JPH0698729B2 - Laminated film - Google Patents

Laminated film

Info

Publication number
JPH0698729B2
JPH0698729B2 JP62111900A JP11190087A JPH0698729B2 JP H0698729 B2 JPH0698729 B2 JP H0698729B2 JP 62111900 A JP62111900 A JP 62111900A JP 11190087 A JP11190087 A JP 11190087A JP H0698729 B2 JPH0698729 B2 JP H0698729B2
Authority
JP
Japan
Prior art keywords
laminated film
molecular weight
film
sheet
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62111900A
Other languages
Japanese (ja)
Other versions
JPS63276533A (en
Inventor
公一 河野
るみ 長島
健▲吉▼ 岡本
修一 沢田
Original Assignee
東燃株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東燃株式会社 filed Critical 東燃株式会社
Priority to JP62111900A priority Critical patent/JPH0698729B2/en
Publication of JPS63276533A publication Critical patent/JPS63276533A/en
Publication of JPH0698729B2 publication Critical patent/JPH0698729B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超高分子量ポリオレフィン微多孔膜と少なくと
も1層の補強用多孔性基材とからなる積層膜に関する。
Description: TECHNICAL FIELD The present invention relates to a laminated film comprising an ultrahigh molecular weight polyolefin microporous film and at least one reinforcing porous base material.

[従来の技術] ポリオレフィン微多孔膜は電池用セパレーター、電解コ
ンデンサー用隔膜、各種フィルター、透湿防水衣料、逆
浸透濾過膜、限外濾過膜、精密濾過膜等の各種用途に用
いられている。
[Prior Art] Polyolefin microporous membranes are used in various applications such as battery separators, electrolytic condenser diaphragms, various filters, moisture-permeable waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes and microfiltration membranes.

従来、このようなポリオレフィン微多孔膜は、例えば異
種ポリマー等の微粉体からなる孔形成剤をポリオレフィ
ンに混合してミクロ分散させた後、孔形成剤を抽出する
混合抽出法、ポリオレフィン相を溶媒でミクロ相分離す
ることにより多孔構造とする相分離法、異種固体がミク
ロ分散しているポリオレフィン成形体に延伸などの歪を
与えることにより異種固体間を界面破壊して空孔を生じ
させ多孔化する延伸法などにより製造されている。
Conventionally, such a microporous polyolefin membrane is prepared by, for example, mixing and microdispersing a pore-forming agent composed of fine powder such as a different polymer in the polyolefin, and then extracting the pore-forming agent by a mixed extraction method in which the polyolefin phase is a solvent. A phase separation method that creates a porous structure by micro-phase separation. A strain such as stretching is applied to a polyolefin molded product in which different kinds of solids are micro-dispersed to cause interface destruction between different kinds of solids and create pores to make them porous. It is manufactured by a stretching method or the like.

最近、高強度および高弾性のフィルムに形成し得る超高
分子量ポリオレフィンが開発され、これからなる高強度
のフィルム又は微多孔膜が種々提案された。
Recently, an ultra-high molecular weight polyolefin that can be formed into a high-strength and high-elasticity film has been developed, and various high-strength films or microporous membranes made of this have been proposed.

例えば特開昭58−5228号は超高分子量ポリエチレンを非
揮発性溶剤に溶解し、この溶液から繊維またはフィルム
などのゲルを成形し、この溶剤を含むゲルを揮発性溶剤
で抽出処理した後、加熱延伸することにより得られる超
高分子量ポリオレフィン繊維又はフィルムを開示してい
る。
For example, JP-A-58-5228 discloses that ultra high molecular weight polyethylene is dissolved in a non-volatile solvent, a gel such as a fiber or a film is molded from this solution, and the gel containing this solvent is subjected to an extraction treatment with a volatile solvent. Disclosed is an ultrahigh molecular weight polyolefin fiber or film obtained by heat drawing.

また特開昭60−242035号は重量平均分子量が5×105
上の超高分子量ポリエチレンを溶媒に加熱溶解した溶液
からゲル状シートを成形し、該ゲル状シート中の溶媒量
を10〜80重量%に脱溶媒処理し、次いで加熱延伸した
後、残留溶媒を除去することにより得られる厚さが10μ
m以下、破断強度が200kg/cm2以上、空孔率が30%以上
である超高分子量ポリエチレンの微多孔膜を開示してい
る。
Further, JP-A-60-242035 discloses that a gel-like sheet is formed from a solution obtained by heating and dissolving ultrahigh molecular weight polyethylene having a weight average molecular weight of 5 × 10 5 or more in a solvent, and the amount of solvent in the gel-like sheet is 10 to 80. The thickness obtained by removing the residual solvent after desolvation treatment to 10% by weight and then heating and stretching is 10μ
Disclosed is a microporous membrane of ultra-high molecular weight polyethylene having m or less, breaking strength of 200 kg / cm 2 or more, and porosity of 30% or more.

[発明が解決しようとする問題点] しかしながらこのようにして得られる超高分子量ポリエ
チレン微多孔膜は比較的薄いため、大きな強度を要する
用途には適さない。そこで膜厚を上げるために支持体上
に流延するポリマー溶液の量を多くしようとすると冷却
速度が低下し、結晶化が進みすぎて延伸が容易でなくな
り、得られる微多孔膜の強度や空孔率が低下する。また
ダイスより超高分子量ポリエチレン溶液を押出してゲル
状シートを形成する場合にも、膜厚を大きくすると、ダ
イスを出たときのスウェルやネックインが大きく均一な
厚さの膜を形成しにくくなる。このように強度を上げる
ために微多孔膜の膜厚を大きくしようとすると、必ずし
も満足な孔径及び空孔率を有する微多孔膜が得られな
い。
[Problems to be Solved by the Invention] However, since the ultrahigh molecular weight polyethylene microporous membrane obtained in this manner is relatively thin, it is not suitable for applications requiring high strength. Therefore, if an attempt is made to increase the amount of the polymer solution cast on the support in order to increase the film thickness, the cooling rate will decrease and the crystallization will not proceed so easily that stretching will be difficult and the strength and emptyness of the resulting microporous film will be reduced. Porosity decreases. Also, when forming a gel-like sheet by extruding an ultra-high molecular weight polyethylene solution from a die, increasing the film thickness causes large swell and neck-in when exiting the die, making it difficult to form a film of uniform thickness. . If the film thickness of the microporous film is increased in order to increase the strength as described above, a microporous film having a satisfactory pore size and porosity cannot always be obtained.

