JP2022147097A - Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated - Google Patents

Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated Download PDF

Info

Publication number
JP2022147097A
JP2022147097A JP2021048207A JP2021048207A JP2022147097A JP 2022147097 A JP2022147097 A JP 2022147097A JP 2021048207 A JP2021048207 A JP 2021048207A JP 2021048207 A JP2021048207 A JP 2021048207A JP 2022147097 A JP2022147097 A JP 2022147097A
Authority
JP
Japan
Prior art keywords
laminated
meta
wholly aromatic
type wholly
aromatic copolyamide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021048207A
Other languages
Japanese (ja)
Inventor
悟 曽根原
Satoru Sonehara
学 田中
Manabu Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2021048207A priority Critical patent/JP2022147097A/en
Publication of JP2022147097A publication Critical patent/JP2022147097A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Laminated Bodies (AREA)
  • Cell Separators (AREA)

Abstract

To provide a laminated film composed of a meta-type wholly aromatic copolyamide which is excellent in stability of a coating liquid and reduces thermal shrinkage as much as possible, and a multilayer porous film in which the laminated film is laminated on a polyolefin porous film.SOLUTION: A laminated film is composed of a meta-type wholly aromatic copolyamide and has a content of inorganic particles to the total mass of the resin of 150-1,900 parts, wherein a laminated film containing 2-(4-aminophenyl)-5(6) aminobenzimidazole (DAPBI) in a component constituting the meta-type wholly aromatic copolyamide is laminated on a polyolefin porous film.SELECTED DRAWING: None

Description

本発明は、メタ型全芳香族コポリアミド積層膜及び該積層膜が積層された積層多孔質膜に関するものであり、さらに詳しくは、メタ型全芳香族ポリアミドを構成する成分に2-(4-アミノフェニル)-5(6)アミノベンズイミダゾール(DAPBI)を含むメタ型全芳香族コポリアミド積層膜及び該積層膜がポリオレフィン多孔膜に積層された積層多孔質膜に関するものである。 The present invention relates to a meta-type wholly aromatic copolyamide laminated film and a laminated porous film obtained by laminating the laminated film. The present invention relates to a meta-type wholly aromatic copolyamide laminated film containing aminophenyl)-5(6)aminobenzimidazole (DAPBI) and a laminated porous film obtained by laminating the laminated film on a polyolefin porous film.

リチウムイオンバッテリーに用いられるセパレーターにはポリエチレンやポリプロピレンなどのポリオレフィンの多孔膜が用いられる。そして、電池に何らかの異常が発生した場合には電池内部の温度が上昇することがあり、その際ポリオレフィン多孔膜は温度上昇に伴い多孔が閉塞し電池をシャットダウンさせる(シャットダウン機能)。 Polyolefin porous membranes such as polyethylene and polypropylene are used as separators for lithium-ion batteries. When some abnormality occurs in the battery, the temperature inside the battery may rise. At that time, the pores of the polyolefin porous membrane are clogged as the temperature rises, shutting down the battery (shutdown function).

更に温度が上昇し、ポリオレフィンの融点を超えると、多孔膜が収縮し、電池が短絡しショートする。その後、電解液や正極の分解反応を伴い、熱暴走反応を引き起こし発火することもある。
このようなポリオレフィン多孔膜に耐熱性を持たせるため、ポリフッ化ビニリデンや水系アクリル樹脂などをアルミナ等の無機粒子と共にコーティングする技術で耐熱性を高められてきた。
When the temperature further rises and exceeds the melting point of polyolefin, the porous membrane contracts and the battery short-circuits. After that, the electrolytic solution and the positive electrode are accompanied by decomposition reactions, which may cause a thermal runaway reaction and ignite.
In order to impart heat resistance to such a polyolefin porous film, the heat resistance has been enhanced by a technique of coating polyvinylidene fluoride, water-based acrylic resin, etc. together with inorganic particles such as alumina.

しかし、より短時間での充電など、電池に求められる耐熱性は年々高まってきている。そこでこれらの樹脂の代わりにアラミド樹脂が使用されてきている。
例えば、ポリパラフェニレンテレフタルアミドを代表とするパラ型アラミド樹脂においては耐熱性と高い機械的安定性を有してはいるが、アラミド樹脂をコーティングするためには溶媒に溶解させる必要があり、この際、ポリパラフェニレンテレフタルアミドは分子間の相互作用が強いため、結晶が析出しやすく、塗工液の安定性が悪く、生産性が低いという欠点がある(特許文献1)。
However, the heat resistance required for batteries, such as charging in a shorter time, is increasing year by year. Aramid resins have therefore been used in place of these resins.
For example, para-aramid resins represented by polyparaphenylene terephthalamide have heat resistance and high mechanical stability, but in order to coat the aramid resin, it must be dissolved in a solvent. In this case, polyparaphenylene terephthalamide has a strong intermolecular interaction, so that crystals tend to precipitate, and the stability of the coating solution is poor, resulting in low productivity (Patent Document 1).

一方、ポリメタフェニレンイソフタルアミドを代表とするメタ型アラミド樹脂は、パラ型アラミド樹脂に比べて塗工液の安定性は格段に良いものの、耐熱性に劣り、しかも湿式塗工法により、塗工液をポリオレフィン多孔膜上に塗工し定着させる際、圧力を掛けすぎると、ポリオレフィン多孔膜表面の孔に塗工液が入り込んで目詰まりが発生してしまい、ポリオレフィン多孔膜と耐熱性多孔質層との界面において、イオン透過性が低下してしまうおそれがある。一方、これを防ぐために塗工圧力を下げすぎると、塗工液がポリオレフィン多孔膜上に十分に定着せず、多孔質層が部分的に剥離してしまうおそれもある。このようなセパレーターはハンドリング性が悪く、セパレーターと電極との接触性が悪化してしまうおそれがある上、多孔質層が剥離した箇所で耐熱性が低下し、その結果セパレーター全体の収縮率が高くなることによって電池の安全性にも影響してくる(特許文献2、3)。 On the other hand, meta-aramid resins, typified by polymetaphenylene isophthalamide, have much better stability in coating liquids than para-aramid resins, but are inferior in heat resistance and moreover, wet coating methods can be used to coat liquids. When applying and fixing on the polyolefin porous membrane, if too much pressure is applied, the coating liquid will enter the pores on the surface of the polyolefin porous membrane and cause clogging. There is a risk that the ion permeability will decrease at the interface of On the other hand, if the coating pressure is too low to prevent this, the coating liquid will not be sufficiently fixed on the polyolefin porous membrane, and the porous layer may be partially peeled off. Such a separator is difficult to handle, and the contact between the separator and the electrode may deteriorate.In addition, the heat resistance of the separator is reduced at the point where the porous layer is peeled off, resulting in a high shrinkage rate of the entire separator. As a result, the safety of the battery is also affected (Patent Documents 2 and 3).

