JP4592182B2 - 球状曲面の曲率半径測定方法及び装置 - Google Patents

球状曲面の曲率半径測定方法及び装置 Download PDF

Info

Publication number
JP4592182B2
JP4592182B2 JP2000394994A JP2000394994A JP4592182B2 JP 4592182 B2 JP4592182 B2 JP 4592182B2 JP 2000394994 A JP2000394994 A JP 2000394994A JP 2000394994 A JP2000394994 A JP 2000394994A JP 4592182 B2 JP4592182 B2 JP 4592182B2
Authority
JP
Japan
Prior art keywords
image
curved surface
optical system
spherical curved
projection image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000394994A
Other languages
English (en)
Other versions
JP2002195814A (ja
Inventor
茂 林
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2000394994A priority Critical patent/JP4592182B2/ja
Publication of JP2002195814A publication Critical patent/JP2002195814A/ja
Application granted granted Critical
Publication of JP4592182B2 publication Critical patent/JP4592182B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、球状の凸面、球状の凹面もしくは球状物体等の球状曲面の曲率半径を測定する球状曲面の曲率半径測定方法及びその装置に関する。
【0002】
【従来の技術】
ボールベアリング等に用いられる鋼球、ボールペンのペン先等に用いられるセラミックス球、光ディスクシステム等や光通信システム等に用いられるプラスチックまたはガラスボールレンズ、表面張力によって球状曲面を形成する液体表面もしくは膜、その他の球状曲面を有するものについて、その曲率半径を測定する要請は少なからずある。
【0003】
このような要請に対して、従来から、例えば、日本工業規格JIS−B1501(玉軸受用鋼球)に規定されている方法がある。この方法は、測定子の間に鋼球を挟むことによって平均直径及び直径不同並びに真球度を測定するものである。この方法は、測定時の鋼球の変形を極力さけるために、測定圧は3N{306gf}以下と決められている。現在、実際の精密測定での測定圧はその10分の1程度までに小さくすることが可能になっている。
【0004】
また、接触式3次元測定器や非接触式3次元測定器により、被測定球を走査測定して得られる3次元形状データより、曲率半径を求める方法もある。表面張力による液体表面の場合は、接触測定は不可能であるので、写真による形状測定やCCDカメラ等による映像の画像処理による方法で行われている。
【0005】
【発明が解決しようとする課題】
ところで、上述の従来の方法のうち接触式方法は、測定時に測定対象物に接触痕やキズがついたり、測定子の形状や測定圧の違いにより測定値が変化したりする恐れがある。また、3次元測定器による走査測定方法は、用いる装置が複雑高価であると共に、一般的に測定時間も長い。さらに、表面張力によって形成される球状液体表面の曲率半径測定の場合は、測定方法自体が確立されておらず、蓄積誤差が大きくなる画像処理に頼るしかない。
【0006】
本発明は、上述の背景のもとでなされたものであり、球状曲面を有するものであれば、液状物質、固体状物質、透明な物質、あるいは不透明な物質等、材質を問わず、その曲率半径を非接触で、再現性よく正確にかつ簡単・迅速に、さらには簡易な設備で測定することを可能にする球状曲面の曲率半径測定方法及びその装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
上述の課題を解決するための手段として、第1の手段は、
