JP2009205959A - Manufacturing method of nonaqueous electrolyte battery separator - Google Patents

Manufacturing method of nonaqueous electrolyte battery separator Download PDF

Info

Publication number
JP2009205959A
JP2009205959A JP2008047750A JP2008047750A JP2009205959A JP 2009205959 A JP2009205959 A JP 2009205959A JP 2008047750 A JP2008047750 A JP 2008047750A JP 2008047750 A JP2008047750 A JP 2008047750A JP 2009205959 A JP2009205959 A JP 2009205959A
Authority
JP
Japan
Prior art keywords
heat
electrolyte battery
battery separator
nonaqueous electrolyte
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008047750A
Other languages
Japanese (ja)
Inventor
Takashi Yoshitomi
孝 吉冨
Satoshi Nishikawa
聡 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008047750A priority Critical patent/JP2009205959A/en
Publication of JP2009205959A publication Critical patent/JP2009205959A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optimum heat-resistant polymer in order to obtain a nonaqueous electrolyte battery separator by forming a heat-resistant porous layer made of heat-resistant polymers on one or both faces of a base material such as a fine porous film. <P>SOLUTION: The manufacturing method of the nonaqueous electrolyte battery separator provided with a base material mainly formed of thermosetting resin having a shutdown function, and a heat-resistant porous layer mainly formed of heat-resistant polymers and laminated on one or both faces of the base material includes processes: (1) coating liquid is used having heat-resistant polymer containing 0.1 to 1,000 ppm of a kind or two selected from a group consisting of alkali metal, alkaline earth metal, transition metal, halogen, and silicon dissolved in water-soluble organic solvent, (2) the coating liquid is coated on either or both faces of the base material, (3) the base material coated is immersed in coagulating liquid to coagulate the heat-resistant polymer, and then, (4) the coagulated polymer is cleaned and dried. Thus, a separator excellent in cycle characteristics is obtained. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、特に、サイクル特性に優れると共に安全性が向上した非水電解質電池セパレータの製造方法に関し、また、得られたセパレータとそれを用いた非水電解質二次電池に関するものである。   The present invention particularly relates to a method for producing a nonaqueous electrolyte battery separator having excellent cycle characteristics and improved safety, and also relates to the obtained separator and a nonaqueous electrolyte secondary battery using the separator.

非水電解質電池、特に、リチウムイオン二次電池に代表される非水電解質二次電池は、高エネルギー密度であり、携帯電話・ノートパソコンといった携帯用電子機器の主電源として広範に普及している。このリチウムイオン二次電池は、更なる高エネルギー密度化が求められているが、安全性の確保が技術的な課題となっている。リチウムイオン二次電池の安全性確保においてセパレータの役割は重要であり、シャットダウン機能を有するという観点から、現状ではポリオレフィン、特にポリエチレン微多孔膜が用いられている。ここで、シャットダウン機能とは、電池の温度が上昇したときに、微多孔膜の孔が閉塞し電流を遮断する機能のことを言い、電池の熱暴走を食い止める働きがある。   Nonaqueous electrolyte batteries, particularly nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries, have high energy density and are widely used as the main power source for portable electronic devices such as mobile phones and laptop computers. . This lithium ion secondary battery is required to have a higher energy density, but ensuring safety is a technical issue. The role of the separator is important in ensuring the safety of the lithium ion secondary battery, and from the viewpoint of having a shutdown function, polyolefins, particularly polyethylene microporous membranes are currently used. Here, the shutdown function refers to a function of blocking pores in the microporous membrane when the temperature of the battery rises, and blocking the current, and has a function of preventing thermal runaway of the battery.

一方、リチウムイオン二次電池は、年々高エネルギー密度化がなされており、安全性確保のためシャットダウン機能に加えて耐熱性も要求されてきている。しかしながら、シャットダウン機能は、ポリエチレンの溶融による孔の閉塞をその作動原理としているので耐熱性と相反するものである。このため、シャットダウン機能が作動した後、さらに電池がシャットダウン機能が作動する温度以上に曝され続けることで、セパレータの溶融(いわゆるメルトダウン)が進行してしまう場合がある。このメルトダウンの結果、電池内部で短絡が生じ、これに伴って大きな熱が発生してしまい、電池は発煙・発火・爆発といった危険に曝されることになる。このため、セパレータにはシャットダウン機能に加えて、シャットダウン機能が作動する温度近傍でメルトダウンが生じない程度の十分な耐熱性が要求される。   On the other hand, lithium ion secondary batteries have been increased in energy density year by year, and heat resistance has been required in addition to a shutdown function to ensure safety. However, the shutdown function is contrary to heat resistance because the operating principle is to close the hole by melting polyethylene. For this reason, after the shutdown function is activated, the battery may continue to be exposed to a temperature higher than the temperature at which the shutdown function is activated, whereby the separator may be melted (so-called meltdown). As a result of this meltdown, a short circuit occurs inside the battery, and as a result, a large amount of heat is generated, and the battery is exposed to dangers such as smoke, ignition, and explosion. For this reason, in addition to the shutdown function, the separator is required to have sufficient heat resistance that does not cause meltdown in the vicinity of the temperature at which the shutdown function operates.

この点において、従来、耐熱性とシャットダウン機能を両立させるために、ポリオレフィン微多孔膜の片面又は両面(表面と裏面)に耐熱性多孔質層を被覆させたり、耐熱性繊維からなる不織布を積層させるという技術が提案されている。例えば、ポリエチレン微多孔膜の片面又は両面に、湿式塗工法により芳香族アラミド等の耐熱性高分子からなる耐熱性多孔質層を積層した非水電解質電池セパレータが知られている(特許文献1〜4参照)。   In this regard, conventionally, in order to achieve both heat resistance and a shutdown function, one surface or both surfaces (front and back surfaces) of the polyolefin microporous film are coated with a heat resistant porous layer, or a nonwoven fabric made of heat resistant fibers is laminated. The technology is proposed. For example, a nonaqueous electrolyte battery separator is known in which a heat-resistant porous layer made of a heat-resistant polymer such as aromatic aramid is laminated on one side or both sides of a polyethylene microporous membrane by a wet coating method (Patent Documents 1 to 3). 4).

このような非水電解質電池セパレータは、ポリエチレンの融点近傍(140℃程度)でシャットダウン機能が作動すると共に、耐熱性多孔質層が十分な耐熱性を示すことにより200℃以上においてもメルトダウンが発生しないため、優れた耐熱性およびシャットダウン機能を発揮する。   Such a non-aqueous electrolyte battery separator operates with a shutdown function near the melting point of polyethylene (about 140 ° C), and the heat-resistant porous layer exhibits sufficient heat resistance, so that meltdown occurs even at 200 ° C or higher. Therefore, it exhibits excellent heat resistance and shutdown function.

特開2002−355938号公報JP 2002-355938 A 特開2005−209570号公報JP 2005-209570 A 特開2005−285385号公報JP 2005-285385 A 特開2000−030686号公報JP 2000-030686 A

しかし、芳香族アラミド等の耐熱性高分子は、その原料や製造方法、あるいは製造工程における装置等に基因して、各種の不純物を含んでおり、不純物によっては、耐熱性高分子やそれを用いたセパレータの性質・性能にプラスの影響を与えたり、マイナスの影響を与えたりする。そして、引いてはそれらが電池特性に影響を及ぼすという可能性がある。   However, heat-resistant polymers such as aromatic aramids contain various impurities based on their raw materials, production methods, or equipment in the production process. Depending on the impurities, heat-resistant polymers and their use can be used. This has a positive or negative effect on the properties and performance of the separator. In turn, they may affect the battery characteristics.

従って、本発明は、ポリオレフィンの微多孔膜等の基材の片面又は両面に、湿式塗工法にて、芳香族アラミド等の耐熱性高分子からなる耐熱性多孔質層を形成して非水電解質電池セパレータを得るに際し、耐熱性高分子の含有する各種物質が、多孔質層の形成性やセパレータの性質・性能、そしてまたサイクル特性等の電池特性に与える影響を探求し、物質の同定と影響の有無を解明し、最適の耐熱性高分子を用いる製造方法を提供することを目的とする。   Therefore, the present invention provides a non-aqueous electrolyte by forming a heat-resistant porous layer made of a heat-resistant polymer such as aromatic aramid on one or both surfaces of a substrate such as a microporous membrane of polyolefin by a wet coating method. In obtaining battery separators, the effects of various materials contained in heat-resistant polymers on the properties of the porous layer, the properties and performance of the separator, and the battery characteristics such as cycle characteristics are investigated, and the identification and influence of the substances. It is an object to provide a production method using an optimum heat-resistant polymer.