特開2007-299612号公報JP 2007-299612 A 特開2008-300362号公報Japanese Patent Application Laid-Open No. 2008-300362 特開2009-21265号公報JP 2009-21265 A

本発明の目的は、かかる従来技術における問題点を解消し、塗工液の安定性に優れ、しかも熱収縮率が可及的に低減されたメタ型全芳香族コポリアミドからなる積層膜及び該積層膜がポリオレフィン多孔膜に積層された積層多孔質膜を提供することにある。 An object of the present invention is to solve the problems in the prior art, and to provide a laminated film made of a meta-type wholly aromatic copolyamide having excellent stability of the coating liquid and having a reduced thermal shrinkage rate as much as possible, and a laminate film thereof. An object of the present invention is to provide a laminated porous membrane in which a laminated membrane is laminated on a polyolefin porous membrane.

本発明者は、上記の課題を解決するために鋭意検討をおこなった結果、メタ型全芳香族ポリアミドに第3成分として、2-(4-アミノフェニル)-5(6)アミノベンズイミダゾール(DAPBI)を分子鎖内に導入することにより上記課題を解決できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors added 2-(4-aminophenyl)-5(6)aminobenzimidazole (DAPBI) to a meta-type wholly aromatic polyamide as a third component. ) into the molecular chain can solve the above problems, and have completed the present invention.

すなわち本発明によれば、
1.無機粒子を含有するメタ型全芳香族コポリアミド樹脂からなる積層膜であって、該無機粒子の該樹脂全質量に対する含有量が150~1900部であり、該メタ型全芳香族コポリアミドが、下記式(1)で表される繰り返し単位からなり、下記式(1)におけるArが下記式(2)と下記式(3)であらわせられ、下記式(1)におけるArが下記式(2)であらわせられる化合物であって、前記Arにおける下記式(2)と下記式(3)であらわせられる化合物のモル比率が60/40~20/80であることを特徴とする積層膜。
That is, according to the present invention,
1. A laminated film made of a meta-type wholly aromatic copolyamide resin containing inorganic particles, wherein the content of the inorganic particles relative to the total mass of the resin is 150 to 1900 parts, and the meta-type wholly aromatic copolyamide is Composed of a repeating unit represented by the following formula (1), Ar 1 in the following formula (1) is represented by the following formula (2) and the following formula (3), and Ar 2 in the following formula (1) is represented by the following formula ( 2), wherein the molar ratio of the compound represented by the following formula (2) and the compound represented by the following formula (3) in Ar 1 is 60/40 to 20/80.

Figure 2022147097000001
Figure 2022147097000001

及び、
2.ポリオレフィン多孔膜に、上記1に記載の積層膜が積層された積層多孔質膜であって、該積層多孔質膜の150℃における熱収縮率が12.0%以下であることを特徴とする積層多孔質膜、
が提供される。
as well as,
2. A laminated porous membrane obtained by laminating the laminated film according to 1 above on a polyolefin porous membrane, wherein the laminated porous membrane has a thermal shrinkage rate of 12.0% or less at 150 ° C. porous membrane,
is provided.

本発明によれば、塗工液の安定性に優れ、しかも熱収縮率が可及的に低減されたメタ型全芳香族コポリアミドからなる積層膜及び該積層膜がポリオレフィン多孔膜に積層された積層多孔質膜が安価に得られるので、リチウムイオンバッテリーに用いられるセパレーターなどの用途に好適に用いることができる。 According to the present invention, a laminated film made of a meta-type wholly aromatic copolyamide having excellent coating liquid stability and reduced thermal shrinkage as much as possible, and the laminated film laminated on a polyolefin porous film. Since the laminated porous membrane can be obtained at low cost, it can be suitably used for applications such as separators used in lithium ion batteries.

本発明における、ポリオレフィン多孔膜と積層多孔質膜の厚さの測定位置の概略を示す平面図である。FIG. 2 is a plan view schematically showing the measurement positions of the thickness of the polyolefin porous membrane and the laminated porous membrane in the present invention. 本発明における、積層多孔質膜の熱収縮率の測定位置の概略を示す平面図である。FIG. 2 is a plan view showing the outline of the measurement position of the thermal shrinkage rate of the laminated porous membrane in the present invention.

以下、本発明について詳細を説明する。 The present invention will be described in detail below.

<メタ型全芳香族コポリアミド>
本発明におけるメタ型全芳香族コポリアミドは、上記化学式(1)に示した1種または2種以上の2価の芳香族基が、アミド結合により直接連結されたポリマーである。また、芳香族基には、化学式(2)に示されたベンゼン環がメタ位で結合し、これらの2価の芳香族基には、メチル基やエチル基等の低級アルキル基、メトキシ基、クロル基等のハロゲン基、シアノ基等が含まれていてもよい。さらにArの芳香族基は40~80モル%が上記化学式(3)であらわされる2-(4-アミノフェニル)-5(6)アミノベンズイミダゾール(DAPBI)を第3成分として含むメタ型全芳香族コポリアミドである。
<Meta type wholly aromatic copolyamide>
The meta-type wholly aromatic copolyamide in the present invention is a polymer in which one or more divalent aromatic groups represented by the above chemical formula (1) are directly linked via amide bonds. In addition, the benzene ring shown in the chemical formula (2) is bonded to the aromatic group at the meta position, and these divalent aromatic groups include lower alkyl groups such as methyl group and ethyl group, methoxy group, A halogen group such as a chloro group, a cyano group, or the like may be included. Furthermore, 40 to 80 mol% of the aromatic group of Ar 1 is a meta-type all-metal compound containing 2-(4-aminophenyl)-5(6)aminobenzimidazole (DAPBI) represented by the above chemical formula (3) as a third component. It is an aromatic copolyamide.

<メタ型全芳香族コポリアミドの製造方法>
本発明におけるメタ型全芳香族コポリアミドは、従来公知の方法にしたがって製造することができる。例えば、アミド系極性溶媒中で、芳香族ジカルボン酸ジクロライド(以下「酸クロライド」ともいう)成分と芳香族ジアミン成分とを低温溶液重合、または界面重合などにより反応せしめることにより得ることができる。なお、本発明に用いられるメタ型全芳香族コポリアミドの分子量は、膜を形成し得る程度であれば特に限定されるものではない。
<Method for producing meta-type wholly aromatic copolyamide>
The meta-type wholly aromatic copolyamide in the present invention can be produced according to a conventionally known method. For example, it can be obtained by reacting an aromatic dicarboxylic acid dichloride (hereinafter also referred to as "acid chloride") component and an aromatic diamine component by low-temperature solution polymerization or interfacial polymerization in an amide-based polar solvent. The molecular weight of the meta-type wholly aromatic copolyamide used in the present invention is not particularly limited as long as it can form a film.

[メタ型全芳香族コポリアミドの原料]
(芳香族ジカルボン酸ジクロライド成分)
メタ型全芳香族コポリアミドの製造において使用される芳香族ジカルボン酸クロライド成分としては、上記化学式(1)を満たすものとしてイソフタル酸クロライドを使用する。またこれらの芳香環にハロゲン、炭素数1~3のアルコキシ基等の置換基を有する誘導体、例えば3-クロロイソフタル酸クロリド、3-メトキシイソフタル酸クロリドなどを用いても構わない。これらを第1成分とする。
[Raw material for meta-type wholly aromatic copolyamide]
(Aromatic dicarboxylic acid dichloride component)
As the aromatic dicarboxylic acid chloride component used in the production of the meta-type wholly aromatic copolyamide, isophthaloyl chloride is used as one that satisfies the above chemical formula (1). Derivatives having a substituent such as a halogen or an alkoxy group having 1 to 3 carbon atoms on the aromatic ring, such as 3-chloroisophthaloyl chloride and 3-methoxyisophthaloyl chloride, may also be used. Let these be the first component.

