JP4583847B2 - 機能デバイスの欠陥を検出する超音波探傷方法および設備 - Google Patents

機能デバイスの欠陥を検出する超音波探傷方法および設備 Download PDF

Info

Publication number
JP4583847B2
JP4583847B2 JP2004259652A JP2004259652A JP4583847B2 JP 4583847 B2 JP4583847 B2 JP 4583847B2 JP 2004259652 A JP2004259652 A JP 2004259652A JP 2004259652 A JP2004259652 A JP 2004259652A JP 4583847 B2 JP4583847 B2 JP 4583847B2
Authority
JP
Japan
Prior art keywords
probe
subject
ultrasonic
flaw detection
detection method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004259652A
Other languages
English (en)
Other versions
JP2006078208A (ja
Inventor
郁雄 中澤
公一 仲谷
禅 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
U Tec Co Ltd
Original Assignee
U Tec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by U Tec Co Ltd filed Critical U Tec Co Ltd
Priority to JP2004259652A priority Critical patent/JP4583847B2/ja
Publication of JP2006078208A publication Critical patent/JP2006078208A/ja
Application granted granted Critical
Publication of JP4583847B2 publication Critical patent/JP4583847B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、被検体である機能デバイスの欠陥を検出する超音波探傷方法並びに当該方法を実施するための超音波探傷設備に関する。
従来から、被検体の欠陥を検出する非破壊検出法が知られており、太陽電池セルや半導体素子のような薄板状機能デバイスや、薄膜金属板などを、検出の対象としている(以下の特許文献1〜3、参照)。マイクロクラックのような欠陥が太陽電池セルに存在すれば、起電力の低下という問題が生じうる。
特開2000−65759号公報 特開2003−343992号公報 特開2001−324484号公報
特許文献1には、被検体に光を照射して反射光を監視し、暗い像として映し出されるクラックを検知する方法が開示されている。しかし、この方法では、被検体の表面のクラックだけしか検出できない。また、特許文献2は、太陽電池セルのマイクロクラックを検出する方法を開示し、この方法によれば、太陽電池セルを機械的に湾曲させてマイクロクラックから発生するアコースティックエミッションと呼ばれる特有の振動波を発生させ、この特有の振動数を超音波センサによって検出している。しかし、特許文献2の方法は、太陽電池セルを機械的負荷によって湾曲させなければならず、曲げ強度の低い薄膜の太陽電池セルは、湾曲させようとすると機械的負荷によって破断しやすいため、この検出方法は実質的に適用することができない。
他方、薄板状金属板の欠陥の検出には、水中で超音波により非接触で検出する超音波探傷方法が知られている。超音波探傷方法は、超音波を送受信する探触子によって、被検体に超音波を投射して被検体からの反射波を受信波として受信し、この受信波の波形データを解析することで、被検体の欠陥を検出している。被検体である薄板金属板は、面積がより大きい表面/裏面と、面積がより小さい端面とを有し、一般に、超音波探傷方法は、探触子をこのような表面/裏面に沿って移動させて走査するCスコープ法/Bスコープ法や、探触子を表面/裏面上方に固定して超音波の送受信を行うAスコープ法に分類される。
特許文献3は、Aスコープ法に属するアレイ型探触子を用いる方法を開示する。