そのためポリオレフィン微多孔膜を適当な多孔性支持体
に積層することも考えられるが、従来のように熱融着し
たり接着剤により接着したりすると微多孔膜の孔径や空
孔率も変化し、満足な積層膜が得られないことがわかっ
た。従って本発明の目的は微多孔膜の孔径及び空孔率を
実質的に変化することなく微多孔膜と補強用多孔性基材
とが積層された積層膜を提供することである。
Therefore, it is also possible to laminate the polyolefin microporous membrane on an appropriate porous support, but when it is heat-sealed or adhered with an adhesive as in the conventional case, the pore diameter and the porosity of the microporous membrane also change, It was found that a satisfactory laminated film could not be obtained. Therefore, an object of the present invention is to provide a laminated membrane in which a microporous membrane and a reinforcing porous base material are laminated without substantially changing the pore size and porosity of the microporous membrane.

[問題点を解決するための手段] 上記目的に鑑み鋭意研究の結果、本発明者等は微多孔膜
と補強用多孔性基材とを間欠的な部分において融着する
ことにより微多孔膜の孔径及び空孔率が実質的に変化し
ないことを発見し、本発明に想到した。
[Means for Solving Problems] As a result of earnest research in view of the above object, the present inventors have found that the microporous membrane can be formed by fusing the microporous membrane and the reinforcing porous base material at intermittent portions. The inventors have found that the pore size and porosity do not substantially change, and have conceived the present invention.

すなわち、本発明の積層膜は超高分子量ポリオレフィン
微多孔膜と補強用多孔性基材とからなり、前記微多孔膜
の孔径及び空孔率が実質的に変化しないように前記微多
孔膜と前記補強用多孔性基材とが間欠的な部分で融着さ
れていることを特徴とする。
That is, the laminated film of the present invention comprises an ultra high molecular weight polyolefin microporous film and a reinforcing porous substrate, and the microporous film and the microporous film so that the pore diameter and porosity of the microporous film do not substantially change. It is characterized in that the reinforcing porous base material is fused at intermittent portions.

本発明において用いる超高分子量ポリオレフィンは、重
量平均分子量が5×10 以上、好ましくは1×106〜15
×106の範囲のものである。重量平均分子量が5×105
満では、超高分子量ポリオレフィンの特徴である高弾性
率で高強度の微多孔膜が得られない。一方、上限は特に
限定的ではないが、15×106を越えるものは、ゲル状シ
ートの形成において成形性に劣る。
The ultrahigh molecular weight polyolefin used in the present invention has a weight average molecular weight of 5 × 10 6 or more, preferably 1 × 10 6 to 15
It is in the range of × 10 6 . When the weight average molecular weight is less than 5 × 10 5 , a microporous membrane having a high elastic modulus and a high strength, which is a characteristic of an ultrahigh molecular weight polyolefin, cannot be obtained. On the other hand, the upper limit is not particularly limited, but those exceeding 15 × 10 6 are inferior in moldability in forming a gel-like sheet.

このような超高分子量ポリオレフィンとしては、エチレ
ン、プロピレン、1−ブテン、4−メチル−1−ペンテ
ン、1−ヘキセンなどを重合した結晶性の単独重合体ま
たは共重合体があげられる。これらのうちエチレンを主
体とする超高分子量ポリエチレンが好ましい。なお、上
記の超高分子量ポリオレフィンには必要に応じて酸化防
止剤、紫外線吸収剤、滑剤、アンチブロッキング剤、顔
料、染料、無機充填剤などの各種添加剤を本発明の目的
を損わない範囲で添加することができる。
Examples of such ultra-high molecular weight polyolefins include crystalline homopolymers or copolymers obtained by polymerizing ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene and the like. Of these, ultra-high molecular weight polyethylene mainly composed of ethylene is preferable. In the above ultra-high molecular weight polyolefin, various additives such as an antioxidant, an ultraviolet absorber, a lubricant, an anti-blocking agent, a pigment, a dye and an inorganic filler may be added to the ultra-high molecular weight polyolefin as needed within a range not impairing the object of the present invention. Can be added at.

補強用多孔性基材は微多孔膜と接合し得るものであれば
任意の熱可塑性樹脂の織布、不織布、多孔性膜、多孔性
シート又は多孔性フィルムにより形成することができ
る。好ましい熱可塑性樹脂としは、ポリエチレン、ポリ
プロピレン等のポリオレフィン、ポリエチレンテレフタ
レート等のポリエステル、ナイロン等のポリアミド 等
があるが、超高分子量ポリオレフィン微多孔膜との接合
性及び耐薬品性の観点からポリオレフィンが好ましい。
The reinforcing porous substrate can be formed of any thermoplastic resin woven fabric, non-woven fabric, porous film, porous sheet or porous film as long as it can be joined to the microporous film. Preferred thermoplastic resins include polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, polyamides such as nylon, etc., but polyolefins are preferred from the viewpoint of bondability with ultra-high molecular weight polyolefin microporous membrane and chemical resistance. .

織布の例としては、例えば高密度ポリエチレンやポリプ
ロピレンのフィルムを一軸延伸したテープを織布したも
ので、織度が1000〜1500デニール、厚さが0.05〜2mm、
坪量が10〜100g/m2の延伸テープヤーンクロスがある。
その他に熱可塑性樹脂を円形ダイスからネット状に押出
したもので、糸の太さ0.3〜3mm、厚さ0.3〜3mm、網目の
大きさ1〜10mmの押出ネットも利用できる。
As an example of the woven fabric, for example, a film obtained by uniaxially stretching a film of high-density polyethylene or polypropylene is woven, and the weaving degree is 1000 to 1500 denier and the thickness is 0.05 to 2 mm.
There is a stretched tape yarn cloth with a basis weight of 10 to 100 g / m 2 .
In addition, a thermoplastic resin is extruded in a net shape from a circular die, and an extruded net having a thread thickness of 0.3 to 3 mm, a thickness of 0.3 to 3 mm and a mesh size of 1 to 10 mm can also be used.

不織布の例としては、熱可塑性樹脂からなる直径0.5〜5
0μmの繊維により形成された厚さ0.05〜2mm、坪量5〜
500g/m2、通気度0.1〜100cc/cm2/秒の不織布がある。そ
の他に、異種ポリマー等の微粉体からなる孔形成剤をポ
リオレフィンに混合してミクロ分散させた後、孔形成剤
を抽出する混合抽出法、ポリオレフィン相を溶媒でミク
ロ相分離することにより多孔構造とする相分離法、異種
固体がミクロ分散しているポリオレフィン成形体に延伸
などの歪みを与えることにより異種固体間を界面破壊し
て空孔を生じさせ多孔化する延伸法などで得られるポリ
オレフィン多孔性膜も利用できる。
An example of a non-woven fabric is a thermoplastic resin having a diameter of 0.5 to 5
The thickness is 0.05-2mm, and the basis weight is 5-
There are non-woven fabrics with 500g / m 2 and air permeability of 0.1-100cc / cm 2 / sec. In addition, a pore-forming agent made of fine powder such as a different polymer is mixed with a polyolefin to microdisperse it, and then a mixed extraction method of extracting the pore-forming agent, and a porous structure is obtained by microphase-separating the polyolefin phase with a solvent. The polyolefin porosity obtained by the phase separation method, in which a polyolefin molded product in which different kinds of solids are micro-dispersed is subjected to strain such as stretching to cause interfacial destruction between different kinds of solids to generate pores and become porous Membranes are also available.

