WO2016002785A1 - Aromatic polymer manufacturing method, layered film, and separator - Google Patents

Aromatic polymer manufacturing method, layered film, and separator Download PDF

Info

Publication number
WO2016002785A1
WO2016002785A1 PCT/JP2015/068840 JP2015068840W WO2016002785A1 WO 2016002785 A1 WO2016002785 A1 WO 2016002785A1 JP 2015068840 W JP2015068840 W JP 2015068840W WO 2016002785 A1 WO2016002785 A1 WO 2016002785A1
Authority
WO
WIPO (PCT)
Prior art keywords
aromatic polymer
aromatic
organic solvent
ppm
compound
Prior art date
Application number
PCT/JP2015/068840
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 裕之
大次郎 星田
正吾 金子
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to KR1020167035878A priority Critical patent/KR20170028318A/en
Priority to CN201580031898.1A priority patent/CN106488946B/en
Priority to JP2016531395A priority patent/JPWO2016002785A1/en
Publication of WO2016002785A1 publication Critical patent/WO2016002785A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/32Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/365Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an aromatic polymer having a structure represented by —C ( ⁇ O) NH—, a laminated film, and a separator.
  • Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are now widely used as batteries used in devices such as personal computers, mobile phones, and portable information terminals.
  • non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have high energy density. Therefore, when an internal short circuit or an external short circuit occurs due to battery damage or damage to equipment using the battery, a large current may flow and the nonaqueous electrolyte secondary battery may generate heat. Therefore, non-aqueous electrolyte secondary batteries are required to ensure high safety by preventing a certain amount of heat generation.
  • a method of providing a shutdown function to the non-aqueous electrolyte secondary battery is generally used.
  • the shutdown function is a function of preventing further heat generation by blocking the passage of ions between the positive electrode and the negative electrode by the separator when abnormal heat generation occurs in the non-aqueous electrolyte secondary battery.
  • the separator disposed between the positive electrode and the negative electrode in the battery is abnormal due to an internal short circuit between the positive electrode and the negative electrode.
  • a porous film mainly composed of polyolefin that melts at, for example, about 80 to 180 ° C. when abnormal heat generation occurs is generally used.
  • the separator mainly composed of the porous film has insufficient shape stability at high temperature, the separator contracts or a film breakage occurs in the separator while the shutdown function is executed. To do.
  • the positive electrode and the negative electrode may be in direct contact with each other, causing an internal short circuit. That is, the separator mainly composed of the porous film may not be able to sufficiently suppress abnormal heat generation due to an internal short circuit. Therefore, a separator that can ensure higher safety is demanded.
  • Patent Document 1 proposes a porous film in which a heat-resistant porous layer made of an aromatic polymer such as aromatic aramid is laminated on a polyolefin microporous film.
  • the present invention has been made in consideration of the above-mentioned problems, and its main purpose is a separator for a non-aqueous electrolyte secondary battery excellent in shape stability at high temperature, which is damaged by a battery or using a battery. Even when an internal short circuit or an external short circuit occurs due to damage to equipment, it is possible to manufacture a separator for a non-aqueous electrolyte secondary battery that can ensure high safety by preventing heat generation beyond a certain level.
  • An object of the present invention is to provide a production method capable of stably producing a suitable aromatic polymer so as to have a specific intrinsic viscosity.
  • the inventor of the present invention is an aromatic polymer in which an aromatic diamine and a compound having a hydrolyzable reactive group that reacts with an amino group are reacted in an organic solvent, wherein —C ( ⁇ O) NH—
  • the present inventors have intensively studied a method for producing an aromatic polymer having the structure represented. As a result, by adjusting the water content of the organic solvent, an aromatic polymer suitable for producing a separator for a non-aqueous electrolyte secondary battery that can ensure high safety has a specific intrinsic viscosity. As a result, the present invention was completed.
  • the method for producing an aromatic polymer according to the present invention is a method for reacting an aromatic diamine with an amino group to form a structure represented by —C ( ⁇ O) NH—.
  • a method for producing an aromatic polymer having a structure represented by -C ( O) NH-, wherein a compound having a decomposable reactive group is reacted in an organic solvent, wherein the organic solvent is 200 ppm. It contains ⁇ 2500 ppm of water, and the aromatic polymer has an intrinsic viscosity of 1.5 dL / g to 3.0 dL / g.
  • an aromatic polymer having a structure represented by —C ( ⁇ O) NH— and having an aromatic polymer intrinsic viscosity of 1.5 dL / g to 3.0 dL / g is stabilized.
  • a to B means A or more and B or less.
  • the method for producing an aromatic polymer according to the present invention has a hydrolyzable reactive group that forms a structure represented by —C ( ⁇ O) NH— by reacting with an aromatic diamine and an amino group.
  • the aromatic polymer obtained by the above production method is used as a member (heat resistant porous layer) constituting a separator in the field of producing a non-aqueous electrolyte secondary battery.
  • the aromatic polymer is a heat-resistant resin, and a heat-resistant porous layer can be formed on the surface of the substrate by a simple method such as coating (application) on a substrate used as a separator and drying.
  • the thickness of the heat resistant porous layer is preferably 1 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less, and particularly preferably 1 ⁇ m or more and 4 ⁇ m or less.
  • the pore diameter of the heat-resistant porous layer is preferably 3 ⁇ m or less, and more preferably 1 ⁇ m or less.
  • the heat resistance of the separator can be improved to, for example, about 400 ° C.
  • the heat resistant porous layer may contain a filler made of an organic powder or an inorganic powder having an average particle diameter of 0.01 ⁇ m or more and 1 ⁇ m or less, if necessary.
  • thermoplastic resin As the base material used as the separator of the non-aqueous electrolyte secondary battery, a thermoplastic resin is suitable.
  • the thermoplastic resin include polyolefin such as polyethylene, polypropylene, polybutene, and ethylene-propylene copolymer; and thermoplastic polyurethane.
  • the thermoplastic resin is more preferably polyethylene.
  • the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene (ethylene- ⁇ -olefin copolymer), and ultrahigh molecular weight polyethylene having a molecular weight of 1 million or more.
  • the aromatic diamine is more preferably 1,4-phenylenediamine.
  • a reactive group-containing compound As a compound having an acyl group.
  • the reactive group-containing compound includes, for example, an acid dianhydride, an acid dihalide, or a urea bond (—NH—C ( ⁇ O) NH—) by reacting with an amino group.
  • the diisocyanate to be formed is mentioned.
  • the compound having an acyl group is more preferably an aromatic compound.
  • the acid dianhydride is more preferably an aromatic acid dianhydride.
  • the aromatic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetra
  • aromatic acid dichloride is more preferable.
  • aromatic acid dichloride include phthalic acid dichloride, terephthalic acid dichloride, pyromellitic acid dichloride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid dichloride, 3,3 ′, 4,4.
  • aromatic diisocyanate is more preferable.
  • aromatic diisocyanate examples include 1,2-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,2-naphthylene diisocyanate, 1,3-naphthylene diisocyanate, 1,4- Naphthylene diisocyanate, 1,5-naphthylene diisocyanate, 1,6-naphthylene diisocyanate, 1,7-naphthylene diisocyanate, 1,8-naphthylene diisocyanate, 2,3-naphthylene diisocyanate, 2,6-naphthylene diene Examples include isocyanate, 3,3′-biphenylene diisocyanate, 3,3′-benzophenone diisocyanate, and 3,3′-diphenylsulfone diisocyan
  • the reactive group-containing compound is more preferably an aromatic acid dihalide, more preferably terephthalic acid dichloride among the exemplified compounds. These reactive group-containing compounds may be used alone or in combination of two or more.
  • the aromatic polymer is, for example, preferably -20 ° C. to 50 ° C. of the aromatic diamine and the reactive group-containing compound in an organic solvent in which an alkali metal or alkaline earth metal chloride is dissolved. Can be obtained by reacting (polymerizing) at a reaction temperature of ⁇ 10 ° C. to 40 ° C.
  • the molar ratio of the aromatic diamine to the reactive group-containing compound is usually 1.000 to 1.050, preferably 1.000 to 1.040. More preferably 1.000 to 1.030.
  • the concentration of the chloride dissolved in the organic solvent is preferably 2% by weight to 10% by weight, and more preferably 3% by weight to 8% by weight.
  • chloride examples include chlorides of alkali metals such as sodium chloride and potassium chloride, and chlorides of alkaline earth metals such as magnesium chloride and calcium chloride. Of these, the chloride is more preferably calcium chloride. These chlorides may be used alone or in combination of two or more.
  • the organic solvent includes an aprotic polar solvent.
  • the aprotic polar solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and N, N-dimethylformamide. Of these, the aprotic polar solvent is more preferably N-methyl-2-pyrrolidone. These organic solvents may be used alone or in combination of two or more.
  • the water content of the organic solvent used for the reaction is usually 200 ppm to 2500 ppm, preferably 200 ppm to 1500 ppm, more preferably 250 ppm to 1000 ppm.
  • the aromatic diamine and the reactive group-containing compound are reacted in the organic solvent having a water content of 200 ppm to 2500 ppm, whereby the molar ratio of these compounds is obtained.
  • the variation in the intrinsic viscosity of the aromatic polymer is reduced. As a result, it becomes easy to control the intrinsic viscosity of the aromatic polymer.
  • the method for measuring the water content of the organic solvent will be described in detail in Examples.
  • the amount of change in the intrinsic viscosity accompanying the change in the molar ratio of 0.01 is preferably 0.1 to 0.7 dL / g, more preferably 0.2 to 0.6 dL / g, and still more preferably. Is 0.3 to 0.5 dL / g.
  • the water content of the organic solvent is 200 ppm or more, side reactions are unlikely to occur, and insoluble components such as gels tend not to be generated in the organic solvent.
  • the water content of the organic solvent is 2500 ppm or less, the storage stability of the aromatic polymer solution (polymer composition) is high, and the aromatic polymer tends not to precipitate in the organic solvent. is there.
  • insoluble matter such as gel is generated in the organic solvent, wrinkles and streaks are likely to occur in the heat-resistant porous layer formed of the aromatic polymer, and the appearance of the heat-resistant porous layer tends to be poor.
  • the amount of the organic solvent used relative to the total amount of the aromatic diamine and the reactive group-containing compound is it is preferably 0.5% by weight to 20% by weight, more preferably 1% by weight to 15% by weight, and even more preferably 3% by weight to 12% by weight.
  • the aromatic polymer obtained by reacting the aromatic diamine with the reactive group-containing compound is preferably an aromatic polyamide, more preferably a wholly aromatic polyamide.
  • the aromatic polyamide may be a para-oriented aromatic polyamide or a meta-oriented aromatic polyamide.
  • the aromatic polyamide is more preferably a para-oriented aromatic polyamide because it has high mechanical strength and is easily porous.
  • the aromatic polymer is an aromatic polymer having a structure represented by —C ( ⁇ O) NH— in the main chain, and has an intrinsic viscosity of 1.5 dL / g to 3.0 dL / g, It is preferably 1.7 dL / g to 2.5 dL / g, more preferably 1.8 dL / g to 2.3 dL / g.
  • the measuring method of intrinsic viscosity is explained in full detail in an Example.
  • the intrinsic viscosity can be controlled by adjusting the molar ratio between the aromatic diamine and the reactive group-containing compound and / or the water content of the organic solvent.
  • the intrinsic viscosity is less than 1.5 dL / g, since the molecular weight of the aromatic polymer is small, the elastic modulus of the heat-resistant porous layer to be formed is lowered, and the shrinkage is suppressed when the base material is melted by heat. Less effective.
  • the intrinsic viscosity exceeds 3.0 dL / g, the molecular weight of the aromatic polymer becomes too large, so that the coating of the aromatic polymer solution (polymer composition) when applied to the substrate is performed. Workability is reduced.
  • aromatic polyamide which is an aromatic polymer obtained by the production method according to the present invention, specifically, for example, poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), Poly (metabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4′-biphenylenedicarboxylic acid amide) , Poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6 -Dichloroparaphenylene terephthalami Copolymers, and meta-phenylene terephthalamide / 2,6-dichloro-p-phenylene
  • non-aqueous electrolyte secondary batteries for example, after applying (coating) a solution of an aromatic polymer to the base material, the organic solvent is removed to remove the heat resistant porous layer on the surface of the base material. A laminated film formed with can be easily produced.
  • the method for applying (applying) the aromatic polymer solution to the substrate and the method for removing the organic solvent from the applied (applying) solution are not particularly limited, and a known method is appropriately employed. be able to.
  • the present invention includes a laminated film produced by the production method.
  • multilayer film can be easily manufactured by employ
  • the non-aqueous-electrolyte secondary battery containing the said separator can be easily manufactured by employ
  • a solution obtained by removing a part of the solvent from the solution instead of using the aromatic polymer solution obtained by performing the reaction as it is, (i) a solution obtained by removing a part of the solvent from the solution, and (ii) adding a solvent to the solution. (Iii) a solution obtained by washing the solution with water or methyl alcohol to remove chloride, (iv) evaporating part or all of the solvent and simultaneously depositing an aromatic polymer After removing chloride from the aromatic polymer by a method such as washing with water, a solution obtained by dissolving in a solvent can be used for coating (coating).
  • Moisture content The moisture content of the organic solvent was measured according to a conventional method using a Karl Fischer moisture meter.
  • T is the flow time (seconds) of the aromatic polymer solution
  • T 0 is the flow time (seconds) of the blank
  • C is the concentration of the aromatic polymer in the aromatic polymer solution (g / dl).
  • a solution obtained by the reaction (a solution in which an aromatic polymer is dissolved in an organic solvent) is 1 kgf (approximately 9 mm) using a SUS filter (diameter: 25 mm) having a 2000 mesh (pore diameter: 14 ⁇ m). 8N) under pressure.
  • occlusion coefficient was computed by following Formula.
  • t / V K S ⁇ t + 1 / Q 0
  • Filtration blockage factor H [unit: m 2 / m 3 ] A ⁇ K S
  • A is the filtration area (m 2 )
  • t is the filtration time (second)
  • V is the filtration amount (m 3 )
  • K S indicates the slope of the graph of t / V and t.
  • 1 / Q 0 indicates the intercept in the graph of t / V and t.
  • poly (paraphenylene terephthalamide) (hereinafter abbreviated as PPTA), which is a wholly aromatic polyamide, was produced by the following method.
  • NMP N-methyl-2-pyrrolidone
  • Example 4 A PPTA solution was obtained by carrying out the same operations and reactions as in Example 1 except that the water content of a solution of calcium chloride dissolved in NMP was adjusted to 300 ppm. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1. The results of physical property evaluation of the PPTA are shown in Table 2.
  • Example 1 A PPTA solution was obtained in the same manner as in Example 1 except that the water content of the solution in which calcium chloride was dissolved in NMP was adjusted to 120 ppm. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1. The PPTA contained a large amount of insoluble components. Although an attempt was made to evaluate the physical properties of the PPTA, the obtained PPTA solution had no fluidity, and therefore the filtration blockage coefficient could not be calculated (measurement impossible). In addition, the PPTA solution could not be applied to the substrate, and therefore a heat-resistant porous layer could not be formed (evaluation not possible). The results of Comparative Example 1 are shown in Table 2.
  • the water content was 0.89 dL / g when the water content was 120 ppm, 0.53 dL / g when the water content was 300 ppm, and 0.40 dL / g when the water content was 500 ppm. Therefore, when the moisture content is reduced from 300 ppm to 120 ppm, the amount of change in intrinsic viscosity suddenly increases, and when the moisture content is less than 200 ppm, it is difficult to control the intrinsic viscosity of the aromatic polymer to a target value. I understood. It was also found that when the water content was 3000 ppm, the intended intrinsic viscosity could not be obtained even if the molar ratio was 1.000.
  • the filtration blockage coefficient of the aromatic polymer obtained by polymerization using NMP having a water content of 500 ppm is sufficiently low, and the heat-resistant porous layer formed using the aromatic polymer has no wrinkles or streaks. Therefore, it was possible to form a heat-resistant porous layer having a good appearance.
  • the method for producing an aromatic polymer according to the present invention can be widely used, for example, in the field of producing a non-aqueous electrolyte secondary battery capable of ensuring high safety.