上記課題を解決するために、本発明は以下の構成を採用する。
(1) 主として熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材と、主として耐熱性高分子にて形成され前記基材の片面又は両面に積層された耐熱性多孔質層とを備えた非水電解質電池セパレータの製造方法であって、(i)アルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上が、0.1以上1000ppm以下含まれている耐熱性高分子を、水溶性有機溶剤に溶解して塗工液を作製する工程と、(ii)得られた塗工液を、基材の片面又は両面に塗工する工程と、(iii)塗工された基材を水又は水と前記水溶性有機溶剤との混合液からなる凝固液中に浸漬して、耐熱性高分子を凝固させる工程と、(iv)この凝固工程後の前記基材を水洗し乾燥する工程と、を実施することを特徴とする非水電解質電池セパレータの製造方法。
(2) 前記アルカリ金属が、Na又はLiであることを特徴とする前記(1)記載の非水電解質電池セパレータの製造方法。
(3) 前記アルカリ土類金属が、Mg又はCaであることを特徴とする前記(1)記載の非水電解質電池セパレータの製造方法。
(4) 前記遷移金属が、Feであることを特徴とする前記(1)記載の非水電解質電池セパレータの製造方法。
(5) 前記ハロゲンが、塩素であることを特徴とする前記(1)記載の非水電解質電池セパレータの製造方法。
(6) 前記耐熱性多孔質層が、重量分率で50重量%以上95重量%以下の無機フィラーを含むことを特徴とする前記(1)〜(5)のいずれかに記載の非水電解質電池セパレータの製造方法。
(7) 前記耐熱性高分子が、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上であることを特徴とする前記(1)〜(6)のいずれかに記載の非水電解質電池セパレータの製造方法。
(8) 前記耐熱性高分子が、ポリメタフェニレンイソフタルアミドであることを特徴とする前記(7)記載の非水電解質電池セパレータの製造方法。
(9) 前記ポリメタフェニレンイソフタルアミドが、溶液重合又は界面重合により製造されたものであることを特徴とする前記(8)記載の非水電解質電池セパレータの製造方法。
(10) 前記基材が、ポリオレフィンを主体とする熱可塑性樹脂からなる微多孔膜であることを特徴とする前記(1)〜(9)のいずれかに記載の非水電解質電池セパレータの製造方法。
(11) 前記非水電解質電池セパレータが、リチウムイオン二次電池用セパレータであることを特徴とする前記(1)〜(10)のいずれかに記載の非水電解質電池セパレータの製造方法。
(12) 前記前記(1)〜(11)のいずれかに記載の製造方法で得られた非水電解質電池セパレータ。
(13) 主として熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材と、主として耐熱性高分子にて形成され前記基材の片面又は両面に積層された耐熱性多孔質層とを備えた非水電解質電池セパレータであって、前記耐熱性多孔質層中の耐熱性高分子には、アルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上が、0.1〜1000ppm含まれていることを特徴とする非水電解質電池セパレータ。
(14) 上記(12)又は(13)に記載の非水電解質電池セパレータを用いた、リチウムのドープ・脱ドープにより起電力を得る非水電解質二次電池。
In order to solve the above problems, the present invention employs the following configuration.
(1) A base material mainly formed of a thermoplastic resin and having a pore or void inside, and having a shutdown function, and a heat resistance mainly formed of a heat-resistant polymer and laminated on one or both sides of the base material A method for producing a non-aqueous electrolyte battery separator comprising a porous layer, wherein (i) one or more selected from the group consisting of alkali metals, alkaline earth metals, transition metals, halogens, and silicon, A step of preparing a coating liquid by dissolving a heat-resistant polymer contained in 0.1 to 1000 ppm in a water-soluble organic solvent, and (ii) the obtained coating liquid on one or both sides of the substrate And (iii) a step of immersing the coated base material in a coagulation liquid composed of water or a mixture of water and the water-soluble organic solvent to coagulate the heat-resistant polymer; (Iv) Washing and drying the base material after this coagulation step Nonaqueous electrolyte battery separator production method of which comprises carrying out the extent, the.
(2) The method for producing a nonaqueous electrolyte battery separator according to (1), wherein the alkali metal is Na or Li.
(3) The method for producing a nonaqueous electrolyte battery separator according to (1), wherein the alkaline earth metal is Mg or Ca.
(4) The method for producing a nonaqueous electrolyte battery separator according to (1), wherein the transition metal is Fe.
(5) The method for producing a nonaqueous electrolyte battery separator according to (1), wherein the halogen is chlorine.
(6) The non-aqueous electrolyte according to any one of (1) to (5), wherein the heat-resistant porous layer contains an inorganic filler in a weight fraction of 50% by weight to 95% by weight. A method for producing a battery separator.
(7) The heat-resistant polymer is one or more selected from the group consisting of aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. The manufacturing method of the nonaqueous electrolyte battery separator in any one of 1)-(6).
(8) The method for producing a nonaqueous electrolyte battery separator according to (7), wherein the heat-resistant polymer is polymetaphenylene isophthalamide.
(9) The method for producing a nonaqueous electrolyte battery separator according to (8), wherein the polymetaphenylene isophthalamide is produced by solution polymerization or interfacial polymerization.
(10) The method for producing a nonaqueous electrolyte battery separator according to any one of (1) to (9), wherein the base material is a microporous film made of a thermoplastic resin mainly composed of polyolefin. .
(11) The method for producing a nonaqueous electrolyte battery separator according to any one of (1) to (10), wherein the nonaqueous electrolyte battery separator is a lithium ion secondary battery separator.
(12) A nonaqueous electrolyte battery separator obtained by the production method according to any one of (1) to (11).
(13) A base material mainly formed of a thermoplastic resin and having a pore or void inside, and having a shutdown function, and a heat resistance mainly formed of a heat-resistant polymer and laminated on one or both sides of the base material A non-aqueous electrolyte battery separator comprising a porous layer, wherein the heat-resistant polymer in the heat-resistant porous layer is selected from the group consisting of alkali metals, alkaline earth metals, transition metals, halogens and silicon The nonaqueous electrolyte battery separator characterized by 0.1 to 1000 ppm being contained 1 type or 2 types or more.
(14) A nonaqueous electrolyte secondary battery that obtains an electromotive force by lithium doping / dedoping using the nonaqueous electrolyte battery separator according to (12) or (13).

本発明の非水電解質電池セパレータの製造方法によると、サイクル特性に優れると共に安全性が向上した非水電解質電池セパレータが得られ、それを用い非水電解質電池は、優れた電池特性を有するものである。   According to the method for producing a non-aqueous electrolyte battery separator of the present invention, a non-aqueous electrolyte battery separator having excellent cycle characteristics and improved safety is obtained, and a non-aqueous electrolyte battery using the non-aqueous electrolyte battery has excellent battery characteristics. is there.

[非水電解質電池セパレータの製造方法]
本発明は、主として熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材と、主として耐熱性高分子にて形成され前記基材の片面又は両面に積層された耐熱性多孔質層とを備えた非水電解質電池セパレータの製造方法に係るものであるが、下記の4つの工程からなるものである。
[Method for producing non-aqueous electrolyte battery separator]
The present invention relates to a base material mainly formed of a thermoplastic resin and having pores or voids therein and having a shutdown function, and a heat-resistant layer mainly formed of a heat-resistant polymer and laminated on one or both sides of the base material. This relates to a method for producing a non-aqueous electrolyte battery separator provided with a porous porous layer, and comprises the following four steps.

先ず、工程(i)では、アルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上が、0.1〜1000ppm含まれている耐熱性高分子を、水溶性有機溶剤に溶解して塗工液が作製される。具体的且つ典型的な物質としては、アルカリ金属としては、Na又はLiが、アルカリ土類金属としては、Mg又はCaが、遷移金属としては、Feが、ハロゲンとしては、塩素が挙げられる。   First, in step (i), a heat-resistant polymer containing 0.1 to 1000 ppm of one or more selected from the group consisting of alkali metals, alkaline earth metals, transition metals, halogens and silicon. A coating liquid is prepared by dissolving in a water-soluble organic solvent. Specific and typical substances include Na or Li as the alkali metal, Mg or Ca as the alkaline earth metal, Fe as the transition metal, and chlorine as the halogen.

前記物質は、非水電解質電池の電池特性に影響を及ぼす可能性があるが、耐熱性高分子中での含有量が0.1〜1000ppmの範囲であれば、それらの影響を避けることができる。そして、結果的に、サイクル特性に優れたセパレータ、引いては電池が得られる。   The substance may affect the battery characteristics of the nonaqueous electrolyte battery, but if the content in the heat-resistant polymer is in the range of 0.1 to 1000 ppm, the influence can be avoided. . As a result, a separator having excellent cycle characteristics, that is, a battery can be obtained.

例えば、アルカリ金属のNaは、負極界面の皮膜を更新・除去するという効果もあり、必ずしも悪影響を与えるとは限らないが、少なくとも塩素は、正極集電体として用いられるアルミニウムの溶解を促進して、正極活物質のリチウムの脱挿入サイトを塞ぐため、二次電池性能が著しく損なわれるので、1000ppm以下の範囲に抑える必要がある。いずれにしろ、前記物質の耐熱性高分子中での含有量は0.1〜1000ppmの範囲にあるのが適当である。   For example, alkali metal Na also has the effect of renewing and removing the film at the negative electrode interface and does not necessarily have an adverse effect, but at least chlorine promotes the dissolution of aluminum used as the positive electrode current collector. Since the lithium insertion / extraction site of the positive electrode active material is blocked, the performance of the secondary battery is remarkably impaired. Therefore, it is necessary to suppress it to a range of 1000 ppm or less. In any case, the content of the substance in the heat-resistant polymer is suitably in the range of 0.1 to 1000 ppm.

耐熱性高分子の塗工液を製造ための水溶性有機溶剤としては、特に限定されないが、具体的には極性溶剤が好ましく、例えばN−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシドなどが挙げられる。また、これらの極性溶剤に耐熱性高分子に対して貧溶剤となる溶剤も一部混合して用いることもできる。このような溶剤を適用することでミクロ相分離構造が誘発され、耐熱性多孔質層を形成する上で多孔化が容易となる。貧溶剤としては、アルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。   The water-soluble organic solvent for producing the heat-resistant polymer coating liquid is not particularly limited, but specifically, a polar solvent is preferable, for example, N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethylsulfoxide, etc. It is done. In addition, a solvent that becomes a poor solvent for the heat-resistant polymer may be mixed with these polar solvents. By applying such a solvent, a microphase separation structure is induced, and the formation of a heat-resistant porous layer is facilitated. As the poor solvent, alcohols are preferable, and polyhydric alcohols such as glycol are particularly preferable.