さらに同様の熱可塑性樹脂からなる溶融押出発泡成形し
た多孔性シート又は、機械的、熱、光、放射線等で穿孔
した多孔性フィルムも利用することができる。
Further, a melt-extrusion foam-formed porous sheet made of the same thermoplastic resin or a porous film perforated by mechanical, heat, light, radiation or the like can be used.

次に超高分子量ポリオレフィンの微多孔膜の製造方法に
ついて説明する。
Next, a method for producing a microporous membrane of ultrahigh molecular weight polyolefin will be described.

まず重量平均分子量5×105以上の超高分子量ポリオレ
フィンを溶媒に加熱溶解することにより溶液を調整す
る。この溶媒としては、超高分子量ポリオレフィンを十
分に溶解できるものであれば特に限定されない。例え
ば、ノナン、デカン、ウンデカン、ドデカン、デカリ
ン、パラフィン油などの脂肪族または環式の炭化水素、
あるいは沸点がこれらに対応する鉱油留分などがあげら
れるが、溶媒含有量が安定なゲル状成形物を得るために
はパラフィン油のような不揮発性の溶媒が好ましい。
First, an ultrahigh molecular weight polyolefin having a weight average molecular weight of 5 × 10 5 or more is heated and dissolved in a solvent to prepare a solution. The solvent is not particularly limited as long as it can sufficiently dissolve the ultrahigh molecular weight polyolefin. For example, aliphatic or cyclic hydrocarbons such as nonane, decane, undecane, dodecane, decalin and paraffin oil,
Alternatively, there may be mentioned mineral oil fractions having boiling points corresponding to these, but a non-volatile solvent such as paraffin oil is preferable in order to obtain a gel-like molded product having a stable solvent content.

加熱溶解は、超高分子量ポリオレフィンが溶媒中で完全
に溶解する温度で撹拌しながら行う。その温度は使用す
る重合体および溶媒により異なるが、例えば超高分子量
ポリエチレンの場合には140〜250℃の範囲である。ま
た、超高分子量ポリオレフィン溶液の濃度は1〜10重量
%が好ましい。濃度が高すぎると均一な溶液の調製が難
かしい。なお、加熱溶解にあたってはポリオレフィンの
酸化劣化を防止するために酸化防止剤を添加するのが好
ましい。
The heating dissolution is performed with stirring at a temperature at which the ultrahigh molecular weight polyolefin is completely dissolved in the solvent. The temperature varies depending on the polymer and solvent used, but is in the range of 140 to 250 ° C. in the case of ultrahigh molecular weight polyethylene, for example. The concentration of the ultrahigh molecular weight polyolefin solution is preferably 1 to 10% by weight. If the concentration is too high, it will be difficult to prepare a uniform solution. In addition, in heating and melting, it is preferable to add an antioxidant in order to prevent oxidative deterioration of the polyolefin.

次にこの超高分子量ポリオレフィンの加熱溶液をダイス
よりシート状に押出すか支持体上に流延し、急冷する。
急冷は少くとも50℃/分の速度でゲル化温度以下まで、
例えば、ポリエチレンの場合は90℃以下まで、好ましく
は50〜60℃まで行う。この急冷は水浴、空気浴、溶剤浴
等により行う。
Next, the heated solution of the ultra-high molecular weight polyolefin is extruded in a sheet form from a die or cast on a support and rapidly cooled.
Quench at a rate of at least 50 ° C / min to below the gelling temperature,
For example, in the case of polyethylene, the temperature is up to 90 ° C or lower, preferably 50 to 60 ° C. This rapid cooling is performed with a water bath, an air bath, a solvent bath, or the like.

また比較的厚膜の微多孔膜を製造する場合、超高分子量
ポリオレフィンの加熱溶液を急冷しながらダイスよりシ
ート状に押出す。急冷速度は同じように50℃/分以上で
あり、ゲル化温度以下まで、例えば、ポリエチレンの場
合は90℃以下まで好ましくは50〜60℃まで行う。ダイス
の冷却はダイス内に冷却水を循環させたり、ダイスを水
中に浸漬したりして行うことができるが、用いられる冷
媒の種類や冷却の方法はこの限りでない。
When producing a relatively thick microporous film, a heated solution of an ultrahigh molecular weight polyolefin is rapidly cooled and extruded into a sheet form from a die. The quenching rate is likewise 50 ° C./min or more and is carried out up to the gelling temperature, for example up to 90 ° C. in the case of polyethylene, preferably up to 50-60 ° C. The die can be cooled by circulating cooling water in the die or by immersing the die in water, but the type of refrigerant used and the cooling method are not limited to this.

超高分子量ポリオレフィン溶液がゲル化すると抵抗が大
きくなってダイスからの押出しが困難になると予想され
るが、本発明者は思いがけなく比較的容易にポリオレフ
ィンゲルを押出すことができることを発見した。この理
由は必ずしも明確でないが、パラフィン油等の不揮発性
溶媒で膨潤した超高分子量ポリオレフィンゲルが比較的
スリット幅の広いダイス口に対して低い抵抗を有するた
めであると考えられる。このため比較的広範囲の、例え
ば0.5〜20mm、好ましくは1〜10mmの厚さの超高分子量
ポリオレフィンゲルのシートを得ることができる。なお
押出し速度は溶液の温度、冷媒の温度、冷却部分の長さ
によるが、通常2〜3cm乃至2〜3m/分である。
It is expected that when the ultrahigh molecular weight polyolefin solution gels, the resistance increases and it becomes difficult to extrude from the die, but the present inventors have unexpectedly discovered that the polyolefin gel can be extruded relatively easily. The reason for this is not clear, but it is considered that the ultrahigh molecular weight polyolefin gel swollen with a non-volatile solvent such as paraffin oil has low resistance to the die opening having a relatively wide slit width. Therefore, it is possible to obtain a sheet of ultra-high molecular weight polyolefin gel having a relatively wide range, for example, a thickness of 0.5 to 20 mm, preferably 1 to 10 mm. The extrusion rate depends on the temperature of the solution, the temperature of the refrigerant, and the length of the cooling portion, but is usually 2-3 cm to 2-3 m / min.