Abstract

 Provided is a method for manufacturing an aromatic polymer, suitable for manufacturing a separator for a nonaqueous-electrolyte secondary cell in which a high degree of safety can be ensured. A method for manufacturing an aromatic polymer having a structure represented by the formula –C(=)NH-, comprising reacting, in an organic solvent, an aromatic diamine and a compound having a hydrolyzable reactive group for reacting with an amino group, the organic solvent containing 200 ppm-2500 ppm of water, and the intrinsic viscosity of the aromatic polymer being 1.5 dL/g-3.0 dL/g.

Description

芳香族重合体の製造方法、積層フィルムおよびセパレータAromatic polymer production method, laminated film and separator
 本発明は、-C(=O)NH-で表される構造を有する芳香族重合体の製造方法、積層フィルムおよびセパレータに関する。 The present invention relates to a method for producing an aromatic polymer having a structure represented by —C (═O) NH—, a laminated film, and a separator.
 リチウム二次電池等の非水電解液二次電池は、現在、パーソナルコンピュータ、携帯電話、および携帯情報端末等の機器に用いる電池として広く使用されている。 Non-aqueous electrolyte secondary batteries such as lithium secondary batteries are now widely used as batteries used in devices such as personal computers, mobile phones, and portable information terminals.
 リチウム二次電池に代表されるこれら非水電解液二次電池は、エネルギー密度が高い。それゆえ、電池の破損或いは電池を用いている機器の破損によって内部短絡または外部短絡が生じた場合には、大電流が流れて非水電解液二次電池は発熱することがある。そのため、非水電解液二次電池には、一定量以上の発熱を防止することによって、高い安全性を確保することが求められている。 These non-aqueous electrolyte secondary batteries represented by lithium secondary batteries have high energy density. Therefore, when an internal short circuit or an external short circuit occurs due to battery damage or damage to equipment using the battery, a large current may flow and the nonaqueous electrolyte secondary battery may generate heat. Therefore, non-aqueous electrolyte secondary batteries are required to ensure high safety by preventing a certain amount of heat generation.
 非水電解液二次電池の安全性を確保する方法としては、非水電解液二次電池にシャットダウン機能を付与する方法が一般的である。シャットダウン機能とは、非水電解液二次電池に異常な発熱が生じたときに、セパレータによって正極および負極間のイオンの通過を遮断して、更なる発熱を防止する機能である。つまり、非水電解液二次電池の安全性を確保する方法としては、例えば正極および負極間の内部短絡等が原因となって当該電池内の正極と負極との間に配置されるセパレータに異常な電流が流れたときに、その電流を遮断して当該電池内に過大電流が流れることを阻止(シャットダウン)し、これにより更なる発熱を抑制する機能を付与する方法が一般的である。ここで、非水電解液二次電池の使用温度が通常の使用温度を超えた場合に、発生する熱によってセパレータが溶融し、その結果セパレータに形成されている細孔が閉塞されることによって、前記シャットダウンが行われる。なお、セパレータは、前記シャットダウンが行われた後、電池内が或る程度の高温になっても熱によって破壊されることなく、シャットダウンした状態を維持することが好ましい。 As a method for ensuring the safety of the non-aqueous electrolyte secondary battery, a method of providing a shutdown function to the non-aqueous electrolyte secondary battery is generally used. The shutdown function is a function of preventing further heat generation by blocking the passage of ions between the positive electrode and the negative electrode by the separator when abnormal heat generation occurs in the non-aqueous electrolyte secondary battery. In other words, as a method of ensuring the safety of the nonaqueous electrolyte secondary battery, for example, the separator disposed between the positive electrode and the negative electrode in the battery is abnormal due to an internal short circuit between the positive electrode and the negative electrode. In general, there is a method of blocking a current when an excessive current flows to prevent the excessive current from flowing in the battery (shut down), thereby providing a function of suppressing further heat generation. Here, when the use temperature of the non-aqueous electrolyte secondary battery exceeds the normal use temperature, the separator is melted by the generated heat, and as a result, the pores formed in the separator are blocked, The shutdown is performed. In addition, it is preferable that the separator is maintained in the shut-down state without being destroyed by heat even if the inside of the battery reaches a certain high temperature after the shutdown.
 前記セパレータとしては、異常な発熱が生じたときに例えば約80~180℃で溶融するポリオレフィンを主成分とする多孔質フィルムが一般的に用いられている。しかしながら、前記多孔質フィルムを主成分とするセパレータは、高温での形状安定性が不充分であるため、シャットダウン機能が実行されている間に、セパレータが収縮したりセパレータに破膜等が生じたりする。その結果、シャットダウン機能が実行されても、正極と負極とが直接、接触して、内部短絡を起こすおそれがある。つまり、前記多孔質フィルムを主成分とするセパレータは、内部短絡による異常な発熱を充分に抑制することができないおそれがある。従って、より高い安全性を確保することができるセパレータが求められている。 As the separator, a porous film mainly composed of polyolefin that melts at, for example, about 80 to 180 ° C. when abnormal heat generation occurs is generally used. However, since the separator mainly composed of the porous film has insufficient shape stability at high temperature, the separator contracts or a film breakage occurs in the separator while the shutdown function is executed. To do. As a result, even if the shutdown function is executed, the positive electrode and the negative electrode may be in direct contact with each other, causing an internal short circuit. That is, the separator mainly composed of the porous film may not be able to sufficiently suppress abnormal heat generation due to an internal short circuit. Therefore, a separator that can ensure higher safety is demanded.
 耐熱性に優れた多孔質フィルムとして、例えば、特許文献1には、ポリオレフィンの微多孔膜に、芳香族アラミド等の芳香族重合体からなる耐熱多孔層を積層した多孔質フィルムが提案されている。 As a porous film excellent in heat resistance, for example, Patent Document 1 proposes a porous film in which a heat-resistant porous layer made of an aromatic polymer such as aromatic aramid is laminated on a polyolefin microporous film. .
日本国公開特許公報「特開2009-205959号」Japanese Published Patent Publication “JP 2009-205959”
 しかしながら、特許文献1に記載の多孔質フィルムにおいては、目的とする固有粘度を有するように、耐熱多孔層を形成する芳香族重合体を安定的に製造することが困難である。つまり、優れた耐熱多孔層を形成することができると共に特定の固有粘度を有する芳香族重合体を安定的に製造することが困難であるという課題を有している。 However, in the porous film described in Patent Document 1, it is difficult to stably produce an aromatic polymer that forms a heat-resistant porous layer so as to have a target intrinsic viscosity. That is, there is a problem that it is difficult to stably produce an aromatic polymer having a specific intrinsic viscosity while being able to form an excellent heat-resistant porous layer.
 本発明は前記課題を考慮してなされたものであり、その主たる目的は、高温での形状安定性に優れた非水電解液二次電池のセパレータであって、電池の破損或いは電池を用いている機器の破損によって内部短絡または外部短絡が生じた場合においても、一定以上の発熱を防止することによって、高い安全性を確保することができる非水電解液二次電池のセパレータを製造するのに好適な芳香族重合体を、特定の固有粘度を有するように安定的に製造することができる製造方法を提供することにある。 The present invention has been made in consideration of the above-mentioned problems, and its main purpose is a separator for a non-aqueous electrolyte secondary battery excellent in shape stability at high temperature, which is damaged by a battery or using a battery. Even when an internal short circuit or an external short circuit occurs due to damage to equipment, it is possible to manufacture a separator for a non-aqueous electrolyte secondary battery that can ensure high safety by preventing heat generation beyond a certain level. An object of the present invention is to provide a production method capable of stably producing a suitable aromatic polymer so as to have a specific intrinsic viscosity.
 本発明者は、芳香族ジアミンと、アミノ基と反応する加水分解性の反応性基を有する化合物とを有機溶媒中で反応させる芳香族重合体であって、-C(=O)NH-で表される構造を有する芳香族重合体の製造方法に関して鋭意検討した。その結果、有機溶媒の含水率を調整することにより、高い安全性を確保することができる非水電解液二次電池のセパレータを製造するのに好適な芳香族重合体を、特定の固有粘度を有するように安定的に製造することができることを見出して、本発明を完成するに至った。 The inventor of the present invention is an aromatic polymer in which an aromatic diamine and a compound having a hydrolyzable reactive group that reacts with an amino group are reacted in an organic solvent, wherein —C (═O) NH— The present inventors have intensively studied a method for producing an aromatic polymer having the structure represented. As a result, by adjusting the water content of the organic solvent, an aromatic polymer suitable for producing a separator for a non-aqueous electrolyte secondary battery that can ensure high safety has a specific intrinsic viscosity. As a result, the present invention was completed.
 前記課題を解決するために、本発明に係る芳香族重合体の製造方法は、芳香族ジアミンと、アミノ基と反応することで-C(=O)NH-で表される構造を形成する加水分解性の反応性基を有する化合物とを、有機溶媒中で反応させる、-C(=O)NH-で表される構造を有する芳香族重合体の製造方法であって、前記有機溶媒が200ppm~2500ppmの水を含有し、前記芳香族重合体の固有粘度が1.5dL/g~3.0dL/gである、ことを特徴としている。 In order to solve the above-mentioned problems, the method for producing an aromatic polymer according to the present invention is a method for reacting an aromatic diamine with an amino group to form a structure represented by —C (═O) NH—. A method for producing an aromatic polymer having a structure represented by -C (= O) NH-, wherein a compound having a decomposable reactive group is reacted in an organic solvent, wherein the organic solvent is 200 ppm. It contains ˜2500 ppm of water, and the aromatic polymer has an intrinsic viscosity of 1.5 dL / g to 3.0 dL / g.
 本発明によれば、-C(=O)NH-で表される構造を有し、芳香族重合体の固有粘度が1.5dL/g~3.0dL/gである芳香族重合体を安定的に製造することができる。従って、高温での形状安定性に優れ、電池の破損或いは電池を用いている機器の破損によって内部短絡または外部短絡が生じた場合においても、一定以上の発熱を防止することによって、高い安全性を確保することができる非水電解液二次電池のセパレータを製造するのに好適な芳香族重合体を、特定の固有粘度を有するように安定的に製造することができる製造方法を提供することができるという効果を奏する。 According to the present invention, an aromatic polymer having a structure represented by —C (═O) NH— and having an aromatic polymer intrinsic viscosity of 1.5 dL / g to 3.0 dL / g is stabilized. Can be manufactured automatically. Therefore, it has excellent shape stability at high temperatures, and even when an internal short circuit or external short circuit occurs due to damage to the battery or equipment that uses the battery, high safety is achieved by preventing heat generation beyond a certain level. To provide a production method capable of stably producing an aromatic polymer suitable for producing a separator for a non-aqueous electrolyte secondary battery that can be ensured so as to have a specific intrinsic viscosity. There is an effect that can be done.