入射光を所定の位置に集光させる集光光学系を用い、この集光光学系によって所定の位置に集光すべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による光学像を観測できる反射光学像観測光学系を用い、
前記集光光学系によって所定の位置に入射光を集光させた状態でこの集光光学系と測定対象たる球状曲面との距離を変えつつ前記反射光学像観測光学系によって前記反射光学像の有無を確認し、前記集光光学系によって前記球状曲面の表面に入射光が集光されたときにこの球状曲面の表面で反射されて形成される反射光学像が前記反射光学像観測光学系によって観測されたときの前記入射光の集光点位置情報に対応する第1の位置情報を求め、
次に、同様にして前記集光光学系と測定対象たる球状曲面との距離を変えつつ前記反射光学像観測光学系によって前記反射光学像の有無を確認し、前記集光光学系によって前記球状曲面の曲率中心に集光されるように進行する光線が前記球状曲面の表面で反射されて形成される反射光学像が前記反射光学像観測光学系によって観測されたときの前記入射光の集光点位置情報に対応する第2の位置情報を求め、
前記第1の位置情報と第2の位置情報とから互いの集光点位置どうしの距離を求めてこれを前記球状曲面の曲率半径として求めることを特徴とする球状曲面の曲率半径測定方法である。
第2の手段は、
入射光を所定の位置に集光させる集光光学系を用い、この集光光学系によって所定の位置に集光すべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による光学像を観測できる反射光学像観測光学系を用い、
前記集光光学系によって所定の位置に入射光を集光させた状態でこの集光光学系と測定対象たる球状曲面との距離を変えつつ前記反射光学像観測光学系によって前記反射光学像の有無を確認し、前記集光光学系によって前記球状曲面の表面に入射光が集光されたときにこの球状曲面の表面で反射されて形成される反射光学像が前記反射光学像観測光学系によって観測されたときの前記集光光学系と球状曲面との距離を測定してこれを第1の距離とし、
次に、同様にして前記集光光学系と測定対象たる球状曲面との距離を変えつつ前記反射光学像観測光学系によって前記反射光学像の有無を確認し、前記集光光学系によって前記球状曲面の曲率中心に集光されるように進行する光線が前記球状曲面の表面で反射されて形成される反射光学像が前記反射光学像観測光学系によって観測されたときの前記集光光学系と球状曲面との距離を測定してこれを第2の距離とし、
前記第1の距離と第2の距離との差を算出してこれを前記球状曲面の曲率半径として求めることを特徴とする球状曲面の曲率半径測定方法である。
第3の手段は、
所定の位置に投影像を結ばせる投影像結像光学系と、この投影像結像光学系によって所定の位置に投影像を結ぶべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による前記投影像の反射像を観測可能に結像させる反射投影像観測光学系とを用い、
前記投影像結像光学系によって所定の位置に投影像を結ばせた状態で前記投影像結像光学系と測定対象たる球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の表面に前記投影像が結ばれたときにこの球状曲面の表面反射によって形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第1の距離とし、
次に、同様にして前記投影像結像光学系と球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の中心に前記投影像が結ばれるように進行する光線が前記球状曲面の表面で反射されて形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第2の距離とし、
前記第1の距離と第2の距離との差を算出してこれを前記球状曲面の曲率半径として求めることを特徴とする球状曲面の曲率半径測定方法である。
第4の手段は、
所定の位置に投影像を結ばせる投影像結像光学系と、
この投影像結像光学系によって所定の位置に投影像を結ぶべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による前記投影像の反射像を観測可能に結像させる反射投影像観測光学系と、