ゲル状シートは次に脱溶媒処理する。脱溶媒処理は、ゲ
ル状シートを易揮発性溶剤に浸漬し抽出して乾燥する方
法、圧縮する方法、加熱する方法またはこれらの組合せ
による方法などにより行うことができるが、ゲル状シー
トの構造を著しく変化させることなく溶媒を除去するた
めには易揮発性溶剤による抽出方法が好ましいが、抽出
時間を短縮するためには圧縮する方法との組み合わせに
よる方法が効果的である。この易揮発性溶剤としては、
ペンタン、ヘキサン、ヘプタンなどの炭化水素、塩化メ
チレン、四塩化炭素などの塩素化炭化水素、三フッ化エ
タンなどのフッ化炭化水素、ジエチルエーテル、ジオキ
サンなどのエーテル類などがあげられる。これらの溶剤
は超高分子量ポリオレフィンの溶解に用いた溶媒に応じ
て適宜選択し、単独もしくは混合して用いる。
The gel-like sheet is then desolvated. The desolvation treatment can be carried out by a method of immersing the gel-like sheet in an easily volatile solvent and extracting and drying, a method of compressing, a method of heating, or a method by a combination thereof. An extraction method using an easily volatile solvent is preferable in order to remove the solvent without significantly changing it, but a method in combination with a compression method is effective in shortening the extraction time. As this easily volatile solvent,
Examples thereof include hydrocarbons such as pentane, hexane and heptane, chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride, fluorinated hydrocarbons such as trifluoroethane, ethers such as diethyl ether and dioxane. These solvents are appropriately selected according to the solvent used for dissolving the ultrahigh molecular weight polyolefin, and used alone or as a mixture.

また、ゲル状シート中の溶媒の除去量は、含まれる溶媒
に対して少くとも10重量%で、ゲル状シート中に含まれ
る超高分子量ポリオレフィンが10〜90重量%、好ましく
は10〜60重量%になるように脱溶媒処理することが必要
である。ゲル状シートからの溶媒の除去量が含まれる溶
媒に対し10重量%未満で、ゲル状シート中に含まれるポ
リオレフィンが10重量%未満では、ゲル状シートが溶媒
で高度に膨潤しているために加熱延伸においてゲルの溶
解を起し易い。また部分的に不均一延伸を起し易く、厚
さの均一な延伸成形物が得難く、延伸にともなう溶媒の
滲み出しなど取扱いの上からも好ましくない。一方、ゲ
ル状シート中に含まれるポリオレフィンが90重量%を越
えるまで溶媒を除去すると、ゲル状シートの網状組織の
緻密化が進み過ぎて高倍率の延伸ができず、高弾性率お
よび高強度の微多孔膜が得られない。なお、ゲル状シー
ト中に含まれる溶媒の除去量は、ゲル状シートに対する
易揮発性溶剤の量、時間あるいはゲル状シートの圧縮圧
力などによって調節することができる。
The removal amount of the solvent in the gel-like sheet is at least 10% by weight with respect to the solvent contained, and the ultrahigh molecular weight polyolefin contained in the gel-like sheet is 10 to 90% by weight, preferably 10 to 60% by weight. It is necessary to perform desolvation treatment so that the amount becomes%. If the amount of solvent removed from the gel-like sheet is less than 10% by weight with respect to the solvent, and the polyolefin contained in the gel-like sheet is less than 10% by weight, the gel-like sheet is highly swollen with the solvent. It is easy to cause the gel to dissolve in the heat drawing. In addition, uneven stretching is likely to occur partially, and it is difficult to obtain a stretch-molded product having a uniform thickness, and it is not preferable from the viewpoint of handling such as exudation of the solvent during stretching. On the other hand, if the solvent is removed until the content of the polyolefin contained in the gel-like sheet exceeds 90% by weight, the network of the gel-like sheet becomes too dense and stretching cannot be performed at a high magnification, resulting in high elastic modulus and high strength. A microporous film cannot be obtained. The removal amount of the solvent contained in the gel-like sheet can be adjusted by the amount of the volatile solvent with respect to the gel-like sheet, the time, the compression pressure of the gel-like sheet, or the like.

また、ゲル状シートの易揮発性溶剤による脱溶媒処理で
は、ゲル状シート中に不揮発性溶媒に代って吸収された
易揮発性溶剤の蒸発に伴ない、ゲル状シートが3軸方向
へ収縮やたわみを生じやすい。そこでこれを防止し、平
滑で二軸(縦、横)方向の収縮が小さくて均一で高倍率
の延伸が可能な原反を得るため、ゲル状シートを厚さ方
向に選択的に収縮することが好ましい。その収縮率は、
厚さ方向に50%以上、好ましくは70%以上で、また2軸
方向には20%以下であるのが好ましい。ゲル状シートの
厚さ方向への選択的な収縮は、例えばゲル状シートを平
滑な支持体へ密着したり、2軸方向からの把持あるいは
多孔質板で挟むなどの状態で易揮発性溶剤を蒸発させる
方法により行うことができる。
Further, in the solvent removal treatment of the gel-like sheet with the easily volatile solvent, the gel-like sheet shrinks in the three axial directions as the easily volatile solvent absorbed in the gel-like sheet instead of the non-volatile solvent evaporates. Easy to bend. Therefore, in order to prevent this, and to obtain a raw sheet that is smooth and has a small shrinkage in the biaxial (longitudinal and lateral) directions and is capable of being stretched uniformly and at a high ratio, the gel-like sheet should be selectively shrunk in the thickness direction. Is preferred. The contraction rate is
It is preferably 50% or more, preferably 70% or more in the thickness direction, and 20% or less in the biaxial direction. Selective shrinkage of the gel-like sheet in the thickness direction is performed by, for example, adhering the gel-like sheet to a smooth support, grasping from the biaxial direction, or sandwiching it with a porous plate to remove the volatile solvent. It can be performed by a method of evaporating.

延伸は、脱溶媒処理したゲル状シートの原反を加熱し、
通常のテンター法、ロール法、インフレーション法、圧
延法もしくはこれらの方法の組合せによって所定の倍率
で行う。2軸延伸が好ましく、縦横同時延伸または逐次
延伸のいずれでもよい。
Stretching is performed by heating the original sheet of desolvated gel-like sheet,
It is carried out at a predetermined magnification by an ordinary tenter method, roll method, inflation method, rolling method or a combination of these methods. Biaxial stretching is preferable, and either longitudinal / transverse simultaneous stretching or sequential stretching may be used.