実施例および比較例における、芳香族ジアミンおよびアミノ基と反応する加水分解性の反応性基を有する化合物のモル比と、芳香族重合体の固有粘度との関係を示すグラフである。It is a graph which shows the relationship between the molar ratio of the compound which has a hydrolyzable reactive group which reacts with an aromatic diamine and an amino group, and the intrinsic viscosity of an aromatic polymer in an Example and a comparative example.
 以下、本発明の一実施の形態について、詳細に説明する。尚、本出願において、「A~B」とは、A以上、B以下であることを示している。 Hereinafter, an embodiment of the present invention will be described in detail. In the present application, “A to B” means A or more and B or less.
 本発明に係る芳香族重合体の製造方法は、芳香族ジアミンと、アミノ基と反応することで-C(=O)NH-で表される構造を形成する加水分解性の反応性基を有する化合物とを、有機溶媒中で反応させる、-C(=O)NH-で表される構造を有する芳香族重合体の製造方法であって、前記有機溶媒が200ppm~2500ppmの水を含有し、前記芳香族重合体の固有粘度が1.5dL/g~3.0dL/gである製造方法である。 The method for producing an aromatic polymer according to the present invention has a hydrolyzable reactive group that forms a structure represented by —C (═O) NH— by reacting with an aromatic diamine and an amino group. A method for producing an aromatic polymer having a structure represented by —C (═O) NH—, wherein a compound is reacted in an organic solvent, wherein the organic solvent contains 200 ppm to 2500 ppm of water, In this production method, the aromatic polymer has an intrinsic viscosity of 1.5 dL / g to 3.0 dL / g.
 前記製造方法で得られる芳香族重合体は、非水電解液二次電池の製造分野において、セパレータを構成する部材(耐熱多孔層)として用いられる。前記芳香族重合体は耐熱性樹脂であり、セパレータとして用いる基材に塗工(塗布)して乾燥させる等の簡単な手法で、当該基材の表面に耐熱多孔層を形成することができる。耐熱多孔層の厚さは、1μm以上、10μm以下が好ましく、1μm以上、5μm以下がより好ましく、1μm以上、4μm以下が特に好ましい。また、耐熱多孔層が有する細孔の孔径は、3μm以下が好ましく、1μm以下がより好ましい。前記基材に耐熱多孔層を形成することにより、セパレータの耐熱性を例えば400℃程度にまで向上させることができる。尚、耐熱多孔層は、必要に応じて、平均粒子径が0.01μm以上、1μm以下の、有機粉末または無機粉末からなるフィラーを含有していてもよい。 The aromatic polymer obtained by the above production method is used as a member (heat resistant porous layer) constituting a separator in the field of producing a non-aqueous electrolyte secondary battery. The aromatic polymer is a heat-resistant resin, and a heat-resistant porous layer can be formed on the surface of the substrate by a simple method such as coating (application) on a substrate used as a separator and drying. The thickness of the heat resistant porous layer is preferably 1 μm or more and 10 μm or less, more preferably 1 μm or more and 5 μm or less, and particularly preferably 1 μm or more and 4 μm or less. The pore diameter of the heat-resistant porous layer is preferably 3 μm or less, and more preferably 1 μm or less. By forming the heat resistant porous layer on the substrate, the heat resistance of the separator can be improved to, for example, about 400 ° C. In addition, the heat resistant porous layer may contain a filler made of an organic powder or an inorganic powder having an average particle diameter of 0.01 μm or more and 1 μm or less, if necessary.
 非水電解液二次電池のセパレータとして用いる前記基材としては、熱可塑性樹脂が好適である。具体的には、当該熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリブテン、エチレン-プロピレン共重合体等のポリオレフィン;および熱可塑性ポリウレタンが挙げられる。このうち、非水電解液二次電池に過大電流が流れることをより低温で阻止(シャットダウン)することができるため、前記熱可塑性樹脂はポリエチレンであることがより好ましい。当該ポリエチレンとしては、低密度ポリエチレン、高密度ポリエチレン、線状ポリエチレン(エチレン-α-オレフィン共重合体)、および分子量が100万以上の超高分子量ポリエチレン等が挙げられる。 As the base material used as the separator of the non-aqueous electrolyte secondary battery, a thermoplastic resin is suitable. Specifically, examples of the thermoplastic resin include polyolefin such as polyethylene, polypropylene, polybutene, and ethylene-propylene copolymer; and thermoplastic polyurethane. Among these, since it is possible to prevent (shut down) an excessive current from flowing in the nonaqueous electrolyte secondary battery at a lower temperature, the thermoplastic resin is more preferably polyethylene. Examples of the polyethylene include low density polyethylene, high density polyethylene, linear polyethylene (ethylene-α-olefin copolymer), and ultrahigh molecular weight polyethylene having a molecular weight of 1 million or more.
 芳香族重合体の原料である芳香族ジアミンとしては、例えば、オキシジアニリン、1,2-フェニレンジアミン、1,3-フェニレンジアミン、1,4-フェニレンジアミン、3,3’-ベンゾフェノンジアミン、3,3’-メチレンジアニリン、3,3’-ジアミノジフェニルスルフォン、1,2-ナフチレンジアミン、1,3-ナフチレンジアミン、1,4-ナフチレンジアミン、1,5-ナフチレンジアミン、1,6-ナフチレンジアミン、1,7-ナフチレンジアミン、1,8-ナフチレンジアミン、2,3-ナフチレンジアミン、2,6-ナフチレンジアミン、および3,3’-ビフェニレンジアミン等が挙げられる。このうち、前記芳香族ジアミンは、1,4-フェニレンジアミンであることがより好ましい。これら芳香族ジアミンは、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 Examples of the aromatic diamine that is a raw material of the aromatic polymer include oxydianiline, 1,2-phenylenediamine, 1,3-phenylenediamine, 1,4-phenylenediamine, 3,3′-benzophenonediamine, 3 , 3′-methylenedianiline, 3,3′-diaminodiphenylsulfone, 1,2-naphthylenediamine, 1,3-naphthylenediamine, 1,4-naphthylenediamine, 1,5-naphthylenediamine, , 6-naphthylene diamine, 1,7-naphthylene diamine, 1,8-naphthylene diamine, 2,3-naphthylene diamine, 2,6-naphthylene diamine, and 3,3′-biphenylenediamine It is done. Of these, the aromatic diamine is more preferably 1,4-phenylenediamine. These aromatic diamines may be used alone or in combination of two or more.
 芳香族重合体の原料である、アミノ基と反応することで-C(=O)NH-で表される構造を形成する加水分解性の反応性基を有する化合物(以下、反応性基含有化合物と称する)としては、アシル基を有する化合物が挙げられる。具体的には、当該反応性基含有化合物としては、例えば、酸二無水物、酸二ハロゲン化物、或いは、アミノ基と反応することでウレア結合(-NH-C(=O)NH-)を形成するジイソシアネートが挙げられる。アシル基を有する化合物は、芳香族化合物であることがより好ましい。 A compound having a hydrolyzable reactive group that forms a structure represented by —C (═O) NH— by reacting with an amino group, which is a raw material of an aromatic polymer (hereinafter referred to as a reactive group-containing compound) As a compound having an acyl group. Specifically, the reactive group-containing compound includes, for example, an acid dianhydride, an acid dihalide, or a urea bond (—NH—C (═O) NH—) by reacting with an amino group. The diisocyanate to be formed is mentioned. The compound having an acyl group is more preferably an aromatic compound.
 具体的には、酸二無水物としては、芳香族酸二無水物がより好ましい。当該芳香族酸二無水物としては、例えば、ピロメリット酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、および3,3’,4,4’-ビフェニルテトラカルボン酸二無水物等が挙げられる。 Specifically, the acid dianhydride is more preferably an aromatic acid dianhydride. Examples of the aromatic dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetra Examples include carboxylic dianhydride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dianhydride, and 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride. .
 酸二ハロゲン化物としては、芳香族酸二塩化物がより好ましい。当該芳香族酸二塩化物としては、例えば、フタル酸ジクロライド、テレフタル酸ジクロライド、ピロメリット酸ジクロライド、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジクロライド、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジクロライド、2,2’-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパンジクロライド、3,3’,4,4’-ビフェニルテトラカルボン酸ジクロライド、1,2-フェニレンジカルボン酸ジクロライド、1,3-フェニレンジカルボン酸ジクロライド、1,4-フェニレンジカルボン酸ジクロライド、1,2-ナフチレンジカルボン酸ジクロライド、1,3-ナフチレンジカルボン酸ジクロライド、1,4-ナフチレンジカルボン酸ジクロライド、1,5-ナフチレンジカルボン酸ジクロライド、1,6-ナフチレンジカルボン酸ジクロライド、1,7-ナフチレンジカルボン酸ジクロライド、1,8-ナフチレンジカルボン酸ジクロライド、2,3-ナフチレンジカルボン酸ジクロライド、2,6-ナフチレンジカルボン酸ジクロライド、3,3’-ビフェニレンジカルボン酸ジクロライド、3,3’-ベンゾフェノンジカルボン酸ジクロライド、および3,3’-ジフェニルスルフォンジカルボン酸ジクロライド等が挙げられる。 As the acid dihalide, aromatic acid dichloride is more preferable. Examples of the aromatic acid dichloride include phthalic acid dichloride, terephthalic acid dichloride, pyromellitic acid dichloride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid dichloride, 3,3 ′, 4,4. '-Benzophenonetetracarboxylic acid dichloride, 2,2'-bis (3,4-dicarboxyphenyl) hexafluoropropane dichloride, 3,3', 4,4'-biphenyltetracarboxylic acid dichloride, 1,2-phenylenedicarboxylic acid Acid dichloride, 1,3-phenylene dicarboxylic acid dichloride, 1,4-phenylene dicarboxylic acid dichloride, 1,2-naphthylene dicarboxylic acid dichloride, 1,3-naphthylene dicarboxylic acid dichloride, 1,4-naphthylene dicarboxylic acid dichloride , 1,5-naphthy Dicarboxylic acid dichloride, 1,6-naphthylene dicarboxylic acid dichloride, 1,7-naphthylene dicarboxylic acid dichloride, 1,8-naphthylene dicarboxylic acid dichloride, 2,3-naphthylene dicarboxylic acid dichloride, 2,6-naphthy Examples include dicarboxylic acid dichloride, 3,3′-biphenylenedicarboxylic acid dichloride, 3,3′-benzophenone dicarboxylic acid dichloride, and 3,3′-diphenylsulfone dicarboxylic acid dichloride.
 ジイソシアネートとしては、芳香族ジイソシアネートがより好ましい。当該芳香族ジイソシアネートとしては、例えば、1,2-フェニレンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、1,2-ナフチレンジイソシアネート、1,3-ナフチレンジイソシアネート、1,4-ナフチレンジイソシアネート、1,5-ナフチレンジイソシアネート、1,6-ナフチレンジイソシアネート、1,7-ナフチレンジイソシアネート、1,8-ナフチレンジイソシアネート、2,3-ナフチレンジイソシアネート、2,6-ナフチレンジイソシアネート、3,3’-ビフェニレンジイソシアネート、3,3’-ベンゾフェノンジイソシアネート、および3,3’-ジフェニルスルフォンジイソシアネート等が挙げられる。 As the diisocyanate, aromatic diisocyanate is more preferable. Examples of the aromatic diisocyanate include 1,2-phenylene diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 1,2-naphthylene diisocyanate, 1,3-naphthylene diisocyanate, 1,4- Naphthylene diisocyanate, 1,5-naphthylene diisocyanate, 1,6-naphthylene diisocyanate, 1,7-naphthylene diisocyanate, 1,8-naphthylene diisocyanate, 2,3-naphthylene diisocyanate, 2,6-naphthylene diene Examples include isocyanate, 3,3′-biphenylene diisocyanate, 3,3′-benzophenone diisocyanate, and 3,3′-diphenylsulfone diisocyanate.