前記投影像結像光学系によって所定の位置に投影像を結ばせた状態で前記投影像結像光学系と測定対象たる球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の表面に前記投影像が結ばれたときにこの球状曲面の表面反射によって形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第1の距離とするとともに、
前記投影像結像光学系と球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の中心に前記投影像が結ばれるように進行する光線が前記球状曲面の表面で反射されて形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第2の距離とし、
前記第1の距離と第2の距離との差を算出してこれを前記球状曲面の曲率半径として求める距離測定装置とを有することを特徴とする球状曲面の曲率半径測定装置である。
【0008】
上述の第1及び第2の手段は、本発明者らが、次の現象に着目して案出したものである。すなわち、図1の実線で示されるように、集光光学系たる対物レンズ1によって、球状曲面2の曲率中心Oに向けて集光される光線L1が、球状曲面2の表面で反射されたときに、その反射光線L2が入射光線L1と同一経路を逆向きに進行する現象が起こる。これは、図2に示すように、対物レンズ1は理想的には無収差であるので、その焦点に向かって波面は同心球状に収束する。球状曲面2は、球面であるから同心球状波面と同じ形状をしている。従って、対物レンズ1の焦点に、曲率中心を同じくして置いた球状曲面2によって反射された入射波面は、同心球状の波面が乱れることなく対物レンズ1に向けて反射されて戻っていく。この反射波面は、図2(a)、(b)に示されるように、球状曲面2の曲率半径を変化させても、対物レンズ1の焦点と曲率中心Oとが一致していさえすれば、反射(伝播)波面の成分(空間周波数)が異なる外は、曲率中心O(対物レンズ1の焦点)という1点から反射されて戻ってきた波面と何ら変わりなく扱うことができる。つまり、球状曲面の曲率中心を探り当てることができる。
【0009】
また、光軸Aが球状曲面2の中心Oを通る対物レンズ1によって、球状曲面2の表面の点Pに集光された入射光線L1’も点Pによって反射されてL1’と同一経路を逆向きに進行する光線L2’となる現象が起こる。ここで、上記2つの現象を同一の集光光学系で起こさせる場合を考える。そうすると、一方の現象を実現した後、他方の現象を実現するには、集光光学系と球状曲面との距離をこの球状曲面の曲率半径r分だけ変える必要がある。換言すると、一方の現象を実現した後、他方の現象を実現するために変化させた距離がこの球状曲面の曲率半径になる。したがって、それぞれの現象の起こるときの集光光学系と球状曲面との距離を求め、その差(r)を求めることによって、球状曲面の曲率半径rを求めることができる。
【0010】
なお、球状曲面2としては球体20の一部であってもよいことは勿論である。さらに、球状曲面としては、凸状曲面限らず、図3に示されるように凹状曲面であってもよい。また、上述の第3の手段を実施する場合、反射光線L2を検知する方法としては、入射光は透過し、反射光のみを反射するハーフミラー等を用いて反射光を入射光の経路外に導いて適宜の観測手段により観測する方法等を用いることができる。この場合、入射光L1に特徴がない(空間周波数成分に法則性がない)場合には、観測が困難である。そこで、観測を容易にする方法として、入射光L1に、何らかの印(空間周波数成分に変調をかけておく)つけておく方法を用いることができる。
【0011】
すなわち、例えば、対物レンズ1の手前に、入射光L1は透過し、反射光L2のみを反射するハーフミラーやビームスプリッター等を用い、反射光L2を観測系に導いて観測する場合を考える。その場合には、対物レンズ1の結像面と光路差が等しい入射光L1の光源側の位置にマスク(パターンを描いたフィルム)を置き、その背後からコンデンサレンズで光源を絞って、上記マスクに照射する。このマスクに描かれているパターンは背後から照射された光とともに対物レンズ1により球状曲面2に投影される。その際、マスクから球状曲面までの光路では、マスクデータは空間周波数分解(マスクパターンのフーリエ変換)されて入射光線L1にのっている。その入射光L1を対物レンズ1を通して球状曲面2に照射すると、波面と球面がそろっている場合に限り、球状曲面2から反射されて戻ってきた反射光L2には、変調された空間周波数成分がそのまま残っていて、観測系において、マスクパターンの模様を結像させて確認することができる。
【0012】