延伸温度は、超高分子量ポリオレフィンの融点+10℃以
下、好ましくは結晶分散温度から結晶融点未満の範囲で
ある。例えば、ポリエチレンの場合は90〜140℃で、よ
り好ましくは100〜130℃の範囲である。延伸温度が融点
+10℃を越える場合は、樹脂の溶融により延伸による分
子鎖の配向ができない。また、延伸温度が結晶分散温度
未満では、樹脂の軟化が不十分で、延伸において破膜し
易く、高倍率の延伸ができない。
The stretching temperature is not higher than the melting point of the ultrahigh molecular weight polyolefin + 10 ° C., preferably in the range from the crystal dispersion temperature to below the crystal melting point. For example, in the case of polyethylene, the temperature is 90 to 140 ° C, more preferably 100 to 130 ° C. If the stretching temperature exceeds the melting point + 10 ° C, the molecular chains cannot be oriented by stretching due to the melting of the resin. On the other hand, if the stretching temperature is lower than the crystal dispersion temperature, the softening of the resin is insufficient, the film is easily broken during stretching, and high-stretching cannot be performed.

また、延伸倍率は、原反の厚さによって異なるが、1軸
方向で少くとも2倍以上、好ましくは5〜20倍、面倍率
で10倍以上、好ましくは25〜400倍である。面倍率が10
倍未満では延伸が不十分で高弾性、高強度の微多孔膜が
得られない。一方、面倍率が400倍を越えると延伸装
置、延伸操作などの点で制約が生じる。
The stretching ratio varies depending on the thickness of the raw fabric, but is at least 2 times or more in the uniaxial direction, preferably 5 to 20 times, and the surface magnification is 10 times or more, preferably 25 to 400 times. Area magnification is 10
If it is less than twice, the stretching is insufficient and a highly elastic and high-strength microporous membrane cannot be obtained. On the other hand, if the areal magnification exceeds 400 times, there are restrictions on the stretching device, stretching operation, etc.

延伸成形物は、前記の易揮発性溶剤に浸漬して残留する
溶媒を抽出除去した後、溶剤を蒸発して乾燥する。溶媒
の抽出は、延伸成形物中の溶媒が1重量%未満になるま
で行うことが必要である。
The stretch-molded product is immersed in the above-mentioned volatile solvent to extract and remove the residual solvent, and then the solvent is evaporated to dry. It is necessary to extract the solvent until the solvent in the stretch-molded product is less than 1% by weight.

以上のようにして製造した超高分子量ポリオレフィン微
多孔膜は、空孔率が30%以上で貫通孔径が0.001〜0.5μ
mである。また膜厚は製法に応じ10μm以下にも以上に
もすることができる。
The ultra high molecular weight polyolefin microporous membrane produced as described above has a porosity of 30% or more and a through pore diameter of 0.001 to 0.5 μ.
m. The film thickness can be 10 μm or less depending on the manufacturing method.

微多孔膜と補強用多孔性基材との接合は間欠的な融着に
より行う。このような融着は多孔性基材が織布又は抽出
ネットの場合にはカレンダー加工により、また不織布又
は多孔性膜などの場合にはエンボス加工により行うのが
好ましい。加工装置としては、通常のヒートシール、高
周波シール、超音波シールなどに用いられる各種装置を
利用できる。融着部分が余り大きいと微多孔膜の孔径及
び空孔率の変化が大きすぎる。従って融着部分は5mm以
下、好ましくは2mm以下の平均幅を有するのが好まし
い。また融着部分の割合は全体の1〜50%、好ましくは
5〜25%である。1%未満だと接合が不十分であり、50
%を超えると孔径及び空孔率が低下し過ぎる。
The microporous membrane and the reinforcing porous substrate are joined by intermittent fusion bonding. Such fusion is preferably performed by calendering when the porous substrate is a woven fabric or extraction net, and by embossing when it is a non-woven fabric or a porous membrane. As the processing device, various devices used for ordinary heat sealing, high frequency sealing, ultrasonic sealing and the like can be used. If the fused portion is too large, the change in pore size and porosity of the microporous membrane will be too large. Therefore, the fused portion preferably has an average width of 5 mm or less, preferably 2 mm or less. Further, the proportion of the fused portion is 1 to 50%, preferably 5 to 25% of the whole. If it is less than 1%, the joining is insufficient and 50
If it exceeds%, the pore diameter and the porosity are too low.

このような融着において、融着温度は例えばポリエチレ
ン微多孔膜に対しては70〜140℃、ポリプロピレン微多
孔膜に対しては100〜170℃である。融着の際若干の加圧
を行うが、ポリオレフィン微多孔膜を保護するためのク
ッション材として、紙等の補助材を用いてもよい。
In such fusion, the fusion temperature is, for example, 70 to 140 ° C. for the polyethylene microporous membrane and 100 to 170 ° C. for the polypropylene microporous membrane. Although slight pressure is applied during fusion, an auxiliary material such as paper may be used as a cushion material for protecting the polyolefin microporous film.

[実施例] 以下に、本発明の実施例を示す。なお、実施例における
試験方法は次の通りである。
[Examples] Examples of the present invention will be shown below. The test method in the examples is as follows.

(1) 微多孔膜の厚さ:断面を走査型電子顕微鏡によ
り測定。
(1) Thickness of microporous membrane: A cross section was measured by a scanning electron microscope.

(2) 積層膜の厚さ:マイクロメータにより測定。(2) Thickness of laminated film: measured with a micrometer.

(3) 引張0.2%変形荷重:ASTM D882に準拠して測
定。
(3) Tensile 0.2% deformation load: Measured according to ASTM D882.

(4) 引張破断荷重:ASTM D882に準拠して測定。(4) Tensile breaking load: Measured according to ASTM D882.

(5) 純水透過速度:積層膜を平膜モジュールに組み
込み、蒸溜水/エタノール混合液(50/50容積比)で通
水して親水化処理を行い、蒸溜水で充分に洗浄した後、
380mmHgの水圧をかけたときの濾液の透過量を測定して
求めた。
(5) Pure water permeation rate: After incorporating the laminated membrane into a flat membrane module, water was passed through with a distilled water / ethanol mixed solution (50/50 volume ratio) to perform a hydrophilic treatment, and after thoroughly washing with distilled water,
It was determined by measuring the amount of permeation of the filtrate when a water pressure of 380 mmHg was applied.