 前記反応性基含有化合物は、前記例示の化合物のうち、芳香族酸二ハロゲン化物であることがより好ましく、テレフタル酸ジクロライドがさらに好ましい。これら反応性基含有化合物は、1種類のみを用いてもよく、あるいは、2種類以上を組み合わせて用いてもよい。 The reactive group-containing compound is more preferably an aromatic acid dihalide, more preferably terephthalic acid dichloride among the exemplified compounds. These reactive group-containing compounds may be used alone or in combination of two or more.
 芳香族重合体は、例えば、アルカリ金属またはアルカリ土類金属の塩化物を溶解させた有機溶媒中で、前記芳香族ジアミンと前記反応性基含有化合物とを、-20℃~50℃、より好ましくは-10℃~40℃の反応温度で反応(重合)させることによって得ることができる。前記芳香族ジアミンと前記反応性基含有化合物とのモル比(芳香族ジアミン/反応性基含有化合物)は、通常、1.000~1.050であり、好ましくは1.000~1.040であり、より好ましくは1.000~1.030である。また、前記有機溶媒に溶解している前記塩化物の濃度は、2重量%~10重量%であることが好ましく、3重量%~8重量%であることがより好ましい。 The aromatic polymer is, for example, preferably -20 ° C. to 50 ° C. of the aromatic diamine and the reactive group-containing compound in an organic solvent in which an alkali metal or alkaline earth metal chloride is dissolved. Can be obtained by reacting (polymerizing) at a reaction temperature of −10 ° C. to 40 ° C. The molar ratio of the aromatic diamine to the reactive group-containing compound (aromatic diamine / reactive group-containing compound) is usually 1.000 to 1.050, preferably 1.000 to 1.040. More preferably 1.000 to 1.030. The concentration of the chloride dissolved in the organic solvent is preferably 2% by weight to 10% by weight, and more preferably 3% by weight to 8% by weight.
 前記塩化物としては、例えば、塩化ナトリウム、および塩化カリウム等のアルカリ金属の塩化物、および、塩化マグネシウム、および塩化カルシウム等のアルカリ土類金属の塩化物が挙げられる。このうち、前記塩化物は、塩化カルシウムであることがより好ましい。これら塩化物は、1種類のみを用いてもよく、あるいは、2種類以上を組み合わせて用いてもよい。 Examples of the chloride include chlorides of alkali metals such as sodium chloride and potassium chloride, and chlorides of alkaline earth metals such as magnesium chloride and calcium chloride. Of these, the chloride is more preferably calcium chloride. These chlorides may be used alone or in combination of two or more.
 そして、芳香族ジアミンと反応性基含有化合物とのモル比(芳香族ジアミン/反応性基含有化合物)を前記範囲内に調整することにより、また、反応温度を前記範囲内に調整することにより、さらに、有機溶媒に溶解している塩化物の濃度を前記範囲内に調整することにより、耐熱多孔層を形成するのに充分な重合度の芳香族重合体を得ることができる。 And by adjusting the molar ratio of the aromatic diamine and the reactive group-containing compound (aromatic diamine / reactive group-containing compound) within the above range, and by adjusting the reaction temperature within the above range, Furthermore, by adjusting the concentration of chloride dissolved in the organic solvent within the above range, an aromatic polymer having a degree of polymerization sufficient to form a heat-resistant porous layer can be obtained.
 前記有機溶媒としては、非プロトン性の極性溶媒が挙げられる。具体的には、当該非プロトン性の極性溶媒としては、例えば、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、およびN,N-ジメチルホルムアミド等が挙げられる。このうち、前記非プロトン性の極性溶媒は、N-メチル-2-ピロリドンであることがより好ましい。これら有機溶媒は、1種類のみを用いてもよく、2種類以上を組み合わせて用いてもよい。 The organic solvent includes an aprotic polar solvent. Specifically, examples of the aprotic polar solvent include N-methyl-2-pyrrolidone, N, N-dimethylacetamide, and N, N-dimethylformamide. Of these, the aprotic polar solvent is more preferably N-methyl-2-pyrrolidone. These organic solvents may be used alone or in combination of two or more.
 反応に用いる前記有機溶媒の含水率は、通常、200ppm~2500ppmであり、好ましくは200ppm~1500ppmであり、より好ましくは250ppm~1000ppmである。本発明に係る製造方法においては、含水率が200ppm~2500ppmの前記有機溶媒中で前記芳香族ジアミンと前記反応性基含有化合物とを反応させることで、これら化合物のモル比の変化に対する、得られる芳香族重合体の固有粘度の変動が小さくなる。その結果、該芳香族重合体の固有粘度を制御することが容易となる。有機溶媒の含水率の測定方法は、実施例にて詳述する。 The water content of the organic solvent used for the reaction is usually 200 ppm to 2500 ppm, preferably 200 ppm to 1500 ppm, more preferably 250 ppm to 1000 ppm. In the production method according to the present invention, the aromatic diamine and the reactive group-containing compound are reacted in the organic solvent having a water content of 200 ppm to 2500 ppm, whereby the molar ratio of these compounds is obtained. The variation in the intrinsic viscosity of the aromatic polymer is reduced. As a result, it becomes easy to control the intrinsic viscosity of the aromatic polymer. The method for measuring the water content of the organic solvent will be described in detail in Examples.
 即ち、前記有機溶媒の含水率が200ppm未満であると、前記芳香族ジアミンと前記反応性基含有化合物とのモル比の変化に対する芳香族重合体の固有粘度の変動が大きくなる。そのため、当該モル比の微細な変化によって芳香族重合体の固有粘度が変動してしまい、目的とする固有粘度を有する芳香族重合体を得ることが困難となる。一方、前記有機溶媒の含水率が2500ppmを超えると、前記芳香族ジアミンと前記反応性基含有化合物との反応が充分に進行せず、目的とする固有粘度に到達した芳香族重合体を得ることができなくなる。 That is, when the water content of the organic solvent is less than 200 ppm, the variation in the intrinsic viscosity of the aromatic polymer with respect to the change in the molar ratio between the aromatic diamine and the reactive group-containing compound increases. For this reason, the intrinsic viscosity of the aromatic polymer varies due to the minute change in the molar ratio, and it becomes difficult to obtain an aromatic polymer having the desired intrinsic viscosity. On the other hand, when the water content of the organic solvent exceeds 2500 ppm, the reaction between the aromatic diamine and the reactive group-containing compound does not proceed sufficiently, and an aromatic polymer reaching the target intrinsic viscosity is obtained. Can not be.
 前記モル比の0.01の変化に伴う前記固有粘度の変化量は、好ましくは0.1~0.7dL/gであり、より好ましくは0.2~0.6dL/gであり、さらに好ましくは0.3~0.5dL/gである。 The amount of change in the intrinsic viscosity accompanying the change in the molar ratio of 0.01 is preferably 0.1 to 0.7 dL / g, more preferably 0.2 to 0.6 dL / g, and still more preferably. Is 0.3 to 0.5 dL / g.
 また、前記有機溶媒の含水率が200ppm以上であると、副反応が生じ難く、前記有機溶媒中にゲル等の不溶分が生成し難い傾向がある。一方、前記有機溶媒の含水率が2500ppm以下であると、芳香族重合体の溶液(重合体組成物)の保存安定性が高く、前記有機溶媒中に該芳香族重合体が析出し難い傾向がある。前記有機溶媒中にゲル等の不溶分が生成すると、芳香族重合体によって形成される耐熱多孔層に皺や筋が生じ易くなり、耐熱多孔層の外観が不良になる傾向がある。 Further, when the water content of the organic solvent is 200 ppm or more, side reactions are unlikely to occur, and insoluble components such as gels tend not to be generated in the organic solvent. On the other hand, when the water content of the organic solvent is 2500 ppm or less, the storage stability of the aromatic polymer solution (polymer composition) is high, and the aromatic polymer tends not to precipitate in the organic solvent. is there. When insoluble matter such as gel is generated in the organic solvent, wrinkles and streaks are likely to occur in the heat-resistant porous layer formed of the aromatic polymer, and the appearance of the heat-resistant porous layer tends to be poor.
 芳香族ジアミンおよび反応性基含有化合物の合計量に対する前記有機溶媒の使用量、即ち、前記有機溶媒における反応開始時の芳香族ジアミンおよび反応性基含有化合物の合計の濃度(原料の濃度)は、0.5重量%~20重量%であることが好ましく、1重量%~15重量%であることがより好ましく、3重量%~12重量%であることがさらに好ましい。 The amount of the organic solvent used relative to the total amount of the aromatic diamine and the reactive group-containing compound, that is, the total concentration of the aromatic diamine and the reactive group-containing compound at the start of the reaction in the organic solvent (the concentration of the raw material) is It is preferably 0.5% by weight to 20% by weight, more preferably 1% by weight to 15% by weight, and even more preferably 3% by weight to 12% by weight.
 前記芳香族ジアミンと前記反応性基含有化合物とを反応させて得られる芳香族重合体は、好ましくは芳香族ポリアミドであり、より好ましくは全芳香族ポリアミドである。芳香族ポリアミドは、パラ配向性の芳香族ポリアミドであってもよく、あるいは、メタ配向性の芳香族ポリアミドであってもよい。しかし、機械的強度が高くて多孔質になり易いことから、芳香族ポリアミドは、パラ配向性の芳香族ポリアミドであることがより好ましい。 The aromatic polymer obtained by reacting the aromatic diamine with the reactive group-containing compound is preferably an aromatic polyamide, more preferably a wholly aromatic polyamide. The aromatic polyamide may be a para-oriented aromatic polyamide or a meta-oriented aromatic polyamide. However, the aromatic polyamide is more preferably a para-oriented aromatic polyamide because it has high mechanical strength and is easily porous.
 そして、前記芳香族重合体は、-C(=O)NH-で表される構造を主鎖に有する芳香族重合体であり、固有粘度が1.5dL/g~3.0dL/g、より好ましくは1.7dL/g~2.5dL/g、さらに好ましくは1.8dL/g~2.3dL/gである。なお、固有粘度の測定方法は、実施例にて詳述する。 The aromatic polymer is an aromatic polymer having a structure represented by —C (═O) NH— in the main chain, and has an intrinsic viscosity of 1.5 dL / g to 3.0 dL / g, It is preferably 1.7 dL / g to 2.5 dL / g, more preferably 1.8 dL / g to 2.3 dL / g. In addition, the measuring method of intrinsic viscosity is explained in full detail in an Example.
 前記固有粘度は、芳香族ジアミンと反応性基含有化合物との前記モル比、および/または、有機溶媒の含水率を調節することによって、制御することができる。前記固有粘度が1.5dL/g未満である場合には、前記芳香族重合体の分子量が小さいため、形成される耐熱多孔層の弾性率が下がり、基材が熱によって溶融したときの収縮抑制効果が低くなる。一方、前記固有粘度が3.0dL/gを超えると、前記芳香族重合体の分子量が大きくなりすぎるため、芳香族重合体の溶液(重合体組成物)を基材に塗工するときの塗工性が低下する。 The intrinsic viscosity can be controlled by adjusting the molar ratio between the aromatic diamine and the reactive group-containing compound and / or the water content of the organic solvent. When the intrinsic viscosity is less than 1.5 dL / g, since the molecular weight of the aromatic polymer is small, the elastic modulus of the heat-resistant porous layer to be formed is lowered, and the shrinkage is suppressed when the base material is melted by heat. Less effective. On the other hand, if the intrinsic viscosity exceeds 3.0 dL / g, the molecular weight of the aromatic polymer becomes too large, so that the coating of the aromatic polymer solution (polymer composition) when applied to the substrate is performed. Workability is reduced.