この特許文献開示の技術によれば、超音波を送受信する複数の探触子を直線上に並べて配置し、電子走査によって、被検体の欠陥を検出している。しかしながら、特許文献開示の探傷方法は、アレイ型探触子を用いているため、必然的に多数の探触子が必要である。さらに、特許文献開示の探傷方法は、その図1に示すように、面積がより大きい表面に沿って探触子を配置しているため、探触子の配列方向と直角な方向に探触子を移動させる走査が必要であり、欠陥検出に必要な処理時間がかかり過ぎるという、問題がある。特に、被検体が太陽電池セルや半導体素子のような大量生産される製品である場合、長時間の検出処理時間は、製品の生産能力の低下をもたらすため、かかる問題は、より深刻である。
なお、薄板状被検体の超音波探傷方法に関し、面積がより小さい端面に超音波を投射する方法は、本発明の出願時点では、見当たらない。
本発明は、より少ない探触子を用いて薄板状被検体の欠陥をより短時間に検出できる超音波探傷方法を提供することを課題とする。
本発明者らは、前記課題を解決すべく鋭意検討した結果、従来技術における被検体・表面へのAスコープ超音波投射に代えて、固定した探触子による被検体・端面への超音波投射を採用することにより、前記課題を解決できることを見出し、この知見に基づき、本発明が完成するに至ったのである。
すなわち、本発明は、被検体の欠陥を検出する超音波探傷方法であって、
両側に端面を有する薄板状被検体を液体中に静止状態に保持し、
超音波を所定の距離に焦点を結ぶように発射する焦点型、且つ、自身が投射した超音波の反射波を受信する送受信一体型の固定した探触子によって、前記薄板状被検体の1つの前記端面から前記被検体の内部に広がるように超音波を投射して、前記被検体の他の前記端面、不連続点および欠陥が反射した反射波を受信波として受信し、
前記受信波の波形データと、基準となる波形データとを比較して、前記被検体の欠陥の有無を判定することを特徴とする超音波探傷方法を提供する。
好適には、探触子を複数用い、複数の探触子は、超音波を前記被検体の対向する各端面に投射しうるように保持される。また好適には、複数の探触子は、長手方向の軸を有し、この探触子は、それらの軸が一致しないような互い違いの位置に配置される。また好適には、探触子は、前記焦点が前記被検体の内部に位置するように保持される。
請求項1に記載の超音波探傷方法を実施するための超音波探傷設備であって、
超音波を所定の距離に焦点を結ぶように発射する焦点型、且つ、自身が投射した超音波の反射波を受信する送受信一体型の探触子と、
被検体の端面に前記探触子が発した超音波が投射されるように、前記被検体を液体中に保持するための保持装置と、
前記保持装置を制御するための保持装置制御装置と、
前記探触子を制御するための探触子制御装置と、
前記保持装置制御装置および前記探触子制御装置を制御するための探傷システム制御装置とを含んでなる超音波探傷設備を提供する。
本発明の超音波探傷方法によれば、本発明の前記構成要件、特に、面積がより大きい表面/裏面への超音波投射に代えて、面積がより小さい端面への超音波投射を採用することにより、アレイ型探触子を用いる従来技術の探傷方法に比し、使用すべき探触子の数を大幅に減少させることができかつ表面/裏面に垂直な方向への探触子移動を不要としたことにより検出処理時間を大幅に短縮することができるという、技術的効果を奏することができる。
本発明の超音波探傷方法は、面積がより小さい端面に対し、超音波を投射しているため、被検体の1つの端面から入射した超音波を、反対側の端面に向かって広がるように伝播させることができ、その結果、被検体の内部の広い範囲に超音波を伝播させることができる。
前記したように、本発明の方法は、被検体の欠陥を検出する超音波探傷方法である。
欠陥は、被検体の内部欠陥だけでなく、表面欠陥も含まれる。欠陥には、被検体の本来的な機能を損なうような全ての欠陥が包含され、例えば、被検体が太陽電池セルの場合、太陽電池セルの機能、すなわち起電力を損なうような、全ての欠陥が包含される。また、被検体の欠陥は、設計上意図しない構造的な不連続点、例えば、クラック、マイクロクラックなども含まれ、したがって、例えば被検体が太陽電池セルである場合、剥離状態の電極なども、本発明の欠陥に包含される。さらに、被検体が液晶である場合、液晶中の気泡、液晶を封入するガラス板のクラック、剥離状態の電気回路なども、本発明の欠陥に包含される。
また、本発明の方法は、少なくとも、次のような構成要件を含んでなる。
(A)端面を有する薄板状被検体を液体中に保持すること。
(B)固定した探触子によって前記端面に超音波を投射して、前記被検体からの反射波を受信波として受信すること。
(C)前記受信波の波形データと、基準となる波形データとを比較して、前記被検体の欠陥の有無を判定すること。
(A)端面を有する薄板状被検体を液体中に保持すること
本発明の探傷方法の被検体は、端面を有する薄板状の形態である。好適には、被検体は、より大きい面積の表面/裏面と、より小さい面積の端面とを有することができる。
薄板状被検体は、好適には系外からのエネルギーによって自律的に機能するような機能デバイス、例えばトランジスター、ダイオード系電気素子、ICチップ、LSI等を挙げることができる。より具体的には、太陽電池セル、太陽電池モジュール、太陽電池パネル等、液晶、液晶モジュール、液晶パネルを例示することができる。特に好適には、被検体は、液晶、液晶モジュール、液晶パネル、太陽電池セル、太陽電池モジュール、太陽電池パネルである。
被検体を液体中に保持することにより、超音波の減衰を防止することができる。液体として、水道水、純水、グリセリンなどを使用できるが、好適には水道水、より好適には純水を使用することができる。
端面の寸法(被検体の厚み)は、好適には最大で2mmであり、より好適には1,000μm以下、特に好適には300μm以下、例えば、200μm以下である。
(B)固定した探触子によって前記端面に超音波を投射して、前記被検体からの反射波を受信波として受信すること
本発明の探傷方法に使用される探触子は、固定されていることが必須である。本発明によれば、探触子が固定されているため、走査を行うBスコープ法やCスコープ法に比し、解析すべきデータがより少ない。このため、解析に要する時間がより少なく、よって、検出処理時間を大幅に短縮することができる。
探触子は、送信用探触子と受信用探触子とを物理的に分離させた形態であってもよいが、好適には送受信の機能を有する一体型の送受信用探触子を使用することができる。また、探触子は、所定の距離で焦点を結ぶ焦点型探触子が好適である。この焦点型探触子は、強力な超音波パルスを発射することができる。また、一体型超送受信用音波探触子は、単数または複数用いることができる。
<超音波の被検体端面への投射>
超音波の被検体端面への投射は、例えば、次のように行うことができる。
図1は、2つの送受信用焦点型探触子を用いた実施形態を示し、第1探触子15および第2探触子17から投射された超音波パルスが正方形被検体(例えば、太陽電池セル)13内部を伝播する状態を簡略化して示す。焦点型探触子15,17から、端面13a,13bに発射した超音波は、図示するように、被検体13の僅か内側に焦点を結び、焦点位置から広がるように伝播していく。ただし、実際の超音波の伝播は、このように単純な境界を有しておらず、探触子15,17の長手軸となす角度が大きくなると、伝わる超音波振動は弱くなり、また焦点からの距離が遠くなれば徐々に弱くなってゆく。よって、ここに図示した超音波パルスの伝播範囲は、強い超音波振動が伝播する範囲の概略を示すものであり、示された範囲外には超音波パルスが伝播しないという意味ではない。この実施形態によれば、被検体13の端面から超音波パルスを入射して、2つの探触子15、17だけで、被検体13の実質的に全域に強い超音波パルスを伝播させることができる。好適には、2つの探触子15,17は、好適には端面の厚み方向の略中央に配置し、それらの軸が被検体表面と平行となるように配置される。
なお、この実施形態では、長手方向の軸を有する探触子15,17は、当該軸および被検体平面を含む平面において、それらの軸が一致しないような互い違いの位置に配置されているため、それぞれの探触子15,17から超音波が有効に伝播する範囲の重複が少なく、より少ない数の探触子で被検体全体の検出を行うことができる。
図2は、3つの超音波探触子を用いた実施形態を示す。この実施形態では、長手方向端面13a,13bを有する長方形板状の被検体13を用い、探触子15,17に加えて、第3探触子25を配置している。この実施形態では、長手方向端面13a,13b付近に超音波探触子を配置することができる。
図3は、2つの探触子と、長方形被検体とを用いた実施形態を示す。この実施形態では、長手方向と略垂直方向の端面13a,13b付近に超音波探触子15,17を配置することができる。
図4は、2つの探触子と、正方形被検体を用い、1つの端面13a付近に探触子15,17を配置した実施形態を示す。
<受信波の受信>
