JP2010056036A - Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator - Google Patents

Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator Download PDF

Info

Publication number
JP2010056036A
JP2010056036A JP2008222522A JP2008222522A JP2010056036A JP 2010056036 A JP2010056036 A JP 2010056036A JP 2008222522 A JP2008222522 A JP 2008222522A JP 2008222522 A JP2008222522 A JP 2008222522A JP 2010056036 A JP2010056036 A JP 2010056036A
Authority
JP
Japan
Prior art keywords
heat
separator
electrolyte battery
battery separator
resistant porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008222522A
Other languages
Japanese (ja)
Inventor
Takashi Yoshitomi
孝 吉冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2008222522A priority Critical patent/JP2010056036A/en
Publication of JP2010056036A publication Critical patent/JP2010056036A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte battery separator which is superior in thermal resistance and fire retardancy, and can prevent wear of a manufacturing equipment or the like. <P>SOLUTION: The non-aqueous electrolyte battery separator is made of a thermal resistant porous film that is mainly formed of a thermal resistant polymer, and the thermal resistant porous film contains an inorganic filler consisting of a metal hydroxide which causes dehydration at temperature of 200-400°C. A non-aqueous electrolyte secondary battery uses that separator. It is preferable that the metal hydroxide is aluminum hydroxide or magnesium hydroxide or an admixture of these. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、耐熱性高分子の多孔質膜からなる非水電解質電池セパレータ及びその製造方法、並びにそれを用いた非水電解質二次電池に関する。   The present invention relates to a nonaqueous electrolyte battery separator made of a heat resistant polymer porous membrane, a method for producing the same, and a nonaqueous electrolyte secondary battery using the same.

従来、電池用セパレータとして用いられる多孔質膜としては、ポリエチレンやポリプロピレン等のポリオレフィン系のものが知られているが、これらは耐熱性に乏しく、例えば、180℃を超える用途において、膜及び孔の寸法変化が大きく、多孔質膜としての機能が低下若しくは無くなるという問題があった。そして、それに代わる耐熱性に優れたポリマーとして芳香族ポリアミドが知られており、このポリマーを用いた電池セパレータ用の多孔質膜についても、種々のタイプのものが提案されている。例えば、特許文献1と2には、耐熱性と耐薬品性に優れた芳香族ポリアミドの多孔質フィルムが提案されており、特許文献3には、芳香族ポリアミド、特にポリメタフェニレンイソフタルアミドの多孔質膜の、孔の開孔割合や均一性を改良したものが開示されている。また、特許文献4には、同様のポリマーを用いた、通気性と耐熱性に優れた多孔質膜と電池用セパレータが開示されており、特許文献4には、ホウ酸アルミニウム、チタン酸カリウム、炭化ケイ素、窒化ケイ素等の無機ウイスカーを添加混合することによって、多孔質膜のヤング率を高めることができることも開示されている。また、特許文献5には、芳香族ポリアミドにセラミック粉末を含んだ多孔質膜からなる、耐熱性とイオン透過性に優れた非水電解質電池セパレータが開示されており、特許文献5では、セラミック粉末として、アルミナ、シリカ、二酸化チタン又は酸化ジルコニウム等の金属酸化物、金属窒化物、金属炭化物等が挙げられている。   Conventionally, as porous membranes used as battery separators, polyolefin-based ones such as polyethylene and polypropylene are known, but these are poor in heat resistance, for example, in applications exceeding 180 ° C., There was a problem that the dimensional change was large and the function as a porous film was reduced or eliminated. An aromatic polyamide is known as an alternative polymer having excellent heat resistance, and various types of porous membranes for battery separators using this polymer have been proposed. For example, Patent Documents 1 and 2 propose a porous film of an aromatic polyamide excellent in heat resistance and chemical resistance, and Patent Document 3 discloses a porous film of an aromatic polyamide, particularly polymetaphenylene isophthalamide. A porous membrane having an improved hole opening ratio and uniformity is disclosed. Further, Patent Document 4 discloses a porous membrane and a battery separator using the same polymer and excellent in air permeability and heat resistance. Patent Document 4 discloses aluminum borate, potassium titanate, It is also disclosed that the Young's modulus of the porous film can be increased by adding and mixing inorganic whiskers such as silicon carbide and silicon nitride. Patent Document 5 discloses a non-aqueous electrolyte battery separator that is made of a porous membrane containing ceramic powder in an aromatic polyamide and has excellent heat resistance and ion permeability. In Patent Document 5, ceramic powder is disclosed. Examples thereof include metal oxides such as alumina, silica, titanium dioxide, and zirconium oxide, metal nitrides, metal carbides, and the like.

特公昭59−14494号公報Japanese Patent Publication No.59-14494 特公昭59−36939号公報Japanese Patent Publication No.59-36939 国際公開第04/24808号パンフレットInternational Publication No. 04/24808 Pamphlet 国際公開第01/19906号パンフレットInternational Publication No. 01/19906 Pamphlet 特許第3175730号公報Japanese Patent No. 3175730

前記のとおり耐熱性に優れた電池用セパレータとして種々の提案がなされているものの、一部の問題が未解決のままとなっている。すなわち、例えば、非水系二次電池の安全性を確保するためには、セパレータの耐熱性以外にも、非水系二次電池の発火という観点から、更に難燃性も強く要求されている。しかし、例えば、前記特許文献4や5に開示されているホウ酸アルミニウムやアルミナ等の無機ウイスカーやセラミックを、多孔質膜に添加混合しても、セパレータの難燃化という観点においては殆ど効果は見られない。更に、セラミック等の微粒子を添加混合したセパレータは、セラミック等が一般的に硬いため、セパレータや電池の製造装置の磨耗が顕著であるといったハンドリング上の問題がある。装置が磨耗すると、セパレータに金属粉等が付着してしまい、これが電池性能を低下させてしまう原因にもなりかねない。   Although various proposals have been made as battery separators having excellent heat resistance as described above, some problems remain unsolved. That is, for example, in order to ensure the safety of the non-aqueous secondary battery, in addition to the heat resistance of the separator, flame retardancy is also strongly demanded from the viewpoint of ignition of the non-aqueous secondary battery. However, for example, even if inorganic whiskers and ceramics such as aluminum borate and alumina disclosed in Patent Documents 4 and 5 are added to and mixed with the porous film, there is almost no effect in terms of flame retardancy of the separator. can not see. Furthermore, a separator to which fine particles such as ceramic are added and mixed has a problem in handling such that the ceramic and the like are generally hard and wear of the separator and battery manufacturing apparatus is remarkable. When the device is worn, metal powder or the like adheres to the separator, which may cause a decrease in battery performance.

そこで本発明は、耐熱性及び難燃性に優れ、更に製造装置等の磨耗を防ぐことができる非水電解質電池用セパレータを提供することを目的とする。   Then, this invention is excellent in heat resistance and a flame retardance, and also aims at providing the separator for nonaqueous electrolyte batteries which can prevent abrasion of a manufacturing apparatus etc.

上記課題を解決するために、本発明は以下の構成を採用する。
(1)主として耐熱性高分子にて形成された耐熱性多孔質膜からなる非水電解質電池セパレータであって、前記耐熱性多孔質膜に、200℃〜700℃の温度で脱水反応を生じる水酸基を含む金属化合物からなる無機フィラーが含まれていることを特徴とする非水電解質電池セパレータ。
(2)前記金属化合物は、水酸化アルミニウム、ベーマイト、ダイスポア、水酸化マグネシウム又はこれらの二種以上の混合物であることを特徴とする上記(1)記載の非水電解質電池セパレータ。
(3)前記無機フィラーは、以下の(a)及び(b)式を満足することを特徴とする上記(1)又は(2)記載の非水電解質電池セパレータ。
(a)0.01≦d50≦20(μm)
(b)0<α≦2
(但し、d50は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計50重量%の平均粒子直径(μm)を表す。αは、無機フィラーの均一性を示し、α=(d90−d10)/d50で表される。ここで、d90は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計90重量%の平均粒子直径(μm)を表し、d10は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計10重量%の平均粒子直径(μm)を表す。)
(4)前記耐熱性多孔質膜において、前記無機フィラーは重量分率で50重量%以上95重量%以下含まれていることを特徴とする上記(1)〜(3)のいずれかに記載の非水電解質電池セパレータ。
(5)前記耐熱性高分子が、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上の混合物であることを特徴とする上記(1)〜(4)のいずれかに記載の非水電解質電池セパレータ。
(6)前記耐熱性多孔質膜に、熱可塑性樹脂からなる有機フィラーが含まれていることを特徴とする前記(1)〜(5)のいずれかに記載の非水電解質電池セパレータ。
(7)前記耐熱性多孔質膜に、熱可塑性樹脂からなる多孔質膜が組み合わされていることを特徴とする前記(1)〜(5)のいずれかに記載の非水電解質電池セパレータ。
(8)主として耐熱性高分子にて形成された耐熱性多孔質膜からなる非水電解質電池セパレータの製造方法であって、
(i)前記耐熱性高分子と、水溶性有機溶剤と、200℃〜700℃の温度で脱水反応を生じる水酸化物を含む金属化合物からなる無機フィラーとを含むスラリーをベースフィルム上に塗工する工程と、
(ii)塗工されたベースフィルムを、水又は水と前記有機溶剤の混合液からなる凝固液中に浸漬し、前記耐熱性高分子を凝固させ耐熱性多孔質膜を形成させる工程と、
(iii)ベースフィルム上に形成された耐熱性多孔質膜を水洗及び乾燥する工程と、
(iv)乾燥された耐熱性多孔質膜をベースフィルムから剥離する工程と、
を実施することを特徴とする非水電解質電池セパレータの製造方法。
(9)リチウムのドープおよび脱ドープにより起電力を得る非水電解質二次電池であって、前記(1)〜(7)のいずれかに記載の非水電解質電池セパレータを用いたことを特徴とする非水電解質二次電池。
In order to solve the above problems, the present invention employs the following configuration.
(1) A non-aqueous electrolyte battery separator comprising a heat-resistant porous membrane mainly formed of a heat-resistant polymer, wherein a hydroxyl group that causes a dehydration reaction at a temperature of 200 ° C. to 700 ° C. in the heat-resistant porous membrane A nonaqueous electrolyte battery separator comprising an inorganic filler made of a metal compound containing
(2) The non-aqueous electrolyte battery separator according to (1), wherein the metal compound is aluminum hydroxide, boehmite, die spore, magnesium hydroxide, or a mixture of two or more thereof.
(3) The nonaqueous electrolyte battery separator according to (1) or (2), wherein the inorganic filler satisfies the following formulas (a) and (b):
(A) 0.01 ≦ d50 ≦ 20 (μm)
(B) 0 <α ≦ 2
(However, d50 represents the average particle diameter (μm) of 50% by weight cumulatively calculated from the small particle side in the particle size distribution in the laser diffraction method. Α indicates the uniformity of the inorganic filler, and α = (d90 −d10) / d50, where d90 represents an average particle diameter (μm) of 90% by weight cumulatively calculated from the small particle side in the particle size distribution in the laser diffraction formula, and d10 represents the laser diffraction (In the particle size distribution in the equation, the average particle diameter (μm) of 10% by weight of cumulative weight calculated from the small particle side is represented.)
(4) In the heat resistant porous membrane, the inorganic filler is contained in a weight fraction of 50% by weight to 95% by weight, according to any one of (1) to (3), Non-aqueous electrolyte battery separator.
(5) The heat resistant polymer is one or a mixture of two or more selected from the group consisting of aromatic polyamide, polyimide, polyamideimide, polyethersulfone, polysulfone, polyetherketone, polyetherimide. The nonaqueous electrolyte battery separator according to any one of the above (1) to (4).
(6) The nonaqueous electrolyte battery separator according to any one of (1) to (5), wherein the heat resistant porous membrane contains an organic filler made of a thermoplastic resin.
(7) The nonaqueous electrolyte battery separator according to any one of (1) to (5), wherein a porous film made of a thermoplastic resin is combined with the heat resistant porous film.
(8) A method for producing a non-aqueous electrolyte battery separator comprising a heat-resistant porous film mainly formed of a heat-resistant polymer,
(I) A slurry containing the heat-resistant polymer, a water-soluble organic solvent, and an inorganic filler made of a metal compound containing a hydroxide that causes a dehydration reaction at a temperature of 200 ° C. to 700 ° C. is coated on a base film. And a process of
(Ii) immersing the coated base film in a coagulation liquid composed of water or a mixture of water and the organic solvent, coagulating the heat resistant polymer to form a heat resistant porous film;
(Iii) washing and drying the heat-resistant porous membrane formed on the base film;
(Iv) peeling the dried heat-resistant porous membrane from the base film;
The manufacturing method of the nonaqueous electrolyte battery separator characterized by implementing.
(9) A nonaqueous electrolyte secondary battery for obtaining an electromotive force by doping and dedoping of lithium, wherein the nonaqueous electrolyte battery separator according to any one of (1) to (7) is used. Non-aqueous electrolyte secondary battery.

本発明によれば、従来にはない耐熱性、難燃性および磨耗特性のいずれにも優れた非水電解質電池用セパレータが提供され、リチウムイオン二次電池等の非水電解質電池の安全性及び耐久性を向上させるのに有効である。   ADVANTAGE OF THE INVENTION According to this invention, the separator for nonaqueous electrolyte batteries excellent in all the heat resistance, flame retardance, and abrasion characteristics which were not in the past is provided, and safety of nonaqueous electrolyte batteries, such as a lithium ion secondary battery, and It is effective for improving durability.