また、入射光L1として、レーザー光を用いた場合には、入射光L1に特に印(空間周波数成分に変調をかけておく)つけなくても、上述の現象を観測できる。なぜなら、レーザー光特有の「コヒーレント」という特徴が、入射光L1にすでに備わっているからである。レーザー光を光源として用いた場合は、いずれの現象が起きた場合にも、焦点が合っている状態として検出可能である。なお、上述の説明において、入射光L1、反射光L2についての作用は、球状曲面2の点Pに集光された入射光L1’、反射光L2’の場合にもあてはまる。
【0013】
すなわち、第3の手段は、集光光学系として、投影像結像光学系を用いることによって、上述のそれぞれの現象が起きたことを、反射像の形成の有無によって容易に確認できるようにしたものである。これにより、上記現象の確認をレーザ光等のようなコヒーレント光を用いなくても観測可能とすることができる。また、第4の手段は、第3の手段の方法を実施する装置である。
【0014】
上述の手段によれば、球状曲面からの光の反射現象を利用しているので、球状曲面が観測可能な反射を起こすものであれば、透明な材料で構成されている場合でも、不透明な材料構成されている場合でも、いずれでも測定できる。固体でも液体でもよい。勿論、材料の屈折率や反射率等の大小には原理的に左右されない。実用的には、表面の反射率が数%程度あれば、観測可能であるので、ほとんどの材料に適用できる。また、球状曲面は、球体の一部をなす曲面であってもよい。球状曲面の表面は光学的鏡面であることが望ましいが、多少のキズ、汚れ等があっても、上記現象が観測できる程度であれば測定可能である。さらには、非接触であるので、測定対象物を変形させるおそれがない。原理的に集光光学系と観測光学系及び距離測定機構を設けるだけであるので、比較的簡易な装置で実現できる。しかも、比較的単純な処理で求められるので、迅速な測定も可能である。
【0015】
【発明の実施の形態】
(実施例1)
図4は実施例1にかかる球状曲面の曲率半径測定装置の構成を示す図である。以下、図4を参照にしながら実施例1にかかる曲率半径測定方法及び装置を説明する。
【0016】
図4において、光源3から出射された光は、コンデンサレンズ4によって絞られた後、マスク5に照射される。マスク5は、所定の投影パターンが形成されたフィルムであり、上記光源3によってこのマスク5に光照射されたときに生ずる投影パターン情報は光線L0に含まれることになる。この投影パターン情報を含む光線L0は、ビームスプリッタ6を通過後、集光光学系たる対物レンズ1によって集光されて光線L1となって所定の位置に上記投影パターンの像を結像させるようになっている。
【0017】
いま、対物レンズ1によって、投影パターンの像Sが球状曲面2の曲率中心Oに仮想的に結像する状態(球状曲面2がないとした場合に結像する状態)に対物レンズ1を含む光学系の位置を設定する。すなわち、対物レンズ1の光軸Aが曲率中心Oを通り、光線L1の集光点が曲率中心Oとなるようにする。そうすると、投影パターン情報を含む光線L1は、対物レンズ1によって、球状曲面2の曲率中心Oに向けて進行するが、この光線L1が球状曲面2の表面で反射されると、その反射光線L2は入射光線L1と同一経路を逆向きに進行することになる。
【0018】
ビームスプリッタ6は、上記光線L2を反射して、90°進路を変えて上記光線L1の経路から外れた位置で投影パターンの像S’を結像させる。したがって、そのとき、投影パターンの像S’は、接眼レンズ7を通じて観測者Eによって観測することができる。なお、光線L1の集光点が球状曲面2の曲率中心Oからはずれると、投影パターン像S’は観測されない。したがって、上述の状態で投影パターン像S’が観測されるときの対物レンズ1を含む光学系の位置は、曲率中心Oの位置に対応するものである。
【0019】
次に、対物レンズ1を含む光学系を上方に移動させ、対物レンズ1による光線L1の集光点が球状曲面の表面の点Pになるように設定する。すなわち、点Pは、対物レンズ1の光軸Aが球状曲面2の曲率中心Oを通るように設定したとき、その光軸Aが球状曲面の表面と交わる点である。この場合にも、対物レンズ1によって、球状曲面2の表面の点Pに集光された入射光線L1は点Pによって反射されてL1と同一経路を逆向きに進行する光線L2となる現象が起こる。したがって、その場合にも、投影パターンの像S’を接眼レンズ7を通じて観測者Eによって観測することができる。なお、光線L1の集光点が球状曲面2の表面の点Pからはずれると、投影パターン像S’は観測されない。したがって、この状態で投影パターン像S’が観測されるときの対物レンズ1を含む光学系の位置は、点Pの位置に対応するものである。