 本発明に係る製造方法によって得られる芳香族重合体である芳香族ポリアミドとしては、具体的には、例えば、ポリ(パラフェニレンテレフタルアミド)、ポリ(メタフェニレンイソフタルアミド)、ポリ(パラベンズアミド)、ポリ(メタベンズアミド)、ポリ(4,4’-ベンズアニリドテレフタルアミド)、ポリ(パラフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(メタフェニレン-4,4’-ビフェニレンジカルボン酸アミド)、ポリ(パラフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(メタフェニレン-2,6-ナフタレンジカルボン酸アミド)、ポリ(2-クロロパラフェニレンテレフタルアミド)、パラフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体、およびメタフェニレンテレフタルアミド/2,6-ジクロロパラフェニレンテレフタルアミド共重合体等が挙げられる。このうち、前記芳香族ポリアミドは、ポリ(パラフェニレンテレフタルアミド)であることがより好ましい。芳香族ポリアミドは、前記例示のポリマーの混合物であってもよい。 As an aromatic polyamide which is an aromatic polymer obtained by the production method according to the present invention, specifically, for example, poly (paraphenylene terephthalamide), poly (metaphenylene isophthalamide), poly (parabenzamide), Poly (metabenzamide), poly (4,4′-benzanilide terephthalamide), poly (paraphenylene-4,4′-biphenylenedicarboxylic acid amide), poly (metaphenylene-4,4′-biphenylenedicarboxylic acid amide) , Poly (paraphenylene-2,6-naphthalenedicarboxylic acid amide), poly (metaphenylene-2,6-naphthalenedicarboxylic acid amide), poly (2-chloroparaphenylene terephthalamide), paraphenylene terephthalamide / 2,6 -Dichloroparaphenylene terephthalami Copolymers, and meta-phenylene terephthalamide / 2,6-dichloro-p-phenylene terephthalamide copolymer and the like. Of these, the aromatic polyamide is more preferably poly (paraphenylene terephthalamide). The aromatic polyamide may be a mixture of the exemplified polymers.
 非水電解液二次電池の製造分野においては、芳香族重合体の溶液を前記基材に例えば塗工(塗布)した後、有機溶媒を除去することにより、当該基材の表面に耐熱多孔層が形成された積層フィルムを簡単に製造することができる。芳香族重合体の溶液を基材に塗工(塗布)する方法や、塗工(塗布)した溶液から有機溶媒を除去する方法は、特に限定されるものではなく、公知の方法を適宜採用することができる。 In the field of manufacturing non-aqueous electrolyte secondary batteries, for example, after applying (coating) a solution of an aromatic polymer to the base material, the organic solvent is removed to remove the heat resistant porous layer on the surface of the base material. A laminated film formed with can be easily produced. The method for applying (applying) the aromatic polymer solution to the substrate and the method for removing the organic solvent from the applied (applying) solution are not particularly limited, and a known method is appropriately employed. be able to.
 本発明には、前記製造方法によって製造された積層フィルムも包含される。そして、公知の方法を適宜採用することにより、前記積層フィルムを含むセパレータを簡単に製造することができる。また、公知の方法を適宜採用することにより、前記セパレータを含む非水電解液二次電池を簡単に製造することができる。 The present invention includes a laminated film produced by the production method. And the separator containing the said laminated | multilayer film can be easily manufactured by employ | adopting a well-known method suitably. Moreover, the non-aqueous-electrolyte secondary battery containing the said separator can be easily manufactured by employ | adopting a well-known method suitably.
 尚、前記反応を行うことにより得られる芳香族重合体の溶液をそのまま用いる代わりに、(i)前記溶液から溶媒の一部を除去して得た溶液、(ii)前記溶液に溶媒を添加して得た溶液、(iii)水やメチルアルコール等で前記溶液を洗浄して塩化物を除去して得た溶液、(iv)溶媒の一部または全部を蒸発させると同時に芳香族重合体を析出させ、水洗等の方法で当該芳香族重合体から塩化物を除去した後、溶媒に溶解させて得た溶液、等を塗工(塗布)に用いることもできる。 Instead of using the aromatic polymer solution obtained by performing the reaction as it is, (i) a solution obtained by removing a part of the solvent from the solution, and (ii) adding a solvent to the solution. (Iii) a solution obtained by washing the solution with water or methyl alcohol to remove chloride, (iv) evaporating part or all of the solvent and simultaneously depositing an aromatic polymer After removing chloride from the aromatic polymer by a method such as washing with water, a solution obtained by dissolving in a solvent can be used for coating (coating).
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本出願における各種測定方法は以下の通りである。また、芳香族重合体の物性評価は、以下の方法により行った。 The various measurement methods in this application are as follows. The physical properties of the aromatic polymer were evaluated by the following methods.
 (1) 含水率
 カール・フィッシャー水分率計を用いて定法に従い、有機溶媒の含水率を測定した。
(1) Moisture content The moisture content of the organic solvent was measured according to a conventional method using a Karl Fischer moisture meter.
 (2) 固有粘度
 100mlの96%~98%硫酸に0.5gの芳香族重合体を溶解した芳香族重合体溶液を調製した。また、96%~98%硫酸をブランクとして用意した。前記芳香族重合体溶液およびブランクに関して、それぞれ毛細管粘度計を用いて定法に従い、30℃での流動時間を測定した。得られた流動時間の比から、次式により固有粘度を算出した。
(2) Intrinsic viscosity An aromatic polymer solution was prepared by dissolving 0.5 g of an aromatic polymer in 100 ml of 96% to 98% sulfuric acid. Further, 96% to 98% sulfuric acid was prepared as a blank. With respect to the aromatic polymer solution and the blank, the flow time at 30 ° C. was measured according to a conventional method using a capillary viscometer. From the obtained flow time ratio, the intrinsic viscosity was calculated by the following formula.
  固有粘度〔単位:dl/g〕=ln(T/T)/C
 式中、Tは芳香族重合体溶液の流動時間(秒)であり、Tはブランクの流動時間(秒)であり、Cは芳香族重合体溶液における芳香族重合体の濃度(g/dl)を示す。
Intrinsic viscosity [unit: dl / g] = ln (T / T 0 ) / C
Where T is the flow time (seconds) of the aromatic polymer solution, T 0 is the flow time (seconds) of the blank, and C is the concentration of the aromatic polymer in the aromatic polymer solution (g / dl). ).
 (3) 濾過閉塞係数
 濾過閉塞係数の測定方法は、改訂六版化学工学便覧(1999年2月25日発行、発行所:丸善株式会社、編者:社団法人化学工学会)の813頁における、「15 固液・固気分離」の「15・3 濾過・圧搾」の「表15・6 閉塞濾過式」に記載されている式を用いて算出した。
(3) Filtration blockage coefficient The measurement method of filtration blockage coefficient is described on page 813 of the revised Sixth Edition Chemical Engineering Handbook (issued February 25, 1999, publisher: Maruzen Co., Ltd., editor: Japan Society for Chemical Engineering). The calculation was performed using the formula described in “Table 15-6 Occlusion filtration formula” of “15.3 Filtration / press” of “15 Solid-liquid / solid separation”.
 具体的には、反応によって得られた溶液(有機溶媒に芳香族重合体が溶解した溶液)を、2000メッシュ(孔径:14μm)のSUS製フィルタ(直径:25mm)を用いて、1kgf(およそ9.8N)で加圧しながら濾過した。そして、次式により濾過閉塞係数を算出した。 Specifically, a solution obtained by the reaction (a solution in which an aromatic polymer is dissolved in an organic solvent) is 1 kgf (approximately 9 mm) using a SUS filter (diameter: 25 mm) having a 2000 mesh (pore diameter: 14 μm). 8N) under pressure. And the filtration obstruction | occlusion coefficient was computed by following Formula.
  t/V=K×t+1/Q
  濾過閉塞係数 H 〔単位:m/m〕=A×K
 式中、Aは濾過面積(m)であり、tは濾過時間(秒)であり、Vは濾過量(m)であり、Kはt/Vとtのグラフでの傾きを示し、1/Qはt/Vとtのグラフでの切片を示す。
t / V = K S × t + 1 / Q 0
Filtration blockage factor H [unit: m 2 / m 3 ] = A × K S
In the formula, A is the filtration area (m 2 ), t is the filtration time (second), V is the filtration amount (m 3 ), and K S indicates the slope of the graph of t / V and t. 1 / Q 0 indicates the intercept in the graph of t / V and t.
 (4) 基材上に形成した耐熱多孔層(塗工面)の評価
 反応によって得られた溶液(有機溶媒に芳香族重合体が溶解した溶液)を基材であるポリエチレンに塗工することにより、耐熱多孔層を形成した。そして、形成した耐熱多孔層に筋が無いかどうかを目視にて観察して評価した。評価は、塗工方向と直交する方向を観察したときに、2本以上の筋が存在する領域があるものを不良とし、2本以上の筋が存在する領域が無いもの(筋が1本以下のもの)を良好とした。
(4) Evaluation of the heat-resistant porous layer (coating surface) formed on the base material By applying the solution obtained by the reaction (a solution in which an aromatic polymer is dissolved in an organic solvent) to the base polyethylene, A heat resistant porous layer was formed. Then, the formed heat-resistant porous layer was evaluated by visually observing whether or not there were any streaks. In the evaluation, when a direction orthogonal to the coating direction is observed, a case where there is a region where two or more streaks exist is defective, and a region where two or more streaks are not present (one streak or less) Were good).
 〔実施例1〕
 芳香族重合体として、全芳香族ポリアミドであるポリ(パラフェニレンテレフタルアミド)(以下、PPTAと略す)を以下の方法により製造した。
[Example 1]
As the aromatic polymer, poly (paraphenylene terephthalamide) (hereinafter abbreviated as PPTA), which is a wholly aromatic polyamide, was produced by the following method.
 撹拌翼、温度計、窒素流入管および粉体添加口を有する500mlのセパラブルフラスコを使用した。当該フラスコ内に窒素を流入させることにより充分に乾燥させた後、フラスコ内に、有機溶媒としてN-メチル-2-ピロリドン(以下、NMPと略す)を409.2g入れ、塩化物として塩化カルシウム(200℃で2時間、真空乾燥して使用)を30.8g添加して、100℃に昇温させて塩化カルシウムを完全に溶解させた。その後、得られた溶液の温度を室温(25℃)に戻して、溶液の含水率を500ppmとなるように調整した。 A 500 ml separable flask having a stirring blade, a thermometer, a nitrogen inflow pipe and a powder addition port was used. After sufficiently drying by flowing nitrogen into the flask, 409.2 g of N-methyl-2-pyrrolidone (hereinafter abbreviated as NMP) as an organic solvent was placed in the flask, and calcium chloride ( 30.8 g was added at 200 ° C. for 2 hours under vacuum drying, and the temperature was raised to 100 ° C. to completely dissolve calcium chloride. Thereafter, the temperature of the obtained solution was returned to room temperature (25 ° C.), and the water content of the solution was adjusted to 500 ppm.
 次いで、芳香族ジアミンとしてのパラフェニレンジアミン(以下、PPDと略す)を13.20g添加し、完全に溶解させた。この溶液の温度を20±2℃に保持しつつ攪拌しながら、反応性基含有化合物としてのテレフタル酸ジクロライド(以下、TPCと略す)を24.30g添加した(モル比:PPD/TPC=1.020)。但し、TPCは、約10分間の間隔を空けて三回に分けて添加した。TPCの添加終了後、溶液の温度を20±2℃に保持しつつ攪拌しながら、1時間、PPDとTPCとの反応を熟成させた。これにより、PPTAの溶液を得た。得られたPPTAは光学的異方性を示した。 Next, 13.20 g of paraphenylenediamine (hereinafter abbreviated as PPD) as an aromatic diamine was added and completely dissolved. While maintaining the temperature of this solution at 20 ± 2 ° C., 24.30 g of terephthalic acid dichloride (hereinafter abbreviated as TPC) as a reactive group-containing compound was added (molar ratio: PPD / TPC = 1. 020). However, TPC was added in three portions with an interval of about 10 minutes. After completion of the addition of TPC, the reaction between PPD and TPC was aged for 1 hour while stirring while maintaining the temperature of the solution at 20 ± 2 ° C. Thereby, a solution of PPTA was obtained. The obtained PPTA showed optical anisotropy.