[非水電解質電池セパレータ]
本発明は、主として耐熱性高分子にて形成された耐熱性多孔質膜からなる非水電解質電池セパレータであって、前記耐熱性多孔質膜に、200℃〜700℃の温度で脱水反応を生じる水酸基を含む金属化合物からなる無機フィラーが含まれているものである。
[Nonaqueous electrolyte battery separator]
The present invention is a non-aqueous electrolyte battery separator comprising a heat-resistant porous membrane mainly formed of a heat-resistant polymer, and causes a dehydration reaction at a temperature of 200 ° C. to 700 ° C. in the heat-resistant porous membrane. An inorganic filler made of a metal compound containing a hydroxyl group is contained.

本発明で用いられる耐熱性高分子は、融点200℃以上のポリマーあるいは融点を有しないが分解温度が200℃以上のポリマーが適当であり、好ましくは、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上のものである。特に、耐久性の観点から全芳香族ポリアミドが好適であり、多孔質膜を形成し易く耐酸化還元性に優れるという観点から、メタ型全芳香族ポリアミドであるポリメタフェニレンイソフタルアミドが更に好適である。かかる耐熱性高分子にて形成される耐熱性多孔質膜とは、内部に多数の微細孔を有し、これら微細孔が連結された構造となっており、一方の面から他方の面へと気体あるいは液体が通過可能となった膜を意味する。該耐熱性多孔質膜の空孔率は、60〜90%の範囲が好適である。該耐熱性多孔質層の空孔率が90%を超えると、耐熱性が不十分となる傾向にあり好ましくない。また、60%より低いと、サイクル特性や保存特性、放電性が低下する傾向となり好ましくない。なお、「主として耐熱性高分子にて形成された」とは、約90重量%以上が耐熱性高分子からなるものであれば良く、約10重量%以下の、電池特性に影響を与えない他の成分を含んでいても良いことを意味する。   The heat-resistant polymer used in the present invention is suitably a polymer having a melting point of 200 ° C. or higher, or a polymer having no melting point but having a decomposition temperature of 200 ° C. or higher, preferably aromatic polyamide, polyimide, polyamideimide, polyether. One type or two or more types selected from the group consisting of sulfone, polysulfone, polyetherketone, and polyetherimide. In particular, wholly aromatic polyamides are preferable from the viewpoint of durability, and polymetaphenylene isophthalamide, which is a meta-type wholly aromatic polyamide, is more preferable from the viewpoint of easy formation of a porous film and excellent redox resistance. is there. A heat-resistant porous film formed of such a heat-resistant polymer has a structure in which a large number of micropores are connected inside, and these micropores are connected to each other. It means a membrane through which gas or liquid can pass. The porosity of the heat resistant porous membrane is preferably in the range of 60 to 90%. When the porosity of the heat resistant porous layer exceeds 90%, the heat resistance tends to be insufficient, which is not preferable. On the other hand, if it is lower than 60%, the cycle characteristics, storage characteristics, and discharge properties tend to decrease, which is not preferable. Note that “mainly formed of a heat-resistant polymer” only needs to be about 90% by weight or more made of a heat-resistant polymer, and about 10% by weight or less that does not affect battery characteristics. It means that the component may be included.

本発明では、無機フィラーとして200℃以上700℃以下の温度で脱水反応が生じる水酸基を含む金属化合物を用いることが大きな特徴である。かかる水酸基を含む金属化合物を用いることで、非水電解質電池用セパレータを難燃化させ、電池全体の安全性を著しく高めることが可能となる。なお、これまで、非水電解質電池用セパレータにおいては、添加する無機フィラーに水酸基などの極性基が含まれていると電池特性に悪影響を及ぼす可能性があると考えられていたため、本技術分野の技術常識を有する者であれば、水酸基を含む金属化合物を使用することは通常あり得ないと言える(例えば国際公開第98/32184号パンフレットの第7頁12〜16行目等参照)。ところが、本発明者は水酸化アルミニウムなどの水酸基を含む金属化合物をセパレータに添加してみたところ、電池特性に悪影響を及ぼさないばかりか、むしろ難燃性や磨耗特性等において様々な利点が得られることを発見し、本発明に至った。   In the present invention, the use of a metal compound containing a hydroxyl group that causes a dehydration reaction at a temperature of 200 ° C. or higher and 700 ° C. or lower is a major feature. By using such a metal compound containing a hydroxyl group, it is possible to make the non-aqueous electrolyte battery separator flame-retardant and significantly improve the safety of the entire battery. Until now, in non-aqueous electrolyte battery separators, it has been considered that the inorganic filler to be added contains a polar group such as a hydroxyl group, which may adversely affect battery characteristics. If it is a person with technical common sense, it can be said that it is not usually possible to use a metal compound containing a hydroxyl group (see, for example, pages 7 to 12 of page 7 of WO 98/32184). However, when the present inventors tried to add a metal compound containing a hydroxyl group such as aluminum hydroxide to the separator, the present inventors not only have an adverse effect on battery characteristics but also have various advantages in flame retardancy and wear characteristics. The present invention was discovered.

具体的には、水酸基を含む金属化合物を加熱すると脱水反応が起こり酸化物となり、水が放出される。更に、この脱水反応は大きな吸熱を伴う反応である。この脱水反応時に水を放出することと、この反応の吸熱により、難燃効果が得られる。また、水を放出するため可燃性である電解液を水で希釈し、セパレータだけでなく電解液にも効果があり、電池そのものを難燃化する上で有効である。更に、水酸基を含む金属化合物は、アルミナのような金属酸化物と比較して軟らかいため、従来のセパレータにあるような問題、即ち、セパレータに含まれる無機フィラーによって、製造時の各工程にて使用する部品が磨耗してしまうといったハンドリング性に関する問題が発生しない。   Specifically, when a metal compound containing a hydroxyl group is heated, a dehydration reaction occurs to form an oxide, and water is released. Furthermore, this dehydration reaction is a reaction with a large endotherm. The release of water during this dehydration reaction and the endothermic effect of this reaction provide a flame retardant effect. In addition, an electrolyte that is flammable to release water is diluted with water and is effective not only for the separator but also for the electrolyte, and is effective in making the battery itself flame-retardant. Furthermore, since metal compounds containing hydroxyl groups are softer than metal oxides such as alumina, they are used in each process during manufacturing due to the problems of conventional separators, that is, the inorganic filler contained in the separators. There is no problem with handling, such as wear of parts to be worn.

200℃〜700℃の温度、好ましくは200℃〜400℃の温度、さらに好ましくは250℃〜350℃の温度に加熱したときに脱水反応を生じる水酸基を含む金属化合物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、水酸化クロム、水酸化ジルコニウム、水酸化ニッケル、水酸化ホウ素、ベーマイト、ダイスポア等、若しくはこれらの2種以上の組合せが挙げられる。特に好ましいのは、水酸化アルミニウム、ベーマイト、ダイスポア、水酸化マグネシウム又はこれらの二種以上の混合物である。なお、水酸化アルミニウムとしては、ギブサイト組成、バイヤライト組成およびこれらの混合組成を有したものが好適であるが、中でもギブサイト組成を有したものが好ましい。   As a metal compound containing a hydroxyl group that causes a dehydration reaction when heated to a temperature of 200 ° C. to 700 ° C., preferably 200 ° C. to 400 ° C., more preferably 250 ° C. to 350 ° C., for example, aluminum hydroxide , Magnesium hydroxide, calcium hydroxide, chromium hydroxide, zirconium hydroxide, nickel hydroxide, boron hydroxide, boehmite, die spore, or a combination of two or more thereof. Particularly preferred are aluminum hydroxide, boehmite, die spore, magnesium hydroxide or a mixture of two or more thereof. As aluminum hydroxide, those having a gibbsite composition, a bayerite composition, and a mixed composition thereof are suitable, and among them, those having a gibbsite composition are preferable.

非水電解質二次電池では、正極の分解に伴う発熱が最も危険と考えられており、この分解は200℃以上で起こる。故に、水酸基を含む金属化合物の脱水反応の発生温度が、200℃以上の範囲であれば、非水電解質二次電池の発熱を防ぐ上で好ましい。なお、200℃以上においては、負極はほぼ活性を失っているので、生成した水と反応し発熱反応を引き起こすことはなく安全である。また、水酸基を含む金属化合物の発熱反応温度が700℃を超える場合、非水電解質二次電池の発熱の防止は実質的に意味が無いので好ましくない。この点、水酸化アルミニウムは250〜300℃の温度範囲で脱水反応が起こり、水酸化マグネシウムは350〜400℃、ベーマイトは400℃〜600℃、ダイスポアは450〜650℃の温度範囲で脱水反応が起こるため、本発明ではこれらの化合物の少なくともいずれか一つを用いることが好ましいのである。   In the nonaqueous electrolyte secondary battery, heat generation due to the decomposition of the positive electrode is considered to be the most dangerous, and this decomposition occurs at 200 ° C. or higher. Therefore, if the generation temperature of the dehydration reaction of the metal compound containing a hydroxyl group is in the range of 200 ° C. or higher, it is preferable for preventing heat generation of the nonaqueous electrolyte secondary battery. At 200 ° C. or higher, the negative electrode almost loses its activity, so that it does not react with the generated water to cause an exothermic reaction and is safe. Moreover, when the exothermic reaction temperature of the metal compound containing a hydroxyl group exceeds 700 ° C., it is not preferable because prevention of heat generation of the nonaqueous electrolyte secondary battery is substantially meaningless. In this respect, aluminum hydroxide undergoes a dehydration reaction in a temperature range of 250 to 300 ° C., magnesium hydroxide undergoes a dehydration reaction in a temperature range of 350 to 400 ° C., boehmite exhibits a temperature range of 400 ° C. to 600 ° C., and die spores undergo a dehydration reaction in a temperature range of 450 to 650 ° C. Because of this, it is preferable to use at least one of these compounds in the present invention.

本発明の脱水反応の発生温度は、加熱重量減分析測定(TGA)における重量減発生温度などから求めることが出来る。
なお、非水電解質二次電池において、フッ酸は正極活物質を侵し耐久性を低下させる要因となっているが、水酸化アルミニウムや水酸化マグネシウムはフッ酸を吸着・共沈させる機能があるため、電解液中のフッ酸濃度を低いレベルに維持することが可能であり、本発明の非水電解質電池セパレータを用いることで、非水電解質二次電池の耐久性を改善することも可能となる。このような観点からも、無機フィラーとして水酸化アルミニウムや水酸化マグネシウムは特に好ましい。
The generation temperature of the dehydration reaction of the present invention can be determined from the weight loss generation temperature in heating weight loss analysis (TGA).
In non-aqueous electrolyte secondary batteries, hydrofluoric acid erodes the positive electrode active material and decreases durability, but aluminum hydroxide and magnesium hydroxide have the function of adsorbing and co-precipitating hydrofluoric acid. The hydrofluoric acid concentration in the electrolytic solution can be maintained at a low level, and the durability of the nonaqueous electrolyte secondary battery can be improved by using the nonaqueous electrolyte battery separator of the present invention. . Also from such a viewpoint, aluminum hydroxide and magnesium hydroxide are particularly preferable as the inorganic filler.

本発明において、前記無機フィラーは、以下の(a)及び(b)式を満足するものであるのが好ましい。
(a)0.01≦d50≦20(μm)
(b)0<α≦2
但し、d50は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計50重量%の平均粒子直径(μm)を表す。αは、無機フィラーの均一性を示し、α=(d90−d10)/d50で表される。ここで、d90は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計90重量%の平均粒子直径(μm)を表し、d10は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計10重量%の平均粒子直径(μm)を表す。
In the present invention, the inorganic filler preferably satisfies the following formulas (a) and (b).
(A) 0.01 ≦ d50 ≦ 20 (μm)
(B) 0 <α ≦ 2
However, d50 represents the average particle diameter (μm) of the cumulative weight of 50% by weight calculated from the small particle side in the particle size distribution in the laser diffraction method. α indicates the uniformity of the inorganic filler and is represented by α = (d90−d10) / d50. Here, d90 represents an average particle diameter (μm) of 90% by weight accumulated from the small particle side in the particle size distribution in the laser diffraction method, and d10 represents from the small particle side in the particle size distribution in the laser diffraction method. The average particle diameter (μm) of the accumulated weight of 10% by weight is calculated.