【0020】
ここで、対物レンズ1を含む光学系の位置座標を測定できるようにしておけば、上記対物レンズ1を含む光学系の位置が曲率中心Oの位置に対応するものであるときの位置座標と、対物レンズ1を含む光学系の位置が点Pの位置に対応するものであるときの位置座標とを測定し、両座標の距離(r)がこの球状曲面の曲率半径rに対応することになる。これにより、球状曲面の曲率半径rを求めることができる。なお、この実施例にかかる装置は、通常の顕微鏡の光学系に少しの変更を施すことによって比較的容易に得ることができる。
【0021】
上述の構成の装置によって、球状曲面として石英ガラスをフッ硝酸でエッチングして形成した凹状の球状曲面の曲率半径を求めた結果は後述する通りであった。なお、このようなエッチングによる球状曲面の形成技術は、マイクロレンズアレイのプロセスなどで実用化されている技術であるので、その製造方法については省略する。
【0022】
(実施例2)
図5は実施例2にかかる球状曲面の曲率半径測定装置の構成を示す図である。以下、図5を参照にしながら実施例2にかかる曲率半径測定方法及び装置を説明する。
【0023】
この実施例の基本構成は、いわゆるCD(コンパクトディスクプレイヤ−)等の光ピックアップ機構のフォーカス制御機構を利用したもので、光ピックアップ機構から、トラック方向のエラー検出機構と追従用アクチュエータ機構とを取り除いたものである。フォーカス制御には像回転方式を採用している。
【0024】
図5において、半導体レーザ30から出たレーザ光は、カップリングレンズ40で平行光に、続くプリズム50で断面形状を円形に整えられる。ビームスプリッタ60を通過してλ/4波長板61を通過、対物レンズ1で集光されて球状曲面2にレーザー光L1が照射される。
【0025】
球状曲面2の表面で、反射されたレーザー光L2は,対物レンズ1を通り、λ/4波長板61を通過する。これにより、レーザー光L2は、λ/2偏光面が回転しているため(λ/4×2回通過)、偏光ビームスプリッタ60で絞り込みレンズ67の方向へ反射される。この後、反射レーザー光線L2は、シリンドリカルレンズ68で非点収差を与えられ、2つの焦線のほぼ中央に同シリンドリカルレンズ68の作用軸に対して45度傾けて設置されたナイフエッジ69により、光検出器70に半円形の光束として検出される。焦点がずれると、この半円形の光束が時計(半時計)方向に回転するので光検出器に入射する光量が変化する。
【0026】
これをAF信号検出71としてメカコントローラ72に出力し、制御回路によりAF制御アクチュエータ73で対物レンズを光軸方向に移動制御して焦点が合うようにする。このとき、同時にフィードバックデータ74としてリアルタイムで対物レンズ変位情報が出力される。したがって、このフォーカス制御機構を利用することにより、球状曲面2の曲率中心Oの位置で焦点が合うときの対物レンズ1の位置から、球状曲面2の表面の点Pの位置で焦点が合う位置までの距離を瞬時に求めることができ、球状曲面の曲率半径rを瞬時に求めることができる。
【0027】
なお、本発明にかかる球状曲面の測定方法及び装置は、他の計測目的で造られた既存の装置であっても、集光光学系を有し、その集光点位置座標等を計測できる機能を有するものであれば、その機能を利用することによって比較的簡単に実現することが可能である。
【0028】
そのような例の1つとして、例えば、非接触深度測定器(例えば、ユニオン光学株式会社製の商品名「HISOMET」)がある。この測定器は、光源からの光を対物レンズに導く光学系に、精密焦点合わせ機構としてターゲットマークおよびスプリットプリズムを組み込み、正しい焦点位置では被検面の鮮明な像の中央にターゲット像が左右のズレなく鮮明に見られ、微妙に焦点がズレると視野内のターゲット像の上下部分が中央で左右にズレて観察される光学原理を採用している。
【0029】
同測定器の測定精度は、x(ステージ面内)、y(ステージ面内)、z(光軸方向)3軸ともに1μmで、本測定方法によると半径が500μmを再現性よく測定することができる。なお測定方法は、まず、球状曲面の中心座標を3軸(x、y、z)で測定し、z値を記録(リセット)して、球状曲面の表面の点Pを1軸(z)調整のみで探す。そのときのz値より曲率半径を決定する。従って、この測定方法によると、x、y(ステージ面内)については、相対座標を読みとるためのマイクロメータ等は必要ない。なお、従来の接触式マイクロゲージによる測定では、加重圧により2〜3μmの測定誤差がでていた。