工程(ii)では、前記で得られた塗工液を、主として熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材、好ましくは、ポリオレフィンの微多孔膜等の基材の片面又は両面に塗工する。基材の少なくとも一方の表面に耐熱性高分子の塗工液を塗工するが、基材の両面に塗工するのが好ましい。塗工液の濃度は4〜9重量%、基材への塗工量は2〜3g/m程度が好ましい。塗工する方法は、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。塗膜を均一に塗布するという観点において、特にリバースロールコーター法が好適である。より具体的には、例えば、ポリエチレン微多孔膜等の基材の両面に耐熱性高分子の塗工液を塗工する場合は、一対のマイヤーバーの間を通して基材の両面に過剰に塗工液を塗布し、これを一対のリバースロールコーターの間を通し、過剰な塗工液を掻き落すことで精密計量するという方法が挙げられる。 In the step (ii), the coating solution obtained above is mainly formed of a thermoplastic resin and has a pore or void inside, and has a shutdown function, preferably a polyolefin microporous film or the like. Apply to one or both sides of the substrate. A coating solution of a heat resistant polymer is applied to at least one surface of the substrate, but it is preferable to apply to both surfaces of the substrate. The concentration of the coating solution is preferably 4 to 9% by weight, and the coating amount on the substrate is preferably about 2 to 3 g / m 2 . Examples of the coating method include knife coater method, gravure coater method, screen printing method, Mayer bar method, die coater method, reverse roll coater method, ink jet method, spray method, roll coater method and the like. From the viewpoint of uniformly applying the coating film, the reverse roll coater method is particularly suitable. More specifically, for example, when applying a coating solution of a heat resistant polymer on both surfaces of a substrate such as a polyethylene microporous membrane, it is applied excessively on both surfaces of the substrate through a pair of Meyer bars. There is a method of applying a liquid and passing it between a pair of reverse roll coaters and scraping off an excessive coating liquid to measure precisely.

工程(iii)では、塗工された微多孔膜等の基材を、耐熱性高分子を凝固させることが可能な凝固液中に浸漬することで、耐熱性高分子を凝固させ、多孔質層を成形する。凝固の方法としては、凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に浸漬する方法などが挙げられる。凝固液は、耐熱性高分子を凝固できるものであれば特に限定されないが、水又は塗工液に用いた有機溶媒に水を適当量混合させたものが好ましい。ここで、水の混合量は凝固液に対して40〜80重量%が好適である。水の量が40重量%より少ないと耐熱性高分子を凝固するのに必要な時間が長くなったり、凝固が不十分になるという問題が生じる。また、80重量%より多いと溶剤回収においてコスト高となったり、凝固液と接触する表面の凝固が速すぎ、表面が十分に多孔化されないという問題が生じる。   In the step (iii), the heat-resistant polymer is coagulated by immersing the coated substrate such as a microporous film in a coagulating liquid capable of coagulating the heat-resistant polymer, and the porous layer Is molded. Examples of the coagulation method include a method of spraying a coagulation liquid with a spray and a method of immersing in a bath (coagulation bath) containing the coagulation liquid. The coagulation liquid is not particularly limited as long as it can coagulate the heat-resistant polymer, but is preferably water or an organic solvent used for the coating liquid mixed with an appropriate amount of water. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid. When the amount of water is less than 40% by weight, there arises a problem that the time required for coagulating the heat-resistant polymer becomes long or the coagulation becomes insufficient. On the other hand, when the amount is more than 80% by weight, there arises a problem that the cost for solvent recovery becomes high, or the surface that comes into contact with the coagulating liquid is solidified too quickly and the surface is not sufficiently porous.

工程(iv)は、工程(iii)に引き続き、得られたセパレータから水洗で凝固液を除去し、次いで乾燥する工程である。乾燥方法は特に限定されないが、乾燥温度は50〜80℃が適当であり、高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。   Step (iv) is a step of removing the coagulating liquid from the obtained separator by washing with water, and then drying, following step (iii). The drying method is not particularly limited, but a drying temperature of 50 to 80 ° C. is appropriate. When a high drying temperature is applied, a method of contacting with a roll in order to prevent a dimensional change due to heat shrinkage occurs. It is preferable to apply.

本発明の、熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材としては、微多孔膜、不織布、紙状シート、その他三次元ネットーワーク構造を有するシート等を挙げることができるが、特に、微多孔膜が好ましい。熱可塑性樹脂としては、融点200℃未満の熱可塑性樹脂が適当であり、好ましくはポリオレフィンであり、特に好ましいのは、ポリエチレンである。従って、ポリオレフィン、特にポリエチレンの微多孔膜が好ましい。ポリエチレンは、特に限定されるものではなく、各種の公知のポリエチレン微多孔膜を用いることができる。高密度ポリエチレン、又は、高密度ポリエチレンと超高分子量ポリエチレンの混合物も好適である。また、例えば、ポリエチレン以外に、ポリプロピレン、ポリメチルペンテン等の他のポリオレフィンを混合して用いても良い。微多孔膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。なお、本発明の基材は、主として、即ち、約90重量%以上が熱可塑性樹脂からなるものであれば良く、約10重量%以下の、電池特性に影響を与えない他の成分を含んでいても良い。   The substrate of the present invention formed of a thermoplastic resin and having a pore or void inside and having a shutdown function includes a microporous film, a nonwoven fabric, a paper-like sheet, and other sheets having a three-dimensional network structure. Among them, a microporous membrane is particularly preferable. As the thermoplastic resin, a thermoplastic resin having a melting point of less than 200 ° C. is suitable, preferably a polyolefin, and particularly preferably polyethylene. Therefore, a microporous membrane of polyolefin, particularly polyethylene, is preferred. Polyethylene is not particularly limited, and various known polyethylene microporous membranes can be used. High density polyethylene or a mixture of high density polyethylene and ultra high molecular weight polyethylene is also suitable. For example, in addition to polyethylene, other polyolefins such as polypropylene and polymethylpentene may be mixed and used. A microporous membrane means a membrane that has a large number of micropores inside and has a structure in which these micropores are connected, allowing gas or liquid to pass from one surface to the other. To do. In addition, the base material of the present invention is not limited as long as it is mainly composed of a thermoplastic resin at about 90% by weight or more, and contains about 10% by weight or less of other components that do not affect the battery characteristics. May be.

ポリエチレン等の微多孔膜の膜厚は5μm以上18μm以下であることが好ましい。該微多孔膜の膜厚が5μmより薄いと引張強度や突刺強度といった機械物性が不十分となり、該微多孔膜の膜厚が18μmより厚いと適切なセパレータ厚みを実現することが困難となるため好ましくない。該微多孔膜の空孔率は20〜60%のものが好ましい。微多孔膜の空孔率が20%未満となるとセパレータの膜抵抗が高くなり過ぎ、電池の出力を顕著に低下させるため好ましくない。また、60%を超えると、シャットダウン特性の低下が顕著となり好ましくない。該微多孔膜のガーレ値(JIS・P8117)は、10sec/100cc以上、500sec/100cc以下が好ましい。微多孔膜のガーレ値が500sec/100ccより高いと、イオン透過性が不十分となりセパレータの抵抗が高くなるという不具合が生じる。微多孔膜のガーレ値が10sec/100ccより低いとシャットダウン機能の低下が著しく実用的でない。該微多孔膜の突刺強度は、10g以上が好適である。   The film thickness of the microporous film such as polyethylene is preferably 5 μm or more and 18 μm or less. If the thickness of the microporous film is less than 5 μm, mechanical properties such as tensile strength and puncture strength are insufficient, and if the thickness of the microporous film is greater than 18 μm, it is difficult to achieve an appropriate separator thickness. It is not preferable. The porosity of the microporous membrane is preferably 20 to 60%. When the porosity of the microporous membrane is less than 20%, the membrane resistance of the separator becomes too high, and the output of the battery is remarkably lowered, which is not preferable. On the other hand, if it exceeds 60%, the shutdown characteristic is remarkably deteriorated. The Gurley value (JIS P8117) of the microporous membrane is preferably 10 sec / 100 cc or more and 500 sec / 100 cc or less. If the Gurley value of the microporous membrane is higher than 500 sec / 100 cc, the ion permeability is insufficient and the resistance of the separator increases. When the Gurley value of the microporous film is lower than 10 sec / 100 cc, the shutdown function is remarkably deteriorated. The puncture strength of the microporous membrane is preferably 10 g or more.

本発明で用いられる耐熱性高分子は、融点200℃以上のポリマーあるいは融点を有しないが分解温度が200℃以上のポリマーが適当であり、好ましくは、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上のものである。耐熱性高分子の中で特に好ましいのは、芳香族ジアミンと芳香族ジカルボン酸クロライドから得られた全芳香族ポリアミドである。全芳香族ポリアミドの中でも、ポリメタフェニレンイソフタルアミドが好ましい。ポリエチレンとポリメタフェニレンイソフタルアミドはなじみが良く良好な接着性示すので、本発明においては、特に好ましい組合わせである。   As the heat-resistant polymer used in the present invention, a polymer having a melting point of 200 ° C. or higher or a polymer having no melting point but having a decomposition temperature of 200 ° C. or higher is suitable, preferably aromatic polyamide, polyimide, polyethersulfone, polysulfone. , One or more selected from the group consisting of polyetherketone and polyetherimide. Particularly preferred among the heat resistant polymers are wholly aromatic polyamides obtained from aromatic diamines and aromatic dicarboxylic acid chlorides. Among the wholly aromatic polyamides, polymetaphenylene isophthalamide is preferable. Since polyethylene and polymetaphenylene isophthalamide are well-familiar and exhibit good adhesion, they are a particularly preferred combination in the present invention.

耐熱性高分子の製法は特に問わないが、溶液重合又は界面重合で得られたものが好ましい。例えば、全芳香族ポリアミドの溶液重合では、芳香族ジアミンと芳香族ジカルボン酸クロライドとを、有機極性溶媒、例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド中で反応させて全芳香族ポリアミドが得られる。この場合には、直接、塗工液を製造することができる。また、溶液重合で反応副生物として生成した塩類は、除去してもあるいはそれを含んだまま塗工液を調整しても良い。   The method for producing the heat-resistant polymer is not particularly limited, but those obtained by solution polymerization or interfacial polymerization are preferred. For example, in solution polymerization of wholly aromatic polyamides, aromatic diamines and aromatic dicarboxylic acid chlorides are reacted in an organic polar solvent such as N-methylpyrrolidone, dimethylacetamide, dimethylformamide, dimethyl sulfoxide to give a wholly aromatic polyamide. Polyamide is obtained. In this case, the coating liquid can be produced directly. Further, the salts produced as a reaction by-product by solution polymerization may be removed or the coating solution may be adjusted while containing it.

例えば、全芳香族ポリアミドの界面重合では、芳香族ジアミンと芳香族ジカルボン酸クロライドとを、生成するポリアミドに対し良溶媒でない有機溶媒(溶剤)、例えば、テトラハイドロフラン中で反応せしめて溶液若しくは分散液を作り、これを、炭酸ソーダ等の酸受容剤の水溶液と接触させ反応を完結せしめる。得られた全芳香族ポリアミドの水溶性有機溶剤溶液を、前記基材の片面又は両面に塗工すれば良い。   For example, in interfacial polymerization of a wholly aromatic polyamide, an aromatic diamine and an aromatic dicarboxylic acid chloride are reacted in an organic solvent (solvent) that is not a good solvent for the resulting polyamide, for example, tetrahydrofuran, and then a solution or dispersion. A liquid is made, and this is contacted with an aqueous solution of an acid acceptor such as sodium carbonate to complete the reaction. The obtained water-soluble organic solvent solution of wholly aromatic polyamide may be applied to one side or both sides of the substrate.

かかる耐熱性高分子にて形成される耐熱性多孔質層とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった層を意味する。なお、耐熱性多孔質層は、主として、即ち、約90重量%以上が耐熱性高分子からなるものであれば良く、約10重量%以下の、電池特性に影響を与えない他の成分を含んでいても良い。   A heat-resistant porous layer formed of such a heat-resistant polymer has a structure in which a large number of micropores are connected inside and these micropores are connected to each other. It means a layer through which gas or liquid can pass. The heat-resistant porous layer should be mainly composed of heat-resistant polymer in an amount of about 90% by weight or more, and contains about 10% by weight or less of other components that do not affect the battery characteristics. You can leave.

本発明において該耐熱性多孔質層は、前記微多孔膜等の基材の少なくとも一方の面に形成すればよいが、ハンドリング性、耐久性および熱収縮の抑制効果の観点から、表裏両面に形成した方がより好ましい。そして、耐熱性多孔質層が該基材の両面に形成されている場合は該耐熱性多孔質層の厚みの合計が3μm以上12μm以下であるか、または、該耐熱性多孔質層が該基材の片面にのみ形成されている場合は該耐熱性多孔質層の厚みが3μm以上12μm以下であることが好ましい。いずれの場合においても、該耐熱性多孔質層の厚みの合計が3μm未満となると、十分な耐熱性、特に熱収縮抑制効果が得られなくなる。一方、該耐熱性多孔質層の厚みの合計が12μmを超えると、適切なセパレータ厚みを実現することが困難となる。該耐熱性多孔質層の空孔率は60〜90%の範囲が好適である。該耐熱性多孔質層の空孔率が90%を超えると耐熱性が不十分となる傾向にあり、60%より低いとサイクル特性や保存特性、放電性が低下する傾向となり好ましくない。   In the present invention, the heat-resistant porous layer may be formed on at least one surface of a substrate such as the microporous membrane, but it is formed on both front and back surfaces from the viewpoint of handling properties, durability, and the effect of suppressing heat shrinkage. Is more preferable. When the heat-resistant porous layer is formed on both surfaces of the substrate, the total thickness of the heat-resistant porous layer is 3 μm or more and 12 μm or less, or the heat-resistant porous layer is the base When formed only on one side of the material, the thickness of the heat-resistant porous layer is preferably 3 μm or more and 12 μm or less. In any case, when the total thickness of the heat-resistant porous layer is less than 3 μm, sufficient heat resistance, particularly a heat shrinkage suppressing effect cannot be obtained. On the other hand, when the total thickness of the heat-resistant porous layer exceeds 12 μm, it is difficult to realize an appropriate separator thickness. The porosity of the heat resistant porous layer is preferably in the range of 60 to 90%. If the porosity of the heat-resistant porous layer exceeds 90%, the heat resistance tends to be insufficient, and if it is lower than 60%, the cycle characteristics, storage characteristics, and discharge characteristics tend to decrease, such being undesirable.

本発明においては、前記耐熱性多孔質層に、重量分率50〜95重量%の範囲で、無機フィラーが含まれているのが、目的・用途によっては好ましい場合がある。無機フィラーとは、無機微粒子であり、その種類は特に限定されるものではないが、好ましいのは、アルミナ、チタニア、シリカ、ジルコニアなどの酸化物、炭酸塩、リン酸塩、水酸化物などである。特に、金属水酸化物が好ましい。金属水酸化物としては、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素、若しくはこれらの2種以上の組合せが好適である。無機フィラーの平均粒子径は、0.1〜1μmの範囲にあるものが好ましい。   In the present invention, it may be preferable depending on the purpose and use that the heat-resistant porous layer contains an inorganic filler in a weight fraction of 50 to 95% by weight. The inorganic filler is an inorganic fine particle, and the kind thereof is not particularly limited, but is preferably an oxide such as alumina, titania, silica, zirconia, carbonate, phosphate, hydroxide, etc. is there. In particular, a metal hydroxide is preferable. As the metal hydroxide, aluminum hydroxide, magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, boron hydroxide, or combinations of two or more thereof are suitable. The average particle diameter of the inorganic filler is preferably in the range of 0.1 to 1 μm.

なお、本発明において前記耐熱性多孔質層に無機フィラーを添加した場合には、本発明で用いられる耐熱性高分子中に含まれていたアルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上の0.1〜1000ppmの物質と、分析・解析上は区別しにくい場合もあるが、それでも、耐熱性高分子中に元々含まれていた物質は、前記のような無機微粒子とは異なるので、耐熱性高分子の本質的な性質・性能に影響する可能性があるのである。   In the present invention, when an inorganic filler is added to the heat resistant porous layer, the alkali metal, alkaline earth metal, transition metal, halogen and silicon contained in the heat resistant polymer used in the present invention. It may be difficult to distinguish one or two or more kinds of substances selected from the group consisting of 0.1 to 1000 ppm from the viewpoint of analysis / analysis, but the substances originally contained in the heat-resistant polymer are still Since it is different from the inorganic fine particles as described above, it may affect the essential properties and performance of the heat-resistant polymer.

無機フィラーの量が50〜95重量%の範囲であると、無機フィラーは耐熱性高分子と十分になじみ、分散性も良い。また、無機フィラーの作用で、耐熱性多孔質層を水中凝固により形成させる際に、耐熱性高分子の低分子量ポリマーが凝固液中に流出しにくくなるので、好適な孔形成が可能になる。そして、後述のガーレ値や膜抵抗が更に低くなるという効果も得られる。   When the amount of the inorganic filler is in the range of 50 to 95% by weight, the inorganic filler is sufficiently compatible with the heat-resistant polymer and has good dispersibility. In addition, when the heat-resistant porous layer is formed by solidification in water due to the action of the inorganic filler, it is difficult for the low-molecular weight polymer of the heat-resistant polymer to flow out into the coagulation liquid, so that suitable pore formation is possible. And the effect that the below-mentioned Gurley value and film resistance become still lower is also acquired.

また、無機フィラーは、本発明の非水電解質電池セパレータを難燃化する上で有効に機能する。例えば、無機フィラーとして金属水酸化物を用いた場合には、金属水酸化物を加熱すると脱水反応が起こり酸化物となり、水が放出される。更に、この脱水反応は大きな吸熱を伴う反応である。この脱水反応時に水を放出することと、この反応の吸熱により、難燃効果が得られる。また、水を放出するため可燃性である電解液を水で希釈し、セパレータだけでなく電解液にも効果があり、電池そのものを難燃化する上で有効である。   The inorganic filler functions effectively in making the nonaqueous electrolyte battery separator of the present invention flame retardant. For example, when a metal hydroxide is used as the inorganic filler, when the metal hydroxide is heated, a dehydration reaction occurs to become an oxide, and water is released. Furthermore, this dehydration reaction is a reaction with a large endotherm. The release of water during this dehydration reaction and the endothermic effect of this reaction provide a flame retardant effect. In addition, an electrolyte that is flammable to release water is diluted with water and is effective not only for the separator but also for the electrolyte, and is effective in making the battery itself flame-retardant.

無機フィラーとしての金属水酸化物は、ハンドリング性の観点からも好ましい。また、金属水酸化物は、アルミナのような金属酸化物と比較して軟らかいため、従来のセパレータにあるような問題、即ち、セパレータに含まれる無機フィラーによって、製造時の各工程にて使用する部品が磨耗してしまうといった、ハンドリング性に関する問題が発生しにくいという点でも好ましい。   The metal hydroxide as the inorganic filler is also preferable from the viewpoint of handling properties. In addition, since metal hydroxide is softer than metal oxide such as alumina, it is used in each process at the time of manufacture depending on the problem with conventional separators, that is, the inorganic filler contained in the separator. It is also preferable in that a problem relating to handling properties such as wear of parts is unlikely to occur.

耐熱性多孔質層として、重量分率で50〜95重量%の無機フィラーを含むものを作製する場合には、工程(i)において、耐熱性高分子の水溶性有機溶媒溶液に無機フィラーを分散させ、塗工用スラリーを作製すれば良い。本発明においては、かかる塗工用スラリーも、工程(i)の塗工液の概念に含まれるものである。無機フィラーの分散性が良好でない場合は、無機フィラーをシランカップリング剤等で表面処理し、分散性を改善する手法も適用可能である。   When producing a heat-resistant porous layer containing 50 to 95% by weight of an inorganic filler by weight fraction, the inorganic filler is dispersed in a water-soluble organic solvent solution of a heat-resistant polymer in step (i). The slurry for coating may be prepared. In the present invention, such a coating slurry is also included in the concept of the coating liquid in the step (i). When the dispersibility of the inorganic filler is not good, a method of improving the dispersibility by surface-treating the inorganic filler with a silane coupling agent or the like is also applicable.

[非水電解質電池セパレータ]
本発明の製造方法で得られた非水電解質電池セパレータの膜厚は、30μm以下が好ましく、さらに20μm以下が好ましい。セパレータの膜厚が30μmを超えるとこれを適用した電池のエネルギー密度や出力特性が低下し好ましくない。非水電解質電池セパレータの物性としては、ガーレ値(JIS・P8117)が10〜1000sec/100cc、好ましくは100〜400sec/100ccである。ガーレ値が10sec/100cc未満である場合は、微多孔膜のガーレ値が低過ぎであり、シャットダウン機能の低下が著しく実用的でない。ガーレ値が1000sec/100ccを超えると、イオン透過性が不十分となり、セパレータの膜抵抗が増加して電池の出力低下を招くという不具合が生じる。膜抵抗は0.5〜10ohm・cm、好ましくは1〜5ohm・cmである。突き刺し強度は10〜1000g、好ましくは200〜600gの範囲のものである。
[Nonaqueous electrolyte battery separator]
The film thickness of the nonaqueous electrolyte battery separator obtained by the production method of the present invention is preferably 30 μm or less, more preferably 20 μm or less. When the thickness of the separator exceeds 30 μm, the energy density and output characteristics of a battery to which the separator is applied are lowered, which is not preferable. As the physical properties of the nonaqueous electrolyte battery separator, the Gurley value (JIS P8117) is 10 to 1000 sec / 100 cc, preferably 100 to 400 sec / 100 cc. When the Gurley value is less than 10 sec / 100 cc, the Gurley value of the microporous membrane is too low, and the deterioration of the shutdown function is extremely impractical. When the Gurley value exceeds 1000 sec / 100 cc, the ion permeability becomes insufficient, resulting in a problem that the membrane resistance of the separator is increased and the output of the battery is lowered. The membrane resistance is 0.5 to 10 ohm · cm 2 , preferably 1 to 5 ohm · cm 2 . The puncture strength is in the range of 10 to 1000 g, preferably 200 to 600 g.

本発明においては、セパレータが完成した状態で、耐熱性多孔質層中の耐熱性高分子における、アルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上の含有量が、0.1〜1000ppmの範囲であれば、サイクル特性に優れたセパレータ、ひいては電池が得られる。   In the present invention, one or two selected from the group consisting of alkali metals, alkaline earth metals, transition metals, halogens and silicon in the heat resistant polymer in the heat resistant porous layer in a state where the separator is completed. When the content is in the range of 0.1 to 1000 ppm, a separator excellent in cycle characteristics, and thus a battery can be obtained.

従って、セパレータの製造方法は上述したものに限らない。すなわち、例えば、工程(i)において、アルカリ金属等が1000ppmより多く含まれている耐熱性高分子を用い、その後の工程(iii)の凝固工程や、工程(iv)の水洗工程で当該アルカリ金属等を除去して、最終的に耐熱性多孔質層中の耐熱性高分子における不純物含有量が0.1〜1000ppmの範囲となるような製法でもよい。   Therefore, the separator manufacturing method is not limited to the above-described one. That is, for example, in step (i), a heat-resistant polymer containing an alkali metal or the like in an amount of more than 1000 ppm is used, and the alkali metal is used in the subsequent solidification step (iii) and the water washing step (iv). Or the like, and the impurity content in the heat-resistant polymer in the heat-resistant porous layer may finally be in the range of 0.1 to 1000 ppm.

[非水電解質電池]
本発明の製造方法で得られた非水電解質電池セパレータが、前記のような熱可塑性樹脂を主として形成された微多孔膜等の基材と、その片面又は両面に積層された前記のような耐熱性高分子を主として形成された耐熱性多孔質層とからなるものである限り、非水電解質電池セパレータは、公知のいかなる構成の非水電解質電池にも適用することができ、サイクル特性と安全性に優れた電池が得られる。適用される非水電解質電池は一次電池であっても二次電池であっても良く、その種類や構成は、何ら限定されるものではないが、本発明の製造方法で得られた非水電解質電池セパレータは、リチウムのドープ・脱ドープにより起電力を得る非水電解質二次電池に好適に応用することができる。中でも、リチウムイオン二次電池への適用が好ましい。
[Nonaqueous electrolyte battery]
The nonaqueous electrolyte battery separator obtained by the production method of the present invention comprises a base material such as a microporous film mainly formed of the thermoplastic resin as described above, and a heat resistance as described above laminated on one or both sides thereof. The non-aqueous electrolyte battery separator can be applied to any known non-aqueous electrolyte battery as long as it is composed of a heat-resistant porous layer mainly composed of a conductive polymer, and has cycle characteristics and safety. A battery with excellent resistance can be obtained. The applied nonaqueous electrolyte battery may be a primary battery or a secondary battery, and the type and configuration thereof are not limited in any way, but the nonaqueous electrolyte obtained by the production method of the present invention is not limited. The battery separator can be suitably applied to a non-aqueous electrolyte secondary battery that obtains an electromotive force by doping or dedoping lithium. Among these, application to a lithium ion secondary battery is preferable.

一般に非水電解質二次電池とは、負極と正極がセパレータを介して対向している電池要素に電解液が含浸され、これが外装に封入された構造となっているものをいう。負極は、負極活物質、導電助剤、バインダーからなる負極合剤が集電体(銅箔、ステンレス箔、ニッケル箔等)上に成形された構造となっている。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコン、アルミニウム、スズかが用いられる。正極は、正極活物質、導電助剤、バインダーからなる正極合剤が集電体上に成形された構造となっている。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePOが用いられる。電解液は、リチウム塩、例えば、LiPF、LiBF、LiClOを非水系溶媒に溶解した構成である。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられる。外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明の製造方法で得られたセパレータは、いずれの形状においても好適に適用することが可能である。 In general, a nonaqueous electrolyte secondary battery refers to a battery element in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution and sealed in an exterior. The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive, and a binder is formed on a current collector (copper foil, stainless steel foil, nickel foil, etc.). As the negative electrode active material, a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, or tin is used. The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive, and a binder is formed on a current collector. Examples of the positive electrode active material include lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O. 4 and LiFePO 4 are used. The electrolytic solution has a configuration in which a lithium salt, for example, LiPF 6 , LiBF 4 , or LiClO 4 is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, and vinylene carbonate. Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator obtained by the manufacturing method of the present invention can be suitably applied to any shape.

以下、実施例により本発明を詳述する。なお、本発明における各種の測定方法は、以下の通りである。   Hereinafter, the present invention will be described in detail by way of examples. Various measurement methods in the present invention are as follows.

[不純物含有量の測定方法]
サンプルとなるポリマーを硫酸アンモニウム、硫酸、硝酸、過塩素酸と共に混合して、約300℃で9時間湿式分解後、蒸留水で希釈し、理学電機工業株式会社製ICP発光分析装置(JY170 ULTRACE)を用いて、定性及び定量を行なった。この方法により、アルカリ金属、アルカリ土類金属、遷移金属及び珪素の含有量を測定できる。
また、サンプルとなるポリマーを自動試料燃焼装置AQF−100(ダイアインスツルメンツ社製)によって燃焼させ、発生したガスを過酸化水素水30ppmに吸収させてイオンクロマトグラフ(ICS−1500、ダイオネクス社製)、カラム(IonPacAG12A/AS12A)によって、ハロゲンの定性および定量を実施した。
[Measurement method of impurity content]
A sample polymer is mixed with ammonium sulfate, sulfuric acid, nitric acid and perchloric acid, wet-decomposed at about 300 ° C for 9 hours, diluted with distilled water, and an ICP emission analyzer (JY170 ULTRACE) manufactured by Rigaku Corporation. Used for qualitative and quantitative determination. By this method, the contents of alkali metal, alkaline earth metal, transition metal and silicon can be measured.
In addition, the sample polymer is combusted by an automatic sample combustion apparatus AQF-100 (manufactured by Dia Instruments Co., Ltd.), and the generated gas is absorbed in 30 ppm of hydrogen peroxide water to be ion chromatograph (ICS-1500, manufactured by Dionex Co., Ltd.) Qualitative and quantitative determination of halogens was performed with a column (IonPacAG12A / AS12A).

[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用い、接触端子に1.2kg/cmの荷重が印加されるような条件で測定した。
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter, and measurement was performed under a condition that a load of 1.2 kg / cm 2 was applied to the contact terminal.

[無機フィラーの平均粒子径]
レーザー回折式粒度分布測定装置(シスメックス社製、マスターサイザー2000)を用いて測定を行った。分散媒としては水を用い、分散剤として非イオン性界面活性剤Triton・X−100を微量用いた。体積粒度分布における中心粒子径(D50)を平均粒子径とした。
[Average particle size of inorganic filler]
Measurement was performed using a laser diffraction particle size distribution analyzer (manufactured by Sysmex Corporation, Mastersizer 2000). Water was used as a dispersion medium, and a small amount of a nonionic surfactant Triton · X-100 was used as a dispersant. The central particle size (D50) in the volume particle size distribution was taken as the average particle size.

[実施例1]
1)ポリメタフェニレンイソフタルアミドの製造
温度計、撹拌装置及び原料投入口を備えた反応容器に、水分率が100ppm以下のNMP753gを入れ、このNMP中にメタフェニレンジアミン85.5gを入れ、0℃に冷却した。この冷却したジアミン溶液にイソフタル酸クロライド160.5gを撹拌しながら徐々に添加し反応させた。この反応で溶液の温度は70℃に上昇した。粘度変化が止まった後、水酸化カルシウム粉末を58.4g添加し、さらに40分間撹拌して反応を終了させて重合溶液を取り出し、水中で再沈殿させポリメタフェニレンイソフタルアミドを184.0g得た。ポリメタフェニレンイソフタルアミド中のカルシウムの含有量は120ppm、塩素の含有量は198ppmであった。
[Example 1]
1) Production of polymetaphenylene isophthalamide In a reaction vessel equipped with a thermometer, a stirrer, and a raw material inlet, 753 g of NMP having a moisture content of 100 ppm or less was placed, and 85.5 g of metaphenylenediamine was placed in this NMP, and the temperature was 0 ° C. Cooled to. To this cooled diamine solution, 160.5 g of isophthalic acid chloride was gradually added with stirring to react. This reaction increased the temperature of the solution to 70 ° C. After the change in viscosity stopped, 58.4 g of calcium hydroxide powder was added and stirred for another 40 minutes to complete the reaction, and the polymerization solution was taken out and reprecipitated in water to obtain 184.0 g of polymetaphenylene isophthalamide. . The polymetaphenylene isophthalamide had a calcium content of 120 ppm and a chlorine content of 198 ppm.

2)ポリエチレン多孔膜の製造
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用いた。GUR2126とGURX143を、1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)であった。
2) Manufacture of polyethylene porous film As polyethylene powder, GUR2126 (weight average molecular weight 4150,000, melting | fusing point 141 degreeC) and GURX143 (weight average molecular weight 560,000, melting | fusing point 135 degreeC) made from Ticona were used. GUR2126 and GURX143 are made to be 1: 9 (weight ratio), and liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration becomes 30% by weight. A polyethylene solution was prepared by dissolving in a mixed solvent. The composition of this polyethylene solution was polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次行う2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理しポリエチレン微多孔膜を得た。膜厚は12μm、空孔率37%、ガーレ値351sec/100cc、膜抵抗2.6ohm・cm、熱収縮率24.9%(MD)、8.5%(TD)、突刺し強度475gであった。 This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by biaxial stretching that was performed in the order of longitudinal stretching and lateral stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film. The film thickness is 12 μm, the porosity is 37%, the Gurley value is 351 sec / 100 cc, the film resistance is 2.6 ohm · cm 2 , the heat shrinkage is 24.9% (MD), 8.5% (TD), and the puncture strength is 475 g. there were.

3)非水電解質電池セパレータの製造
前記で得られたポリメタフェニレンイソフタルアミドとポリエチレン多孔膜を用い、そして、これに無機フィラーを併用して、本発明の非水電解質電池セパレータを製造した。
具体的には、ポリメタフェニレンイソフタルアミドと平均粒子径0.8μmの水酸化アルミニウム(昭和電工社製;H−43M)からなる無機フィラーとが、重量比で25:75となるように調整し、これらをポリメタフェニレンイソフタルアミド濃度が5.5重量%となるように、ジメチルアセトアミド(DMAc)とトリプロピレングリコール(TPG)が重量比50:50となっている混合溶媒に混合し、塗工用スラリーを得た。
3) Production of Nonaqueous Electrolyte Battery Separator The polymetaphenylene isophthalamide obtained above and a polyethylene porous membrane were used, and an inorganic filler was used in combination with this to produce the nonaqueous electrolyte battery separator of the present invention.
Specifically, the inorganic filler made of polymetaphenylene isophthalamide and aluminum hydroxide having an average particle size of 0.8 μm (made by Showa Denko KK; H-43M) is adjusted to a weight ratio of 25:75. These were mixed in a mixed solvent of dimethylacetamide (DMAc) and tripropylene glycol (TPG) in a weight ratio of 50:50 so that the polymetaphenylene isophthalamide concentration was 5.5% by weight. A slurry was obtained.

一対のマイヤーバー(番手#6)を、20μmのクリアランスで対峙させた。マイヤーバーに、上記塗工用スラリーを適量のせ、一対のマイヤーバー間にポリエチレン微多孔膜を通して、ポリエチレン微多孔膜の両面に塗工用スラリーを塗工した。そして、塗工されたものを、重量比で水:DMAc:TPG=50:25:25で40℃となっている凝固液中に浸漬した。次いで水洗・乾燥を行い、ポリエチレン微多孔膜の両面(表裏面)にポリメタフェニレンイソフタルアミドからなる耐熱性多孔質層を形成し、本発明の非水電解質電池セパレータを得た。   A pair of Meyer bars (count # 6) was opposed to each other with a clearance of 20 μm. An appropriate amount of the above slurry for coating was placed on a Mayer bar, a polyethylene microporous membrane was passed between a pair of Mayer bars, and the coating slurry was coated on both sides of the polyethylene microporous membrane. And what was coated was immersed in the coagulating liquid which is 40 degreeC by water: DMAc: TPG = 50: 25: 25 by weight ratio. Next, washing with water and drying were performed to form a heat-resistant porous layer made of polymetaphenylene isophthalamide on both surfaces (front and back surfaces) of the polyethylene microporous membrane, thereby obtaining the nonaqueous electrolyte battery separator of the present invention.

[実施例2]
温度計、撹拌装置及び原料投入口を備えた反応容器に、水分率が100ppm以下のNMP753gを入れ、このNMP中にメタフェニレンジアミン85.5gを入れ、0℃に冷却した。この冷却したジアミン溶液にイソフタル酸クロライド161.5gを撹拌しながら徐々に添加し反応させた。この反応で溶液の温度は70℃に上昇した。粘度変化が止まった後、水酸化リチウム粉末を37.75g添加し、さらに40分間撹拌して反応を終了させて重合溶液を取り出し、水中で再沈殿させポリメタフェニレンイソフタルアミドを184.0g得た。このポリメタフェニレンイソフタルアミド中のリチウムの含有量は88ppm、塩素の含有量は177ppmであった。
前記で得られたポリメタフェニレンイソフタルアミドを用い、その他は実施例1と同様にして、本発明の非水電解質電池セパレータを得た。
[Example 2]
In a reaction vessel equipped with a thermometer, a stirrer, and a raw material inlet, 753 g of NMP having a moisture content of 100 ppm or less was put, 85.5 g of metaphenylenediamine was put into this NMP, and cooled to 0 ° C. To the cooled diamine solution, 161.5 g of isophthalic acid chloride was gradually added with stirring to react. This reaction increased the temperature of the solution to 70 ° C. After the change in viscosity stopped, 37.75 g of lithium hydroxide powder was added, and further stirred for 40 minutes to complete the reaction, and the polymerization solution was taken out and reprecipitated in water to obtain 184.0 g of polymetaphenylene isophthalamide. . In this polymetaphenylene isophthalamide, the lithium content was 88 ppm and the chlorine content was 177 ppm.
The non-aqueous electrolyte battery separator of the present invention was obtained in the same manner as in Example 1 except that the polymetaphenylene isophthalamide obtained above was used.

[実施例3]
イソフタル酸クロライド160.5gをテトラヒドロフラン1120mlに溶解し、撹拌しながら、メタフェニレンジアミン85.2gをテトラヒドロフラン1120mlに溶解した溶液を、細流として徐々に加えていくと白濁した乳白色の溶液が得られた。撹拌を約5分間継続した後、更に撹拌しながら炭酸ソーダ167.6g、食塩317gを3400mlの水に溶かした水溶液を速やかに加え、5分間撹拌した。反応系は数秒後に粘度が増大後、再び低下し、白色の懸濁液が得られた。これを静置し、分離した透明な水溶液層を取り除き、ろ過によってポリメタフェニレンイソフタルアミドの白色重合体185.3gが得られた。このポリメタフェニレンイソフタルアミド中のナトリウムの含有量は100ppm、鉄の含有量は2ppm、珪素の含有量は3ppm、マグネシウムの含有量は3ppm、塩素の含有量は80ppmであった。
前記で得られたポリメタフェニレンイソフタルアミドを用い、その他は実施例1と同様にして、本発明の非水電解質電池セパレータを得た。
[Example 3]
When 160.5 g of isophthalic acid chloride was dissolved in 1120 ml of tetrahydrofuran and a solution prepared by dissolving 85.2 g of metaphenylenediamine in 1120 ml of tetrahydrofuran was gradually added as a trickle while stirring, a cloudy milky white solution was obtained. Stirring was continued for about 5 minutes, and then an aqueous solution in which 167.6 g of sodium carbonate and 317 g of sodium chloride were dissolved in 3400 ml of water was rapidly added while stirring for 5 minutes. The reaction system increased in viscosity after a few seconds and then decreased again to obtain a white suspension. This was left standing, the separated transparent aqueous solution layer was removed, and 185.3 g of a white polymer of polymetaphenylene isophthalamide was obtained by filtration. In this polymetaphenylene isophthalamide, the content of sodium was 100 ppm, the content of iron was 2 ppm, the content of silicon was 3 ppm, the content of magnesium was 3 ppm, and the content of chlorine was 80 ppm.
The non-aqueous electrolyte battery separator of the present invention was obtained in the same manner as in Example 1 except that the polymetaphenylene isophthalamide obtained above was used.

[実施例4]
1)正極
コバルト酸リチウム(LiCoO、日本化学工業社製)粉末89.5重量部と、アセチレンブラック4.5重量部及びPVdFの乾燥重量が6重量部となるように、6重量%のPVdFのNMP溶液を用い、正極剤ペーストを作製した。得られたペーストを、厚さ20μmのアルミ箔上に塗布乾燥後プレスして、厚さ97μmの正極を得た。
[Example 4]
1) Positive electrode 6 wt% PVdF so that the lithium cobalt oxide (LiCoO 2 , Nippon Chemical Industry Co., Ltd.) powder 89.5 parts by weight, acetylene black 4.5 parts by weight and PVdF dry weight 6 parts by weight A positive electrode paste was prepared using the NMP solution. The obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed to obtain a positive electrode having a thickness of 97 μm.

2)負極
負極活物質としてメソフェーズカーボンマイクロビーズ(MCMB、大阪瓦斯化学社製)粉末87重量部と、アセチレンブラック3重量部及びPVdFの乾燥重量が10重量部となるように、6重量%のPVdFのNMP溶液を用い、負極剤ペーストを作製した。得られたペーストを、厚さ18μmの銅箔上に塗布乾燥後プレスして、厚さ90μmの負極を作製した。
2) Negative electrode 6 wt% PVdF so that the dry weight of mesophase carbon microbeads (MCMB, manufactured by Osaka Gas Chemical Co., Inc.) powder 87 parts by weight, acetylene black 3 parts by weight and PVdF 10 parts by weight as the negative electrode active material. An NMP solution was used to prepare a negative electrode agent paste. The obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and pressed to prepare a negative electrode having a thickness of 90 μm.

3)ボタン電池の作製
実施例1〜3で作製した複合多孔膜をセパレータとし、上記の正極及び負極を用いて容量が4.5mAh程度のボタン電池(CR2032)を作製した。電解液には1M LiPF6 EC/DEC/MEC(1/2/1重量比)を用いた。作製したボタン電池の電池特性は以下のとおりであった。
実施例1のセパレータを用いたものは、作製した電池を充電電圧4.2V、放電電圧2.75Vで充放電を繰り返したところ、100サイクル目の放電容量は、4.0mAHとサイクル劣化が小さく正常に動作した。実施例2のセパレータを用いたものは、同じ条件で100サイクル目の放電容量は、4.1mAHとサイクル劣化が小さく正常に動作した。また、実施例3のセパレータを用いたものは、同じ条件で100サイクル目の放電容量は、4.2mAHとサイクル劣化が小さく正常に動作した。
3) Production of Button Battery A button battery (CR2032) having a capacity of about 4.5 mAh was produced using the composite porous membrane produced in Examples 1 to 3 as a separator and the above positive electrode and negative electrode. As the electrolytic solution, 1M LiPF 6 EC / DEC / MEC (1/2/1 weight ratio) was used. The battery characteristics of the manufactured button battery were as follows.
The battery using the separator of Example 1 was repeatedly charged and discharged at a charge voltage of 4.2 V and a discharge voltage of 2.75 V. As a result, the discharge capacity at the 100th cycle was 4.0 mAH and cycle deterioration was small. It worked normally. The separator using Example 2 operated normally under the same conditions with a discharge capacity at the 100th cycle of 4.1 mAH with little cycle deterioration. Further, the separator using Example 3 operated normally under the same conditions with a discharge capacity at the 100th cycle of 4.2 mAH with little cycle deterioration.

[比較例1]
温度計、撹拌装置及び原料投入口を備えた反応容器に、水分率が100ppm以下のNMP753gに塩化カルシウム粉末を56.2g、メタフェニレンジアミン85.5gを溶解し、0℃に冷却した。この冷却したジアミン溶液にイソフタル酸クロライド160.5gを撹拌しながら徐々に添加し反応させた。この反応で溶液の温度は70℃に上昇した。粘度変化が止まった後、水酸化カルシウム粉末を58.4gを添加しさらに40分間撹拌して反応を終了させて重合溶液を取り出し、水中で再沈殿させポリメタフェニレンイソフタルアミドを184.0g得た。ポリメタフェニレンイソフタルアミド中のカルシウムの含有量は2000ppm、塩素の含有量は3200ppmであった。
[Comparative Example 1]
In a reaction vessel equipped with a thermometer, a stirrer, and a raw material inlet, 56.2 g of calcium chloride powder and 85.5 g of metaphenylenediamine were dissolved in 753 g of NMP having a moisture content of 100 ppm or less, and cooled to 0 ° C. To this cooled diamine solution, 160.5 g of isophthalic acid chloride was gradually added with stirring to react. This reaction increased the temperature of the solution to 70 ° C. After the change in viscosity stopped, 58.4 g of calcium hydroxide powder was added and stirred for another 40 minutes to complete the reaction, and the polymerization solution was taken out and reprecipitated in water to obtain 184.0 g of polymetaphenylene isophthalamide. . The polymetaphenylene isophthalamide had a calcium content of 2000 ppm and a chlorine content of 3200 ppm.

前記で得られたポリメタフェニレンイソフタルアミドを用い、その他は実施例1と同様にして、非水電解質電池セパレータを得た。そして、実施例4の場合と同様にしてボタン電池を作製し、その電池特性を測定した。この電池を充電電圧4.2V、放電電圧2.75Vで充放電を繰り返したところ、100サイクル目の放電容量は、1.0mAHと放電容量の著しい低下が確認された。   A nonaqueous electrolyte battery separator was obtained in the same manner as in Example 1 except that the polymetaphenylene isophthalamide obtained above was used. And the button battery was produced like the case of Example 4, and the battery characteristic was measured. When this battery was repeatedly charged and discharged at a charge voltage of 4.2 V and a discharge voltage of 2.75 V, the discharge capacity at the 100th cycle was 1.0 mAH, confirming a significant decrease in the discharge capacity.

Claims (14)

主として熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材と、主として耐熱性高分子にて形成され前記基材の片面又は両面に積層された耐熱性多孔質層とを備えた非水電解質電池セパレータの製造方法であって、
(i)アルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上が、0.1以上1000ppm以下含まれている耐熱性高分子を、水溶性有機溶剤に溶解して塗工液を作製する工程と、
(ii)得られた塗工液を、基材の片面又は両面に塗工する工程と、
(iii)塗工された基材を水又は水と前記水溶性有機溶剤との混合液からなる凝固液中に浸漬して、耐熱性高分子を凝固させる工程と、
(iv)この凝固工程後の前記基材を水洗し乾燥する工程と、を実施する
ことを特徴とする非水電解質電池セパレータの製造方法。
A base material mainly formed of a thermoplastic resin and having pores or voids therein and having a shutdown function, and a heat-resistant porous layer mainly formed of a heat-resistant polymer and laminated on one or both surfaces of the base material A method for producing a non-aqueous electrolyte battery separator comprising:
(I) a water-soluble organic polymer containing one or more selected from the group consisting of alkali metals, alkaline earth metals, transition metals, halogens and silicon, in an amount of 0.1 to 1000 ppm. A step of preparing a coating solution by dissolving in a solvent;
(Ii) a step of coating the obtained coating liquid on one or both sides of the substrate;
(Iii) a step of immersing the coated substrate in a coagulation liquid comprising water or a mixture of water and the water-soluble organic solvent to coagulate the heat-resistant polymer;
(Iv) A step of washing the substrate after the coagulation step and drying the substrate. A method for producing a non-aqueous electrolyte battery separator.
前記アルカリ金属が、Na又はLiである
ことを特徴とする請求項1記載の非水電解質電池セパレータの製造方法。
The method for producing a non-aqueous electrolyte battery separator according to claim 1, wherein the alkali metal is Na or Li.
前記アルカリ土類金属が、Mg又はCaである
ことを特徴とする請求項1記載の非水電解質電池セパレータの製造方法。
The method for producing a nonaqueous electrolyte battery separator according to claim 1, wherein the alkaline earth metal is Mg or Ca.
前記遷移金属が、Feである
ことを特徴とする請求項1記載の非水電解質電池セパレータの製造方法。
The method for producing a non-aqueous electrolyte battery separator according to claim 1, wherein the transition metal is Fe.
前記ハロゲンが、塩素である
ことを特徴とする請求項1記載の非水電解質電池セパレータの製造方法。
The method for producing a non-aqueous electrolyte battery separator according to claim 1, wherein the halogen is chlorine.
前記耐熱性多孔質層が、重量分率で50重量%以上95重量%以下の無機フィラーを含む
ことを特徴とする請求項1〜5のいずれか1項記載の非水電解質電池セパレータの製造方法。
The method for producing a nonaqueous electrolyte battery separator according to any one of claims 1 to 5, wherein the heat-resistant porous layer contains an inorganic filler in a weight fraction of 50 wt% or more and 95 wt% or less. .
前記耐熱性高分子が、芳香族ポリアミド、ポリイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上である
ことを特徴とする請求項1〜6のいずれか1項記載の非水電解質電池セパレータの製造方法。
The heat-resistant polymer is one or more selected from the group consisting of aromatic polyamide, polyimide, polyethersulfone, polysulfone, polyetherketone, and polyetherimide. The manufacturing method of the nonaqueous electrolyte battery separator of any one of these.
前記耐熱性高分子が、ポリメタフェニレンイソフタルアミドである
ことを特徴とする請求項7記載の非水電解質電池セパレータの製造方法。
The method for producing a non-aqueous electrolyte battery separator according to claim 7, wherein the heat-resistant polymer is polymetaphenylene isophthalamide.
前記ポリメタフェニレンイソフタルアミドが、溶液重合又は界面重合により製造されたものである
ことを特徴とする請求項8記載の非水電解質電池セパレータの製造方法。
The method for producing a nonaqueous electrolyte battery separator according to claim 8, wherein the polymetaphenylene isophthalamide is produced by solution polymerization or interfacial polymerization.
前記基材が、ポリオレフィンを主体とする熱可塑性樹脂からなる微多孔膜である
ことを特徴とする請求項1〜9のいずれか1項記載の非水電解質電池セパレータの製造方法。
The method for producing a nonaqueous electrolyte battery separator according to any one of claims 1 to 9, wherein the base material is a microporous film made of a thermoplastic resin mainly composed of polyolefin.
前記非水電解質電池セパレータが、リチウムイオン二次電池用セパレータである
ことを特徴とする請求項1〜10のいずれか1項記載の非水電解質電池セパレータの製造方法。
The said nonaqueous electrolyte battery separator is a separator for lithium ion secondary batteries. The manufacturing method of the nonaqueous electrolyte battery separator of any one of Claims 1-10 characterized by the above-mentioned.
前記請求項1〜11のいずれかに記載の製造方法で得られた非水電解質電池セパレータ。   The nonaqueous electrolyte battery separator obtained by the manufacturing method in any one of the said Claims 1-11. 主として熱可塑性樹脂にて形成され内部に空孔ないし空隙を有しシャットダウン機能を有する基材と、主として耐熱性高分子にて形成され前記基材の片面又は両面に積層された耐熱性多孔質層とを備えた非水電解質電池セパレータであって、
前記耐熱性多孔質層中の耐熱性高分子には、アルカリ金属、アルカリ土類金属、遷移金属、ハロゲン及び珪素からなる群から選ばれる1種又は2種以上が、0.1〜1000ppm含まれている
ことを特徴とする非水電解質電池セパレータ。
A base material mainly formed of a thermoplastic resin and having pores or voids therein and having a shutdown function, and a heat-resistant porous layer mainly formed of a heat-resistant polymer and laminated on one or both surfaces of the base material A non-aqueous electrolyte battery separator comprising:
The heat-resistant polymer in the heat-resistant porous layer contains 0.1 to 1000 ppm of one or more selected from the group consisting of alkali metals, alkaline earth metals, transition metals, halogens, and silicon. A non-aqueous electrolyte battery separator.
前記請求項12又は13記載の非水電解質電池セパレータを用いた、リチウムのドープ・脱ドープにより起電力を得る非水電解質二次電池。   A non-aqueous electrolyte secondary battery using the non-aqueous electrolyte battery separator according to claim 12 or 13 to obtain an electromotive force by doping or dedoping lithium.
JP2008047750A 2008-02-28 2008-02-28 Manufacturing method of nonaqueous electrolyte battery separator Pending JP2009205959A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008047750A JP2009205959A (en) 2008-02-28 2008-02-28 Manufacturing method of nonaqueous electrolyte battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008047750A JP2009205959A (en) 2008-02-28 2008-02-28 Manufacturing method of nonaqueous electrolyte battery separator

Publications (1)

Publication Number Publication Date
JP2009205959A true JP2009205959A (en) 2009-09-10

Family

ID=41148023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008047750A Pending JP2009205959A (en) 2008-02-28 2008-02-28 Manufacturing method of nonaqueous electrolyte battery separator

Country Status (1)

Country Link
JP (1) JP2009205959A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010037A (en) * 2008-06-30 2010-01-14 Sumitomo Chemical Co Ltd Sodium secondary battery
JP2012252969A (en) * 2011-06-07 2012-12-20 Toyota Motor Corp Lithium ion secondary battery
KR20160075741A (en) 2014-08-29 2016-06-29 스미또모 가가꾸 가부시키가이샤 Wound body of porous film, and manufacturing method thereof
KR20160086977A (en) 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 Laminated body, nonaqueous electrolyte secondary battery separator, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
KR20170028318A (en) 2014-07-02 2017-03-13 스미또모 가가꾸 가부시끼가이샤 Aromatic polymer manufacturing method, layered film, and separator
KR20170029428A (en) 2014-07-02 2017-03-15 스미또모 가가꾸 가부시끼가이샤 Polymer composition, laminated film, and separator
WO2019015671A1 (en) * 2017-07-21 2019-01-24 Shanghai Energy New Materials Technology Co., Ltd. Processes and apparatus for preparation of separators of electrochemical devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142065A (en) * 2001-08-15 2003-05-16 Mitsubishi Paper Mills Ltd Separator for electrochemical element and its manufacturing method
JP2005071979A (en) * 2003-08-06 2005-03-17 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2005307360A (en) * 2004-04-16 2005-11-04 Du Pont Teijin Advanced Paper Kk Aramid tissue material and electrical and electronic part using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003142065A (en) * 2001-08-15 2003-05-16 Mitsubishi Paper Mills Ltd Separator for electrochemical element and its manufacturing method
JP2005071979A (en) * 2003-08-06 2005-03-17 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
JP2005209570A (en) * 2004-01-26 2005-08-04 Teijin Ltd Separator for nonaqueous secondary battery, its manufacturing method and nonaqueous secondary battery
JP2005307360A (en) * 2004-04-16 2005-11-04 Du Pont Teijin Advanced Paper Kk Aramid tissue material and electrical and electronic part using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010010037A (en) * 2008-06-30 2010-01-14 Sumitomo Chemical Co Ltd Sodium secondary battery
US9570725B2 (en) 2010-10-29 2017-02-14 Teijin Limited Separator for nonaqueous electrolyte battery, and non-aqueous electrolyte secondary battery
JP2012252969A (en) * 2011-06-07 2012-12-20 Toyota Motor Corp Lithium ion secondary battery
KR20170029428A (en) 2014-07-02 2017-03-15 스미또모 가가꾸 가부시끼가이샤 Polymer composition, laminated film, and separator
KR20170028318A (en) 2014-07-02 2017-03-13 스미또모 가가꾸 가부시끼가이샤 Aromatic polymer manufacturing method, layered film, and separator
KR20160086976A (en) 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 Laminated body, nonaqueous electrolyte secondary battery separator comprising laminated body and nonaqueous electrolyte secondary battery comprising nonaqueous electrolyte secondary battery separator
KR20160096536A (en) 2014-08-29 2016-08-16 스미또모 가가꾸 가부시키가이샤 Laminated body, separator and nonaqueous secondary battery
KR20160088434A (en) 2014-08-29 2016-07-25 스미또모 가가꾸 가부시키가이샤 Nonaqueous secondary battery separator, laminated body, method for producing laminated body, and nonaqueous secondary battery
KR20160086977A (en) 2014-08-29 2016-07-20 스미또모 가가꾸 가부시키가이샤 Laminated body, nonaqueous electrolyte secondary battery separator, member for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
KR20160075741A (en) 2014-08-29 2016-06-29 스미또모 가가꾸 가부시키가이샤 Wound body of porous film, and manufacturing method thereof
KR20170038761A (en) 2014-08-29 2017-04-07 스미또모 가가꾸 가부시키가이샤 Laminated body, separator and nonaqueous secondary battery
US9711775B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9711776B2 (en) 2014-08-29 2017-07-18 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US9865857B2 (en) 2014-08-29 2018-01-09 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US10014506B2 (en) 2014-08-29 2018-07-03 Sumitomo Chemical Company, Limited Laminated body, separator, and nonaqueous secondary battery
US10059085B2 (en) 2014-08-29 2018-08-28 Sumitomo Chemical Company, Limited Wound body of porous film, and manufacturing method thereof
WO2019015671A1 (en) * 2017-07-21 2019-01-24 Shanghai Energy New Materials Technology Co., Ltd. Processes and apparatus for preparation of separators of electrochemical devices

Similar Documents

Publication Publication Date Title
JP5778378B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP4364940B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
KR101094603B1 (en) Separator for use in non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5214999B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
WO2014083988A1 (en) Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP2009205959A (en) Manufacturing method of nonaqueous electrolyte battery separator
WO2006123811A1 (en) Separator for lithium ion secondary battery and lithium ion secondary battery
JP2010092718A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010056036A (en) Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator
JP2011108516A (en) Electrode sheet for nonaqueous secondary battery, and nonaqueous secondary battery employing the same
JP2010212046A (en) Nonaqueous secondary battery and adsorbent for nonaqueous secondary battery
JP2010056037A (en) Electrode sheet for non-aqueous electrolyte battery,method of manufacturing the same, and non-aqueous electrolyte secondary battery using the sheet
JP5215000B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2011198553A (en) Polyolefin fine porous membrane, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5567262B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP2011028947A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011216318A (en) Separator for nonaqueous secondary battery
JP5086132B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2011210435A (en) Separator for nonaqueous secondary battery
JP2011192529A (en) Polyolefin microporous film, separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5400671B2 (en) Polyolefin microporous membrane, non-aqueous secondary battery separator and non-aqueous secondary battery
JP2011124177A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010067359A (en) Separator of nonaqueous electrolyte battery and nonaqueous electrolyte secondary battery using the same
JP2012128979A (en) Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101221

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023