(芳香族ジアミン成分)
メタ型全芳香族コポリアミドの製造において使用される芳香族ジアミン成分としては、上記化学式(1)を満たすものとして、メタフェニレンジアミン、3,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルスルホン等を用いる。またこれらの芳香環にハロゲン、炭素数1~3のアルコキシ基等の置換基を有する誘導体、例えば2,4-トルイレンジアミン、2,6-トルイレンジアミン、2,4-ジアミノクロロベンゼン、2,6-ジアミノクロロベンゼンなどを用いても構わない。これらを第2成分とする。
(Aromatic diamine component)
As the aromatic diamine component used in the production of the meta-type wholly aromatic copolyamide, metaphenylenediamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylsulfone, which satisfy the above chemical formula (1) etc. is used. In addition, derivatives having a substituent such as a halogen or an alkoxy group having 1 to 3 carbon atoms on the aromatic ring, such as 2,4-toluylenediamine, 2,6-toluylenediamine, 2,4-diaminochlorobenzene, 2, 6-diaminochlorobenzene or the like may be used. Let these be the 2nd component.

また上記化学式(3)を満たすものとして、2-(4-アミノフェニル)-5(6)アミノベンズイミダゾール(DAPBI)を第3成分とする。
第3成分は第2成分と混合して用いる。第2成分と第3成分とのモル比率は60/40~20/80が好ましく、より好ましくは60/40~40/60である。第2成分のモル比率が60%より大きい場合には塗工液の粘度が高くなるため、好ましくない。また、第2成分のモル比率が40%より小さい場合は積層膜の耐熱性が低くなるため好ましくない。
The third component is 2-(4-aminophenyl)-5(6)aminobenzimidazole (DAPBI), which satisfies the above chemical formula (3).
The third component is used by mixing with the second component. The molar ratio between the second component and the third component is preferably 60/40 to 20/80, more preferably 60/40 to 40/60. If the molar ratio of the second component is more than 60%, the viscosity of the coating liquid increases, which is not preferable. Moreover, if the molar ratio of the second component is less than 40%, the heat resistance of the laminated film is lowered, which is not preferable.

[重合溶媒]
メタ型全芳香族コポリアミドを重合する際の溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタムなどの有機極性アミド系溶媒、テトラヒドロフラン、ジオキサンなどの
水溶性エーテル化合物、メタノール、エタノール、エチレングリコールなどの水溶性アルコール系化合物、アセトン、メチルエチルケトンなどの水溶性ケトン系化合物、アセトニトリル、プロピオニトリルなどの水溶性ニトリル化合物などが挙げられる。これらの溶媒は、1種単独であっても、また、2種以上の混合溶媒として使用することも可能である。なお、用いられる溶媒は、脱水されていることが望ましく、水分率が100ppm未満であることが好ましい。
[Polymerization solvent]
Examples of solvents for polymerizing the meta-type wholly aromatic copolyamide include organic polar amides such as N,N-dimethylformamide, N,N-dimethylacetamide, N-methyl-2-pyrrolidone, and N-methylcaprolactam. Solvents, water-soluble ether compounds such as tetrahydrofuran and dioxane, water-soluble alcohol compounds such as methanol, ethanol, and ethylene glycol, water-soluble ketone compounds such as acetone and methyl ethyl ketone, and water-soluble nitrile compounds such as acetonitrile and propionitrile. mentioned. These solvents can be used singly or as a mixed solvent of two or more. The solvent used is desirably dehydrated and preferably has a water content of less than 100 ppm.

本発明に用いられるメタ型全芳香族コポリアミドの製造においては、汎用性、有害性、取り扱い性、メタ型全芳香族コポリアミドに対する溶解性等の観点から、N-メチル-2-ピロリドン(NMP)またはN,N-ジメチルアセトアミド(DMAc)を用いることが最も好ましい。 In the production of the meta-type wholly aromatic copolyamide used in the present invention, N-methyl-2-pyrrolidone (NMP ) or N,N-dimethylacetamide (DMAc).

また、本発明に使用する溶剤への水の含有率を100ppm以下にすることが好ましい。100ppmを超える場合にはモノマーの反応率が低下し、目的とする重合度に達しないため、好ましくない。 Moreover, it is preferable that the content of water in the solvent used in the present invention is 100 ppm or less. If it exceeds 100 ppm, the reaction rate of the monomer is lowered, and the intended degree of polymerization is not achieved, which is not preferable.

[その他重合条件等]
メタ型全芳香族コポリアミド(以下、重合体と略称することもある)の濃度は4~30質量%が好ましい。4%未満の場合には粘度が低すぎ、凝固するための強度が得られないため好ましくない。また30質量%を超えるとポリマーが溶解しきれずに析出するため好ましくない。
[Other polymerization conditions, etc.]
The concentration of the meta-type wholly aromatic copolyamide (hereinafter sometimes abbreviated as polymer) is preferably 4 to 30% by mass. If it is less than 4%, the viscosity is too low and the strength for solidification cannot be obtained, which is not preferable. On the other hand, if it exceeds 30% by mass, the polymer cannot be completely dissolved and precipitates, which is not preferable.

生成するメタ型全芳香族コポリアミド重合体の溶解性を向上させるため、重合前、途中、終了時のいずれかに、一般に公知の無機塩を適当量添加しても差し支えない。このような無機塩としては、例えば、塩化リチウム、塩化ナトリウム、塩化カルシウム等のアルカリ金属の塩化物、および塩化マグネシウム、塩化カルシウム等のアルカリ土類金属の塩化物が挙げられる。このうち塩化リチウム、塩化カルシウムが好ましい。 In order to improve the solubility of the meta-type wholly aromatic copolyamide polymer to be produced, an appropriate amount of a generally known inorganic salt may be added before, during, or at the end of the polymerization. Examples of such inorganic salts include chlorides of alkali metals such as lithium chloride, sodium chloride and calcium chloride, and chlorides of alkaline earth metals such as magnesium chloride and calcium chloride. Of these, lithium chloride and calcium chloride are preferred.

また、メタ型全芳香族コポリアミドの末端は、封止することもできる。末端封止剤を用いて末端を封止する場合には、例えば、フタル酸クロライドおよびその置換体、アニリンおよびその置換体等を末端封止剤として用いることができる。
また、生成する塩化水素のごとき酸を捕捉するために、脂肪族や芳香族のアミン、第4級アンモニウム塩等を併用することもできる。
Terminals of the meta-type wholly aromatic copolyamide can also be capped. When the terminal is blocked with a terminal blocking agent, for example, phthaloyl chloride and its substituted products, aniline and its substituted products, etc. can be used as the terminal blocking agent.
Moreover, in order to capture acids such as hydrogen chloride that are produced, aliphatic or aromatic amines, quaternary ammonium salts, etc. can be used in combination.