(6) 蛋白質の阻止率:上記(5)で記載したモジュ
ールを用いて、380mmHgの差圧下で0.05重量%のγ−グ
ロブリン(シグマ社製、分子量156,000)の生理的食塩
水溶液を循環させたときに、濾液中に含まれるγ−グロ
ブリンの濃度を280nmでの吸光度測定から求め、次式に
より計算した。
(6) Protein inhibition rate: When a physiological saline solution containing 0.05% by weight of γ-globulin (manufactured by Sigma, molecular weight 156,000) was circulated under a differential pressure of 380 mmHg using the module described in (5) above. In addition, the concentration of γ-globulin contained in the filtrate was determined by measuring the absorbance at 280 nm, and calculated by the following formula.

γ−グロブリンの阻止率={1−(濾液中のγ−グロブ
リン濃度/原液中のγ−グロブリン濃度)}×100 参考例1 重量平均分子量(w)が2×106のポリエチレン4.0重
量%と流動パラフィン(64cst/40℃)96.0重量%との混
合液100重量部に、2,6−ジ−t−ブチル−p−クレゾー
ル(「BHT」、住友化学社製)0.125重量部とテトラキス
〔メチレン−3−(3,5−ジ−t−ブチル−4−ヒドロ
キシフェニル)−プロピオネート〕メタン(「イルガノ
ックス1010」チバガイギー社製)0.25重量部との酸化防
止剤を加えて混合した。この混合液を撹拌機付のオート
クレーブに充填し、200℃で90分間撹拌して均一な溶液
を得た。
γ-globulin inhibition rate = {1- (γ-globulin concentration in filtrate / γ-globulin concentration in stock solution)} × 100 Reference Example 1 With 4.0% by weight of polyethylene having a weight average molecular weight (w) of 2 × 10 6. Liquid paraffin (64 cst / 40 ° C.) mixed with 100 parts by weight of 96.0% by weight, 0.125 parts by weight of 2,6-di-t-butyl-p-cresol (“BHT”, Sumitomo Chemical Co., Ltd.) and tetrakis [methylene] An antioxidant with 0.25 part by weight of 3- (3,5-di-t-butyl-4-hydroxyphenyl) -propionate] methane (“Irganox 1010” manufactured by Ciba Geigy) was added and mixed. This mixed solution was filled in an autoclave equipped with a stirrer and stirred at 200 ° C. for 90 minutes to obtain a uniform solution.

この溶液を加熱した金型に充填し、15℃まで急冷して厚
さ4mmのゲル状シートを成形した。このゲル状シートを
塩化メチレン250ml中に60分間浸漬した後、平滑板には
り付けた状態で塩化メチレンを蒸発乾燥し、流動パラフ
ィン含有量が82.9重量%の原反を作成した。
This solution was filled in a heated mold and rapidly cooled to 15 ° C. to form a gel sheet having a thickness of 4 mm. This gel-like sheet was immersed in 250 ml of methylene chloride for 60 minutes, and then methylene chloride was evaporated and dried while being attached to a smooth plate to prepare a raw fabric having a liquid paraffin content of 82.9% by weight.

得られた原反シートを9×9cmに切断し、二軸延伸機に
セットして、温度118℃、延伸速度30cm/分で10×10倍に
同時二軸延伸を行った。得られた延伸膜を塩化メチレン
で洗浄して残留する流動パラフィンを抽出除去した後、
乾燥して120℃で熱セットし、厚さ4μmの超高分子量
ポリエチレン微多孔膜を得た。その蛋白質阻止率は68.8
%、透水速度は957/m2.hr.atmであった。
The obtained raw sheet was cut into 9 × 9 cm, set in a biaxial stretching machine, and simultaneously biaxially stretched 10 × 10 times at a temperature of 118 ° C. and a stretching speed of 30 cm / min. After washing the obtained stretched film with methylene chloride to remove residual liquid paraffin by extraction,
After drying and heat setting at 120 ° C., an ultrahigh molecular weight polyethylene microporous membrane having a thickness of 4 μm was obtained. The protein inhibition rate is 68.8
%, The water transmission rate was 957 / m 2 .hr.atm.

実施例1 参考例1の超高分子量ポリエチレン微多孔膜をポリエチ
レン製のテープヤーンクロス(日石プラスチック製ワリ
フ、坪量18g/m2、厚さ70μm)と薄葉紙(坪量22g/m2
の間にサンドイッチ状にはさみ、カレンダーロール処理
機を用いて105℃の温度条件で加圧接着した後、薄葉紙
をはぎとり、超高分子量ポリエチレン微多孔膜とポリエ
チレン製テープヤーンクロスとからなる積層膜を得た。
この積層膜のテスト結果を表1に示す。
Example 1 The ultra-high-molecular-weight polyethylene microporous membrane of Reference Example 1 was used as a polyethylene tape yarn cloth (Nisseki plastic walliff, basis weight 18 g / m 2 , thickness 70 μm) and thin paper (basis weight 22 g / m 2 ).
Sandwiched between them, pressure-bonded at a temperature of 105 ° C using a calender roll processor, the thin paper was peeled off, and a laminated film consisting of an ultrahigh molecular weight polyethylene microporous film and a polyethylene tape yarn cloth was formed. Obtained.
Table 1 shows the test results of this laminated film.

実施例2 参考例1の超高分子量ポリエチレン微多孔膜を2枚のポ
リエチレン製テープヤーンクロス(日石プラスチック製
ワリフ、坪量18g/m2、厚さ70μm)の間にサンドイッチ
状にはさみ、カレンダーロール処理機を用いて110℃の
温度条件で加圧接着して積層膜を得た。この積層膜のテ
スト結果を表1に示す。
Example 2 The ultrahigh molecular weight polyethylene microporous membrane of Reference Example 1 was sandwiched between two polyethylene tape yarn cloths (Nisseki plastic walliff, basis weight 18 g / m 2 , thickness 70 μm) and a calendar. Using a roll processor, pressure bonding was performed at a temperature of 110 ° C. to obtain a laminated film. Table 1 shows the test results of this laminated film.

実施例3 参考例1の超高分子量ポリエチレン微多孔膜をポリエチ
レン製押出しネット(東京ポリマー製ネトロン、糸径60
0μm、厚さ600μm、網目寸法2mm)と薄葉紙(坪量22g
/m2)との間にサンドイッチ状にはさみ、カレンダーロ
ール処理機を用いて100℃の温度条件で加圧接着した
後、薄葉紙をはぎとり、ポリエチレン微多孔膜とポリエ
チレン押出しネットからなる積層膜を得た。この積層膜
のテスト結果を表1に示す。
Example 3 The extruded net made of polyethylene was used for the ultrahigh molecular weight polyethylene microporous membrane of Reference Example 1 (Netron made by Tokyo Polymer, yarn diameter 60
0 μm, thickness 600 μm, mesh size 2 mm) and thin paper (basis weight 22 g)
/ m 2 ), sandwiched between them, pressure-bonded at a temperature of 100 ° C using a calender roll processor, and then peeled off the thin paper to obtain a laminated film consisting of polyethylene microporous film and polyethylene extruded net. It was Table 1 shows the test results of this laminated film.