上記のような粒度分布の範囲内であれば、大小異なる粒子径の無機フィラーが耐熱性多孔質膜中に入っているので、無機フィラーの充填密度が高くなり、難燃性等の効果がより顕著に得られるようになる。また、径が小さい粒子は孔形成に寄与し、径が大きい粒子は耐熱性多孔質膜の表面に出現し、すべり性が向上するといった効果も得られる。なお、d50の値が、0.01μm未満だと、耐熱性多孔質膜を形成するときのスラリーの分散性が悪いため塗工性が悪く、緻密で微細な貫通孔を均一に作成することができない場合がある。20μmを超えると、耐熱性多孔質膜の厚さに近くなってしまい、スラリーからの製膜性が良好でなくなり、筋もでき易く、薄く塗りにくいので不適当である。また、αが0であると均一粒径となってしまい、上述した充填密度の向上等の効果が得られない。αが2を超えると、粗大あるいは極小の粒子が含まれてしまう場合があり、スラリーの塗工性が悪くなる場合がある。   Within the range of the particle size distribution as described above, since the inorganic fillers having different particle sizes are contained in the heat-resistant porous film, the packing density of the inorganic filler is increased, and the effects such as flame retardancy are further improved. It will be noticeable. In addition, particles having a small diameter contribute to pore formation, and particles having a large diameter appear on the surface of the heat-resistant porous film, so that the effect of improving the slip property can be obtained. If the value of d50 is less than 0.01 μm, the dispersibility of the slurry when forming the heat-resistant porous film is poor, so that the coatability is poor, and dense and fine through-holes can be created uniformly. There are cases where it is not possible. If it exceeds 20 μm, it becomes close to the thickness of the heat-resistant porous film, the film-forming property from the slurry is not good, the stripes are easily formed, and it is not suitable because it is difficult to apply thinly. Further, when α is 0, the particle diameter becomes uniform, and the above-described effects such as improvement of the packing density cannot be obtained. When α exceeds 2, coarse or extremely small particles may be contained, and the coating property of the slurry may be deteriorated.

本発明においては、前記耐熱性多孔質膜において、前記無機フィラーの重量分率が50〜95重量%であることが好ましく、特に70〜85重量%であることが好ましい。無機フィラーの重量分率が50%より低いと、高温における寸法安定性といった耐熱性にかかわる特性が不十分となる。また、95重量%より高いと、該耐熱性多孔質膜の強度が不足し粉落ちの問題からハンドリング性が不良となったり、成形性が悪くなるなどの不具合が生じ好ましくない。無機フィラーの量が50〜95重量%の範囲であると、無機フィラーは耐熱性高分子と十分になじみ、分散性も良い。また、無機フィラーの作用で、耐熱性多孔質膜を水中凝固により形成させる際に、耐熱性高分子の低分子量ポリマーが凝固液中に流出しにくくなるので、好適な孔形成が可能になる。そして、ガーレ値や膜抵抗が更に低くなるという効果も得られる。   In the present invention, in the heat resistant porous membrane, the weight fraction of the inorganic filler is preferably 50 to 95% by weight, and particularly preferably 70 to 85% by weight. When the weight fraction of the inorganic filler is lower than 50%, characteristics related to heat resistance such as dimensional stability at high temperatures become insufficient. On the other hand, if it is higher than 95% by weight, the strength of the heat-resistant porous membrane is insufficient, and problems such as poor handling and poor moldability due to the problem of powder falling off are undesirable. When the amount of the inorganic filler is in the range of 50 to 95% by weight, the inorganic filler is sufficiently compatible with the heat-resistant polymer and has good dispersibility. In addition, when the heat-resistant porous film is formed by solidification in water due to the action of the inorganic filler, it is difficult for the low-molecular weight polymer of the heat-resistant polymer to flow out into the coagulation liquid, so that suitable pore formation is possible. And the effect that a Gurley value and film resistance become still lower is also acquired.

なお、本発明においては、耐熱性多孔質膜に含まれる無機フィラーは、主として、具体的には約90重量%以上が、水酸基を含む金属化合物からなるものであれば良く、約10重量%以下の他の成分の無機フィラーが混合されていても良い。かかる他成分の無機フィラーとしては、アルミナ、チタニア、シリカ、ジルコニアなどの酸化物、炭酸塩、リン酸塩などが挙げられる。   In the present invention, the inorganic filler contained in the heat-resistant porous film may be mainly about 90% by weight or more as long as it is made of a metal compound containing a hydroxyl group, and about 10% by weight or less. Inorganic fillers of other components may be mixed. Examples of such other inorganic fillers include oxides such as alumina, titania, silica, and zirconia, carbonates, and phosphates.

本発明においては、前記耐熱性多孔質膜に、熱可塑性樹脂からなる有機フィラーが含まれていても良い。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート(PET)やポリブチレンテレフタレート(PBT)等のポリエステル、脂肪族ポリアミド、ポリプロピレン(PP)やポリエチレン(PE)等のポリオレフィンを挙げることができ、これらは単独で用いることもできるし、これらを混合して用いてもよい。この中でも、電池が異常発熱した場合、融解熱により熱を奪い発熱を抑制する効果が優れている点、および、溶融した熱可塑性樹脂が耐熱性多孔質膜の孔を閉塞して電池の更なる発熱を防止すると言った、いわゆるシャットダウン機能が得られやすい点で、ポリオレフィン、特にポリエチレンが好適である。   In the present invention, the heat-resistant porous film may contain an organic filler made of a thermoplastic resin. Examples of thermoplastic resins include polyesters such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT), aliphatic polyamides, polyolefins such as polypropylene (PP) and polyethylene (PE), and these are used alone. These may be used, or these may be mixed and used. Among these, when the battery abnormally generates heat, the effect of suppressing heat generation by taking heat away from the heat of fusion is excellent, and the molten thermoplastic resin closes the holes of the heat-resistant porous film and further increases the battery. Polyolefin, particularly polyethylene, is preferable because it can easily obtain a so-called shutdown function that prevents heat generation.

本発明において前記熱可塑性樹脂からなる有機フィラーの形状は特に限定されるものではなく、例えば、微粒子状や繊維状のフィラーとして用いることができる。特に微粒子状のものが好適であり、微粒子の粒径は0.1〜5μmの範囲が好ましい。かかる有機フィラーは、無機フィラーと共に耐熱性多孔質膜中に均一に溶解または分散させてもよいし、耐熱性多孔質膜の片面又は両面上に有機フィラーの溶液又は分散液を塗布する方法等で、膜の表面部分に偏在させてもよい。本発明においては、前記いずれの場合も、「耐熱性多孔質膜に熱可塑性樹脂からなる有機フィラーが含まれている」状態であるとして定義される。   In the present invention, the shape of the organic filler made of the thermoplastic resin is not particularly limited, and for example, it can be used as a particulate or fibrous filler. In particular, fine particles are preferable, and the particle diameter of the fine particles is preferably in the range of 0.1 to 5 μm. Such an organic filler may be uniformly dissolved or dispersed in the heat resistant porous membrane together with the inorganic filler, or by a method of applying a solution or dispersion of the organic filler on one side or both sides of the heat resistant porous membrane. Alternatively, it may be unevenly distributed on the surface portion of the film. In the present invention, any of the above cases is defined as “a heat-resistant porous film contains an organic filler made of a thermoplastic resin”.

本発明の非水電解質電池セパレータは、前記耐熱性多孔質膜に、後述するような方法で作成された熱可塑性樹脂の多孔質膜が組み合わされた形状のものであってもよい。組み合わせ方としては、例えば、耐熱性多孔質膜と熱可塑性樹脂の多孔質膜を積層したもの、あるいは、熱可塑性樹脂の多孔質膜を耐熱性多孔質膜でサンドイッチ状に挟み込んだものがある。かかる場合、熱可塑性樹脂の多孔質膜中にも無機フィラーが含まれていてもよい。有機フィラーの使用量は、セパレータ全体の重量に対して5〜45重量%の範囲にあるのが適当である。   The nonaqueous electrolyte battery separator of the present invention may have a shape in which the heat-resistant porous membrane is combined with a thermoplastic resin porous membrane prepared by a method as described later. As a combination method, for example, a heat-resistant porous film and a thermoplastic resin porous film are laminated, or a thermoplastic resin porous film is sandwiched between heat-resistant porous films. In such a case, an inorganic filler may be contained in the porous film of the thermoplastic resin. The amount of the organic filler used is suitably in the range of 5 to 45% by weight with respect to the total weight of the separator.

本発明の耐熱性多孔質膜は、厚さが1〜50μmであるのが好ましく、更に好ましくは2〜30μmである。厚さが50μmを超えると、電池用セパレータとして用いたときに電池容量密度が不十分となったり、イオン伝導度、充電効率が低下することがある。一方、厚さが1μm未満であると、電解液保持能力や機械的強度が不十分であることがある。この厚さは、2〜20μmであるのが更に好ましい。耐熱性多孔質膜に熱可塑性樹脂の多孔質膜を組み合わせる場合には、非水電解質電池セパレータの膜厚が10〜150μmあるのが好ましく、更に好ましくは14〜80μmである。セパレータの膜厚が150μmを超えると、これを適用した電池のエネルギー密度や出力特性が低下し好ましくない。   The heat-resistant porous membrane of the present invention preferably has a thickness of 1 to 50 μm, more preferably 2 to 30 μm. If the thickness exceeds 50 μm, the battery capacity density may be insufficient when used as a battery separator, or the ion conductivity and charging efficiency may be reduced. On the other hand, when the thickness is less than 1 μm, the electrolytic solution holding capacity and mechanical strength may be insufficient. This thickness is more preferably 2 to 20 μm. When a thermoplastic resin porous membrane is combined with a heat resistant porous membrane, the nonaqueous electrolyte battery separator preferably has a thickness of 10 to 150 μm, more preferably 14 to 80 μm. If the thickness of the separator exceeds 150 μm, the energy density and output characteristics of a battery to which the separator is applied are undesirably lowered.

[非水電解質電池セパレータの製造方法]
本発明の非水電解質電池セパレータの製造方法は特に限定されないが、例えば、以下の(i)〜(iv)の工程を経て製造することが可能である。即ち、(i)耐熱性高分子と、水溶性有機溶剤と、200℃〜700℃の温度で脱水反応を生じる水酸基を含む金属化合物からなる無機フィラーとを含むスラリーをベースフィルム上に塗工する工程と、(ii)塗工されたベースフィルムを、水又は水と前記有機溶剤の混合液からなる凝固液中に浸漬し、前記耐熱性高分子を凝固させ耐熱性多孔質膜を形成させる工程と、(iii)ベースフィルム上に形成された耐熱性多孔質膜を水洗及び乾燥する工程と、(iv)乾燥された耐熱性多孔質膜をベースフィルムから剥離する工程とを実施することからなる製造方法である。
[Method for producing non-aqueous electrolyte battery separator]
Although the manufacturing method of the nonaqueous electrolyte battery separator of this invention is not specifically limited, For example, it is possible to manufacture through the following processes (i)-(iv). That is, (i) a slurry containing a heat-resistant polymer, a water-soluble organic solvent, and an inorganic filler made of a metal compound containing a hydroxyl group that causes a dehydration reaction at a temperature of 200 ° C. to 700 ° C. is applied onto the base film. And (ii) a step of immersing the coated base film in a coagulation liquid comprising water or a mixture of water and the organic solvent to coagulate the heat resistant polymer to form a heat resistant porous film. And (iii) performing a step of washing and drying the heat-resistant porous membrane formed on the base film, and (iv) a step of peeling the dried heat-resistant porous membrane from the base film. It is a manufacturing method.

工程(i)においては、前記したような耐熱性高分子(約10重量%以下の耐熱性高分子以外のポリマーを含んでいても良い)を、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等の水溶性有機溶剤に溶解し、得られた溶液に、前記無機フィラーを分散させてスラリーを作成し、これを、好ましくは離型処理されたポリプロピレン、ポリエチレン、ポリエチレンテレフタレート等のベースフィルム上に公知の手段・方法で塗工する。耐熱性高分子として、例えば、芳香族ジカルボン酸と芳香族ジアミンとから得られる芳香族ポリアミドを用いる場合には、前記工程(i)で、芳香族ジカルボン酸と芳香族ジアミンを、生成するポリアミドに対し良溶媒である有機溶媒中で反応せしめて芳香族ポリアミドを製造(溶液重合)し、直接、塗工用の溶液を製造することができる。また、例えば、ポリメタフェニレンイソフタルアミドを用いる場合には、前記工程(i)で、イソフタル酸クロライドとメタフェニレンジアミンを、生成するポリアミドに対し良溶媒でない有機溶媒、例えば、テトラハイドロフラン中で反応せしめて溶液若しくは分散液を作り、これを、炭酸ソーダ等の酸受容剤の水溶液と接触させ反応を完結せしめる、いわゆる界面重合法でポリメタフェニレンイソフタルアミドを製造するのが便利である。   In step (i), a heat-resistant polymer as described above (which may contain a polymer other than about 10% by weight or less of a heat-resistant polymer) is added to N-methylpyrrolidone, dimethylacetamide, dimethylformamide, or the like. Dissolve in a water-soluble organic solvent, and disperse the inorganic filler in the resulting solution to prepare a slurry, which is preferably known on a release-treated base film such as polypropylene, polyethylene, polyethylene terephthalate, etc. Apply by means or method. For example, when an aromatic polyamide obtained from an aromatic dicarboxylic acid and an aromatic diamine is used as the heat-resistant polymer, in the step (i), the aromatic dicarboxylic acid and the aromatic diamine are converted into a polyamide to be produced. On the other hand, an aromatic polyamide can be produced by reacting in an organic solvent which is a good solvent (solution polymerization), and a coating solution can be produced directly. Further, for example, when polymetaphenylene isophthalamide is used, in the step (i), isophthalic acid chloride and metaphenylenediamine are reacted in an organic solvent that is not a good solvent for the resulting polyamide, for example, tetrahydrofuran. It is convenient to produce polymetaphenylene isophthalamide by a so-called interfacial polymerization method in which a solution or dispersion is prepared and contacted with an aqueous solution of an acid acceptor such as sodium carbonate to complete the reaction.