反応の終了後は、必要に応じて、塩基性の無機化合物、例えば、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム、酸化カルシウム等を添加し、中和反応を実施してもよい。
中和反応後、析出した塩はフィルトレーションのプロセスを経由し除去することが好ましい。
After completion of the reaction, if necessary, a basic inorganic compound such as sodium hydroxide, potassium hydroxide, calcium hydroxide, calcium oxide, etc. may be added to carry out a neutralization reaction.
After the neutralization reaction, the precipitated salt is preferably removed through a filtration process.

上記方法により得られた重合体溶液は0~80℃で溶液状態を維持するため、そのまま、ポリオレフィン多孔膜への塗工液とすることも可能である。また、本発明で得られた、重合体溶液を貧溶剤中に浸漬し、凝固することで、固形物とすることも可能である。 Since the polymer solution obtained by the above method maintains a solution state at 0 to 80° C., it can be used as it is as a coating solution for a polyolefin porous membrane. It is also possible to form a solid by immersing the polymer solution obtained in the present invention in a poor solvent and solidifying it.

[凝固方法]
メタ型全芳香族コポリアミド、および溶媒を含む重合体溶液(ドープ)を調整する方法は、特に限定されるものではなく、公知の方法を採用することができる。
[Coagulation method]
The method for preparing the meta-type wholly aromatic copolyamide and the solvent-containing polymer solution (dope) is not particularly limited, and known methods can be employed.

重合体溶液(ドープ)の調製に用いられる溶媒としては、例えば、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、
ジメチルスルホキシド(DMSO)、N-メチルカプロラクタム(NMC)等を挙げることができる。また、用いられる溶媒は1種単独であっても、2種以上を混合した混合溶媒であってもよい。さらには、メタ型全芳香族コポリアミドの重合に用いた溶媒を、そのまま使用してもよい。
Solvents used for preparing the polymer solution (dope) include, for example, N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF),
Dimethyl sulfoxide (DMSO), N-methylcaprolactam (NMC) and the like can be mentioned. Moreover, the solvent used may be a single solvent or a mixed solvent in which two or more solvents are mixed. Furthermore, the solvent used for the polymerization of the meta-type wholly aromatic copolyamide may be used as it is.

[凝固浴]
本発明の製造方法は、上記のように重合体を湿式凝固するのであるが、その凝固液の組成としてはメタ型全芳香族コポリアミドの貧溶媒であることが好ましい。凝固液の組成は必ずしも単一である必要はなく、例えばNMPと水との混合溶液でもよい。溶剤回収の効率性の観点から凝固浴組成(NMP/水)としてはNMP濃度が高い方が好ましく、NMP濃度は40%から60%の範囲が好ましい。
[Coagulation bath]
In the production method of the present invention, the polymer is wet-coagulated as described above, and the composition of the coagulating liquid is preferably a poor solvent for the meta-type wholly aromatic copolyamide. The coagulation liquid does not necessarily have to have a single composition, and may be, for example, a mixed solution of NMP and water. From the viewpoint of solvent recovery efficiency, the coagulation bath composition (NMP/water) preferably has a high NMP concentration, and the NMP concentration is preferably in the range of 40% to 60%.

[その他の工程]
凝固液から重合体を引き上げた後は、凝固浴中で凝固して形成した糸条を水洗して溶媒を徐々に除去する。そのために水洗浴の温度は60℃以下が好ましい。
[Other processes]
After pulling up the polymer from the coagulating liquid, the filament formed by coagulating in the coagulating bath is washed with water to gradually remove the solvent. Therefore, the temperature of the washing bath is preferably 60° C. or less.

[再溶解]
次に、得られた重合体をそのまま、あるいはカット、粉砕して溶媒に溶解し、再溶解する。使用する溶媒は特に限定されないが、例えば、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルカプロラクタム(NMC)等を挙げることができる。また、用いられる溶媒は1種単独であっても、2種以上を混合した混合溶媒であってもよい。これらの内、N-メチルピロリドン(NMP)が好ましい。
[Remelting]
Next, the obtained polymer is dissolved in a solvent as it is, or after being cut or pulverized, and then dissolved again. The solvent to be used is not particularly limited, but examples include N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), N-methylcaprolactam (NMC) and the like. . Moreover, the solvent used may be a single solvent or a mixed solvent in which two or more solvents are mixed. Of these, N-methylpyrrolidone (NMP) is preferred.

再溶解には、公知のミキサーを使用することができる、1軸のミキサー、リボンミキサー、プラネタリーミキサーなどを使用することができる。糸条をカットせずに用いることなどを考慮すると、プラネタリーミキサーを選定するのが好ましい。溶解にあたっては、溶媒をミキサー内に投入後、糸条あるいはカットされた糸条、粉末状の重合体を溶媒に分散させる。分散させながら、加温を行う。温度は60℃以上が好ましい。溶解時間を早めることが可能なことから、80℃以上がなお好ましい。昇温後、さらなる溶解性を高めるために、塩化リチウム、塩化カルシウム、臭化リチウムなどのハロゲン化金属塩を混ぜ合わせることも可能である。 For redissolution, a known mixer such as a uniaxial mixer, a ribbon mixer, or a planetary mixer can be used. It is preferable to select a planetary mixer considering that the yarn is used without being cut. For the dissolution, after the solvent is put into the mixer, the thread or the cut thread and the powdered polymer are dispersed in the solvent. Heat while dispersing. The temperature is preferably 60°C or higher. A temperature of 80° C. or higher is more preferable because the dissolution time can be shortened. After raising the temperature, it is also possible to mix metal halide salts such as lithium chloride, calcium chloride, and lithium bromide in order to further increase the solubility.

[塗工液の調整]
重合して得られた重合体溶液もしくは重合後に凝固させ、再溶解した重合体溶液を用いて、塗工溶液を作成する。使用する溶媒は特に限定されないが、例えば、N-メチルピロリドン(NMP)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N-メチルカプロラクタム(NMC)等を挙げることができる。また、用いられる溶媒は1種単独であっても、2種以上を混合した混合溶媒であってもよい。これらの内、N-メチルピロリドン(NMP)が好ましい。
[Adjustment of coating liquid]
A coating solution is prepared using a polymer solution obtained by polymerization or a polymer solution coagulated and re-dissolved after polymerization. The solvent to be used is not particularly limited, but examples include N-methylpyrrolidone (NMP), dimethylacetamide (DMAc), dimethylformamide (DMF), dimethylsulfoxide (DMSO), N-methylcaprolactam (NMC) and the like. . Moreover, the solvent used may be a single solvent or a mixed solvent in which two or more solvents are mixed. Of these, N-methylpyrrolidone (NMP) is preferred.

この重合体溶液に無機粒子を混ぜ合わせて、塗工液とする。無機粒子としては湿式あるいは乾式シリカ、コロイダルシリカ、珪酸アルミ、酸化チタン、炭酸カルシウム、リン酸カルシウム、硫酸バリウム、アルミナ、水酸化アルミニウム、ベーマイト、水酸化マグネシウム、炭酸マグネシウム、炭酸亜鉛、酸化亜鉛、酸化アンチモン、酸化セリウム、酸化ジルコニウム、酸化錫、酸化ランタン、酸化マグネシウム、炭酸バリウム、炭酸亜鉛、塩基性炭酸塩、硫酸バリウム、硫酸カルシウム、硫酸鉛、硫化亜鉛、マイカ、雲母チタン、タルク、クレー、カオリン、フッ化リチウム及びフッ化カルシウムなどが挙げられる。 Inorganic particles are mixed with this polymer solution to obtain a coating liquid. Inorganic particles include wet or dry silica, colloidal silica, aluminum silicate, titanium oxide, calcium carbonate, calcium phosphate, barium sulfate, alumina, aluminum hydroxide, boehmite, magnesium hydroxide, magnesium carbonate, zinc carbonate, zinc oxide, antimony oxide, Cerium oxide, zirconium oxide, tin oxide, lanthanum oxide, magnesium oxide, barium carbonate, zinc carbonate, basic carbonate, barium sulfate, calcium sulfate, lead sulfate, zinc sulfide, mica, titanium mica, talc, clay, kaolin, fluorine lithium chloride and calcium fluoride.