 原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。 The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔実施例2〕
 TPCの添加量を24.18gに変更(PPD/TPC=1.025)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
[Example 2]
A PPTA solution was obtained in the same manner as in Example 1 except that the amount of TPC added was changed to 24.18 g (PPD / TPC = 1.025). The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔実施例3〕
 TPCの添加量を24.06gに変更(PPD/TPC=1.030)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
Example 3
A PPTA solution was obtained in the same manner as in Example 1 except that the amount of TPC added was changed to 24.06 g (PPD / TPC = 1.030). The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔実施例4〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を300ppmとなるように調整した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。そして、前記PPTAの物性評価の結果を表2に記載した。
Example 4
A PPTA solution was obtained by carrying out the same operations and reactions as in Example 1 except that the water content of a solution of calcium chloride dissolved in NMP was adjusted to 300 ppm. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1. The results of physical property evaluation of the PPTA are shown in Table 2.
 〔実施例5〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を300ppmとなるように調整すると共に、TPCの添加量を24.18gに変更(PPD/TPC=1.025)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
Example 5
Except for adjusting the water content of a solution of calcium chloride dissolved in NMP to 300 ppm and changing the amount of TPC added to 24.18 g (PPD / TPC = 1.005), the same as in Example 1. Then, the PPTA solution was obtained. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔実施例6〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を300ppmとなるように調整すると共に、TPCの添加量を24.06gに変更(PPD/TPC=1.030)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
Example 6
Except for adjusting the water content of a solution of calcium chloride dissolved in NMP to 300 ppm and changing the amount of TPC added to 24.06 g (PPD / TPC = 1.030), the same as in Example 1. Then, the PPTA solution was obtained. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔実施例7〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を2000ppmとなるように調整すると共に、TPCの添加量を24.78gに変更(PPD/TPC=1.000)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
Example 7
Except for adjusting the water content of a solution of calcium chloride dissolved in NMP to 2000 ppm and changing the amount of TPC added to 24.78 g (PPD / TPC = 1.000), the same as in Example 1. Then, the PPTA solution was obtained. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔実施例8〕
 TPCの添加量を24.22gに変更(PPD/TPC=1.023)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。そして、前記PPTAの物性評価の結果を表2に記載した。
Example 8
A PPTA solution was obtained in the same manner as in Example 1 except that the amount of TPC added was changed to 24.22 g (PPD / TPC = 1.024). The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1. The results of physical property evaluation of the PPTA are shown in Table 2.
 〔実施例9〕
 TPCの添加量を24.18gに変更(PPD/TPC=1.025)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。そして、前記PPTAの物性評価の結果を表2に記載した。
Example 9
A PPTA solution was obtained in the same manner as in Example 1 except that the amount of TPC added was changed to 24.18 g (PPD / TPC = 1.025). The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1. The results of physical property evaluation of the PPTA are shown in Table 2.
 〔比較例1〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を120ppmとなるように調整した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。当該PPTAは不溶成分の量が多かった。前記PPTAの物性評価を行おうとしたものの、得られたPPTAの溶液は流動性が無いため、濾過閉塞係数を算出することはできなかった(測定不能)。また、PPTAの溶液は基材に塗工することができず、従って、耐熱多孔層を形成することはできなかった(評価不能)。比較例1の結果を表2に記載した。
[Comparative Example 1]
A PPTA solution was obtained in the same manner as in Example 1 except that the water content of the solution in which calcium chloride was dissolved in NMP was adjusted to 120 ppm. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1. The PPTA contained a large amount of insoluble components. Although an attempt was made to evaluate the physical properties of the PPTA, the obtained PPTA solution had no fluidity, and therefore the filtration blockage coefficient could not be calculated (measurement impossible). In addition, the PPTA solution could not be applied to the substrate, and therefore a heat-resistant porous layer could not be formed (evaluation not possible). The results of Comparative Example 1 are shown in Table 2.
 〔比較例2〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を120ppmとなるように調整すると共に、TPCの添加量を24.18gに変更(PPD/TPC=1.025)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
[Comparative Example 2]
Except for adjusting the water content of a solution of calcium chloride dissolved in NMP to 120 ppm and changing the amount of TPC added to 24.18 g (PPD / TPC = 1.005), the same as in Example 1. Then, the PPTA solution was obtained. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔比較例3〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を120ppmとなるように調整すると共に、TPCの添加量を24.06gに変更(PPD/TPC=1.030)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
[Comparative Example 3]
Except for adjusting the water content of a solution of calcium chloride dissolved in NMP to 120 ppm and changing the amount of TPC added to 24.06 g (PPD / TPC = 1.030), the same as in Example 1. Then, the PPTA solution was obtained. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
 〔比較例4〕
 NMPに塩化カルシウムを溶解させた溶液の含水率を3000ppmとなるように調整すると共に、TPCの添加量を24.78gに変更(PPD/TPC=1.000)した以外は、実施例1と同様の操作および反応を行い、PPTAの溶液を得た。原料等の仕込み量、およびPPTAの固有粘度の算出結果をまとめて表1に記載した。
[Comparative Example 4]
Except for adjusting the water content of a solution of calcium chloride dissolved in NMP to 3000 ppm and changing the amount of TPC added to 24.78 g (PPD / TPC = 1.000), the same as in Example 1. Then, the PPTA solution was obtained. The amount of raw materials charged and the calculation results of PPTA intrinsic viscosity are summarized in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例および比較例における、芳香族ジアミン(PPD)および反応性基含有化合物(TPC)のモル比と、得られた芳香族重合体(PPTA)の固有粘度との関係を、グラフにして図1に示した。モル比(PPD/TPC)(横軸)と、得られた芳香族重合体の固有粘度(縦軸)とから、各含水率の線形近似を求め、各含水率におけるモル比の0.01の変化に伴う固有粘度の変化量を算出した。その結果、含水率が120ppmの場合には0.89dL/g、300ppmの場合には0.53dL/g、500ppmの場合には0.40dL/gとなった。従って、含水率が300ppmから120ppmに減少すると固有粘度の変化量が急に大きくなり、含水率が200ppm未満になると芳香族重合体の固有粘度を目的とする値に制御することが困難であることが判った。また、含水率が3000ppmではモル比を1.000にしても目的とする固有粘度を得ることができないことが判った。
Figure JPOXMLDOC01-appb-T000002
The relationship between the molar ratio of aromatic diamine (PPD) and reactive group-containing compound (TPC) and the intrinsic viscosity of the obtained aromatic polymer (PPTA) in Examples and Comparative Examples is shown in a graph in FIG. It was shown to. From the molar ratio (PPD / TPC) (horizontal axis) and the intrinsic viscosity (vertical axis) of the obtained aromatic polymer, a linear approximation of each moisture content was obtained, and the molar ratio at each moisture content was 0.01. The amount of change in intrinsic viscosity accompanying the change was calculated. As a result, the water content was 0.89 dL / g when the water content was 120 ppm, 0.53 dL / g when the water content was 300 ppm, and 0.40 dL / g when the water content was 500 ppm. Therefore, when the moisture content is reduced from 300 ppm to 120 ppm, the amount of change in intrinsic viscosity suddenly increases, and when the moisture content is less than 200 ppm, it is difficult to control the intrinsic viscosity of the aromatic polymer to a target value. I understood. It was also found that when the water content was 3000 ppm, the intended intrinsic viscosity could not be obtained even if the molar ratio was 1.000.
 さらに、含水率が500ppmのNMPを用いて重合して得られた芳香族重合体の濾過閉塞係数は充分に低く、また、係る芳香族重合体を用いて形成した耐熱多孔層に皺や筋は無く、それゆえ、外観が良好な耐熱多孔層を形成することができた。 Further, the filtration blockage coefficient of the aromatic polymer obtained by polymerization using NMP having a water content of 500 ppm is sufficiently low, and the heat-resistant porous layer formed using the aromatic polymer has no wrinkles or streaks. Therefore, it was possible to form a heat-resistant porous layer having a good appearance.
 従って、表2に記載の結果から明らかなように、本発明に係る製造方法によって得られた芳香族重合体は、積層フィルムを含むセパレータの耐熱多孔層として好適に用いることができることが判った。 Therefore, as is clear from the results shown in Table 2, it was found that the aromatic polymer obtained by the production method according to the present invention can be suitably used as a heat-resistant porous layer of a separator including a laminated film.
 本発明に係る芳香族重合体の製造方法は、例えば、高い安全性を確保することができる非水電解液二次電池の製造分野において広範に利用することができる。 The method for producing an aromatic polymer according to the present invention can be widely used, for example, in the field of producing a non-aqueous electrolyte secondary battery capable of ensuring high safety.