実施例4 参考例1の超高分子量ポリエチレン微多孔膜を2枚のポ
リプロピレン不織布(東燃石油化学製タピルス、坪量30
g/m2、厚さ400μm)の間にサンドイッチ状にはさみ、
エンボスロール加工機を用いて125℃の温度条件で加圧
接着して積層膜を得た。この積層膜のテスト結果を表1
に示す。
Example 4 Two polypropylene non-woven fabrics made of the ultra-high-molecular-weight polyethylene microporous membrane of Reference Example 1 (Tapyrus manufactured by Tonen Petrochemical, grammage 30
sandwiched between g / m 2 and 400 μm thick,
A laminated film was obtained by pressure bonding using an embossing machine at a temperature of 125 ° C. The test results of this laminated film are shown in Table 1.
Shown in.

実施例5 実施例4と同じ構成でエンボスロール加工機の代わりに
超音波ミシンを用いて10mm間隔の碁盤目状に接着した以
外は実施例4と同様にして積層膜を得た。この積層膜の
テスト結果を表1に示す。
Example 5 A laminated film was obtained in the same manner as in Example 4, except that an ultrasonic sewing machine was used instead of the embossing roll processing machine to bond in a grid pattern with 10 mm intervals. Table 1 shows the test results of this laminated film.

実施例6 参考例1の超高分子量ポリエチレン微多孔膜をポリエチ
レン不織布(デユポン製タイベック、坪量75g/m2、厚さ
150μm)と薄葉紙(坪量22g/m2)との間にサンドイッ
チ状にはさみ、エンボスロール加工機を用いて105℃の
温度条件で加圧接着した後、薄葉紙をはぎ取り、超高分
子量ポリエチレン微多孔膜とポリエチレン不織布からな
る積層膜を得た。この積層膜のテスト結果を表1に示
す。
Example 6 The ultra-high-molecular-weight polyethylene microporous membrane of Reference Example 1 was used as a polyethylene non-woven fabric (Tyvek made by Deupon, basis weight 75 g / m 2 , thickness
Sandwiched between 150 μm) and thin paper (basis weight 22 g / m 2 ), pressure-bonded at a temperature of 105 ° C. using an embossing roll machine, and then peeled off the thin paper to make ultra-high-molecular-weight polyethylene microporous. A laminated film composed of the film and a polyethylene non-woven fabric was obtained. Table 1 shows the test results of this laminated film.

実施例7 参考例1の超高分子量ポリエチレン微多孔膜をポリエチ
レン多孔膜(孔径0.5μm、厚さ50μm)と薄葉紙(坪
量22g/m2)との間にサンドイッチ状にはさみ、エンボス
ロール加工機を用いて105℃の温度条件で加圧接着した
後、薄葉紙をはぎ取り、超高分子量ポリエチレン微多孔
膜とポリエチレン多孔膜からなる積層膜を得た。この積
層膜のテスト結果を表1に示す。
Example 7 The ultra high molecular weight polyethylene microporous membrane of Reference Example 1 was sandwiched between a polyethylene porous membrane (pore size 0.5 μm, thickness 50 μm) and thin paper (basis weight 22 g / m 2 ), and an embossing roll machine was used. After pressure-bonding with a temperature of 105 ° C., the thin paper was peeled off to obtain a laminated film composed of an ultrahigh molecular weight polyethylene microporous film and a polyethylene porous film. Table 1 shows the test results of this laminated film.

比較例1 実施例4において、エンボスロール加工機の代わりにカ
レンダー処理機を用いた以外は、実施例4と同様にして
積層膜を得た。この積層膜のテスト結果を表1に示す。
Comparative Example 1 A laminated film was obtained in the same manner as in Example 4 except that a calendering machine was used instead of the embossing roll processing machine. Table 1 shows the test results of this laminated film.

比較例2 実施例6において、エンボスロール加工機の代わりにカ
レンダー処理機を用いた以外は、実施例6と同様にして
積層膜を得た。この積層膜のテスト結果を表1に示す。
Comparative Example 2 A laminated film was obtained in the same manner as in Example 6 except that a calendering machine was used instead of the embossing roll processing machine. Table 1 shows the test results of this laminated film.

表1に示したように、参考例の微多孔膜に比べて、実施
例1〜7で示した積層膜は、厚さが増加し、微少変形強
度及び破断強度のいずれも著しく向上していることがわ
かる。これにより取扱いが容易になった。また、微多孔
膜の孔径の大きさに起因する蛋白質阻止等も積層加工に
よりほとんど変化していないことがわかる。さらに有効
膜面積に起因する純水透過速度の低下も少なく、優れた
積層膜が得られることが確認された。
As shown in Table 1, as compared with the microporous membrane of the reference example, the laminated films shown in Examples 1 to 7 have an increased thickness and both the small deformation strength and the breaking strength are remarkably improved. I understand. This made it easier to handle. Further, it can be seen that the inhibition of proteins and the like due to the size of the pore diameter of the microporous membrane are hardly changed by the laminating process. Further, it was confirmed that the pure water permeation rate did not decrease due to the effective film area, and an excellent laminated film was obtained.

これに対し、全面熱融着した比較例1〜2では、有効膜
面積が著しく低下するため純水透過速度の低下も著し
く、良好な積層膜は得られていない。
On the other hand, in Comparative Examples 1 and 2 in which the entire surface is heat-sealed, the effective film area is remarkably reduced, so that the pure water permeation rate is remarkably reduced, and a good laminated film is not obtained.