無機粒子の含有量は重合体100部に対して150~1900部が好ましい。無機粒子
の含有量が150部より少ないと、ポリオレフィン多孔膜が収縮する際の収縮応力に抵抗する粒子間の衝突が起こりにくく好ましくない。一方、無機粒子の含有量が1900部を越える場合には無機粒子に対する重合体の量が少なすぎるため、粒子が担持されずに脱落する、所謂粉落ちが発生するため、好ましくない。
The content of the inorganic particles is preferably 150-1900 parts per 100 parts of the polymer. If the content of the inorganic particles is less than 150 parts, collisions between the particles that resist the shrinkage stress when the polyolefin porous membrane shrinks are less likely to occur, which is undesirable. On the other hand, if the content of the inorganic particles exceeds 1,900 parts, the amount of the polymer relative to the inorganic particles is too small, so that the particles fall off without being supported, which is not preferred.

塗工液の重合体濃度は4質量%以上10質量%以下が好ましい。重合体の濃度が4質量%未満の場合には重合体の量が少なく、粉落ちが発生する恐れがあり好ましくない。一方、重合体濃度が10質量%を越える場合は塗工液の粘度が高くなりすぎて、適切な厚みに塗工することが困難となる為好ましくない。 The polymer concentration of the coating liquid is preferably 4% by mass or more and 10% by mass or less. If the concentration of the polymer is less than 4% by mass, the amount of the polymer is so small that powder may fall off, which is not preferred. On the other hand, if the polymer concentration exceeds 10% by mass, the viscosity of the coating liquid becomes too high, making it difficult to apply the coating to an appropriate thickness, which is not preferred.

本発明では上記塗工液をポリオレフィン多孔膜へ塗工後、湿式凝固させる。湿式凝固の際に可能な限り密な凝固形態とするため、塗工液に疎水系添加剤を加える。疎水系添加剤は公知のフッ素系、有機シリコーン系、オレフィン系の添加剤を使用することができる。これらの内、撥水効果の高いフッ素系の添加剤が好ましい。その添加量は塗工液の溶媒量に対して0.5~10質量パーセントが好ましい。添加量が10質量パーセントを超えると、凝固速度が著しく低下し、生産性が悪化するため好ましくない。一方、添加量が0.5質量パーセントより小さい場合には撥水効果が少なく、塗工層に水が侵入し、塗工層の密度を低下させるため、好ましくない。好ましい添加量は1~9質量パーセント、さらに好ましくは2~8質量パーセントである。 In the present invention, the above coating solution is applied to the polyolefin porous membrane and then wet-coagulated. Hydrophobic additives are added to the coating liquid in order to obtain the densest solidified form possible during wet solidification. Known fluorine-based, organic silicone-based and olefin-based additives can be used as the hydrophobic additive. Among these, a fluorine-based additive having a high water-repellent effect is preferable. The amount to be added is preferably 0.5 to 10% by mass with respect to the amount of solvent in the coating liquid. If the amount added exceeds 10% by mass, the coagulation rate will be significantly lowered and the productivity will be deteriorated, which is not preferable. On the other hand, if the amount added is less than 0.5% by mass, the water-repellent effect is small, and water penetrates into the coating layer, lowering the density of the coating layer, which is not preferable. A preferable addition amount is 1 to 9 mass percent, more preferably 2 to 8 mass percent.

[塗工]
ポリオレフィン多孔膜への塗工量は20~40g/m程度が好ましい。塗工する方法はドクターナイフ法、ナイフコーター法、グラビアコーター法、スクリーン印刷法、スプレー法、ロールコーター法、コンマコーター法、マイヤーバー法などが挙げられる。本発明においては、表面に芳香族ポリアミド重合体組成物が塗工された基材を貧溶剤の凝固液に浸漬することで、前記重合体組成物を湿式凝固させ多孔質層を形成する。凝固の方法としては凝固液をスプレーする方法や凝固液に浸漬する方法などが挙げられる。
[Coating]
The amount of coating on the polyolefin porous membrane is preferably about 20 to 40 g/m 2 . Coating methods include a doctor knife method, a knife coater method, a gravure coater method, a screen printing method, a spray method, a roll coater method, a comma coater method and a Meyer bar method. In the present invention, a substrate coated with an aromatic polyamide polymer composition is immersed in a poor solvent coagulating liquid to wet-coagulate the polymer composition to form a porous layer. The method of coagulation includes a method of spraying a coagulating liquid, a method of immersing in a coagulating liquid, and the like.

凝固液は前記重合体組成物を凝固することのできる液体であればよいが、本発明では水が好ましく、イオン交換樹脂、逆浸透膜、やフィルター等あるいはこれらを直列に配置した複合設備で不純物を取り除いた純水が好ましい。この純水の導電率が1.0μS/cmのものが好ましい。溶剤回収の観点から水に重合体組成物に使用している溶剤を0~40質量%含有しているものが好ましい。 The coagulating liquid may be any liquid that can coagulate the polymer composition, but in the present invention, water is preferable. Pure water from which is removed is preferred. This pure water preferably has an electrical conductivity of 1.0 μS/cm. From the viewpoint of solvent recovery, water containing 0 to 40% by mass of the solvent used in the polymer composition is preferred.

このようにして得られた積層多孔質膜において、積層膜とポリオレフィン多孔膜との透気度の差(Δ透気度)は25~120秒/100ccであることが好ましい。該透気度の差(Δ透気度)が25秒/100ccより小さい場合は、積層膜の構造がルーズになり低収縮が達成できないばかりか、粉落ちが発生し、セパレーターとして不適となる場合がある。一方、該透気度の差(Δ透気度)が120秒/100ccより大きい場合は、低収縮かつ粉落ちの無いセパレーターを得ることができるが、正極と負極間のリチウムイオンの移動を阻害し、電池性能を低下させることがある。 In the laminated porous membrane thus obtained, the difference in air permeability (Δair permeability) between the laminated membrane and the polyolefin porous membrane is preferably 25 to 120 sec/100 cc. If the air permeability difference (Δ air permeability) is less than 25 sec/100 cc, the structure of the laminated film becomes loose and low shrinkage cannot be achieved. There is On the other hand, when the difference in air permeability (Δ air permeability) is greater than 120 seconds/100 cc, a separator with low shrinkage and no powder fallout can be obtained, but the movement of lithium ions between the positive electrode and the negative electrode is inhibited. and may degrade battery performance.