【0030】
上記測定器によって、玉軸受用鋼球(1mm±0μm、等級5)を測定した結果は、以下の通りであった。曲率半径rn(測定回数n=20)は,最大値rmax=501μm、最小値rmin=500μm、平均値rn=500.05μm、標準偏差σ=0.2μm(3σ=0.7μm)であった。
【0031】
また、マイクロレンズアレイの凹状の球状曲面の曲率半径を測定した結果は、曲率半径rn(測定回数n=10)は,最大値rmax=87μm、最小値rmin=84μm、平均値rn=85.5μm、標準偏差σ=1.0μm(3σ=2.9μm)であった。これは、測定方法(非接触深度測定器による測定)は同じだが、マイクロレンズの凹状曲面の形状のばらつきが玉軸受用剛球(半径1mm)より大きいことが原因であると考えられる。
【0032】
また、上記測定器によって、てフッ素樹脂表面上で表面(界面)張力により球状になっている水滴の曲率半径を測定した結果は以下のとおりであった。なお、上記測定器にはスプリットプリズムとターゲットマークが組み込まれているが、光源に印をつけておくだけでもよい。そこで、この例では、このスプリットプリズムとターゲットマークの変わりに、油性ペンで×印を書いた透明フィルムを置いて測定した。
【0033】
フッ素樹脂上に落とした水滴が、水平方向に直径1.5mmφ程度拡がったものを、対物レンズ(10x)により測定した。測定方法は次の通りである。まず、曲率中心を3軸(x、y、z)で探してz値をリセットし、頂点をz軸の調整により測定してz値を記録。続いて再度曲率中心をz軸の調整により測定してz値を記録し、また頂点を測定してz値を記録。この繰り返しによって、気化して小さくなっていく水滴の様子を、手動測定ながら約5秒間隔で測定できた。中心の座標がミクロン単位でステージ面内方向(x、y)にズレると、接眼レンズ越しに見える×印が中心からズレるので確認できるが、そのような中心座標の水平方向へのズレが確認されなかったので、z軸調整のみで測定した。その結果、曲率半径が975μm、968μm、959μm、951μm、…と縮小していく様子を測定できた。
【0034】
また、他の利用できる測定器として、フィゾー型球面測定用干渉計(例えば、富士写真光機株式会社製の商品名「フィゾー型球面測定用干渉計F−601」等がある)がある。この測定器を利用すると、半径1000μmを再現性よく測定することができる。ガラス表面の垂直入射反射率は4%程度であるが測定感度は良好である。この測定器を利用して、光ファイバーカップリング用ガラスボールレンズ(2mmφ)を測定したところ、曲率半径rn(測定回数n=20)は,最大値rmax=1001μm、最小値rmin=999μm、平均値rn=1000.1μm、標準偏差σ=0.45μm(3σ=1.3μm)であった。なお、従来の接触式マイクロゲージによる測定では、接触痕が残り、加重圧により2〜3μmの測定誤差があった。
【0035】
【発明の効果】
以上詳述したように、本発明は、集光光学系によって、球状曲面の曲率中心に向けて集光される光線が、球状曲面の表面で反射されたときに、その反射光線が入射光線と同一経路を逆向きに進行する現象が起こること、また、光軸が球状曲面の中心を通る集光光学系によって、球状曲面の表面の点に集光された入射光線もその点によって反射され入射光線と同一経路を逆向きに進行する光線となる現象が起こることに着目して、両者の現象を観測することによって、両者の集光点の位置情報を得て両位置の距離を求め、この距離を球状曲面の曲率半径として求めることを特徴とするもので、これにより、球状曲面を有するものであれば、液状物質、固体状物質、透明な物質、あるいは不透明な物質等、材質を問わず、その曲率半径を非接触で、再現性よく正確にかつ簡単・迅速に、さらには簡易な設備で測定することを可能にする球状曲面の曲率半径測定方法及びその装置を得ているものである。
【図面の簡単な説明】
【図1】本発明にかかる球状曲面の曲率半径測定方法の原理説明図である。
【図2】本発明にかかる球状曲面の曲率半径測定方法の原理説明図である。
【図3】本発明にかかる球状曲面の曲率半径測定方法の原理説明図である。
【図4】本発明の実施例1にかかる球状曲面の曲率半径測定装置の構成を示す図である。
【図5】本発明の実施例2にかかる球状曲面の曲率半径測定装置の構成を示す図である。
【符号の説明】
1…対物レンズ、2…球状曲面、20…球体、A…光軸、O…曲率中心。

