BB13 BB21 DA05 2G086 GG02 Continuing on the front page (72) Inventor Tomoyuki Seki 1006 Kazuma Kadoma, Osaka Pref. Matsushita Electric Industrial Co., Ltd. 72) Inventor Shuji Tamaru 1006 Kazuma Kadoma, Kadoma City, Osaka Prefecture F-term in Matsushita Electric Industrial Co., Ltd. (reference) 2G065 AB04 AB22 BB02 BB13 BB21 DA05 2G086 GG02

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光源と、 検出器と、 前記光源から出力された光を被測定面に導く照射光用導
光手段と、 前記被測定面において反射した光を前記検出器に導く検
出光用導光手段とを備え、 前記被測定面が、楕円の2つの焦点間を結ぶ直線を回転
軸として前記楕円を回転させた形状の一部を利用した凹
面鏡の凹の面であり、 前記被測定面の側における前記照射光用導光手段の端面
が、前記被測定面における2つの焦点のうちで前記被測
定面から遠い方の焦点に設置されており、 前記被測定面の側における前記検出光用導光手段の端面
が、前記被測定面の側における前記照射光用導光手段の
端面の周囲に形成された表面検査装置。
1. A light source, a detector, irradiation light guiding means for guiding light output from the light source to a surface to be measured, and detection light for guiding light reflected on the surface to be measured to the detector A light guiding means, wherein the surface to be measured is a concave surface of a concave mirror using a part of a shape obtained by rotating the ellipse around a straight line connecting two focal points of the ellipse; An end surface of the irradiation light guiding means on a surface side is provided at a focal point farther from the measured surface out of two focal points on the measured surface, and the detection on the measured surface side is performed. A surface inspection apparatus wherein an end face of the light guiding means for light is formed around an end face of the light guiding means for irradiation light on the side of the surface to be measured.
【請求項2】 前記被測定面の側における前記照射光用
導光手段の端面が、前記被測定面の側における前記検出
光用導光手段の端面と同一平面上に形成された請求項1
に記載の表面検査装置。
2. An end face of the light guide means for irradiation light on the side of the measured surface is formed on the same plane as an end face of the light guide means for detection light on the side of the measured face.
A surface inspection apparatus according to item 1.
【請求項3】 前記被測定面の側における前記照射光用
導光手段の端面が、曲面状であって、かつ、前記被測定
面の側における前記検出光用導光手段の端面に対して隆
起した請求項1に記載の表面検査装置。
3. An end surface of the light guide means for irradiation light on the side of the surface to be measured has a curved surface, and the end surface of the light guide means for detection light on the side of the surface to be measured. The surface inspection device according to claim 1, wherein the surface inspection device is raised.
【請求項4】 前記照射光用導光手段から照射された光
の配光を調整する遮光手段を備えた、請求項1から請求
項3までのいずれか一項に記載の表面検査装置。
4. The surface inspection apparatus according to claim 1, further comprising a light shielding unit that adjusts a light distribution of the light emitted from the irradiation light guiding unit.
【請求項5】 前記遮光手段が可動である、請求項4に
記載の表面検査装置。
5. The surface inspection apparatus according to claim 4, wherein said light shielding means is movable.
【請求項6】 前記検出光用導光手段が複数あって、そ
の複数の検出光用導光手段が前記照射光用導光手段を中
心として周状に形成されており、光の強度を測定する検
出器が各検出光用導光手段に少なくとも一つ設置された
請求項1から請求項5までのいずれか一項に記載の表面
検査装置。
6. A plurality of said light guide means for detecting light, wherein said plurality of light guide means for detecting light are formed circumferentially around said light guide means for irradiating light to measure light intensity. The surface inspection apparatus according to any one of claims 1 to 5, wherein at least one detector is provided for each light guide unit for detection light.
【請求項7】 前記照射光用導光手段と前記検出光用導
光手段とのうち少なくとも一つが光ファイバである請求
項1から請求項6までのいずれか一項に記載の表面検査
装置。
7. The surface inspection apparatus according to claim 1, wherein at least one of the irradiation light guide unit and the detection light guide unit is an optical fiber.
JP2001128868A 2001-04-26 2001-04-26 Surface inspection device Pending JP2002323404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001128868A JP2002323404A (en) 2001-04-26 2001-04-26 Surface inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001128868A JP2002323404A (en) 2001-04-26 2001-04-26 Surface inspection device

Publications (1)

Publication Number Publication Date
JP2002323404A true JP2002323404A (en) 2002-11-08

Family

ID=18977499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001128868A Pending JP2002323404A (en) 2001-04-26 2001-04-26 Surface inspection device

Country Status (1)

Country Link
JP (1) JP2002323404A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441941C (en) * 2003-07-02 2008-12-10 岩崎电气株式会社 Light source device and light monitor used thereof
JP2011515650A (en) * 2007-12-20 2011-05-19 サイマー インコーポレイテッド EUV light source component and its manufacture, use and repair method
JP2015158389A (en) * 2014-02-23 2015-09-03 オムロン株式会社 photoelectric sensor
WO2016151682A1 (en) * 2015-03-20 2016-09-29 国立大学法人 東京大学 Euv light rotating ellipsoidal mirror reflectance measuring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100441941C (en) * 2003-07-02 2008-12-10 岩崎电气株式会社 Light source device and light monitor used thereof
JP2011515650A (en) * 2007-12-20 2011-05-19 サイマー インコーポレイテッド EUV light source component and its manufacture, use and repair method
JP2015135334A (en) * 2007-12-20 2015-07-27 エーエスエムエル ネザーランズ ビー.ブイ. Euv light source components and methods for producing, using and repairing the same
JP2015158389A (en) * 2014-02-23 2015-09-03 オムロン株式会社 photoelectric sensor
WO2016151682A1 (en) * 2015-03-20 2016-09-29 国立大学法人 東京大学 Euv light rotating ellipsoidal mirror reflectance measuring device

Similar Documents

Publication Publication Date Title
JP2716445B2 (en) Diffuse reflectance measurement device for non-contact measurement
JP5388543B2 (en) Appearance inspection device
US9638641B2 (en) Inspection system and inspection illumination device
JP3674504B2 (en) Spectral reflectance measuring apparatus and spectral reflectance measuring method
KR100425412B1 (en) A device for measuring the photometric and colorimetric characteristics of an object
KR100655638B1 (en) Light source and light intensity monitor for the same
JP2001208702A (en) Method and apparatus for inspecting defects
JP2002323404A (en) Surface inspection device
JP3659952B2 (en) Surface defect inspection equipment
JP3871415B2 (en) Spectral transmittance measuring device
KR100372322B1 (en) Inspection device
KR101326204B1 (en) Device and method for measuring thickness of thin film
JP3388285B2 (en) Inspection device
JP2004198416A (en) Instrument for measuring thickness of thin layer
US20030020916A1 (en) Optical detection device
JP2004198244A (en) Transmissivity measuring instrument and absolute reflectivity measuring instrument
CN212722577U (en) Optical imaging device and optical imaging equipment
JPH08278259A (en) Surface inspection apparatus
JPH07146115A (en) Optical sensor
JPH09276224A (en) Ophthalmic device
JP3583772B2 (en) Surface defect inspection equipment
JPH09281054A (en) Method and apparatus for surface inspection of disk
JP2009092481A (en) Lighting device for visual inspection and visual inspection device
JP2005208064A (en) Surface defect inspection device
JP3224859B2 (en) Surface shape inspection system for convex lenses

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050823