また、得られた積層多孔質膜の150℃での熱収縮率は12.0%以下であることが必要であり、好ましくは10.0%以下である。該熱収縮率が12.0%を越える場合は、寸法変化が大きくなり過ぎ、正極と負極が短絡するため、セパレーターとして不適となる。 Moreover, the heat shrinkage rate of the obtained laminated porous membrane at 150° C. must be 12.0% or less, preferably 10.0% or less. If the heat shrinkage ratio exceeds 12.0%, the dimensional change becomes too large, and the positive electrode and the negative electrode are short-circuited, making the separator unsuitable.

以下、実施例および比較例により、本発明を詳細に説明するが、本発明の範囲は、以下の実施例及び比較例に制限されるものではない。また、実施例中の各物性は以下の方法に
より測定した。
The present invention will be described in detail below with reference to Examples and Comparative Examples, but the scope of the present invention is not limited to the following Examples and Comparative Examples. Further, each physical property in the examples was measured by the following methods.

以下、実施例および比較例により、本発明をさらに詳しく具体的に説明する。ただし、これらの実施例および比較例は本発明の理解を助けるためのものであって、これらの記載によって本発明の範囲が限定されるものではない。 EXAMPLES The present invention will now be described in more detail with reference to examples and comparative examples. However, these examples and comparative examples are intended to aid understanding of the present invention, and the scope of the present invention is not limited by these descriptions.

(1)アラミド樹脂の固有粘度
本発明においてアラミド樹脂の固有粘度とは、次の測定方法によるものと定義する。96~98質量%硫酸100mlにアラミド重合体0.5gを溶解した溶液および96~98質量%硫酸について、それぞれ毛細管粘度計により30℃にて流動時間を測定し、求められた流動時間の比から次式により固有粘度を求めた。
固有粘度=ln(T/T0)/C 〔単位:dl/g〕
ここでTおよびT0は、それぞれアラミド硫酸溶液および硫酸の流動時間であり、Cは、アラミド硫酸溶液中のアラミド濃度(g/dl)を示す。
(1) Intrinsic Viscosity of Aramid Resin In the present invention, the intrinsic viscosity of the aramid resin is defined by the following measuring method. A solution of 0.5 g of an aramid polymer dissolved in 100 ml of 96 to 98% by mass sulfuric acid and 96 to 98% by mass sulfuric acid were each measured at 30 ° C. with a capillary viscometer for the flow time, and from the obtained flow time ratio The intrinsic viscosity was determined by the following formula.
Intrinsic viscosity = ln (T/T0)/C [unit: dl/g]
Here, T and T0 are the flow times of the aramid-sulfuric acid solution and sulfuric acid, respectively, and C is the aramid concentration (g/dl) in the aramid-sulfuric acid solution.

(2)塗工液の粘度
ブルックフィールド社のDV2T型粘度計を用いて塗工液の粘度を測定した。
(2) Viscosity of Coating Liquid The viscosity of the coating liquid was measured using a Brookfield DV2T viscometer.

(3)積層膜の厚み
基材となるポリオレフィン多孔膜と積層多孔質膜を10cm×10cmのサイズに打ち抜き、それぞれの厚さを図1に示す如く9点測定して平均値を算出し、以下の計算式より、厚さを算出した。尚、図1に示す測定位置間の間隔は2.5cmであった。
積層膜の厚み=(積層多孔質膜の厚さの平均値)-(ポリオレフィン多孔膜の厚さの平均値)
(3) Thickness of laminated film The polyolefin porous film and the laminated porous film that serve as the base material were punched out to a size of 10 cm × 10 cm, and the thickness of each was measured at nine points as shown in Fig. 1, and the average value was calculated. The thickness was calculated from the formula of The interval between measurement positions shown in FIG. 1 was 2.5 cm.
Thickness of laminated membrane = (Average thickness of laminated porous membrane) - (Average thickness of polyolefin porous membrane)

(4)積層多孔質膜の熱収縮率
得られた積層多孔質膜を10cm×10cmのサイズに打ち抜き、図2に示す如く基材送り出し方向と平行方向(MD)と、垂直方向(TD)の2方向に8cmの長さが分かるように目印を入れた。このサンプル片をガラスクロスに挟み、150℃の温度に設定した乾燥機に60分入れ、目印を入れた8cmの長さの加熱乾燥前後の寸法変化から熱収縮率を測定した。尚、熱収縮率は、MD方向と、TD方向の平均値とした。
(4) Thermal shrinkage rate of laminated porous membrane The obtained laminated porous membrane was punched into a size of 10 cm × 10 cm, and as shown in FIG. A mark was put so that the length of 8 cm could be known in two directions. This sample piece was sandwiched between glass cloths, placed in a dryer set at a temperature of 150° C. for 60 minutes, and the heat shrinkage rate was measured from the dimensional change before and after heat drying of the marked 8 cm length. Note that the heat shrinkage rate was the average value in the MD direction and the TD direction.

<実施例1>
[メタ型全芳香族コポリアミドの重合]
水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)200g、メタフェニレンジアミン2.636g、DAPBI3.620gを、常温下で反応容器に入れ、窒素雰囲気中で溶解混合した後、攪拌しながらイソフタル酸クロリド8.143gを添加した。引き続き、85℃で60分間重合反応せしめることにより、透明で粘稠なポリマー溶液を得た。次いで、22.5%の水酸化カルシウムのNMPスラリー溶液を15.74g添加し、中和反応を行うことにより重合を終了させ、メタ型全芳香族コポリアミド溶液を得た。
<Example 1>
[Polymerization of meta-type wholly aromatic copolyamide]
200 g of N,N-dimethylacetamide (DMAc) with a moisture content of 100 ppm or less, 2.636 g of metaphenylenediamine, and 3.620 g of DAPBI are placed in a reaction vessel at room temperature, dissolved and mixed in a nitrogen atmosphere, and then isophthalate is added while stirring. 8.143 g of acid chloride was added. Subsequently, polymerization reaction was carried out at 85° C. for 60 minutes to obtain a transparent and viscous polymer solution. Then, 15.74 g of an NMP slurry solution of 22.5% calcium hydroxide was added and a neutralization reaction was carried out to terminate polymerization and obtain a meta-type wholly aromatic copolyamide solution.

[塗工液の作成]
得られたポリマー溶液をポリマー濃度が6質量%になるようにDMAcで調整し、ポリマー100部に対し、900部となるようアルミナを添加し、積層用の塗工液を作成した。
[塗工液のコーティング]
膜厚が10μmで通気度が170秒/100ccのポリオレフィン多孔膜の上にマイヤーバーを使用してコーティングした。コーティング後、水に浸漬し、凝固、乾燥させ、積層多孔質膜を得た。得られた積層多孔質膜の厚さは14μmであった。
[Creation of coating liquid]
The resulting polymer solution was adjusted with DMAc so as to have a polymer concentration of 6% by mass, and alumina was added to 900 parts per 100 parts of the polymer to prepare a coating liquid for lamination.
[Coating of coating liquid]
A polyolefin porous membrane having a thickness of 10 μm and an air permeability of 170 sec/100 cc was coated using a Meyer bar. After coating, it was immersed in water, solidified and dried to obtain a laminated porous membrane. The thickness of the obtained laminated porous membrane was 14 μm.