Claims (4)

  1. 投影パターンが形成されたマスクに光源からの光を照射して形成される投影パターンの像を結ばせる投影像結像光学系と、この投影像結像光学系によって所定の位置に投影像を結ぶべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による前記投影像の反射像を観測可能に結像させる反射投影像観測光学系とを用い、
    前記投影像結像光学系によって所定の位置に投影像を結ばせた状態で前記投影像結像光学系と測定対象たる球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の表面に前記投影像が結ばれてこの球状曲面の表面反射によって形成される投影像の反射像が観測されたときの前記投影像が観測されたときの前記投影像が結像される位置情報に対応する第1の位置情報を求め、
    次に、同様にして前記投影像結像光学系と球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の中心に前記投影像が結ばれるように進行する光線が前記球状曲面の表面で反射されて形成される投影像の反射像が観測されたときの前記投影像が観測されたときの前記投影像が結像される位置情報に対応する第2の位置情報を求め、
    前記第1の位置情報と第2の位置情報とから前記球状曲面の曲率半径を求めることを特徴とする球状曲面の曲率半径測定方法。
  2. 投影パターンが形成されたマスクに光源からの光を照射して形成される投影パターンの像を結ばせる投影像結像光学系と、
    この投影像結像光学系によって所定の位置に投影像を結ぶべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による前記投影像の反射像を観測可能に結像させる反射投影像観測光学系と、
    前記投影像結像光学系によって所定の位置に投影像を結ばせた状態で前記投影像結像光学系と測定対象たる球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の表面に前記投影像が結ばれてこの球状曲面の表面反射によって形成される投影像の反射像が観測されたときの前記投影像が観測されたときの前記投影像が結像される位置情報に対応する第1の位置情報を求め、次に、同様にして前記投影像結像光学系と球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の中心に前記投影像が結ばれるように進行する光線が前記球状曲面の表面で反射されて形成される投影像の反射像が観測されたときの前記投影像が観測されたときの前記投影像が結像される位置情報に対応する第2の位置情報を求め、前記第1の位置情報と第2の位置情報とから前記球状曲面の曲率半径を求める距離測定装置と
    を有することを特徴とする球状曲面の曲率半径測定装置
  3. 投影パターンが形成されたマスクに光源からの光を照射して形成される投影パターンの像を結ばせる投影像結像光学系と、この投影像結像光学系によって所定の位置に投影像を結ぶべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による前記投影像の反射像を観測可能に結像させる反射投影像観測光学系とを用い、
    前記投影像結像光学系によって所定の位置に投影像を結ばせた状態で前記投影像結像光学系と測定対象たる球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の表面に前記投影像が結ばれてこの球状曲面の表面反射によって形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第1の距離とし、
    次に、同様にして前記投影像結像光学系と球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の中心に前記投影像が結ばれるように進行する光線が前記球状曲面の表面で反射されて形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第2の距離とし、
    前記第1の距離と第2の距離との差を算出してこれを前記球状曲面の曲率半径として求めることを特徴とする球状曲面の曲率半径測定方法。
  4. 投影パターンが形成されたマスクに光源からの光を照射して形成される投影パターンの像を結ばせる投影像結像光学系と、
    この投影像結像光学系によって所定の位置に投影像を結ぶべく進行する光線が、反射対象物によって反射されて前記進行方向と同一の経路を逆方向に進行する光線となったときに、この反射光線による前記投影像の反射像を観測可能に結像させる反射投影像観測光学系と、
    前記投影像結像光学系によって所定の位置に投影像を結ばせた状態で前記投影像結像光学系と測定対象たる球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の表面に前記投影像が結ばれてこの球状曲面の表面反射によって形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第1の距離とするとともに、前記投影像結像光学系と球状曲面との距離を変えつつ前記反射投影像観測光学系によって前記投影像の反射像の有無を確認し、前記球状曲面の中心に前記投影像が結ばれるように進行する光線が前記球状曲面の表面で反射されて形成される投影像の反射像が観測されたときの前記投影像結像光学系と球状曲面との距離を測定してこれを第2の距離とし、前記第1の距離と第2の距離との差を算出してこれを前記球状曲面の曲率半径として求める距離測定装置と
    を有することを特徴とする球状曲面の曲率半径測定装置。
JP2000394994A 2000-12-26 2000-12-26 球状曲面の曲率半径測定方法及び装置 Expired - Fee Related JP4592182B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000394994A JP4592182B2 (ja) 2000-12-26 2000-12-26 球状曲面の曲率半径測定方法及び装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000394994A JP4592182B2 (ja) 2000-12-26 2000-12-26 球状曲面の曲率半径測定方法及び装置