[発明の効果] 本発明の積層膜は間欠的な部分で融着した超高分子量ポ
リオレフィン微多孔膜と補強用多孔性基材からなり、微
多孔膜の孔径及び空孔率は実質的に損なわれていない。
また十分な接合強度でもって多孔性基材に接合されてい
るので、積層膜全体は十分な破断強度を有する。そのた
め本発明の積層膜は取扱いが容易であり、電池セパレー
タ、電解コンデンサー用隔膜、超精密濾過膜、限界濾過
膜、透湿防水衣料用多孔質膜などの各種用途に好適であ
る。
[Effects of the Invention] The laminated film of the present invention comprises an ultrahigh molecular weight polyolefin microporous film fused at intermittent portions and a reinforcing porous substrate, and the pore size and porosity of the microporous film are substantially impaired. It is not.
Further, since the porous film is bonded to the porous substrate with sufficient bonding strength, the entire laminated film has sufficient breaking strength. Therefore, the laminated membrane of the present invention is easy to handle and is suitable for various applications such as battery separators, diaphragms for electrolytic capacitors, ultraprecision filtration membranes, ultrafiltration membranes, and porous membranes for moisture-permeable waterproof clothing.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】超高分子量ポリオレフィン微多孔膜と少な
くとも1層の補強用多孔性基材とからなり、前記微多孔
膜の孔径及び空孔率が実質的に変化しないように、前記
微多孔膜と前記補強用多孔性基材とが間欠的な部分で融
着されていることを特徴とする積層膜。
1. A microporous membrane comprising an ultrahigh molecular weight polyolefin microporous membrane and at least one layer of a reinforcing porous base material so that the pore diameter and porosity of the microporous membrane do not substantially change. A laminated film, characterized in that the reinforcing porous substrate and the reinforcing porous substrate are fused at intermittent portions.
【請求項2】特許請求の範囲第1項に記載の積層膜にお
いて、前記超高分子量ポリオレフィン微多孔膜が0.001
〜0.5μmの貫通孔径及び30%以上の空孔率を有するこ
とを特徴とする積層膜。
2. The laminated film according to claim 1, wherein the ultrahigh molecular weight polyolefin microporous film is 0.001.
A laminated film having a through hole diameter of 0.5 μm and a porosity of 30% or more.
【請求項3】特許請求の範囲第1項又は第2項に記載の
積層膜において、前記超高分子量ポリオレフィンが5×
105以上の重量平均分子量を有することを特徴とする積
層膜。
3. The laminated film according to claim 1 or 2, wherein the ultra high molecular weight polyolefin is 5 ×.
A laminated film having a weight average molecular weight of 10 5 or more.
【請求項4】特許請求の範囲第1項乃至第3項のいずれ
かに記載の積層膜において、前記補強用多孔性基材が織
布、不織布、多孔性膜、多孔性シート又は多孔性フィル
ムからなることを特徴とする積層膜。
4. The laminated film according to any one of claims 1 to 3, wherein the reinforcing porous substrate is a woven fabric, a non-woven fabric, a porous film, a porous sheet or a porous film. A laminated film comprising:
【請求項5】特許請求の範囲第1項乃至第4項のいずれ
かに記載の積層膜において、前記微多孔膜と前記補強用
多孔性基材とがエンボス加工により融着されていること
を特徴とする積層膜。
5. The laminated film according to any one of claims 1 to 4, wherein the microporous film and the reinforcing porous base material are fused by embossing. Characteristic laminated film.
JP62111900A 1987-05-08 1987-05-08 Laminated film Expired - Lifetime JPH0698729B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62111900A JPH0698729B2 (en) 1987-05-08 1987-05-08 Laminated film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62111900A JPH0698729B2 (en) 1987-05-08 1987-05-08 Laminated film

Publications (2)

Publication Number Publication Date
JPS63276533A JPS63276533A (en) 1988-11-14
JPH0698729B2 true JPH0698729B2 (en) 1994-12-07

Family

ID=14572945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62111900A Expired - Lifetime JPH0698729B2 (en) 1987-05-08 1987-05-08 Laminated film

Country Status (1)

Country Link
JP (1) JPH0698729B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE145021T1 (en) * 1991-03-22 1996-11-15 Kappler Safety Group AIR-PERMEABLE COMPOSITE
US5981038A (en) * 1991-10-18 1999-11-09 3M Innovative Properties Company Minnesota Mining And Manufacturing Co. Laminate preventing transmissions of viral pathogens
US5690949A (en) * 1991-10-18 1997-11-25 Minnesota Mining And Manufacturing Company Microporous membrane material for preventing transmission of viral pathogens
GB2285411B (en) * 1993-12-22 1997-07-16 Kimberly Clark Co Process of manufacturing a water-based adhesive bonded, solvent resistant protective laminate
US5786058A (en) * 1995-04-03 1998-07-28 Minnesota Mining & Mfg Thermally bonded viral barrier composite
JPH0992254A (en) * 1995-09-21 1997-04-04 Dainippon Printing Co Ltd Battery separator and its manufacture
JP3474044B2 (en) * 1995-12-05 2003-12-08 三菱樹脂株式会社 Laminate
JPH11179120A (en) * 1997-12-24 1999-07-06 Tonen Kagaku Kk Layered filter made of polyolefinic resin
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
JP4588136B2 (en) * 1999-07-13 2010-11-24 帝人株式会社 Battery separator and method for producing the same
WO2015143140A1 (en) 2014-03-19 2015-09-24 Celgard, Llc Embossed microporous membrane battery separator materials and methods of manufacture and use thereof

Also Published As

Publication number Publication date
JPS63276533A (en) 1988-11-14

Similar Documents

Publication Publication Date Title
JP3347854B2 (en) Polyolefin microporous membrane, method for producing the same, battery separator and filter using the same
EP0355214B1 (en) Process for producing microporous ultra-high molecular weight polyolefin membrane
EP0476198B2 (en) Microporous polyolefin membrane and method of production thereof
JP2657434B2 (en) Polyethylene microporous membrane, method for producing the same, and battery separator using the same
AU607076B2 (en) Multi-layered laminates of microporous films
JP3347835B2 (en) Method for producing microporous polyolefin membrane
CA2602827A1 (en) Microporous polyolefin membrane and method for producing the same
JPH06240036A (en) Microporous polyolefin film and its production
JP4234392B2 (en) Microporous membrane, production method and use thereof
JPH0698729B2 (en) Laminated film
JP3549290B2 (en) Polyolefin microporous membrane and method for producing the same
JPH07228718A (en) Microporous polyolefin film
JP2001200081A (en) Polyethylene microporous membrane and its manufacturing method
JPH05222236A (en) Production of polyolefinic microporous film
JP3009495B2 (en) Polyolefin microporous membrane and method for producing the same
JPH0471416B2 (en)
JPH1012211A (en) Composite film for battery separator
JPH05222237A (en) Production of polyolefinic microporous film
JP2657431B2 (en) Polyolefin microporous membrane and method for producing the same
JP3250894B2 (en) Method for producing microporous polyolefin membrane
JPH1192587A (en) Preparation of polyolefin microporous film
JPH093228A (en) Production of polyolefin finely porous membrane
JP3250870B2 (en) Polyolefin microporous membrane, battery separator and filter using the same
JP2711633B2 (en) Method for producing microporous polyolefin membrane
JP2657441B2 (en) Method for producing microporous polyolefin membrane

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071207

Year of fee payment: 13