<実施例2>
[メタ型全芳香族コポリアミドの重合]
実施例1と同様に実施した。
[塗工液の作成]
得られたポリマー溶液をポリマー濃度が6質量%になるようにDMAcで調整し、ポリマー100部に対し、1900部となるようアルミナを添加し、積層用の塗工液を作成した。
[塗工液のコーティング]
実施例1と同様に実施した。
<Example 2>
[Polymerization of meta-type wholly aromatic copolyamide]
It was carried out in the same manner as in Example 1.
[Creation of coating liquid]
The obtained polymer solution was adjusted with DMAc so that the polymer concentration was 6% by mass, and alumina was added so as to be 1900 parts per 100 parts of the polymer to prepare a coating liquid for lamination.
[Coating of coating liquid]
It was carried out in the same manner as in Example 1.

<実施例3>
[メタ型全芳香族コポリアミドの重合]
実施例1と同様に実施した。
[塗工液の作成]
得られたポリマー溶液をポリマー濃度が6質量%になるようにDMAcで調整し、ポリマー100部に対し、400部となるようアルミナを添加し、積層用の塗工液を作成した。
[塗工液のコーティング]
実施例1と同様に実施した。
<Example 3>
[Polymerization of meta-type wholly aromatic copolyamide]
It was carried out in the same manner as in Example 1.
[Creation of coating liquid]
The obtained polymer solution was adjusted with DMAc so that the polymer concentration was 6% by mass, and alumina was added so as to be 400 parts per 100 parts of the polymer to prepare a coating liquid for lamination.
[Coating of coating liquid]
It was carried out in the same manner as in Example 1.

<実施例4>
[メタ型全芳香族コポリアミドの重合]
水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)200g、メタフェニレンジアミン1.757g、DAPBI5.429gを、常温下で反応容器に入れ、窒素雰囲気中で溶解混合した後、攪拌しながらイソフタル酸クロリド8.143gを添加した。引き続き、85℃で60分間重合反応せしめることにより、透明で粘稠なポリマー溶液を得た。次いで、22.5%の水酸化カルシウムのNMPスラリー溶液を用いて中和反応を行うことにより重合を終了させ、メタ型全芳香族ポリアミド溶液を得た。
<Example 4>
[Polymerization of meta-type wholly aromatic copolyamide]
200 g of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less, 1.757 g of metaphenylenediamine, and 5.429 g of DAPBI were placed in a reaction vessel at room temperature, dissolved and mixed in a nitrogen atmosphere, and then isophthalate was added while stirring. 8.143 g of acid chloride was added. Subsequently, polymerization reaction was carried out at 85° C. for 60 minutes to obtain a transparent and viscous polymer solution. Subsequently, a neutralization reaction was carried out using a 22.5% NMP slurry solution of calcium hydroxide to terminate the polymerization and obtain a meta-type wholly aromatic polyamide solution.

[塗工液の作成]
得られたポリマー溶液をポリマー濃度が6質量%になるようにDMAcで調整し、ポリマー100部に対し、900部となるようアルミナを添加し、積層用の塗工液を作成した。
[塗工液のコーティング]
実施例1と同様に実施した。
[Creation of coating liquid]
The resulting polymer solution was adjusted with DMAc so as to have a polymer concentration of 6% by mass, and alumina was added to 900 parts per 100 parts of the polymer to prepare a coating liquid for lamination.
[Coating of coating liquid]
It was carried out in the same manner as in Example 1.

<実施例5>
[メタ型全芳香族コポリアミドの重合]
水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)200g、メタフェニレンジアミン0.879g、DAPBI7.239gを、常温下で反応容器に入れ、窒素雰囲気中で溶解混合した後、攪拌しながらイソフタル酸クロリド8.143gを添加した。引き続き、85℃で60分間重合反応せしめることにより、透明で粘稠なポリマー溶液を得た。次いで、22.5%の水酸化カルシウムのNMPスラリー溶液を用いて中和反応を行うことにより重合を終了させ、メタ型全芳香族ポリアミド溶液を得た。
<Example 5>
[Polymerization of meta-type wholly aromatic copolyamide]
200 g of N,N-dimethylacetamide (DMAc) with a moisture content of 100 ppm or less, 0.879 g of metaphenylenediamine, and 7.239 g of DAPBI were placed in a reaction vessel at room temperature, dissolved and mixed in a nitrogen atmosphere, and then isophthalate was added while stirring. 8.143 g of acid chloride was added. Subsequently, polymerization reaction was carried out at 85° C. for 60 minutes to obtain a transparent and viscous polymer solution. Subsequently, a neutralization reaction was carried out using a 22.5% NMP slurry solution of calcium hydroxide to terminate the polymerization and obtain a meta-type wholly aromatic polyamide solution.

[塗工液の作成]
実施例1と同様に実施した。
[塗工液のコーティング]
実施例1と同様に実施した。
[Creation of coating liquid]
It was carried out in the same manner as in Example 1.
[Coating of coating liquid]
It was carried out in the same manner as in Example 1.

<比較例1>
[メタ型全芳香族コポリアミドの重合]
水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)200g、メタフェニレンジアミンを4.394g、イソフタル酸クロリドを8.143g添加し、85℃で60分間重合反応せしめることにより、透明で粘稠なポリマー溶液を得た。次いで、22.5%の水酸化カルシウムのNMPスラリー溶液を用いて中和反応を行うことにより重合を終了させ、メタ型全芳香族ポリアミド溶液を得た。
<Comparative Example 1>
[Polymerization of meta-type wholly aromatic copolyamide]
200 g of N,N-dimethylacetamide (DMAc) having a moisture content of 100 ppm or less, 4.394 g of metaphenylenediamine, and 8.143 g of isophthalic chloride were added, and polymerized at 85°C for 60 minutes to obtain a transparent and viscous mixture. A polymer solution was obtained. Subsequently, a neutralization reaction was carried out using a 22.5% NMP slurry solution of calcium hydroxide to terminate the polymerization and obtain a meta-type wholly aromatic polyamide solution.

[塗工液の作成]
得られたポリマー溶液をポリマー濃度が6質量%になるようにDMAcおよび水を蒸発させ、ポリマー量100部に対し、900部のアルミナを添加し、積層用の塗工液を作成した。
[塗工液のコーティング]
実施例1と同様に実施した。
[Creation of coating liquid]
DMAc and water were evaporated from the resulting polymer solution so that the polymer concentration was 6% by mass, and 900 parts of alumina was added to 100 parts of the polymer to prepare a coating solution for lamination.
[Coating of coating liquid]
It was carried out in the same manner as in Example 1.

<比較例2>
[メタ型全芳香族コポリアミドの重合]
水分率が100ppm以下のN,N-ジメチルアセトアミド(DMAc)200g、メタフェニレンジアミンを3.515g、DAPBIを1.810g、イソフタル酸クロリドを8.143g添加し、85℃で60分間重合反応せしめることにより、透明で粘稠なポリマー溶液を得た。次いで、22.5%の水酸化カルシウムのNMPスラリー溶液を用いて中和反応を行うことにより重合を終了させ、メタ型全芳香族ポリアミド溶液を得た。
<Comparative Example 2>
[Polymerization of meta-type wholly aromatic copolyamide]
Add 200 g of N,N-dimethylacetamide (DMAc) with a moisture content of 100 ppm or less, 3.515 g of metaphenylenediamine, 1.810 g of DAPBI, and 8.143 g of isophthaloyl chloride, and polymerize at 85° C. for 60 minutes. A clear, viscous polymer solution was obtained. Subsequently, a neutralization reaction was carried out using a 22.5% NMP slurry solution of calcium hydroxide to terminate the polymerization and obtain a meta-type wholly aromatic polyamide solution.