上記いずれの場合も、耐熱性高分子の水溶性有機溶剤溶液に、好ましくは、固形分全体の重量分率で50〜95重量%の水酸基を含む金属化合物からなる無機フィラーを分散させ(約10重量%以下の他成分の無機フィラーが含まれていても良い)、塗工用のスラリーを作製すれば良い。無機フィラーの分散性が良好でない場合は、無機フィラーをシランカップリング剤等で表面処理し、分散性を改善する手法も適用可能である。有機フィラーを無機フィラーと共に耐熱性多孔質膜中に含有させる場合には、この段階で有機フィラーをスラリーに溶解又は分散させればよい。   In any of the above cases, an inorganic filler made of a metal compound containing 50 to 95% by weight of a hydroxyl group is preferably dispersed in a water-soluble organic solvent solution of a heat-resistant polymer (about 10% by weight of the total solid content (about 10 A coating slurry may be prepared, which may contain an inorganic filler of other components by weight% or less). When the dispersibility of the inorganic filler is not good, a method of improving the dispersibility by surface-treating the inorganic filler with a silane coupling agent or the like is also applicable. When the organic filler is contained in the heat resistant porous film together with the inorganic filler, the organic filler may be dissolved or dispersed in the slurry at this stage.

無機フィラーの添加・混合方法としては、耐熱性高分子が水溶性有機溶剤中に溶解した溶液に無機フィラーを混合する方法であっても、水溶性有機溶剤に無機フィラーを分散させた後、これに耐熱性高分子を溶解する方法であってもよい。無機フィラーの分散は、単純な撹拌槽で実施してもよいが、ボールミルや、ビーズメディアを用いる混練機またはホモミキサー等を用いて行うのが好ましい。無機フィラーの比率が余りに大きくなると膜の表面性が不良となることがあり、無機フィラーの比率が余りに小さいと十分な効果が得られないことがある。重量分率で50〜95重量%の前記無機フィラーを含有する耐熱性高分子膜、例えば、ポリメタフェニレンイソフタルアミド系ポリマー多孔質膜は、少なくとも一方向について200〜5000Kmの比ヤング率と10〜80%の多孔度とを有する優れた非水電解質電池セパレータ用の多孔質膜を与える。   As a method for adding and mixing the inorganic filler, even if the inorganic filler is mixed with a solution in which the heat-resistant polymer is dissolved in the water-soluble organic solvent, the inorganic filler is dispersed in the water-soluble organic solvent. Alternatively, a method of dissolving the heat-resistant polymer may be used. The dispersion of the inorganic filler may be performed in a simple stirring tank, but is preferably performed using a ball mill, a kneader using a bead medium, a homomixer, or the like. If the ratio of the inorganic filler is too large, the surface property of the film may be poor, and if the ratio of the inorganic filler is too small, a sufficient effect may not be obtained. A heat-resistant polymer film containing 50 to 95% by weight of the inorganic filler, for example, a polymetaphenylene isophthalamide-based polymer porous film, has a specific Young's modulus of 200 to 5000 Km in at least one direction and 10 to 10%. An excellent nonaqueous electrolyte battery separator porous membrane having a porosity of 80% is provided.

前記工程(i)において、水溶性有機溶剤に耐熱性高分子に対して貧溶媒となる溶剤も一部混合して用いることもできる。このような溶剤を適用することでミクロ相分離構造が誘発され、耐熱性多孔質膜を形成する上で多孔化が容易となる。貧溶媒としては、水又はアルコールの類が好適であり、特にグリコールのような多価アルコールが好適である。また、スラリーを塗工するためのフィルムは、その表面がラビング処理されたものが好ましい。ラビング処理とは、フィルムを一方向に擦る処理のことであり、ラビング処理を行うことによって、フィルム面に接する多孔質膜表面の開孔率を制御することが可能になる。   In the step (i), a solvent that is a poor solvent for the heat-resistant polymer may be mixed with the water-soluble organic solvent. By applying such a solvent, a microphase separation structure is induced and the formation of a heat-resistant porous membrane is facilitated. As the poor solvent, water or alcohols are preferred, and polyhydric alcohols such as glycol are particularly preferred. The film for applying the slurry is preferably a film whose surface is rubbed. The rubbing process is a process of rubbing the film in one direction. By performing the rubbing process, it is possible to control the porosity of the porous membrane surface in contact with the film surface.

本発明においては、塗工のためのスラリーの固形分全体の濃度は3〜30重量%程度が好ましい。塗工する方法は、ナイフコーター法、グラビアコーター法、スクリーン印刷法、マイヤーバー法、ダイコーター法、リバースロールコーター法、インクジェット法、スプレー法、ロールコーター法などが挙げられる。塗膜を均一に塗布するという観点において、特にリバースロールコーター法が好適である。なお、塗工する際のスラリーの温度については、特に制限がないが、スラリーの粘度が1〜10,000センチポイズの間になるように選択するのが好ましく、5〜5,000センチポイズの間になるように選択するのがさらに好ましい。   In the present invention, the concentration of the entire solid content of the slurry for coating is preferably about 3 to 30% by weight. Examples of the coating method include knife coater method, gravure coater method, screen printing method, Mayer bar method, die coater method, reverse roll coater method, ink jet method, spray method, roll coater method and the like. From the viewpoint of uniformly applying the coating film, the reverse roll coater method is particularly suitable. In addition, about the temperature of the slurry at the time of coating, there is no restriction | limiting in particular, However, It is preferable to select so that the viscosity of a slurry may be between 1 and 10,000 centipoise, and between 5 and 5,000 centipoise. More preferably, the selection is such that

工程(ii)では、塗工されたベースフィルムを、そのまま水又は水と前記有機溶剤の混合液からなる凝固液中に浸漬し、ベースフィルム上で前記耐熱性高分子を凝固させることによって、耐熱性多孔質膜を形成させる。凝固液中に浸漬させる方法としては、凝固液をスプレーで吹き付ける方法や、凝固液の入った浴(凝固浴)中に浸漬する方法などが挙げられる。凝固液は、耐熱性高分子を凝固できるものであれば特に限定されないが、水又は塗工のためのスラリーに用いた有機溶剤に水を適当量混合させたものが好ましい。ここで、水の混合量は、凝固液に対して40〜80重量%が好適である。水の量が30重量%より少ないと耐熱性高分子を凝固するのに必要な時間が長くなったり、凝固が不十分になるという問題が生じる。また、80重量%より多いと溶剤回収においてコスト高となり、凝固液と接触する表面の凝固が速すぎ表面が十分に多孔化されないという問題が生じる。凝固液中には、得られる多孔質膜の孔径を調整する目的で金属塩を凝固浴全体に対して1〜10重量%の量で添加することもできる。かかる金属塩の具体例としては、塩化カルシウム、塩化リチウム、硝酸リチウム、塩化マグネシウム等が挙げられる。凝固液の温度は0〜98℃であるのが好ましく、より好ましくは20〜90℃である。なお、所望により、凝固処理後、得られた耐熱性多孔質膜を、貧溶媒を含む前記有機溶剤溶液中に浸漬処理して、結晶化を促進してもよい。   In step (ii), the coated base film is immersed in water or a coagulation liquid composed of water and the organic solvent as it is, and the heat-resistant polymer is coagulated on the base film, thereby A porous film is formed. Examples of the method of immersing in the coagulation liquid include a method of spraying the coagulation liquid with a spray and a method of immersing in a bath (coagulation bath) containing the coagulation liquid. The coagulating liquid is not particularly limited as long as it can coagulate the heat-resistant polymer, but water or an organic solvent used for the slurry for coating is preferably mixed with water in an appropriate amount. Here, the mixing amount of water is preferably 40 to 80% by weight with respect to the coagulation liquid. When the amount of water is less than 30% by weight, there arises a problem that the time required for coagulating the heat-resistant polymer becomes long or the coagulation becomes insufficient. On the other hand, if the amount is more than 80% by weight, the cost for recovering the solvent becomes high, and there arises a problem that the surface that comes into contact with the coagulating liquid is too rapidly solidified and the surface is not sufficiently porous. In the coagulation liquid, a metal salt can be added in an amount of 1 to 10% by weight based on the entire coagulation bath for the purpose of adjusting the pore diameter of the resulting porous membrane. Specific examples of such metal salts include calcium chloride, lithium chloride, lithium nitrate, magnesium chloride and the like. The temperature of the coagulation liquid is preferably 0 to 98 ° C, more preferably 20 to 90 ° C. If desired, after heat treatment, the obtained heat-resistant porous membrane may be dipped in the organic solvent solution containing a poor solvent to promote crystallization.

工程(iii)は、工程(ii)に引き続き、ベースフィルム上に形成された耐熱性多孔質膜を水洗及び乾燥する工程である。先ず、耐熱性多孔質膜から水洗で凝固液を除去し、次いで乾燥する。乾燥方法は特に限定されないが、乾燥温度は50〜80℃が適当であり、高い乾燥温度を適用する場合は、熱収縮による寸法変化が起こらないようにするためにロールに接触させるような方法を適用することが好ましい。   Step (iii) is a step of washing and drying the heat-resistant porous membrane formed on the base film following step (ii). First, the coagulating liquid is removed from the heat-resistant porous membrane by washing with water, and then dried. The drying method is not particularly limited, but a drying temperature of 50 to 80 ° C. is appropriate. When a high drying temperature is applied, a method of contacting with a roll in order to prevent a dimensional change due to heat shrinkage occurs. It is preferable to apply.

次いで、工程(iv)において、乾燥された耐熱性多孔質膜はベースフィルムから剥離することによって、本発明の非水電解質電池セパレータが得られる。耐熱性多孔質膜の片面又は両面部分に有機フィラーを偏在させる態様の場合には、前記凝固後又は凝固・水洗・乾燥後の、又は剥離後の耐熱性多孔質膜の片面又は両面に、有機フィラーの溶液又は分散液を塗布する方法等で、有機フィラーが膜の表面部分に偏在した非水電解質電池セパレータが得られる。   Next, in step (iv), the dried heat-resistant porous membrane is peeled off from the base film, whereby the nonaqueous electrolyte battery separator of the present invention is obtained. In the case where the organic filler is unevenly distributed on one side or both sides of the heat-resistant porous membrane, the organic filler is organically provided on one side or both sides of the heat-resistant porous membrane after the coagulation or after coagulation / washing / drying or after peeling. A non-aqueous electrolyte battery separator in which the organic filler is unevenly distributed on the surface portion of the membrane is obtained by a method of applying a filler solution or dispersion.

本発明においては、所望により、上記により得られた耐熱性多孔質膜は、強度やヤング率を高めるために延伸浴中で延伸してもよい。例えば、耐熱性多孔質膜を、ポリマーの貧溶媒を含む有機溶剤からなる延伸浴中に浸漬して可塑化させ、その状態で延伸を行う。延伸浴に有用な溶剤としては、例えば、N−メチルピロリドン、ジメチルアセトアミド、ジメチルホルムアミド等が挙げられ、貧溶媒としては、水、低級アルコール、低級エーテル等を挙げることができる。延伸浴中の溶剤の濃度は、延伸浴全体に対して5〜70重量%であるのが好ましく、より好ましくは30〜65重量%である。延伸浴の温度は0〜98℃であるのが好ましく、より好ましくは30〜90℃である。延伸浴中の溶剤の濃度が5重量%未満であり、延伸浴の温度が0℃未満である場合には、耐熱性多孔質膜の可塑化が不十分であり、延伸倍率が上がらず、期待するヤング率が得られないことがある。また、濃度が70重量%を超え、温度が98℃を超える場合には、耐熱性多孔質膜の溶解が進行し、延伸によってヤング率を向上させることが不可能であるとともに、多孔構造が崩れて緻密化が進行してしまい、耐熱性多孔質膜を得ることができなくなることがある。   In the present invention, if desired, the heat-resistant porous membrane obtained as described above may be stretched in a stretching bath in order to increase strength and Young's modulus. For example, the heat-resistant porous membrane is immersed in a stretching bath made of an organic solvent containing a poor polymer solvent and plasticized, and stretched in that state. Examples of the solvent useful for the stretching bath include N-methylpyrrolidone, dimethylacetamide, and dimethylformamide, and examples of the poor solvent include water, lower alcohol, and lower ether. The concentration of the solvent in the stretching bath is preferably 5 to 70% by weight, more preferably 30 to 65% by weight with respect to the entire stretching bath. The temperature of the stretching bath is preferably 0 to 98 ° C, more preferably 30 to 90 ° C. When the concentration of the solvent in the stretching bath is less than 5% by weight and the temperature of the stretching bath is less than 0 ° C., the heat-resistant porous film is insufficiently plasticized, and the stretching ratio is not increased, and expected Young's modulus may not be obtained. When the concentration exceeds 70% by weight and the temperature exceeds 98 ° C., dissolution of the heat-resistant porous film proceeds, and it is impossible to improve the Young's modulus by stretching, and the porous structure collapses. As a result, the densification proceeds and the heat resistant porous film may not be obtained.

延伸方法については、一軸延伸、逐次二軸延伸、同時二軸延伸等のいずれの方法であってもよい。また、延伸に際しては、延伸方向に対して両サイドを把持あるいは拘束しているほうが、透気率の低下抑制という点で好ましい。延伸倍率は、一軸方向に1.3〜5倍、又は直交する二軸方向に1.3〜10倍であるのが多孔度、通気性、ヤング率のバランスを適切なものとするために好ましい。ここで、1.3〜10倍の延伸倍率は、二軸延伸の場合は両方向の延伸倍率の積(面積倍率)として求めることができる。なお、この延伸処理は、凝固浴から連続して行い、延伸処理後、前記水洗・乾燥・剥離を行ってもよい。   The stretching method may be any method such as uniaxial stretching, sequential biaxial stretching, and simultaneous biaxial stretching. Moreover, in extending | stretching, it is more preferable at the point of the fall suppression of the air permeability to hold | grip or restrain both sides with respect to the extending | stretching direction. The draw ratio is preferably 1.3 to 5 times in a uniaxial direction, or 1.3 to 10 times in a biaxial direction orthogonal to each other, in order to achieve an appropriate balance of porosity, air permeability, and Young's modulus. . Here, a stretch ratio of 1.3 to 10 times can be obtained as a product (area ratio) of stretch ratios in both directions in the case of biaxial stretching. In addition, this extending | stretching process may be performed continuously from a coagulation bath, and the said water washing, drying, and peeling may be performed after an extending | stretching process.

本発明においては、前記耐熱性多孔質膜に、熱可塑性樹脂からなる多孔質膜を組み合わせて非水電解質電池セパレータを製造することもできる。本発明のかかる態様によれば、耐熱性多孔質膜とその片面又は両面に積層又は貼付けられた熱可塑性樹脂からなる多孔質膜との複合膜からなる、非水電解質電池セパレータが提供される。熱可塑性樹脂は、高められた温度、例えば、電池が異常発熱して生じる高い温度でシャットダウン機能を発現するものが好ましく、そのためには熱変形温度(熱収縮による閉孔開始温度)が60〜150℃であるのが特に好ましい。   In the present invention, a nonaqueous electrolyte battery separator can be produced by combining the heat-resistant porous membrane with a porous membrane made of a thermoplastic resin. According to this aspect of the present invention, there is provided a non-aqueous electrolyte battery separator comprising a composite film of a heat-resistant porous film and a porous film made of a thermoplastic resin laminated or stuck on one or both sides thereof. The thermoplastic resin preferably exhibits a shutdown function at an elevated temperature, for example, a high temperature generated due to abnormal heat generation of the battery. For this purpose, the thermal deformation temperature (closing start temperature due to thermal contraction) is 60 to 150. It is particularly preferred that the temperature is C.

ポリオレフィンからなる多孔質膜の製造方法としては、ポリオレフィン溶液をダイ押し出しし、これを冷却して得られるゲル状組成物を延伸により多孔質化させる方法が簡便である(例えば、特公平2−232242号公報、特公平5−56251号公報、特公平3−643344号公報等を参照)。かかる熱可塑性ポリマーの多孔質膜は、厚さが5〜50μmであるのが好ましく、更に好ましくは7〜30μmである。また、多孔度は30〜70%であるのが好ましく、更に好ましくは40〜65%である。   As a method for producing a porous membrane made of polyolefin, a method of making a gel composition obtained by extruding a polyolefin solution and cooling it to make it porous by stretching is simple (for example, JP-B-2-232242). No., JP-B-5-56251, JP-B-3-64344, etc.). The thermoplastic polymer porous membrane preferably has a thickness of 5 to 50 μm, more preferably 7 to 30 μm. The porosity is preferably 30 to 70%, more preferably 40 to 65%.

かかる複合膜は、形成された耐熱性高分子からなる耐熱性多孔質膜を支持体として用い、その片面又は両面に、耐熱性多孔質膜の形成に関して詳述した方法(スラリーの塗工、凝固、水洗・乾燥による方法)に準じて熱可塑性樹脂からなる多孔質膜を形成してもよい。かくして得られる複合多孔質膜は、全体の厚さが10〜150μmあるのが好ましく、更に好ましくは14〜80μmである。   Such a composite membrane uses a heat-resistant porous membrane formed of a heat-resistant polymer as a support, and a method detailed on the formation of the heat-resistant porous membrane on one side or both sides (slurry coating, solidification). A porous film made of a thermoplastic resin may be formed according to a method of washing and drying. The composite porous membrane thus obtained preferably has a total thickness of 10 to 150 μm, more preferably 14 to 80 μm.

[非水電解質電池]
本発明の非水電解質電池セパレータは、公知のいかなる構成の非水電解質電池にも適用することができ、安全性に優れた電池が得られる。適用される非水電解質電池は一次電池であっても二次電池であってもよく、その種類や構成は、何ら限定されるものではないが、本発明の非水電解質電池セパレータは、リチウムのドープおよび脱ドープにより起電力を得る非水電解質二次電池に好適に応用することができる。中でも、リチウムイオン二次電池への適用が好ましい。
[Nonaqueous electrolyte battery]
The nonaqueous electrolyte battery separator of the present invention can be applied to any known nonaqueous electrolyte battery, and a battery having excellent safety can be obtained. The applied nonaqueous electrolyte battery may be a primary battery or a secondary battery, and the type and configuration thereof are not limited in any way, but the nonaqueous electrolyte battery separator of the present invention is a lithium battery. It can be suitably applied to a non-aqueous electrolyte secondary battery that obtains an electromotive force by doping and dedoping. Among these, application to a lithium ion secondary battery is preferable.

一般に非水電解質二次電池とは、負極と正極がセパレータを介して対向している電池要素に電解液が含浸され、これが外装に封入された構造となっているものをいう。負極は、負極活物質、導電助剤、バインダーからなる負極合剤が集電体(銅箔、ステンレス箔、ニッケル箔等)上に成形された構造となっている。負極活物質としては、リチウムを電気化学的にドープすることが可能な材料、例えば、炭素材料、シリコン、アルミニウム、スズが用いられる。正極は、正極活物質、導電助剤、バインダーからなる正極合剤が集電体上に成形された構造となっている。正極活物質としては、リチウム含有遷移金属酸化物、例えば、LiCoO、LiNiO、LiMn0.5Ni0.5、LiCo1/3Ni1/3Mn1/3、LiMn、LiFePOが用いられる。電解液は、リチウム塩、例えば、LiPF、LiBF、LiClOを非水系溶媒に溶解した構成である。非水系溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、ビニレンカーボネートなどが挙げられる。外装材は金属缶またはアルミラミネートパック等が挙げられる。電池の形状は角型、円筒型、コイン型などがあるが、本発明のセパレータはいずれの形状においても好適に適用することが可能である。 In general, a nonaqueous electrolyte secondary battery refers to a battery element in which a battery element in which a negative electrode and a positive electrode face each other with a separator interposed therebetween is impregnated with an electrolytic solution and sealed in an exterior. The negative electrode has a structure in which a negative electrode mixture composed of a negative electrode active material, a conductive additive, and a binder is formed on a current collector (copper foil, stainless steel foil, nickel foil, etc.). As the negative electrode active material, a material capable of electrochemically doping lithium, for example, a carbon material, silicon, aluminum, or tin is used. The positive electrode has a structure in which a positive electrode mixture composed of a positive electrode active material, a conductive additive, and a binder is formed on a current collector. Examples of the positive electrode active material include lithium-containing transition metal oxides such as LiCoO 2 , LiNiO 2 , LiMn 0.5 Ni 0.5 O 2 , LiCo 1/3 Ni 1/3 Mn 1/3 O 2 , LiMn 2 O. 4 and LiFePO 4 are used. The electrolytic solution has a configuration in which a lithium salt, for example, LiPF 6 , LiBF 4 , or LiClO 4 is dissolved in a non-aqueous solvent. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, and vinylene carbonate. Examples of the exterior material include a metal can or an aluminum laminate pack. The shape of the battery includes a square shape, a cylindrical shape, a coin shape, and the like, but the separator of the present invention can be suitably applied to any shape.

本発明の非水電解質電池セパレータを、前記のようなリチウムイオン二次電池に適用した場合の電池構成の例について図1〜6に示した。図1は、無機フィラーを含む耐熱性多孔質膜をセパレータとして用いた構成を示している。具体的には、図1に示すリチウムイオン二次電池は、負極集電シート1上に負極活物質層2が形成された負極シート3と、正極集電シート4上に正極活物質層5が形成された正極シート6と、これらシート3,6の間に配置された本発明の無機フィラーを含む耐熱性多孔質膜からなるセパレータ7と、を備えた構造となっている。図2は、図1のセパレータ7中に有機フィラー8が分散された構成のセパレータを用いた電池を示している。図3は、図1のセパレータ7の片面に有機フィラーを含む層9が積層された構成を示している。図4は、図1のセパレータ7の片面に、熱可塑性樹脂からなる多孔質膜10を積層して複合化したセパレータ、あるいは、多孔質膜10を単純に重ね合わせた構成のセパレータを用いた電池を示している。図5は、負極活物質層2および正極活物質層5のそれぞれの上に、本発明の無機フィラーを含む耐熱性多孔質膜からなるセパレータ7を積層・接着した構成を示している。図6は、図5における2つのセパレータ7の間に、サンドイッチ状に熱可塑性樹脂からなる多孔質膜10を配置した構成を示している。   Examples of the battery configuration when the nonaqueous electrolyte battery separator of the present invention is applied to the lithium ion secondary battery as described above are shown in FIGS. FIG. 1 shows a configuration in which a heat-resistant porous film containing an inorganic filler is used as a separator. Specifically, the lithium ion secondary battery shown in FIG. 1 includes a negative electrode sheet 3 in which a negative electrode active material layer 2 is formed on a negative electrode current collector sheet 1 and a positive electrode active material layer 5 on a positive electrode current collector sheet 4. It has a structure including the formed positive electrode sheet 6 and a separator 7 made of a heat resistant porous film containing the inorganic filler of the present invention disposed between the sheets 3 and 6. FIG. 2 shows a battery using a separator having a configuration in which an organic filler 8 is dispersed in the separator 7 of FIG. FIG. 3 shows a configuration in which a layer 9 containing an organic filler is laminated on one side of the separator 7 of FIG. FIG. 4 shows a battery using a separator in which a porous film 10 made of a thermoplastic resin is laminated on one side of the separator 7 in FIG. 1 or a separator having a structure in which the porous films 10 are simply overlapped. Is shown. FIG. 5 shows a configuration in which a separator 7 made of a heat-resistant porous film containing the inorganic filler of the present invention is laminated and bonded on each of the negative electrode active material layer 2 and the positive electrode active material layer 5. FIG. 6 shows a configuration in which a porous film 10 made of a thermoplastic resin is disposed in a sandwich between two separators 7 in FIG.

以下に実施例及び比較例を挙げて本発明をさらに説明するが、本発明はこれらの例により何らの限定されるものではない。なお、この明細書で記述する諸特性は、下記の方法により求めたものである。   EXAMPLES The present invention will be further described below with reference to examples and comparative examples, but the present invention is not limited to these examples. The various characteristics described in this specification are obtained by the following methods.

[通気性]
「JISL1096−1990 6.27通気性」の方法に準じて、単位時間当たりの空気の透過量(ml/秒)を求めた。
[Breathability]
According to the method of “JISL 1096-1990 6.27 Breathability”, the permeation amount of air per unit time (ml / sec) was determined.

[無機フィラーの粒度分布]
レーザー回折式粒度分布測定装置を用いて測定を行った。分散媒としては水を用い、分散剤として非イオン性界面活性剤「Triton X−100」を微量用いた。得られた粒度分布において、小さな粒子側から起算して、重量累計90重量%の平均粒子直径(μm)からd90を求め、重量累計50重量%の平均粒子直径(μm)からd50を求め、重量累計10重量%の平均粒子直径(μm)からd10を求めた。そして、α=(d90−d10)/d50の式から、αを求めた。
[Particle size distribution of inorganic filler]
Measurement was performed using a laser diffraction particle size distribution measuring apparatus. Water was used as a dispersion medium, and a small amount of nonionic surfactant “Triton X-100” was used as a dispersant. In the obtained particle size distribution, from the small particle side, d90 is obtained from the average particle diameter (μm) of the cumulative weight of 90% by weight, d50 is determined from the average particle diameter (μm) of the cumulative weight of 50% by weight, and the weight D10 was determined from an average particle diameter (μm) of a total of 10% by weight. Then, α was obtained from the equation α = (d90−d10) / d50.

[膜厚]
接触式の膜厚計(ミツトヨ社製)にて20点測定し、これを平均することで求めた。ここで接触端子は底面が直径0.5cmの円柱状のものを用い、接触端子に1.2kg/cmの荷重が印加されるような条件で測定した。
[Film thickness]
It was determined by measuring 20 points with a contact-type film thickness meter (manufactured by Mitutoyo Co., Ltd.) and averaging them. Here, the contact terminal used was a cylindrical one having a bottom surface of 0.5 cm in diameter, and measurement was performed under a condition that a load of 1.2 kg / cm 2 was applied to the contact terminal.

[空孔率]
構成材料がa、b、c…、nからなり、構成材料の重量がWa、Wb、Wc…、Wn(g・cm)であり、それぞれの真密度がda、db、dc…、dn(g/cm)で、着目する層の膜厚をt(cm)としたとき、空孔率ε(%)は以下の式(1)より求めた。
ε={1−(Wa/da+Wb/db+Wc/dc+…+Wn/dn)/t}×100 …(1)
[Porosity]
The constituent materials are a, b, c..., N, and the weights of the constituent materials are Wa, Wb, Wc..., Wn (g · cm 2 ), and their true densities are da, db, dc. g / cm 3 ), where the film thickness of the layer of interest is t (cm), the porosity ε (%) was obtained from the following equation (1).
ε = {1− (Wa / da + Wb / db + Wc / dc +... + Wn / dn) / t} × 100 (1)

[耐熱特性]
まず、セパレータをΦ19mmに打ち抜き、非イオン性界面活性剤(花王社製;エマルゲン210P)の3重量%メタノール溶液中に浸漬して風乾した。そしてセパレータに電解液を含浸させSUS板(Φ15.5mm)に挟んだ。ここで電解液には、プロピレンカーボネートとエチレンカーボネートが1対1の重量比で混合された溶媒中に、LiBFを1M溶解させたものを用いた。これを2032型コインセルに封入した。コインセルからリード線をとり、熱電対を付けてオーブンの中に入れた。昇温速度1.6℃/分で昇温させ、同時に振幅10mV、1kHzの周波数の交流を印加することでセルの抵抗を測定した。このコインセルによる試験を行った結果、200℃まで昇温しても抵抗値が著しく低下しなかったものは耐熱性が良好と判断し、著しく低下したものは耐熱性が不良と判断した。
[Heat resistance]
First, the separator was punched out to Φ19 mm, dipped in a 3% by weight methanol solution of a nonionic surfactant (manufactured by Kao Corporation; Emulgen 210P), and air-dried. Then, the separator was impregnated with the electrolytic solution and sandwiched between SUS plates (Φ15.5 mm). Here, as the electrolytic solution, a solution in which 1M LiBF 4 was dissolved in a solvent in which propylene carbonate and ethylene carbonate were mixed at a weight ratio of 1: 1 was used. This was enclosed in a 2032 type coin cell. I took the lead from the coin cell, put a thermocouple, and put it in the oven. The cell resistance was measured by raising the temperature at a rate of temperature increase of 1.6 ° C./min and simultaneously applying alternating current with an amplitude of 10 mV and a frequency of 1 kHz. As a result of the test using the coin cell, those whose resistance value did not decrease remarkably even when the temperature was raised to 200 ° C. were judged to have good heat resistance, and those whose remarkably decreased were judged to have poor heat resistance.

[磨耗特性]
セパレータの磨耗特性については、東洋精機社製のカード摩擦試験機を用いて評価した。具体的には、1kgの重り(76mm角)にサンプルとなるセパレータを貼り付けこれをSUS製ステージの上に置いた。これを速度90cm/分で10cm滑らせた。そして、SUS製ステージと接触していた側のサンプル表面を観察し、黒くなっているか否かを確認した。黒くなっている場合はステージ材料のSUSが研磨されていると判断し、磨耗特性が不良と判定した。また、黒くなっていない場合はSUSが研磨されていないと判断し、磨耗特性が良好と判定した。
[Abrasion characteristics]
The wear characteristics of the separator were evaluated using a card friction tester manufactured by Toyo Seiki Co., Ltd. Specifically, a separator as a sample was attached to a 1 kg weight (76 mm square) and placed on a SUS stage. This was slid 10 cm at a speed of 90 cm / min. Then, the sample surface on the side that was in contact with the SUS stage was observed to confirm whether it was black. When it was black, it was determined that the SUS of the stage material was polished, and the wear characteristics were determined to be poor. Moreover, when it was not black, it was judged that SUS was not grind | polished and it determined with the abrasion characteristic being favorable.

[実施例1]
イソフタル酸クロライド160.5gをテトラヒドロフラン1120mlに溶解し、撹拌しながら、メタフェニレンジアミン85.2gをテトラヒドロフラン1120mlに溶解した溶液を、細流として徐々に加えていくと白濁した乳白色の溶液が得られた。撹拌を約5分間継続した後、更に撹拌しながら炭酸ソーダ167.6g、食塩317gを3400mlの水に溶かした水溶液を速やかに加え、5分間撹拌した。反応系は数秒後に粘度が増大後、再び低下し、白色の懸濁液が得られた。これを静置し、分離した透明な水溶液層を取り除き、ろ過によってポリメタフェニレンイソフタルアミドの白色重合体185.3gが得られた。このポリメタフェニレンイソフタルアミドとN−メチル−2−ピロリドン(NMP)とを、それぞれ10:90の重量比で混合して溶液とし、これに、水酸化アルミニウムフィラー(昭和電工社製;H−43M、d50=0.75、α=0.89)を、ポリマーと当該フィラーとの重量比が25:75となるように添加し、これを攪拌して塗工用のスラリーを作製した。得られたスラリーを、ポリプロピレンフィルム上に厚さ200μmとなるように流延させた。これをNMP55重量%と水45重量%とからなる30℃の凝固浴に10分間浸漬した。次いで、この凝固物を水洗し、130℃の熱風乾燥機により30分間乾燥後、ポリプロピレンフィルムから塗工膜を剥離することで、本発明の非水電解質電池セパレータを得た。
[Example 1]
When 160.5 g of isophthalic acid chloride was dissolved in 1120 ml of tetrahydrofuran and a solution prepared by dissolving 85.2 g of metaphenylenediamine in 1120 ml of tetrahydrofuran was gradually added as a trickle while stirring, a cloudy milky white solution was obtained. Stirring was continued for about 5 minutes, and then an aqueous solution in which 167.6 g of sodium carbonate and 317 g of sodium chloride were dissolved in 3400 ml of water was rapidly added while stirring for 5 minutes. The reaction system increased in viscosity after a few seconds and then decreased again to obtain a white suspension. This was left standing, the separated transparent aqueous solution layer was removed, and 185.3 g of a white polymer of polymetaphenylene isophthalamide was obtained by filtration. This polymetaphenylene isophthalamide and N-methyl-2-pyrrolidone (NMP) were mixed at a weight ratio of 10:90 to obtain a solution, and an aluminum hydroxide filler (manufactured by Showa Denko KK; H-43M) was added thereto. , D50 = 0.75, α = 0.89) was added so that the weight ratio of the polymer to the filler was 25:75, and this was stirred to prepare a slurry for coating. The obtained slurry was cast on a polypropylene film so as to have a thickness of 200 μm. This was immersed in a coagulation bath at 30 ° C. consisting of 55% by weight of NMP and 45% by weight of water for 10 minutes. Next, the solidified product was washed with water, dried with a hot air dryer at 130 ° C. for 30 minutes, and then the coating film was peeled off from the polypropylene film to obtain the nonaqueous electrolyte battery separator of the present invention.

得られた本発明のセパレータの空孔率は70%、通気性は1.0ml/秒、膜厚は120μmであった。耐熱特性テストおよび磨耗特性テストでは良好な結果が確認された。
また、得られたセパレータについて、理学電機製のThermo Plus TG8120にて熱重量減を測定したところ、220℃で重量減が開始し、脱水反応が生じていることが確認された。これより、本発明のセパレータを用いれば、電池が異常発熱したとしても難燃性の効果が良好に得られ、より安全性が高まることが言える。
The obtained separator of the present invention had a porosity of 70%, an air permeability of 1.0 ml / second, and a film thickness of 120 μm. Good results were confirmed in the heat resistance test and the wear characteristic test.
Further, when the thermal weight loss of the obtained separator was measured with Thermo Plus TG8120 manufactured by Rigaku Corporation, it was confirmed that the weight loss started at 220 ° C. and the dehydration reaction occurred. From this, it can be said that if the separator of the present invention is used, even if the battery abnormally generates heat, a flame-retardant effect can be obtained satisfactorily and safety can be further improved.

[実施例2]
実施例1で得られたポリメタフェニレンイソフタルアミドと、塩化カルシウムと、NMPをそれぞれ9.5:4.5:86.0の重量比で混合して溶液とし、これに、水酸化マグネシウム(協和化学工業社製;キスマ5P、d50=0.8、α=0.8)を、ポリマーと当該フィラーとの重量比が25:75となるように添加し攪拌して塗工用のスラリーを作製した。そして、このスラリーを実施例1と同様の方法で流延させた。これをNMP60重量%と水40重量%とからなる30℃の凝固浴に10分間浸漬した。次いで、この凝固物を水洗し、130℃の熱風乾燥機により30分間乾燥し、ポリプロピレンフィルムから塗工膜を剥離して本発明の非水電解質電池セパレータを得た。
[Example 2]
The polymetaphenylene isophthalamide obtained in Example 1, calcium chloride, and NMP were mixed at a weight ratio of 9.5: 4.5: 86.0, respectively, to obtain a solution. Chemical Industry Co., Ltd .; Kisuma 5P, d50 = 0.8, α = 0.8) was added so that the weight ratio of the polymer to the filler was 25:75 and stirred to prepare a slurry for coating. did. This slurry was cast in the same manner as in Example 1. This was immersed in a 30 ° C. coagulation bath composed of 60% by weight of NMP and 40% by weight of water for 10 minutes. Next, this solidified product was washed with water, dried with a hot air dryer at 130 ° C. for 30 minutes, and the coating film was peeled off from the polypropylene film to obtain the nonaqueous electrolyte battery separator of the present invention.

得られた本発明のセパレータの空孔率は72%、通気性は1.3ml/秒、膜厚は130μmであった。耐熱特性テストおよび磨耗特性テストでは良好な結果が確認された。また、得られたセパレータについて、実施例1と同様にして熱重量減を測定したところ、320℃で重量減が開始し、脱水反応が生じていることが確認され、難燃性の効果が良好に得られることが確認された。   The obtained separator of the present invention had a porosity of 72%, an air permeability of 1.3 ml / second, and a film thickness of 130 μm. Good results were confirmed in the heat resistance test and the wear characteristic test. Further, the obtained separator was measured for thermogravimetric loss in the same manner as in Example 1. As a result, it was confirmed that the weight loss started at 320 ° C. and the dehydration reaction occurred, and the flame retardancy effect was good. It was confirmed that

[実施例3]
実施例1で得られたセパレータに、プロピレンカーボネートとエチレンカーボネートが1対1の重量比で混合された溶媒中にLiBFを1M溶解させた電解液を含浸させ、これをコバルト酸リチウム系の正極材と炭素質負極材との間に配置して、直径16mmのボタン型電池を作成した(図1のような電池構成)。この電池を1.0mAの定電流で2.5〜4.2Vの間において10サイクル試験を実施したところ、充放電が良好に再現された。
[Example 3]
The separator obtained in Example 1 was impregnated with an electrolytic solution in which 1M LiBF 4 was dissolved in a solvent in which propylene carbonate and ethylene carbonate were mixed at a weight ratio of 1: 1, and this was impregnated with a lithium cobaltate positive electrode A button-type battery having a diameter of 16 mm was prepared by arranging it between the material and the carbonaceous negative electrode material (battery configuration as shown in FIG. 1). When this battery was subjected to a 10-cycle test at a constant current of 1.0 mA and between 2.5 and 4.2 V, charge and discharge were reproduced well.

[実施例4]
実施例2で得られたセパレータを用いた以外は、実施例3と同様にして電池のサイクル試験を実施した。その結果、実施例2のセパレータを用いた電池でも、充放電が良好に再現された。
[Example 4]
A cycle test of the battery was performed in the same manner as in Example 3 except that the separator obtained in Example 2 was used. As a result, even in the battery using the separator of Example 2, charge / discharge was well reproduced.

[実施例5]
実施例1と同じ操作を繰り返し、スラリーを作製し、ポリプロピレンフィルム上に厚さ200μmとなるように流延させた。これをNMP60重量%と水40重量%とからなる30℃の凝固浴に、10分間浸漬した。続いて、凝固物をポリプロピレンフィルムから剥離した後、この凝固物をNMP50重量%と水50重量%とからなる50℃の延伸浴に5分間浸漬し、浴内において横方向拘束型一軸延伸機を用いて3倍に延伸した。次いで、この延伸膜を水洗し、130℃の熱風乾燥機により30分間乾燥して本発明の非水電解質電池セパレータを得た。
[Example 5]
The same operation as in Example 1 was repeated to produce a slurry, which was cast on a polypropylene film to a thickness of 200 μm. This was immersed in a 30 ° C. coagulation bath composed of 60% by weight of NMP and 40% by weight of water for 10 minutes. Subsequently, after the coagulated product was peeled from the polypropylene film, this coagulated product was immersed in a 50 ° C. stretching bath consisting of 50% by weight of NMP and 50% by weight of water for 5 minutes, and a laterally constrained uniaxial stretching machine was used in the bath. And stretched 3 times. Next, this stretched membrane was washed with water and dried with a hot air dryer at 130 ° C. for 30 minutes to obtain a nonaqueous electrolyte battery separator of the present invention.

得られた本発明のセパレータの空孔率は60%、通気性は2.0ml/秒、膜厚は90μmであった。耐熱特性テストおよび磨耗特性テストでは良好な結果が確認された。また、得られたセパレータについて、実施例1と同様にして熱重量減を測定したところ、220℃でで重量減が開始し、脱水反応が生じていることが確認され、難燃性の効果が良好に得られることが確認された。   The obtained separator of the present invention had a porosity of 60%, an air permeability of 2.0 ml / second, and a film thickness of 90 μm. Good results were confirmed in the heat resistance test and the wear characteristic test. Further, when the obtained separator was measured for thermal weight loss in the same manner as in Example 1, it was confirmed that the weight reduction started at 220 ° C. and a dehydration reaction had occurred, and the flame retardancy was effective. It was confirmed that it can be obtained satisfactorily.

[実施例6]
実施例5で得られたセパレータを用いた以外は、実施例3と同様にして電池のサイクル試験を実施した。その結果、実施例5のセパレータを用いた電池でも、充放電が良好に再現された。
[Example 6]
A cycle test of the battery was performed in the same manner as in Example 3 except that the separator obtained in Example 5 was used. As a result, even in the battery using the separator of Example 5, charge / discharge was well reproduced.

[実施例7]
実施例1で得られたセパレータの片面に、粒径0.6μmのポリエチレン(PE)微粒子の水分散スラリー(商品名:ケミパールW4005三井化学製)を純水にて75体積%に薄めて作製したスラリーを、ローラーで塗布した後、80℃にて乾燥してPE微粒子を5.8g/m2付着させた。かくして得られた複合膜をセパレータとして使用し、実施例3と同様にして電池のサイクル試験を実施したところ、充放電が良好に再現された。また、得られた複合膜について上述の耐熱特性テストを行ったところ、100℃近傍で抵抗値が著しく増加し、良好なシャットダウン特性が得られることが確認され、さらに200℃まで昇温しても抵抗値が著しく低下することはなく良好な耐熱性が得られることが確認された。
[Example 7]
The separator obtained in Example 1 was prepared by diluting an aqueous dispersion slurry (trade name: Chemipearl W4005, Mitsui Chemicals) of polyethylene (PE) fine particles having a particle diameter of 0.6 μm with pure water to 75% by volume on one side of the separator obtained in Example 1. The slurry was applied with a roller and then dried at 80 ° C. to attach 5.8 g / m 2 of PE fine particles. Using the composite membrane thus obtained as a separator and carrying out a cycle test of the battery in the same manner as in Example 3, charge and discharge were reproduced well. Moreover, when the above-mentioned heat resistance test was performed on the obtained composite film, it was confirmed that the resistance value remarkably increased in the vicinity of 100 ° C., and good shutdown characteristics were obtained. It was confirmed that the resistance value was not significantly lowered and good heat resistance was obtained.

[実施例8]
ポリエチレンパウダーとして、Ticona社製のGUR2126(重量平均分子量415万、融点141℃)とGURX143(重量平均分子量56万、融点135℃)を用い、両者を1:9(重量比)となるようにして、ポリエチレン濃度が30重量%となるように流動パラフィン(松村石油研究所社製;スモイルP−350P;沸点480℃)とデカリンの混合溶媒中に溶解させ、ポリエチレン溶液を作製した。このポリエチレン溶液の組成は、ポリエチレン:流動パラフィン:デカリン=30:45:25(重量比)であった。
[Example 8]
As polyethylene powder, GUR2126 (weight average molecular weight 4150,000, melting point 141 ° C.) and GRX143 (weight average molecular weight 560,000, melting point 135 ° C.) manufactured by Ticona are used, and both are set to 1: 9 (weight ratio). The solution was dissolved in a mixed solvent of liquid paraffin (manufactured by Matsumura Oil Research Co., Ltd .; Smoyl P-350P; boiling point 480 ° C.) and decalin so that the polyethylene concentration was 30% by weight to prepare a polyethylene solution. The composition of this polyethylene solution was polyethylene: liquid paraffin: decalin = 30: 45: 25 (weight ratio).

このポリエチレン溶液を148℃でダイから押し出し、水浴中で冷却してゲル状テープ(ベーステープ)を作製した。このベーステープを60℃で8分、95℃で15分乾燥し、次いで、ベーステープを縦延伸、横延伸と逐次2軸延伸にて延伸した。ここで、縦延伸は5.5倍、延伸温度は90℃、横延伸は延伸倍率11.0倍、延伸温度は105℃とした。横延伸の後に125℃で熱固定を行った。次にこれを塩化メチレン浴に浸漬し、流動パラフィンとデカリンを抽出した。その後、50℃で乾燥し、120℃でアニール処理しポリエチレン微多孔膜を得た。得られたポリエチレン微多孔膜の膜厚は12μm、空孔率37%であった。   This polyethylene solution was extruded from a die at 148 ° C. and cooled in a water bath to prepare a gel tape (base tape). The base tape was dried at 60 ° C. for 8 minutes and at 95 ° C. for 15 minutes, and then the base tape was stretched by longitudinal stretching, lateral stretching and sequential biaxial stretching. Here, the longitudinal stretching was 5.5 times, the stretching temperature was 90 ° C., the transverse stretching was 11.0 times the stretching ratio, and the stretching temperature was 105 ° C. After transverse stretching, heat setting was performed at 125 ° C. Next, this was immersed in a methylene chloride bath to extract liquid paraffin and decalin. Then, it dried at 50 degreeC and annealed at 120 degreeC, and obtained the polyethylene microporous film. The obtained polyethylene microporous film had a thickness of 12 μm and a porosity of 37%.

上記で得られたポリエチレン微多孔膜と、実施例1で得られた耐熱性多孔質膜とを重ね合わせて、これをセパレータとし、実施例3と同様にして電池のサイクル試験を実施したところ、充放電が良好に再現された。また、当該セパレータを用いて上述の耐熱特性テストを実施したところ、良好なシャットダウン特性および耐熱性が得られることが確認された。   When the polyethylene microporous membrane obtained above and the heat-resistant porous membrane obtained in Example 1 were overlapped, this was used as a separator, and a battery cycle test was conducted in the same manner as in Example 3. Charge / discharge was reproduced well. Moreover, when the above-mentioned heat resistance test was performed using the separator, it was confirmed that good shutdown characteristics and heat resistance were obtained.

[比較例1]
水酸化アルミニウムフィラーの代わりに、アルミナフィラー(昭和電工株式会社製;A−43M、d50=1.0μm、α=14)を用いたこと以外は実施例1と同様にして多孔膜を得た。得られた多孔膜の空孔率は62%、通気性は1.0ml/秒、膜厚は120μmであった。耐熱特性テストにおける結果も良好であった。また、実施例3と同様にして、当該多孔質膜を用いて電池のサイクル試験を実施したところ、充放電が良好に再現された。しかしながら、磨耗特性テストでは、当該多孔膜の表面が黒くなってしまい、耐熱特性は不良であった。また、実施例1と同様にしてDSC測定したところ、200℃〜400℃の温度範囲において優位な吸熱反応は観察されず、本発明のような難燃性の効果は得られないことが確認された。
[Comparative Example 1]
A porous membrane was obtained in the same manner as in Example 1 except that alumina filler (manufactured by Showa Denko KK; A-43M, d50 = 1.0 μm, α = 14) was used instead of the aluminum hydroxide filler. The resulting porous film had a porosity of 62%, air permeability of 1.0 ml / second, and film thickness of 120 μm. The result in the heat resistance test was also good. Moreover, when the cycle test of the battery was carried out using the porous membrane in the same manner as in Example 3, charge / discharge was reproduced well. However, in the wear characteristic test, the surface of the porous film became black and the heat resistance characteristic was poor. Further, when DSC measurement was performed in the same manner as in Example 1, no dominant endothermic reaction was observed in the temperature range of 200 ° C. to 400 ° C., and it was confirmed that the flame retardancy effect as in the present invention was not obtained. It was.

本発明の無機フィラーを含む耐熱性多孔質膜をセパレータとして用いた、リチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the lithium ion secondary battery which used the heat resistant porous membrane containing the inorganic filler of this invention as a separator. 本発明の無機フィラーと有機フィラーを含む耐熱性多孔質膜をセパレータとして用いた、リチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the lithium ion secondary battery which used the heat resistant porous membrane containing the inorganic filler and organic filler of this invention as a separator. 本発明の無機フィラーを含む耐熱性多孔質膜の片面に有機フィラーを含む層が形成された膜をセパレータとして用いた、リチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of a lithium ion secondary battery using the film | membrane in which the layer containing the organic filler was formed in the single side | surface of the heat resistant porous film containing the inorganic filler of this invention as a separator. 本発明の無機フィラーを含む耐熱性多孔質膜と熱可塑性樹脂からなる多孔質膜とを組み合わせた複合膜をセパレータとして用いた、リチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of a lithium ion secondary battery using the composite film which combined the heat resistant porous film containing the inorganic filler of this invention, and the porous film which consists of thermoplastic resins as a separator. 正極と負極に、それぞれ本発明の無機フィラーを含む耐熱性多孔質膜をセパレータとして積層・接着させた、リチウムイオン二次電池の構成を模式的に示す図である。It is a figure which shows typically the structure of the lithium ion secondary battery which laminated | stacked and adhere | attached the heat resistant porous film containing the inorganic filler of this invention on the positive electrode and the negative electrode as a separator, respectively. 二枚の本発明の無機フィラーを含む耐熱性多孔質膜の間に、サンドイッチ状に熱可塑性樹脂からなる多孔質膜を配置したものをセパレータとした、リチウムイオン二次電池の構成を模式的に示す図である。Schematically the structure of a lithium ion secondary battery using a separator in which a porous film made of a thermoplastic resin is sandwiched between two heat-resistant porous films containing the inorganic filler of the present invention. FIG.

符号の説明Explanation of symbols

1 負極集電シート
2 負極活物質層
3 負極シート
4 正極集電シート
5 正極活物質層
6 正極シート
7 セパレータ
8 有機フィラー
9 有機フィラーを含む層
10 熱可塑性樹脂からなる多孔質膜
DESCRIPTION OF SYMBOLS 1 Negative electrode current collection sheet 2 Negative electrode active material layer 3 Negative electrode sheet 4 Positive electrode current collection sheet 5 Positive electrode active material layer 6 Positive electrode sheet 7 Separator 8 Organic filler 9 Layer containing organic filler 10 Porous film made of thermoplastic resin

Claims (9)

主として耐熱性高分子にて形成された耐熱性多孔質膜からなる非水電解質電池セパレータであって、前記耐熱性多孔質膜に、200℃〜700℃の温度で脱水反応を生じる水酸基を含む金属化合物からなる無機フィラーが含まれていることを特徴とする非水電解質電池セパレータ。   A non-aqueous electrolyte battery separator comprising a heat-resistant porous membrane mainly formed of a heat-resistant polymer, wherein the heat-resistant porous membrane includes a hydroxyl group that causes a dehydration reaction at a temperature of 200 ° C to 700 ° C. A nonaqueous electrolyte battery separator comprising an inorganic filler made of a compound. 前記金属化合物は、水酸化アルミニウム、ベーマイト、ダイスポア、水酸化マグネシウム又はこれらの二種以上の混合物であることを特徴とする請求項1記載の非水電解質電池セパレータ。   The non-aqueous electrolyte battery separator according to claim 1, wherein the metal compound is aluminum hydroxide, boehmite, die spore, magnesium hydroxide, or a mixture of two or more thereof. 前記無機フィラーは、以下の(a)及び(b)式を満足することを特徴とする請求項1又は2記載の非水電解質電池セパレータ。
(a)0.01≦d50≦20(μm)
(b)0<α≦2
(但し、d50は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計50重量%の平均粒子直径(μm)を表す。αは、無機フィラーの均一性を示し、α=(d90−d10)/d50で表される。ここで、d90は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計90重量%の平均粒子直径(μm)を表し、d10は、レーザー回折式における粒度分布において、小さな粒子側から起算した重量累計10重量%の平均粒子直径(μm)を表す。)
The non-aqueous electrolyte battery separator according to claim 1 or 2, wherein the inorganic filler satisfies the following expressions (a) and (b).
(A) 0.01 ≦ d50 ≦ 20 (μm)
(B) 0 <α ≦ 2
(However, d50 represents the average particle diameter (μm) of 50% by weight cumulatively calculated from the small particle side in the particle size distribution in the laser diffraction method. Α indicates the uniformity of the inorganic filler, and α = (d90 −d10) / d50, where d90 represents an average particle diameter (μm) of 90% by weight cumulatively calculated from the small particle side in the particle size distribution in the laser diffraction formula, and d10 represents the laser diffraction (In the particle size distribution in the equation, the average particle diameter (μm) of 10% by weight of cumulative weight calculated from the small particle side is represented.)
前記耐熱性多孔質膜において、前記無機フィラーは重量分率で50重量%以上95重量%以下含まれていることを特徴とする請求項1〜3のいずれか1項記載の非水電解質電池セパレータ。   4. The nonaqueous electrolyte battery separator according to claim 1, wherein the inorganic filler is contained in the heat resistant porous membrane in a weight fraction of 50 wt% or more and 95 wt% or less. . 前記耐熱性高分子が、芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリエーテルスルホン、ポリスルホン、ポリエーテルケトン、ポリエーテルイミドからなる群から選ばれる1種又は2種以上の混合物であることを特徴とする請求項1〜4のいずれか1項記載の非水電解質電池セパレータ。   The heat-resistant polymer is one or a mixture of two or more selected from the group consisting of aromatic polyamide, polyimide, polyamideimide, polyethersulfone, polysulfone, polyetherketone and polyetherimide. The nonaqueous electrolyte battery separator according to any one of claims 1 to 4. 前記耐熱性多孔質膜に、熱可塑性樹脂からなる有機フィラーが含まれていることを特徴とする請求項1〜5のいずれか1項記載の非水電解質電池セパレータ。   The non-aqueous electrolyte battery separator according to claim 1, wherein the heat-resistant porous membrane contains an organic filler made of a thermoplastic resin. 前記耐熱性多孔質膜に、熱可塑性樹脂からなる多孔質膜が組み合わされていることを特徴とする請求項1〜5のいずれか1項記載の非水電解質電池セパレータ。   The nonaqueous electrolyte battery separator according to claim 1, wherein a porous film made of a thermoplastic resin is combined with the heat resistant porous film. 主として耐熱性高分子にて形成された耐熱性多孔質膜からなる非水電解質電池セパレータの製造方法であって、
(i)前記耐熱性高分子と、水溶性有機溶剤と、200℃〜700℃の温度で脱水反応を生じる水酸基を含む金属化合物からなる無機フィラーとを含むスラリーをベースフィルム上に塗工する工程と、
(ii)塗工されたベースフィルムを、水又は水と前記有機溶剤の混合液からなる凝固液中に浸漬し、前記耐熱性高分子を凝固させ耐熱性多孔質膜を形成させる工程と、
(iii)ベースフィルム上に形成された耐熱性多孔質膜を水洗及び乾燥する工程と、
(iv)乾燥された耐熱性多孔質膜をベースフィルムから剥離する工程と、
を実施することを特徴とする非水電解質電池セパレータの製造方法。
A method for producing a non-aqueous electrolyte battery separator comprising a heat-resistant porous film mainly formed of a heat-resistant polymer,
(I) The process of apply | coating the slurry containing the said heat resistant polymer, the water-soluble organic solvent, and the inorganic filler which consists of a metal compound containing the hydroxyl group which produces a dehydration reaction at the temperature of 200 to 700 degreeC on a base film. When,
(Ii) immersing the coated base film in a coagulation liquid composed of water or a mixture of water and the organic solvent, coagulating the heat resistant polymer to form a heat resistant porous film;
(Iii) washing and drying the heat-resistant porous membrane formed on the base film;
(Iv) peeling the dried heat-resistant porous membrane from the base film;
The manufacturing method of the nonaqueous electrolyte battery separator characterized by implementing.
リチウムのドープおよび脱ドープにより起電力を得る非水電解質二次電池であって、請求項1〜7のいずれか1項記載の非水電解質電池セパレータを用いたことを特徴とする非水電解質二次電池。   A nonaqueous electrolyte secondary battery for obtaining an electromotive force by doping and dedoping of lithium, wherein the nonaqueous electrolyte battery separator according to any one of claims 1 to 7 is used. Next battery.
JP2008222522A 2008-08-29 2008-08-29 Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator Pending JP2010056036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008222522A JP2010056036A (en) 2008-08-29 2008-08-29 Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008222522A JP2010056036A (en) 2008-08-29 2008-08-29 Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator

Publications (1)

Publication Number Publication Date
JP2010056036A true JP2010056036A (en) 2010-03-11

Family

ID=42071711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008222522A Pending JP2010056036A (en) 2008-08-29 2008-08-29 Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator

Country Status (1)

Country Link
JP (1) JP2010056036A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010073528A (en) * 2008-09-19 2010-04-02 Panasonic Corp Nonaqueous electrolyte battery
JP2011233519A (en) * 2010-04-09 2011-11-17 Kawaken Fine Chemicals Co Ltd Separator for nonaqueous electrolyte battery, and lithium ion secondary battery
JP2013037778A (en) * 2011-08-03 2013-02-21 Teijin Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
WO2013108511A1 (en) * 2012-01-19 2013-07-25 ソニー株式会社 Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
JP2013149434A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013535773A (en) * 2010-07-19 2013-09-12 オプトドット コーポレイション Electrochemical battery separator
JP2013211160A (en) * 2012-03-30 2013-10-10 Tdk Corp Cell separator and cell using the same
CN103430349A (en) * 2011-03-16 2013-12-04 丰田自动车株式会社 Nonaqueous electrolyte secondary battery and vehicle
JP2014103124A (en) * 2014-01-23 2014-06-05 Hitachi Maxell Ltd Lithium ion secondary battery
KR20140116415A (en) * 2012-01-19 2014-10-02 실 게엠베하 Separator comprising a porous layer and method for producing said separator
JP2016517161A (en) * 2013-04-29 2016-06-09 マディコ インコーポレイテッド Nanoporous composite separator with enhanced thermal conductivity
JP2016126853A (en) * 2014-12-26 2016-07-11 積水化学工業株式会社 Separator and electrochemical device
JP2019003951A (en) * 2018-09-26 2019-01-10 積水化学工業株式会社 Separator and electrochemical device
JP2019114502A (en) * 2017-12-26 2019-07-11 株式会社日本触媒 Electrochemical element separator
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
CN111834583A (en) * 2019-04-18 2020-10-27 住友化学株式会社 System and method for manufacturing battery separator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019906A1 (en) * 1999-09-13 2001-03-22 Teijin Limited Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
JP2006269359A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP2007157723A (en) * 2005-12-08 2007-06-21 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2007321302A (en) * 2006-06-01 2007-12-13 Teijin Techno Products Ltd Flame-retardant wholly aromatic polyamide fiber
JP2008004441A (en) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery
JP2008080536A (en) * 2006-09-26 2008-04-10 Sumitomo Chemical Co Ltd Laminated porous film and separator for nonaqueous electrolyte secondary battery
WO2008062727A1 (en) * 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
JP2008179903A (en) * 2007-01-23 2008-08-07 Hitachi Maxell Ltd Porous membrane, separator for electrochemical element, method for producing porous membrane, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001019906A1 (en) * 1999-09-13 2001-03-22 Teijin Limited Polymethaphenylene isophthalamide based polymer porous film, method for producing the same and separator for cell
JP2006269359A (en) * 2005-03-25 2006-10-05 Mitsubishi Chemicals Corp Separator for nonaqueous electrolyte secondary cell and nonaqueous electrolyte secondary cell
JP2007157723A (en) * 2005-12-08 2007-06-21 Hitachi Maxell Ltd Separator for electrochemical element, and electrochemical element
JP2007321302A (en) * 2006-06-01 2007-12-13 Teijin Techno Products Ltd Flame-retardant wholly aromatic polyamide fiber
JP2008004441A (en) * 2006-06-23 2008-01-10 Hitachi Maxell Ltd Lithium secondary battery, separator for lithium secondary battery, electrode for lithium secondary battery, nonaqueous electrolyte for lithium secondary battery, and armor for lithium secondary battery
JP2008080536A (en) * 2006-09-26 2008-04-10 Sumitomo Chemical Co Ltd Laminated porous film and separator for nonaqueous electrolyte secondary battery
WO2008062727A1 (en) * 2006-11-20 2008-05-29 Teijin Limited Separator for nonaqueous secondary battery, process for producing the same, and nonaqueous secondary battery
JP2008179903A (en) * 2007-01-23 2008-08-07 Hitachi Maxell Ltd Porous membrane, separator for electrochemical element, method for producing porous membrane, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10505168B2 (en) 2006-02-15 2019-12-10 Optodot Corporation Separators for electrochemical cells
US11264676B2 (en) 2006-02-15 2022-03-01 Optodot Corporation Separators for electrochemical cells
US11121432B2 (en) 2006-02-15 2021-09-14 Optodot Corporation Separators for electrochemical cells
US11522252B2 (en) 2006-02-15 2022-12-06 Lg Energy Solution, Ltd. Separators for electrochemical cells
US10797288B2 (en) 2006-02-15 2020-10-06 Optodot Corporation Separators for electrochemical cells
JP2010073528A (en) * 2008-09-19 2010-04-02 Panasonic Corp Nonaqueous electrolyte battery
JP2011233519A (en) * 2010-04-09 2011-11-17 Kawaken Fine Chemicals Co Ltd Separator for nonaqueous electrolyte battery, and lithium ion secondary battery
JP2017004961A (en) * 2010-07-19 2017-01-05 オプトドット コーポレイション Separator for electrochemical battery
US11728544B2 (en) 2010-07-19 2023-08-15 Lg Energy Solution, Ltd. Separators for electrochemical cells
JP2013535773A (en) * 2010-07-19 2013-09-12 オプトドット コーポレイション Electrochemical battery separator
US10833307B2 (en) 2010-07-19 2020-11-10 Optodot Corporation Separators for electrochemical cells
CN106784556A (en) * 2010-07-19 2017-05-31 奥普图多特公司 For the barrier film of electrochemical cell
KR101522485B1 (en) * 2011-03-16 2015-05-21 도요타지도샤가부시키가이샤 Nonaqueous electrolyte secondary battery and vehicle
CN103430349A (en) * 2011-03-16 2013-12-04 丰田自动车株式会社 Nonaqueous electrolyte secondary battery and vehicle
US9209502B2 (en) 2011-03-16 2015-12-08 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and vehicle
JP2013037778A (en) * 2011-08-03 2013-02-21 Teijin Ltd Separator for nonaqueous electrolyte battery and nonaqueous electrolyte battery
JP2013149434A (en) * 2012-01-18 2013-08-01 Toyota Motor Corp Separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US10263235B2 (en) 2012-01-19 2019-04-16 Murata Manufacturing Co., Ltd. Separator, nonaqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2015504234A (en) * 2012-01-19 2015-02-05 ジール ゲーエムベーハーSihl GmbH Separator comprising a porous layer and method for producing said separator
WO2013108511A1 (en) * 2012-01-19 2013-07-25 ソニー株式会社 Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, electricity storage device, and power system
KR20140116415A (en) * 2012-01-19 2014-10-02 실 게엠베하 Separator comprising a porous layer and method for producing said separator
CN104115306A (en) * 2012-01-19 2014-10-22 Sihl股份有限公司 Separator comprising a porous layer and method for producing said separator
KR102014566B1 (en) * 2012-01-19 2019-08-26 실 게엠베하 Separator comprising a porous layer and method for producing said separator
JPWO2013108511A1 (en) * 2012-01-19 2015-05-11 ソニー株式会社 Separator, non-aqueous electrolyte battery, battery pack, electronic device, electric vehicle, power storage device, and power system
JP2013211160A (en) * 2012-03-30 2013-10-10 Tdk Corp Cell separator and cell using the same
US10879513B2 (en) 2013-04-29 2020-12-29 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
US11217859B2 (en) 2013-04-29 2022-01-04 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
JP2023080287A (en) * 2013-04-29 2023-06-08 オプトドット コーポレイション Nano-porous composite separator having enhanced heat conductivity
JP7267630B2 (en) 2013-04-29 2023-05-02 オプトドット コーポレイション Nanoporous Composite Separator with Enhanced Thermal Conductivity
JP2021093379A (en) * 2013-04-29 2021-06-17 オプトドット コーポレイションOptodot Corporation Nano-porous composite separator having enhanced heat conductivity
JP2021122026A (en) * 2013-04-29 2021-08-26 オプトドット コーポレイションOptodot Corporation Nano-porous composite separator with increased thermal conductivity
JP2016517161A (en) * 2013-04-29 2016-06-09 マディコ インコーポレイテッド Nanoporous composite separator with enhanced thermal conductivity
JP7126281B2 (en) 2013-04-29 2022-08-26 オプトドット コーポレイション Nanoporous Composite Separator with Enhanced Thermal Conductivity
US11387521B2 (en) 2013-04-29 2022-07-12 Optodot Corporation Nanoporous composite separators with increased thermal conductivity
JP2014103124A (en) * 2014-01-23 2014-06-05 Hitachi Maxell Ltd Lithium ion secondary battery
JP2016126853A (en) * 2014-12-26 2016-07-11 積水化学工業株式会社 Separator and electrochemical device
US10381623B2 (en) 2015-07-09 2019-08-13 Optodot Corporation Nanoporous separators for batteries and related manufacturing methods
JP2019114502A (en) * 2017-12-26 2019-07-11 株式会社日本触媒 Electrochemical element separator
JP2019003951A (en) * 2018-09-26 2019-01-10 積水化学工業株式会社 Separator and electrochemical device
CN111834583A (en) * 2019-04-18 2020-10-27 住友化学株式会社 System and method for manufacturing battery separator

Similar Documents

Publication Publication Date Title
JP2010056036A (en) Non-aqueous electrolyte battery separator, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the separator
US10347892B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5778378B2 (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte secondary battery
JP4364940B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP4685974B2 (en) Non-aqueous secondary battery porous membrane, non-aqueous secondary battery separator, non-aqueous secondary battery adsorbent and non-aqueous secondary battery
TWI415321B (en) Non-aqueous battery separator, manufacturing method thereof and non-water storage battery
JP5308118B2 (en) Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
JP5214999B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2010123383A (en) Separator for nonaqueous secondary battery, method of manufacturing the same, and nonaqueous secondary battery
JP2010092718A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010176936A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2010212046A (en) Nonaqueous secondary battery and adsorbent for nonaqueous secondary battery
JP2010056037A (en) Electrode sheet for non-aqueous electrolyte battery,method of manufacturing the same, and non-aqueous electrolyte secondary battery using the sheet
JP2009205959A (en) Manufacturing method of nonaqueous electrolyte battery separator
JP5215000B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2011028947A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2011210435A (en) Separator for nonaqueous secondary battery
JP2010055942A (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2010092717A (en) Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5214998B2 (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the same
JP2009205957A (en) Nonaqueous electrolyte battery separator, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110624

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110706

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924