Claims (12)

  1.  芳香族ジアミンと、
     アミノ基と反応することで-C(=O)NH-で表される構造を形成する加水分解性の反応性基を有する化合物とを、
     有機溶媒中で反応させる、-C(=O)NH-で表される構造を有する芳香族重合体の製造方法であって、
     前記有機溶媒が200ppm~2500ppmの水を含有し、
     前記芳香族重合体の固有粘度が1.5dL/g~3.0dL/gである、芳香族重合体の製造方法。
    An aromatic diamine,
    A compound having a hydrolyzable reactive group that reacts with an amino group to form a structure represented by —C (═O) NH—.
    A method for producing an aromatic polymer having a structure represented by —C (═O) NH—, which is reacted in an organic solvent,
    The organic solvent contains 200 ppm to 2500 ppm of water;
    A method for producing an aromatic polymer, wherein the aromatic polymer has an intrinsic viscosity of 1.5 dL / g to 3.0 dL / g.
  2.  前記有機溶媒が200ppm~1500ppmの水を含有する、請求項1に記載の製造方法。 The production method according to claim 1, wherein the organic solvent contains 200 ppm to 1500 ppm of water.
  3.  加水分解性の反応性基を有する前記化合物が、アシル基を有する化合物である、請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the compound having a hydrolyzable reactive group is a compound having an acyl group.
  4.  前記芳香族重合体が全芳香族ポリアミドである、請求項1~3の何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the aromatic polymer is a wholly aromatic polyamide.
  5.  前記芳香族ジアミンと、加水分解性の反応性基を有する前記化合物とのモル比(芳香族ジアミン/化合物)が1.000~1.050である、請求項1~4の何れか一項に記載の製造方法。 The molar ratio (aromatic diamine / compound) between the aromatic diamine and the compound having a hydrolyzable reactive group is 1.000 to 1.050. The manufacturing method as described.
  6.  前記芳香族ジアミンと加水分解性の反応性基を有する前記化合物とを、-20℃~50℃の反応温度で反応させる、請求項1~5の何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the aromatic diamine and the compound having a hydrolyzable reactive group are reacted at a reaction temperature of -20 ° C to 50 ° C.
  7.  前記有機溶媒が塩化物を溶解しており、有機溶媒に溶解している塩化物の濃度が2重量%~10重量%である、請求項1~6の何れか一項に記載の製造方法。 The production method according to any one of claims 1 to 6, wherein the organic solvent dissolves chloride, and the concentration of the chloride dissolved in the organic solvent is 2 wt% to 10 wt%.
  8.  前記有機溶媒における反応開始時の前記芳香族ジアミンおよび加水分解性の反応性基を有する前記化合物の合計の濃度が0.5重量%~20重量%である、請求項1~7の何れか一項に記載の製造方法。 The total concentration of the aromatic diamine and the compound having a hydrolyzable reactive group at the start of the reaction in the organic solvent is 0.5% by weight to 20% by weight. The production method according to item.
  9.  請求項1~8の何れか一項に記載の製造方法によって製造された芳香族重合体の溶液を基材に塗工して有機溶媒を除去する、積層フィルムの製造方法。 A method for producing a laminated film, wherein an organic solvent is removed by applying a solution of an aromatic polymer produced by the production method according to any one of claims 1 to 8 to a substrate.
  10.  請求項9に記載の製造方法によって製造された積層フィルム。 A laminated film produced by the production method according to claim 9.
  11.  請求項10に記載の積層フィルムを含むセパレータ。 A separator including the laminated film according to claim 10.
  12.  請求項11に記載のセパレータを含む非水電解液二次電池。 A non-aqueous electrolyte secondary battery comprising the separator according to claim 11.
PCT/JP2015/068840 2014-07-02 2015-06-30 Aromatic polymer manufacturing method, layered film, and separator WO2016002785A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167035878A KR20170028318A (en) 2014-07-02 2015-06-30 Aromatic polymer manufacturing method, layered film, and separator
CN201580031898.1A CN106488946B (en) 2014-07-02 2015-06-30 Manufacturing method, stacked film and the spacer of aromatic polymer
JP2016531395A JPWO2016002785A1 (en) 2014-07-02 2015-06-30 Aromatic polymer production method, laminated film and separator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-136953 2014-07-02
JP2014136953 2014-07-02