[塗工液の作成]
得られたポリマー溶液をポリマー濃度が6質量%になるようにDMAcおよび水を蒸発させ、ポリマー100部に対し、900部となるようアルミナを添加し、積層用の塗工液を作成した。
[塗工液のコーティング]
実施例1と同様に実施した。
[Creation of coating liquid]
DMAc and water were evaporated from the obtained polymer solution so that the polymer concentration was 6% by mass, and alumina was added to 900 parts per 100 parts of the polymer to prepare a coating solution for lamination.
[Coating of coating liquid]
It was carried out in the same manner as in Example 1.

<比較例3>
[パラ型全芳香族ポリアミドの重合]
水分率が100ppm以下のN-メチル-2-ピロリドン(NMP)200g、塩化カルシウム16.0g、パラフェニレンジアミン4.394gを常温下で反応容器に入れ、窒素雰囲気中で溶解混合した後、攪拌しながらテレフタル酸クロリド8.143gを添加した。引き続き、85℃で60分間重合した。重合途中でポリマーが析出し、溶解ドープを得る事はできなかった。
上記実施例、比較例により得られた積層多孔質膜の特性を表1に示す。
<Comparative Example 3>
[Polymerization of para-type wholly aromatic polyamide]
200 g of N-methyl-2-pyrrolidone (NMP) with a moisture content of 100 ppm or less, 16.0 g of calcium chloride, and 4.394 g of paraphenylenediamine are placed in a reaction vessel at room temperature, dissolved and mixed in a nitrogen atmosphere, and then stirred. While adding 8.143 g of terephthaloyl chloride. Subsequently, polymerization was carried out at 85° C. for 60 minutes. A polymer precipitated during the polymerization, and a dissolved dope could not be obtained.
Table 1 shows the properties of the laminated porous membranes obtained in the above examples and comparative examples.

Figure 2022147097000002
Figure 2022147097000002

本発明によれば、塗工液の安定性に優れ、しかも熱収縮率が可及的に低減されたメタ型全芳香族コポリアミドからなる積層膜及び該積層膜がポリオレフィン多孔膜に積層された積層多孔質膜を得ることができるので、その工業的価値は極めて大きい。 According to the present invention, a laminated film made of a meta-type wholly aromatic copolyamide having excellent coating liquid stability and reduced thermal shrinkage as much as possible, and the laminated film laminated on a polyolefin porous film. Since a laminated porous membrane can be obtained, its industrial value is extremely large.

Claims (2)

無機粒子を含有するメタ型全芳香族コポリアミド樹脂からなる積層膜であって、該無機粒子の該樹脂全質量に対する含有量が150~1900部であり、該メタ型全芳香族コポリアミドが、下記式(1)で表される繰り返し単位からなり、下記式(1)におけるArが下記式(2)と下記式(3)であらわせられ、下記式(1)におけるArが下記式(2)であらわせされる化合物であって、前記Arにおける下記式(2)と下記式(3)であらわせられる化合物のモル比率が60/40~20/80であることを特徴とする積層膜。
Figure 2022147097000003
A laminated film made of a meta-type wholly aromatic copolyamide resin containing inorganic particles, wherein the content of the inorganic particles relative to the total mass of the resin is 150 to 1900 parts, and the meta-type wholly aromatic copolyamide is Composed of a repeating unit represented by the following formula (1), Ar 1 in the following formula (1) is represented by the following formula (2) and the following formula (3), and Ar 2 in the following formula (1) is represented by the following formula ( 2), wherein the molar ratio of the compound represented by the following formula (2) and the following formula (3) in Ar 1 is 60/40 to 20/80. .
Figure 2022147097000003
ポリオレフィン多孔膜に、請求項1に記載の積層膜が積層された積層多孔質膜であって、該積層多孔質膜の150℃における熱収縮率が12.0%以下であることを特徴とする積層多孔質膜。 A laminated porous membrane obtained by laminating the laminated film according to claim 1 on a polyolefin porous membrane, wherein the thermal shrinkage of the laminated porous membrane at 150° C. is 12.0% or less. Laminated porous membrane.
JP2021048207A 2021-03-23 2021-03-23 Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated Pending JP2022147097A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021048207A JP2022147097A (en) 2021-03-23 2021-03-23 Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021048207A JP2022147097A (en) 2021-03-23 2021-03-23 Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated

Publications (1)

Publication Number Publication Date
JP2022147097A true JP2022147097A (en) 2022-10-06

Family

ID=83462849

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021048207A Pending JP2022147097A (en) 2021-03-23 2021-03-23 Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated

Country Status (1)

Country Link
JP (1) JP2022147097A (en)

Similar Documents

Publication Publication Date Title
CN105633326B (en) Aromatic polyamide composite diaphragm
JP2008311221A (en) Laminated porous film
JP5214999B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
WO2001019906A1 (en) Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
TWI514646B (en) Separator for non-aqueous electrolyte battery, and non-aqueous electrolyte battery
KR19990083447A (en) Non-aqueous electrolyte battery separator and lithium secondary battery
CN104185551A (en) Multi-layered porous film, electrical cell separator, and electrical cell
JP2003040999A (en) Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery
CN108807818B (en) Aromatic polyamide composite diaphragm and preparation method thereof
WO1995031499A1 (en) Ion-conductive film and precursor film therefor
JP2018181833A (en) Coating material for nonaqueous electrolyte secondary battery
US5723568A (en) Polyamide solution composition and methods for producing fibrids and paper-like sheets using the same
JP2022147097A (en) Meta-type wholly aromatic copolyamide laminated film, and multilayer porous film on which the laminated film is laminated
WO2016002785A1 (en) Aromatic polymer manufacturing method, layered film, and separator
JP2011210435A (en) Separator for nonaqueous secondary battery
JP2020063400A (en) Method for producing wholly aromatic polyamide porous film, heat-resistant separator including porous film, and porous film
JPWO2016017440A1 (en) Film production method and coating solution storage method
JP2021088674A (en) Para-type wholly aromatic copolyamide laminated film and laminated porous film formed by laminating the laminated film
JP2021180087A (en) Para-type total aromatic copolyamide laminated film and laminated porous film on which laminated film is laminated
JP2022041500A (en) Laminated porous film on which para-type total aromatic polyamide laminated film is laminated
JP2021014525A (en) Para-type wholly aromatic polyamide laminate film and laminated porous film formed by laminating the laminate film
JP2021187988A (en) Para-type wholly aromatic copolyamide resin, manufacturing method of its resin coating liquid, and laminated porous film formed by coating the resin coating liquid
JP6924032B2 (en) Polymer composition, laminated film and separator
CN112201903A (en) High-performance polyaramide lithium battery diaphragm coating based polymerization solution and preparation method and application thereof
CN114709558A (en) High-heat-resistance polyamide-imide composite diaphragm and preparation method thereof