Publications (2)

Publication Number Publication Date
JP2002195814A JP2002195814A (ja) 2002-07-10
JP4592182B2 true JP4592182B2 (ja) 2010-12-01

Family

ID=18860530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000394994A Expired - Fee Related JP4592182B2 (ja) 2000-12-26 2000-12-26 球状曲面の曲率半径測定方法及び装置

Country Status (1)

Country Link
JP (1) JP4592182B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2879736B1 (fr) * 2004-12-20 2007-02-02 Essilor Int Procede et dispositif de mesure sans contact de la courbure d'un objet ophtalmique
JP5188377B2 (ja) * 2008-12-15 2013-04-24 株式会社ミツトヨ 球体の真球度の測定方法および球体の曲率半径の測定方法
JP2011191175A (ja) * 2010-03-15 2011-09-29 Mitsutoyo Corp レーザ反射体
JP5510667B2 (ja) * 2010-10-12 2014-06-04 パルステック工業株式会社 透光性管状物体の厚さ測定装置
CN114754700B (zh) * 2022-04-29 2023-08-18 江苏立晶工业科技有限公司 一种挡风玻璃的曲率检测方法和装置

Also Published As

Publication number Publication date
JP2002195814A (ja) 2002-07-10

Similar Documents

Publication Publication Date Title
JP2913984B2 (ja) 傾斜角測定装置
US4758089A (en) Holographic interferometer
NL7904579A (nl) Optisch afbeeldingsstelsel voorzien van een opto- -elektronisch detektiestelsel voor het bepalen van een afwijking tussen het beeldvlak van het afbeeldings- stelsel en een tweede vlak waarop afgebeeld moet worden.
CN109975820A (zh) 基于Linnik型干涉显微镜的同步偏振相移检焦系统
CN107561007B (zh) 一种薄膜测量装置和方法
JP2021043181A (ja) レンズ屈折率測定装置およびその測定方法
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
JP4592182B2 (ja) 球状曲面の曲率半径測定方法及び装置
JPS6347606A (ja) 非球面形状測定装置
JP3758279B2 (ja) 光学ピックアップ用対物レンズの調整方法及び調整装置
TW201903351A (zh) 非接觸式鏡片曲率半徑與厚度檢測裝置及其檢測方法
JPH0256604B2 (ja)
JPS6161178B2 (ja)
JPH04236307A (ja) パターン立体形状検知装置
JP2006058115A (ja) 光学的変位測定器
JP4768904B2 (ja) 光学素子又は光学系の物理量測定方法
JP3003671B2 (ja) 試料表面の高さ検出方法及びその装置
JPH0339709Y2 (ja)
JP2005147703A (ja) 面間隔測定装置および面間隔測定方法
JPS63199311A (ja) 二方向非接触自動焦点位置合わせ方法及び装置
JP3740424B2 (ja) 干渉計を用いた形状測定方法および装置
JPH0652168B2 (ja) 3次元形状測定装置
JP4036226B2 (ja) 光学ピックアップ用対物レンズの傾き検出方法、偏芯検出方法、2群対物レンズのレンズ間距離検出方法、傾き検出装置、及び検査装置
JP3740427B2 (ja) 干渉計を用いた形状測定方法および装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees