JP4588136B2 - Battery separator and method for producing the same - Google Patents

Battery separator and method for producing the same Download PDF

Info

Publication number
JP4588136B2
JP4588136B2 JP19871299A JP19871299A JP4588136B2 JP 4588136 B2 JP4588136 B2 JP 4588136B2 JP 19871299 A JP19871299 A JP 19871299A JP 19871299 A JP19871299 A JP 19871299A JP 4588136 B2 JP4588136 B2 JP 4588136B2
Authority
JP
Japan
Prior art keywords
layer
battery separator
porous membrane
battery
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19871299A
Other languages
Japanese (ja)
Other versions
JP2001023600A (en
Inventor
隆央 大野
治朗 定延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP19871299A priority Critical patent/JP4588136B2/en
Publication of JP2001023600A publication Critical patent/JP2001023600A/en
Application granted granted Critical
Publication of JP4588136B2 publication Critical patent/JP4588136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はポリアミド系例えばポリメタフェニレンイソフタルアミド系樹脂の多孔層と昇温時に加熱溶融するポリマーからなる多孔層とを有する多孔質フィルムを基本構成とするシャットダウン機能を備えた、安全性、耐熱性と機械的特性に優れた電池用セパレーターに関するものである。
【0002】
【従来の技術】
従来、非水系の電解液を用いるリチウムイオン電池あるいはリチウム二次電池は高エネルギー密度化、高電圧化が可能であり、軽量化、小型化が可能といった非常に優れた特性から大いに期待されている電子部品であるが、同時に電池内外での短絡により電池温度の上昇が誘発し変形、内容物の噴出、発火等の問題を抱えており、さまざまな安全策を講じる必要がある。そうしたことから耐熱性、耐薬品性等に優れた芳香族ポリアミドからなる多孔質フィルムをセパレーターに使用することが特公昭59−14494号公報、特公昭59−36939号公報に記載され電池用セパレーターに使用できることが示唆されている。また特開平5−335005号公報、特開平7−78608号公報、特開平7−37571号公報にはアラミド繊維からなる不織布または紙状シートを電池用セパレーターに使用することが提案されているが、セパレーターの厚みは薄いほど内部の電気抵抗が小さくなり優れた電気特性を発揮するのに対し、上記フィルム、不織布、紙シートでは50μm以下の厚みで十分な強度がなく、さらに均質性に優れたものを工業的に製造することは非常に困難である。
【0003】
上記の如く電池においてセパレーターは正、負電極間に介在する重要な電子部材であるが、それに期待される電気的特性と安全性との矛盾する要求を解決するために近年セパレーターにシャットダウン機能を持たせる工夫がなされている。シャットダウンとは過充電、外部短絡などのトラブルにより電池温度が上昇した際、セパレーターである多孔質フィルムが溶融してその孔が塞がり、電流が遮断されることをいう。こうしたことから薄膜の多孔質フィルムの製造が可能であるポリエチレンやポリプロピレン製の多孔質フィルムを支持体とし、それにそれより融点の低い加熱溶融可能な閉塞材を付設させることにより、高温時に閉塞材が加熱溶融し多孔質フィルムの孔を塞ぐようにしてシャットダウン機能を持たせることが特開昭60−52号公報、特開昭60−136161号公報に提案されている。しかしポリエチレンやポリプロピレンの熱可塑性フィルムを基材にしているため耐熱性が低く、安全性の面で非常に用途が制限されるという問題を有していた。
【0004】
【発明が解決しようとする課題】
本発明は耐熱性が高く且つ安全性、機械的特性、電気的特性に優れたシャットダウン機能を有する電池用セパレーターを提供することである。
【0005】
【課題を解決するための手段】
本発明者らは上記の課題を解決すべく鋭意検討した結果、超高分子量ポリオレフィンからなる多孔質膜にアミド系重合体からなる多孔層を形成することによりシャットダウン機能を備え、耐熱性、安全性、機械的特性、電気的特性に非常に優れた多孔質膜を形成しうることを見出し本発明に至った。すなわち、本発明の構成は以下の通りである。
1. 芳香族ポリアミドからなる空隙を有する層(a)と加熱溶融可能な熱可塑性ポリマーからなる多孔膜で構成された層(b)との少なくとも2層を有する複合多孔膜であって、該熱可塑性ポリマーの熱収縮による閉孔開始温度である熱変形温度が60℃〜150℃であり、該芳香族ポリアミドの耐熱強度が300℃以上であり、電池が異常発熱して形成する温度に於いて該熱可塑性ポリマーは溶融して空隙を閉塞し、該ポリアミド層は溶融せずに形状を保持することを特徴とする電池用セパレーター。
2. 該層(a)の厚みが5μm〜50μmであり、該層(b)の厚みが5μm〜100μmである、上記1記載の電池用セパレーター。
3. 該層(a)の多孔度が30%〜70%であり、該層(b)の多孔度が30%〜70%である、上記1又は2記載の電池用セパレーター。
4. 該芳香族ポリアミドがポリメタフェニレンイソフタルアミド系樹脂であり、該熱可塑性ポリマーが分子量40万以上の超高分子量ポリオレフィンであることを特徴とする上記1〜3記載のいずれかの電池用セパレ−ター。
5. 該複合多孔膜の多孔度が30〜70%であることを特徴とする上記1〜4記載のいずれかの電池用セパレ−ター。
6. 超高分子量ポリオレフィンからなる多孔膜の両面ないしは片面にポリメタフェニレンイソフタルアミド系樹脂の多孔層を塗布形成することを特徴とする電池用セパレーターの製造方法。
【0006】
本発明で使用する熱可塑性ポリマーは、特に限定されないが例えばポリエチレンテレフタレートに代表されるポリエステル樹脂、2,6−ナイロンに代表される脂肪族ポリアミド樹脂、が挙げられる。これら熱可塑性樹脂は高められた温度即ち電池が異常発熱して形成する温度で溶融又は変形して孔を閉塞する必要があり、そのためには熱変形温度(熱収縮による閉孔開始温度)が60℃〜150℃である。
【0007】
これらの中でも熱可塑性ポリマーとしてはポリオレフインが好ましく、更には重量平均分子量が40万以上であり好ましくは80万以上の超高分子量ポリオレフインが好ましい。超高分子量ポリオレフィンとしては具体的にエチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン等のポリマが挙げられ、その中で特に高密度の超高分子量ポリエチレンが好ましい。
【0008】
ポリオレフィンからなる多孔膜の製法は、ポリオレフィン溶液をダイ押出し、冷却により得たゲル状組成物を延伸により多孔質化させる方法が簡便であり、例えば特公平2−232242号公報、特公平5−56251号公報、特公平3−643344号公報で提案されている。
【0009】
該多孔膜は、厚さ5μm〜50μm、好ましくは7μm〜30μm、さらに好ましくは10μm〜20μmであることが出来、多孔度は30%〜70%、好ましくは40%〜65%、さらに好ましくは50%〜60%であることが出来る。多孔度は見掛け密度、真密度から
多孔度(vol%)=[(真密度−見掛け密度)/真密度]×100
で求めることができる。
【0010】
次に超高分子量ポリオレフィン多孔質フィルム上に形成する芳香族ポリアミドからなる多孔質層について説明する。
【0011】
この多孔膜層は、厚さ5μm〜100μm、好ましくは7μm〜50μm、さらに好ましくは10μm〜30μmであることが出来、多孔度は30%〜80%、好ましくは40%〜70%、さらに好ましくは50%〜65%であることが出来る。
【0012】
芳香族ポリアミドは前記熱可塑性樹脂の熱変形温度においてもそれからなる多孔質膜の自立性が維持される必要があるが、かかる要求を満足するにはその耐熱強度(機械的強度が維持される特定の温度、即ち温度を上昇させながら粘弾性を測定したとき、弾性率の低下が確認される温度)が300℃以上であれば十分である。
【0013】
かかる芳香族アミド系ポリマとしてはメタフェニレンイソフタルアミド系ポリマが好ましく、メタフェニレンイソフタル系ポリマとはメタ配向芳香族ジアミンとメタ配向芳香族ジカルボン酸ハライドの重縮合、さらに前述モノマーに対し共重合率40%以下でパラ配向芳香族ジアミン、パラ配向芳香族ジクロライド、脂肪族ジアミン、脂肪族ジカルボン酸により重縮合して得られるポリマーであり、アミド結合が芳香族環のメタ位またはそれに準じた配向位で結合される繰り返し単位から実質的になるものである。具体的にはメタ配向芳香族ジアミンは1,3−フェニレンジアミン、1,6−ナフタレンジアミン、1,7−ナフタレンジアミン、2,7−ナフタレンジアミン、3,4’−ビフェニルジアミン、等、またメタ配向芳香族ジカルボン酸はイソフタル酸、1,6−ナフタレンジカルボン酸、1,7−ナフタレンジカルボン酸、3,4−ビフェニルジカルボン酸、等が挙げられる。また共重合モノマーは具体的にはパラ配向芳香族ジアミンとしてはパラフェニレンジアミン、4,4’−ジアミノビフェニル、2−メチル−パラフェニレンジアミン、2−クロロ−パラフェニレンジアミン、2,6−ナフタレンジアミン、等、パラ配向芳香族ジカルボン酸ジクロライドはテレフタル酸クロライド、ビフェニル−4,4’−ジカルボン酸クロライド、2,6−ナフタレンジカルボン酸クロライド、等、脂肪族ジアミンについてはヘキサンジアミン、デカンジアミン、ドデカンジアミン、エチレンジアミン、ヘキサメチレンジアミン、等、また脂肪族ジカルボン酸は、エチレンジカルボン酸、ヘキサメチレンジカルボン酸、等が挙げられるがいずれについてもこれらに限定されるものではない。
【0014】
上記芳香族ポリアミドからなる空隙を有する層の形成方法は特に限定されないが、簡便には前記熱可塑性ポリマー、就中超高分子量ポリオレフィンからなる多孔膜の両面ないしは片面に、芳香族ポリアミド系樹脂の溶液を塗布し、次いで凝固させて多孔層を形成する方法が挙げられる。
【0015】
該ポリアミドの溶媒としてはN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等の極性溶媒が挙げられるがこれらに限定されるものではない。
【0016】
該ポリアミド溶液の濃度としては3〜30wt%、より好ましくは10〜15wt%である。また該ポリアミドの溶解性を向上させるため1価または2価陽イオン金属塩を用いることができる。金属塩はポリマに対し0〜50wt%存在させてよく、具体的には塩化カルシウム、塩化リチウム、硝酸リチウム、塩化マグネシウム等が挙げられる。
【0017】
多孔層の形成については該ポリアミド溶液をポリオレフィンからなる多孔膜上にキャストし、凝固浴に導入する。この製膜法に関してはダイ押し出し、コーティング、ディップ方式、等が挙げられる。凝固浴はアミド系溶媒とそれに対して不活性であり相溶性である非溶媒の混合液を用いる。具体的にはアミド系溶媒としてN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等が挙げられ、好ましくはN−メチル−2−ピロリドンを使用する。またアミド系溶媒に対し不活性であり相溶性である非溶媒として水を用いる。また孔径を調整する目的で金属塩を凝固浴に対し1〜10wt%用いることができる。具体的には塩化カルシウム、塩化リチウム、硝酸リチウム、塩化マグネシウム等が挙げられる。凝固浴濃度はアミド系溶媒が全体に対し20%以上80%以下であり、より好ましくは60〜70%である。凝固浴温度は0℃以上80℃以下でありより好ましくは30℃以上60℃以下である。アミド系溶媒濃度が20%未満で温度が0℃未満の場合、作成された多孔膜の表面の開孔性が不十分であり、通気性の低い多孔膜となる。また濃度が80%を超え、温度が80℃を越える場合、ポリマーが粒状化し多孔膜にはならない。
【0018】
このように凝固された該ポリアミド膜は水中に導入され洗浄される。このときの温度は特に限定されるものではない。
【0019】
水洗後該ポリアミド膜はアミド系溶媒とそれに対して不活性かつ相溶性である非溶媒との混合溶液に浸せき処理する。これにより該多孔膜の結晶化を促進させる。該混合溶液はアミド系溶媒とそれ対して不活性であり相溶性である非溶媒の混合液を用い、具体的にはアミド系溶媒としてN−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド等が挙げられ、好ましくはN−メチル−2−ピロリドンを使用する。またアミド系溶媒に対し不活性であり相溶液である非溶媒として水を用いる。混合溶液濃度はアミド系溶媒が全体に対し30%以上80%以下であり、より好ましくは50〜70%である。温度は50℃以上98℃以下でありより好ましくは60℃以上90℃以下である。アミド系溶媒濃度が80%を越えると多孔膜を形成するポリアミドの溶解が起こり多孔膜の構造が破壊され、30%未満であれば可塑化が不十分であり結晶化が進行しない。温度についても50℃未満であれば結晶化が進行せず、98℃を超えると多孔膜を形成するポリアミドの溶解が起こり多孔膜の構造が破壊される。
【0020】
その後該ポリアミド膜は再度水中に導入され、洗浄される。またこの高結晶化処理は凝固浴から連続して実施しても構わない。
この後得られた多孔膜は乾燥される。
かくして形成された複合多孔膜は、全体の厚さ10μm〜150μm、好ましくは14μm〜80μm、さらに好ましくは20μm〜50μmである。全体の多孔度は30%〜70%、好ましくは40%〜65%、さらに好ましくは50%〜60%である。
【0021】
【発明の効果】
本発明によりシャットダウン機能を備えかつ耐熱性、安全性、機械的特性、電気的特性に優れた電池用セパレーター用途の複合多孔膜を提供される。
【0022】
【実施例】
以下実施例を挙げて本発明の好ましい態様について記載するが、本発明は実施例のみに限定されるものではない。
【0023】
[実施例1]
ポリメタフェニレンイソフタルアミド(帝人(株)製Conex(登録商標))10wt%をN−メチル−2−ピロリドン90wt%に溶解させた。このとき該ポリマに対して47wt%の塩化カルシウムを溶解助剤として溶解させた。この溶液を超高分子量ポリエチレン多孔質フィルム(帝人−ディーエスエムソルテック(株)製Solpour(登録商標))上に厚み100μmで流延させた後、N−メチル−2−ピロリドン60wt%と水40wt%からなる30℃の凝固浴に10min間浸漬し、水洗して110℃にて乾燥した。該複合多孔膜は多孔度が60%であり、かつ連続する孔を有し、室温における空気の透過時間が250sec/100ml((JISL1096−1990 6.27通気性)であり、170℃に5min加熱すると閉孔し、室温における空気の透過時間が∞sec/100ml((JISL1096−1990 6.27通気性)となりシャットダウン性がえられることを確認した。このときフィルム自体の変形、収縮は観測されなかった。
【0024】
[比較例]
超高分子量ポリエチレン多孔質フィルム(帝人−ディーエスエムソルテック(株)製Solpour(登録商標))は多孔度が50%であり、かつ連続する孔を有し、室温における空気の透過時間が250sec/100ml((JISL1096−1990 6.27通気性)であり、70℃以上で変形、収縮し始め、170℃で5min加熱すると閉孔し、室温における空気の透過時間が∞sec/100ml((JISL1096−1990 6.27通気性)となりシャットダウン性がえられるが、フィルム自体が大きく変形し、収縮した。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a safety and heat resistance provided with a shutdown function based on a porous film having a porous layer of a polyamide-based, for example, a polymetaphenylene isophthalamide-based resin and a porous layer made of a polymer that is heated and melted at an elevated temperature. And a battery separator having excellent mechanical properties.
[0002]
[Prior art]
Conventionally, lithium ion batteries or lithium secondary batteries that use non-aqueous electrolytes are highly expected due to their excellent characteristics such as high energy density and high voltage, light weight and small size. Although it is an electronic component, the battery temperature rises simultaneously due to a short circuit inside and outside the battery, causing problems such as deformation, eruption of contents, and ignition, and various safety measures must be taken. Therefore, it is described in Japanese Patent Publication Nos. 59-14494 and 59-36939 that a porous film made of an aromatic polyamide having excellent heat resistance and chemical resistance is used as a separator. It has been suggested that it can be used. JP-A-5-335005, JP-A-7-78608, and JP-A-7-37571 propose using a nonwoven fabric or paper-like sheet made of aramid fibers for a battery separator. The thinner the separator, the smaller the internal electrical resistance and the better the electrical properties. On the other hand, the film, nonwoven fabric, and paper sheet have a thickness of 50 μm or less and do not have sufficient strength, and have excellent homogeneity. Is very difficult to manufacture industrially.
[0003]
As described above, the separator is an important electronic member interposed between the positive and negative electrodes in the battery, but in recent years, the separator has a shutdown function in order to solve the contradictory demands of electrical characteristics and safety expected from the separator. The idea to make is made. The shutdown means that when the battery temperature rises due to troubles such as overcharge and external short circuit, the porous film as a separator is melted and the pores are closed to interrupt the current. For this reason, a porous film made of polyethylene or polypropylene, which is capable of producing a thin porous film, is used as a support, and a heat-meltable plugging material having a lower melting point is attached thereto, so that the plugging material can be formed at high temperatures. JP-A-60-52 and JP-A-60-136161 have proposed to provide a shutdown function by heating and melting so as to close the pores of the porous film. However, since a thermoplastic film of polyethylene or polypropylene is used as a base material, the heat resistance is low, and there is a problem that the use is very limited in terms of safety.
[0004]
[Problems to be solved by the invention]
It is an object of the present invention to provide a battery separator having a high heat resistance and a shutdown function excellent in safety, mechanical characteristics, and electrical characteristics.
[0005]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have provided a shutdown function by forming a porous layer made of an amide polymer on a porous film made of ultrahigh molecular weight polyolefin, and has heat resistance and safety. The present inventors have found that a porous film having excellent mechanical characteristics and electrical characteristics can be formed. That is, the configuration of the present invention is as follows.
1. A composite porous membrane having at least two layers of a layer (a) having a void made of an aromatic polyamide and a layer (b) composed of a porous membrane made of a heat-meltable thermoplastic polymer, the thermoplastic polymer The heat deformation temperature, which is the starting temperature for closing due to heat shrinkage, is 60 ° C. to 150 ° C., the heat resistance strength of the aromatic polyamide is 300 ° C. or more, and the heat is generated at the temperature at which the battery is abnormally heated. A battery separator characterized in that a plastic polymer melts to close a void, and the polyamide layer retains its shape without melting.
2. 2. The battery separator according to 1 above, wherein the layer (a) has a thickness of 5 to 50 μm, and the layer (b) has a thickness of 5 to 100 μm.
3. 3. The battery separator according to 1 or 2 above, wherein the porosity of the layer (a) is 30% to 70% and the porosity of the layer (b) is 30% to 70%.
4). 4. The battery separator according to any one of the above 1 to 3, wherein the aromatic polyamide is a polymetaphenylene isophthalamide resin, and the thermoplastic polymer is an ultrahigh molecular weight polyolefin having a molecular weight of 400,000 or more. .
5). The composite porous membrane of porosity separator for any of the batteries 1 to 4 above, wherein it is a 30 to 70% - coater.
6). A method for producing a battery separator, comprising forming a porous layer of polymetaphenylene isophthalamide resin on both sides or one side of a porous membrane made of ultrahigh molecular weight polyolefin.
[0006]
The thermoplastic polymer used in the present invention is not particularly limited, and examples thereof include a polyester resin typified by polyethylene terephthalate and an aliphatic polyamide resin typified by 2,6-nylon. These thermoplastic resins must be melted or deformed at an elevated temperature, that is, a temperature formed by abnormal heat generation of the battery, to close the hole. For this purpose, the heat deformation temperature (the temperature at which the hole is closed due to heat shrinkage) is 60. ° C to 150 ° C.
[0007]
Among these, as the thermoplastic polymer, polyolefin is preferable, and an ultrahigh molecular weight polyolefin having a weight average molecular weight of 400,000 or more and preferably 800,000 or more is preferable. Specific examples of the ultrahigh molecular weight polyolefin include polymers such as ethylene, propylene, 1-butene, 4-methyl-1-pentene, and 1-hexene. Among them, particularly high density ultrahigh molecular weight polyethylene is preferable.
[0008]
As a method for producing a porous film made of polyolefin, a method in which a polyolefin solution is die-extruded and a gel composition obtained by cooling is made porous by stretching, for example, Japanese Patent Publication No. 2-232242 and Japanese Patent Publication No. 5-56251. And Japanese Patent Publication No. 3-64344.
[0009]
The porous membrane may have a thickness of 5 μm to 50 μm, preferably 7 μm to 30 μm, more preferably 10 μm to 20 μm, and a porosity of 30% to 70%, preferably 40% to 65%, more preferably 50 % To 60%. Porosity is apparent density, true density to porosity (vol%) = [(true density−apparent density) / true density] × 100
Can be obtained.
[0010]
Next, the porous layer made of an aromatic polyamide formed on the ultrahigh molecular weight polyolefin porous film will be described.
[0011]
The porous membrane layer can have a thickness of 5 μm to 100 μm, preferably 7 μm to 50 μm, more preferably 10 μm to 30 μm, and a porosity of 30% to 80%, preferably 40% to 70%, more preferably It can be 50% to 65%.
[0012]
Aromatic polyamides need to maintain the self-supporting property of the porous membrane made of the thermoplastic resin even at the heat deformation temperature of the thermoplastic resin, but in order to satisfy such a requirement, the heat resistant strength (specifying that the mechanical strength is maintained) It is sufficient that the temperature of (i.e., the temperature at which the decrease in elastic modulus is confirmed when viscoelasticity is measured while raising the temperature) is 300 ° C. or higher.
[0013]
Such an aromatic amide polymer is preferably a metaphenylene isophthalamide polymer, which is a polycondensation of a meta-oriented aromatic diamine and a meta-oriented aromatic dicarboxylic acid halide, and further has a copolymerization ratio of 40 with respect to the aforementioned monomers. % Is a polymer obtained by polycondensation with para-oriented aromatic diamine, para-oriented aromatic dichloride, aliphatic diamine, and aliphatic dicarboxylic acid, and the amide bond is in the meta position of the aromatic ring or in an oriented position equivalent thereto. It consists essentially of combined repeating units. Specifically, meta-oriented aromatic diamines include 1,3-phenylenediamine, 1,6-naphthalenediamine, 1,7-naphthalenediamine, 2,7-naphthalenediamine, 3,4'-biphenyldiamine, and the like. Examples of the oriented aromatic dicarboxylic acid include isophthalic acid, 1,6-naphthalenedicarboxylic acid, 1,7-naphthalenedicarboxylic acid, 3,4-biphenyldicarboxylic acid, and the like. Further, the copolymerizable monomer specifically includes para-phenylene diamine, 4,4′-diaminobiphenyl, 2-methyl-paraphenylene diamine, 2-chloro-paraphenylene diamine, and 2,6-naphthalenediamine as para-oriented aromatic diamines. , Etc., para-oriented aromatic dicarboxylic acid dichloride is terephthalic acid chloride, biphenyl-4,4′-dicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, etc. For aliphatic diamines, hexanediamine, decanediamine, dodecanediamine , Ethylenediamine, hexamethylenediamine, and the like, and aliphatic dicarboxylic acids include ethylenedicarboxylic acid, hexamethylenedicarboxylic acid, and the like, but are not limited thereto.
[0014]
The formation method of the layer having voids made of the above aromatic polyamide is not particularly limited, but for convenience, a solution of the aromatic polyamide resin is placed on both sides or one side of the thermoplastic polymer, especially a porous membrane made of ultrahigh molecular weight polyolefin. The method of apply | coating and then solidifying and forming a porous layer is mentioned.
[0015]
Examples of the polyamide solvent include, but are not limited to, polar solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and N, N-dimethylformamide.
[0016]
The concentration of the polyamide solution is 3 to 30 wt%, more preferably 10 to 15 wt%. Moreover, in order to improve the solubility of this polyamide, a monovalent or divalent cation metal salt can be used. The metal salt may be present in an amount of 0 to 50 wt% with respect to the polymer, and specific examples include calcium chloride, lithium chloride, lithium nitrate, and magnesium chloride.
[0017]
For the formation of the porous layer, the polyamide solution is cast on a porous film made of polyolefin and introduced into a coagulation bath. Examples of the film forming method include die extrusion, coating, and dip method. The coagulation bath uses a mixed solution of an amide solvent and a non-solvent which is inert and compatible with the amide solvent. Specific examples of the amide solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and preferably N-methyl-2-pyrrolidone is used. Water is used as a non-solvent that is inert and compatible with the amide solvent. Moreover, 1-10 wt% of metal salts can be used with respect to the coagulation bath for the purpose of adjusting the pore diameter. Specific examples include calcium chloride, lithium chloride, lithium nitrate, and magnesium chloride. The concentration of the coagulation bath is 20% or more and 80% or less, more preferably 60 to 70% with respect to the whole of the amide solvent. The coagulation bath temperature is 0 ° C. or higher and 80 ° C. or lower, more preferably 30 ° C. or higher and 60 ° C. or lower. When the amide solvent concentration is less than 20% and the temperature is less than 0 ° C., the surface of the prepared porous membrane has insufficient pores, resulting in a porous membrane with low air permeability. When the concentration exceeds 80% and the temperature exceeds 80 ° C., the polymer is granulated and does not form a porous film.
[0018]
The polyamide film thus solidified is introduced into water and washed. The temperature at this time is not particularly limited.
[0019]
After washing with water, the polyamide membrane is immersed in a mixed solution of an amide solvent and a non-solvent which is inert and compatible with the amide solvent. This promotes crystallization of the porous film. The mixed solution is a mixture of an amide solvent and a non-solvent that is inert and compatible with the amide solvent. Specifically, N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide and the like can be mentioned, and N-methyl-2-pyrrolidone is preferably used. Further, water is used as a non-solvent which is inert to the amide solvent and is a phase solution. The concentration of the mixed solution is 30% or more and 80% or less, more preferably 50 to 70% of the amide solvent. The temperature is 50 ° C. or higher and 98 ° C. or lower, more preferably 60 ° C. or higher and 90 ° C. or lower. If the amide solvent concentration exceeds 80%, the polyamide forming the porous film dissolves and the structure of the porous film is destroyed. If it is less than 30%, plasticization is insufficient and crystallization does not proceed. If the temperature is less than 50 ° C., crystallization does not proceed, and if it exceeds 98 ° C., the polyamide forming the porous film is dissolved and the structure of the porous film is destroyed.
[0020]
Thereafter, the polyamide membrane is again introduced into water and washed. Further, this high crystallization treatment may be carried out continuously from the coagulation bath.
The porous membrane obtained after this is dried.
The composite porous membrane thus formed has a total thickness of 10 μm to 150 μm, preferably 14 μm to 80 μm, more preferably 20 μm to 50 μm. The overall porosity is 30% to 70%, preferably 40% to 65%, more preferably 50% to 60%.
[0021]
【The invention's effect】
The present invention provides a composite porous membrane for a battery separator having a shutdown function and excellent in heat resistance, safety, mechanical properties, and electrical properties.
[0022]
【Example】
Hereinafter, preferred embodiments of the present invention will be described with reference to examples, but the present invention is not limited to the examples.
[0023]
[Example 1]
10 wt% of polymetaphenylene isophthalamide (Conex (registered trademark) manufactured by Teijin Limited) was dissolved in 90 wt% of N-methyl-2-pyrrolidone. At this time, 47 wt% calcium chloride was dissolved in the polymer as a dissolution aid. This solution was cast on an ultra high molecular weight polyethylene porous film (Toljin-DMSoltech Co., Ltd. Solpour (registered trademark)) at a thickness of 100 μm, and then N-methyl-2-pyrrolidone 60 wt% and water 40 wt%. Was immersed in a coagulation bath at 30 ° C. for 10 minutes, washed with water and dried at 110 ° C. The composite porous membrane has a porosity of 60%, has continuous pores, has an air permeation time of 250 sec / 100 ml at room temperature ((JISL 1096-1990 6.27 breathability), and is heated to 170 ° C. for 5 min. Then, the hole was closed, and it was confirmed that the air permeation time at room temperature was ∞ sec / 100 ml ((JISL 1096-1990 6.27 breathability) and the shutdown property was obtained. At this time, no deformation or shrinkage of the film itself was observed. It was.
[0024]
[Comparative example]
Ultra-high molecular weight polyethylene porous film (Toljin-DS Soltech Co., Ltd. Solpour (registered trademark)) has a porosity of 50%, has continuous pores, and the air permeation time at room temperature is 250 sec / 100 ml. ((JISL 1096-1990 6.27 breathability), begins to deform and contract at 70 ° C. or higher, closes when heated at 170 ° C. for 5 minutes, and air permeation time at room temperature is ∞ sec / 100 ml ((JIS L 1096-1990 6.27 breathability) and a shutdown property was obtained, but the film itself was greatly deformed and contracted.

Claims (6)

芳香族ポリアミドからなる空隙を有する層(a)と加熱溶融可能な熱可塑性ポリマーからなる多孔膜で構成された層(b)との少なくとも2層を有する複合多孔膜であって、
該熱可塑性ポリマーの熱収縮による閉孔開始温度である熱変形温度が60℃〜150℃であり、該芳香族ポリアミドの耐熱強度が300℃以上であり、
電池が異常発熱して形成する温度に於いて該熱可塑性ポリマーは溶融して空隙を閉塞し、該ポリアミド層は溶融せずに形状を保持することを特徴とする電池用セパレーター。
A composite porous membrane having at least two layers of a layer (a) having a void made of an aromatic polyamide and a layer (b) made of a porous membrane made of a heat-meltable thermoplastic polymer,
The heat deformation temperature, which is the temperature at which pore closing starts due to heat shrinkage of the thermoplastic polymer, is 60 ° C. to 150 ° C., and the heat resistance strength of the aromatic polyamide is 300 ° C. or more,
A battery separator characterized in that the thermoplastic polymer melts and closes voids at a temperature formed by abnormal heat generation of the battery , and the polyamide layer retains its shape without melting.
該層(a)の厚みが5μm〜50μmであり、該層(b)の厚みが5μm〜100μmである、請求項1記載の電池用セパレーター。  The battery separator according to claim 1, wherein the thickness of the layer (a) is 5 µm to 50 µm, and the thickness of the layer (b) is 5 µm to 100 µm. 該層(a)の多孔度が30%〜70%であり、該層(b)の多孔度が30%〜70%である、請求項1又は2記載の電池用セパレーター。  The battery separator according to claim 1 or 2, wherein the porosity of the layer (a) is 30% to 70%, and the porosity of the layer (b) is 30% to 70%. 該芳香族ポリアミドがポリメタフェニレンイソフタルアミド系樹脂であり、該熱可塑性ポリマーが分子量40万以上の超高分子量ポリオレフィンであることを特徴とする請求項1〜3記載のいずれかの電池用セパレ−ター。  4. The battery separator according to claim 1, wherein the aromatic polyamide is a polymetaphenylene isophthalamide resin, and the thermoplastic polymer is an ultrahigh molecular weight polyolefin having a molecular weight of 400,000 or more. Tar. 該複合多孔膜の多孔度が30〜70%であることを特徴とする請求項1〜4記載のいずれかの電池用セパレ−ター。The composite porous membrane separator for any battery porosity of the preceding claims, wherein it is a 30 to 70 percent of the - coater. 超高分子量ポリオレフィンからなる多孔膜の両面ないしは片面にポリメタフェニレンイソフタルアミド系樹脂の多孔層を塗布形成することを特徴とする電池用セパレーターの製造方法。  A method for producing a battery separator, comprising forming a porous layer of polymetaphenylene isophthalamide resin on both sides or one side of a porous membrane made of ultrahigh molecular weight polyolefin.
JP19871299A 1999-07-13 1999-07-13 Battery separator and method for producing the same Expired - Lifetime JP4588136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19871299A JP4588136B2 (en) 1999-07-13 1999-07-13 Battery separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19871299A JP4588136B2 (en) 1999-07-13 1999-07-13 Battery separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001023600A JP2001023600A (en) 2001-01-26
JP4588136B2 true JP4588136B2 (en) 2010-11-24

Family

ID=16395768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19871299A Expired - Lifetime JP4588136B2 (en) 1999-07-13 1999-07-13 Battery separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP4588136B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10305081B2 (en) 2015-11-06 2019-05-28 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable battery including the same
US10777795B2 (en) 2015-03-05 2020-09-15 Nec Corporation Separator including resin member formed inside porous substrate, and secondary battery equipped therewith

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery
JP5226744B2 (en) * 2001-09-28 2013-07-03 帝人株式会社 Manufacturing method of composite porous membrane
JP4588286B2 (en) 2001-09-28 2010-11-24 帝人株式会社 Manufacturing method of composite porous membrane
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
US20070207693A1 (en) * 2004-03-12 2007-09-06 Takahiro Tsukuda Heat-Resistant Nonwoven Fabric
JP2006147349A (en) * 2004-11-19 2006-06-08 Toyobo Co Ltd Porous film, forming method of the same, and secondary battery using the same
JP4291392B2 (en) 2005-07-25 2009-07-08 帝人株式会社 Nonaqueous secondary battery separator and method for producing the same
EP2575196B1 (en) 2006-11-20 2014-05-28 Teijin Limited Separator for non-aqueous secondary battery and non-aqueous secondary battery.
CN101779311B (en) 2007-06-06 2013-11-20 帝人株式会社 Polyolefin microporous membrane base for nonaqueous secondary battery separator, method for producing the same, nonaqueous secondary battery separator and nonaqueous secondary battery
JP5214998B2 (en) * 2008-02-28 2013-06-19 帝人株式会社 Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
KR101105876B1 (en) * 2009-11-16 2012-01-16 주식회사 코캄 Separator for lithium secondary batteries and Lithium secondary batteries comprising the same
WO2011089785A1 (en) 2010-01-25 2011-07-28 東レ株式会社 Aromatic polyamide porous film and separator for capacitor or battery using the same
KR20160115599A (en) 2015-03-27 2016-10-06 삼성에스디아이 주식회사 Separator for rechargeable lithium battery and rechargeable lithium battery including the same
US11967733B2 (en) 2018-03-16 2024-04-23 Panasonic Energy Co., Ltd. Non-aqueous electrolyte secondary battery separator, non-aqueous electrolyte secondary battery, and method for producing non-aqueous electrolyte secondary battery separator
JP7186603B2 (en) * 2018-12-25 2022-12-09 帝人株式会社 Separator coating liquid, separator manufacturing method, and separator obtained by the manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106453A (en) * 1996-06-21 1998-01-13 Sumitomo Chem Co Ltd Paraaramid porous film and cell separator using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698729B2 (en) * 1987-05-08 1994-12-07 東燃株式会社 Laminated film
JP4038868B2 (en) * 1997-03-26 2008-01-30 住友化学株式会社 Para-aramid porous film and battery separator and lithium secondary battery using the same
JP4223084B2 (en) * 1997-07-24 2009-02-12 デュポン帝人アドバンスドペーパー株式会社 Battery separator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH106453A (en) * 1996-06-21 1998-01-13 Sumitomo Chem Co Ltd Paraaramid porous film and cell separator using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10777795B2 (en) 2015-03-05 2020-09-15 Nec Corporation Separator including resin member formed inside porous substrate, and secondary battery equipped therewith
US10305081B2 (en) 2015-11-06 2019-05-28 Samsung Sdi Co., Ltd. Separator for rechargeable battery and rechargeable battery including the same

Also Published As

Publication number Publication date
JP2001023600A (en) 2001-01-26

Similar Documents

Publication Publication Date Title
JP4588136B2 (en) Battery separator and method for producing the same
US7407702B2 (en) Polymetaphenylene isophthalamide-based polymer porous film, process for its production and battery separator
JP4038868B2 (en) Para-aramid porous film and battery separator and lithium secondary battery using the same
JP6179507B2 (en) Laminated porous membrane, battery separator and battery
JP3175730B2 (en) Non-aqueous electrolyte battery separator and lithium secondary battery
KR100721688B1 (en) Non-aqueous electrolyte battery separator and lithium secondary battery
JP3721639B2 (en) Para-aramid porous film and battery separator using the same
JP3279189B2 (en) Para-oriented aromatic polyamide porous film, production method thereof and use thereof
CN110729437A (en) Preparation method of para-aramid lithium ion battery diaphragm
CA2181421C (en) Para-oriented aromatic polyamide porous film
CA2502679C (en) Porous membrane of poly(metaphenylene isophthalamide) and process for producing the same
JPWO2013122010A1 (en) Battery separator and battery separator manufacturing method
WO2016002785A1 (en) Aromatic polymer manufacturing method, layered film, and separator
KR20160016642A (en) Method for producing separator for cell
JPH11250890A (en) Porous polymer film for battery separator
JP2013173862A (en) Laminated porous film, battery separator and battery
JP2000191823A (en) Wholly aromatic polyamide porous membrane and its production
JP2007277580A (en) Aramid porous film, and separator for battery and lithium secondary battery using the same
KR101377476B1 (en) Menufacturing Method of Meta-Aramid Based Porous Membrane for Secondary Battery and Porous Membrane thereby
CN112201903A (en) High-performance polyaramide lithium battery diaphragm coating based polymerization solution and preparation method and application thereof
JP2002042767A (en) Separator
US20060141238A1 (en) Porous membrane of poly(metaphenylene isophthalamide) and process for producing the same
JP2002363323A (en) Porous film of metaphenylene isophthalamide-based polymer and manufacturing method therefor
JP2021187988A (en) Para-type wholly aromatic copolyamide resin, manufacturing method of its resin coating liquid, and laminated porous film formed by coating the resin coating liquid
JP2022147097A (en) Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100908

R150 Certificate of patent or registration of utility model

Ref document number: 4588136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130917

Year of fee payment: 3

EXPY Cancellation because of completion of term