Publications (1)

Publication Number Publication Date
WO2016002785A1 true WO2016002785A1 (en) 2016-01-07

Family

ID=55019317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/068840 WO2016002785A1 (en) 2014-07-02 2015-06-30 Aromatic polymer manufacturing method, layered film, and separator

Country Status (4)

Country Link
JP (1) JPWO2016002785A1 (en)
KR (1) KR20170028318A (en)
CN (1) CN106488946B (en)
WO (1) WO2016002785A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021003350A1 (en) 2020-06-30 2021-12-30 Sumitomo Chemical Company, Limited Laminated separator for secondary battery with anhydrous electrolyte
DE102021003349A1 (en) 2020-06-30 2021-12-30 Sumitomo Chemical Company, Limited composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903391A (en) * 2017-10-31 2018-04-13 上海恩捷新材料科技股份有限公司 Solution-type aromatic polymer and application thereof
WO2019085899A1 (en) * 2017-10-31 2019-05-09 Shanghai Energy New Materials Technology Co., Ltd. Methods for preparing polymer solutions, separators, electrochemical devices and products thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103926A (en) * 1984-10-29 1986-05-22 Teijin Ltd Control of polymerization degree for aromatic polyamide
JPS6254725A (en) * 1985-05-29 1987-03-10 Teijin Ltd Aromatic polyamide and its production
JPH04225028A (en) * 1990-04-05 1992-08-14 Hoechst Ag Manufacture of aromatic polyamide excellent in hydrolysis resistance
JPH09155970A (en) * 1995-10-06 1997-06-17 Toray Ind Inc Aromatic polyamide film and magnetic recording medium
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH09508664A (en) * 1994-02-11 1997-09-02 アクゾ ノーベル ナムローゼ フェンノートシャップ Batchwise preparation of poly-p-phenylene terephthalamide
JPH09263634A (en) * 1996-03-29 1997-10-07 Toray Ind Inc Aromatic polyamide composition
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2181421C (en) * 1995-07-18 2007-02-13 Tsutomu Takahashi Para-oriented aromatic polyamide porous film
JP2009205959A (en) 2008-02-28 2009-09-10 Teijin Ltd Manufacturing method of nonaqueous electrolyte battery separator
JP2010113804A (en) * 2008-10-08 2010-05-20 Sumitomo Chemical Co Ltd Nonaqueous electrolyte secondary battery
TWM381105U (en) * 2010-01-11 2010-05-21 Top Victory Invest Ltd Power-saving control circuit
JP5714441B2 (en) * 2010-08-06 2015-05-07 住友化学株式会社 Separator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103926A (en) * 1984-10-29 1986-05-22 Teijin Ltd Control of polymerization degree for aromatic polyamide
JPS6254725A (en) * 1985-05-29 1987-03-10 Teijin Ltd Aromatic polyamide and its production
JPH04225028A (en) * 1990-04-05 1992-08-14 Hoechst Ag Manufacture of aromatic polyamide excellent in hydrolysis resistance
JPH09508664A (en) * 1994-02-11 1997-09-02 アクゾ ノーベル ナムローゼ フェンノートシャップ Batchwise preparation of poly-p-phenylene terephthalamide
JPH09208736A (en) * 1995-07-18 1997-08-12 Sumitomo Chem Co Ltd Para-orientated aromatic polyamide porous film, production and use thereof
JPH09155970A (en) * 1995-10-06 1997-06-17 Toray Ind Inc Aromatic polyamide film and magnetic recording medium
JPH09263634A (en) * 1996-03-29 1997-10-07 Toray Ind Inc Aromatic polyamide composition
JP2003040999A (en) * 2001-07-27 2003-02-13 Sumitomo Chem Co Ltd Fully aromatic polyamide, fully aromatic polyamide porous film and separator for nonaqueous electrolytic solution secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021003350A1 (en) 2020-06-30 2021-12-30 Sumitomo Chemical Company, Limited Laminated separator for secondary battery with anhydrous electrolyte
DE102021003349A1 (en) 2020-06-30 2021-12-30 Sumitomo Chemical Company, Limited composition

Also Published As

Publication number Publication date
KR20170028318A (en) 2017-03-13
CN106488946B (en) 2019-04-19
CN106488946A (en) 2017-03-08
JPWO2016002785A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
EP3168901B1 (en) Porous layer for nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery laminated separator
JP6218931B2 (en) Laminated porous film and method for producing the same
US9259900B2 (en) Porous film, battery separator, and battery
WO2013154090A1 (en) Multi-layered porous film, electrical cell separator, and electrical cell
WO2016002785A1 (en) Aromatic polymer manufacturing method, layered film, and separator
KR102366785B1 (en) Nonaqueous electrolyte secondary battery insulating porous layer
JP5476844B2 (en) Porous film, battery separator and battery
JP6299168B2 (en) Aromatic polyamide porous membrane and battery separator
JP6615756B2 (en) Film production method and coating solution storage method
JP6924032B2 (en) Polymer composition, laminated film and separator
JP2013173862A (en) Laminated porous film, battery separator and battery
JP2015069745A (en) Aromatic polyamide bag-shaped separator
JP5476845B2 (en) Porous film, battery separator and battery
CN108878743B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
JP6835348B2 (en) Polyamide-imide solution for power storage element separator and power storage element separator
CN108878753B (en) Insulating porous layer for nonaqueous electrolyte secondary battery
JP2022041500A (en) Laminated porous film on which para-type total aromatic polyamide laminated film is laminated
KR20180116081A (en) Nonaqueous electrolyte secondary battery insulating porous layer
JP2011006668A (en) Porous film including aromatic polyamide and electricity storage device
JP2017174540A (en) Solution for polymer electrolyte and polymer electrolyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15815642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016531395

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167035878

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15815642

Country of ref document: EP

Kind code of ref document: A1