本発明によれば、前記被検体からの反射波を受信波として受信する。この受信状態は、例えば、図5に示すように行われる。
第1探触子15から投射した超音波は、先ず超音波が投射された第1端面13aで一部が反射され、反射した超音波は液体中を伝播して第1探触子15に到達する。さらに、被検体13の内部に入射した超音波は、反対側の第2端面13bで反射され、その一部が第1端面13aでの前記反射波に遅れて第1探触子15に到達して受信される。
ここで、図示するように超音波の進路上のA点に、構造的な不連続点、すなわち設計上意図しない欠陥(例えば、マイクロクラック)または設計上意図した不連続点(例えば、被検体・太陽電池セルの電極)が存在した場合、超音波は、A点で反射、散乱して、その一部が第1探触子15に到達する。このA点からの反射波の受信は、第1探触子15において、時間的に、探触子近傍・端面13aの反射波の受信と、探触子遠位・端面13bの反射波の受信との間になされる。マイクロクラックなどの欠陥が存在すれば、第1探触子15が受信した反射波は、被検体13が良品であるときには受信し得ないA点固有のタイミングの振動を包含していることになる。
なお、超音波探触子を複数用いる場合、1つの探触子による超音波の送受信が終了して波形データを取り込んだのち、他の探触子による送受信を行うことが、好適である。
(C)前記受信波の波形データと、基準となる波形データとを比較して、前記被検体の欠陥の有無を検出すること
基準となる波形データ(マスターデータ)として、時系列データ(例えば、探触子が受信したアナログデータをA/D変換したデジタルデータ)、時系列データを高速フーリエ変換(FFT)処理したFFTデータ、FFTデータの実数部を抽出したデータ、FFTの虚数部を抽出したデータを用いることができる。
なお、FFTデータは、位相が90度異なる実数部と虚数部との和として示される。
本発明の第2の態様である超音波探傷設備は、少なくとも、次の構成要素を有することができる。
探触子と、
被検体を液体中に保持するための保持装置と、
前記保持装置を制御するための保持装置制御装置と、
前記探触子を制御するための探触子制御装置と、
前記保持装置制御装置および前記探触子制御装置を制御するための探傷システム制御装置
次に、本発明の好適な実施形態について、超音波探傷設備、次いで超音波探傷方法を説明する。
図6に示すように、本発明の超音波探傷設備1は、探触子15,17と、保持装置6と、保持装置制御装置21と、探触子制御装置19と、探傷システム制御装置20とを備えることができる。
探触子15,17は、探触子制御装置19に接続されている。探触子制御装置19は、1組の入出力を制御でき、入出力を第1探触子15または第2探触子17のいずれかに切り換えて接続し、電気信号の出力によって探触子15,17において超音波を発生させて当該超音波を被検体13に発射でき、かつ探触子15,17から反射波の波形信号を受け取ることができる。探傷システム制御装置20は、探触子制御装置19に動作タイミングを指示でき、かつ探触子制御装置19から、反射波の波形データを受信することができる。また探傷システム制御装置20は、保持装置制御装置21を介して、保持装置6の動作を制御する。すなわち、探傷システム制御装置20は、吸引パッド18による被検体13の吸着と解放、水平シリンダ7による保持プレート12の水平移動および垂直シリンダ9による保持プレート12の垂直移動を保持装置制御装置21を介して制御する。また、探傷システム制御装置20は、記憶装置22を有しており、探触子制御装置19および保持装置制御装置21の制御手順を記憶し、欠陥のない被検体13の理想的な波形データであるマスターデータを記憶している。さらに、探傷システム制御装置20は、ユーザが運転指示を行うための入力装置23およびユーザに検出結果など知らせる表示装置24も有している。
次に、図6に示した、被検体保持用の保持装置6の詳細を、図7を参照しながら、更に詳しく説明する。
被検体13は、約120mm角で厚み約200μmの太陽電池セルである。保持装置6は、台状のベース部2の上に門型に組んだ外フレーム3と、外フレーム3の中に門型に組んだ内フレーム4とを有し、ベース部2の上面には水槽5が載置されている。外フレーム3の上部には保持具6’が設けられており、保持具6’は、外フレーム3に水平シリンダ7が架け渡されている。水平スライダ8は、水平シリンダ7により水平移動し、水平スライダ8に対し、当該水平スライダ8と略垂直となるように垂直シリンダ9が取り付けられている。この垂直シリンダ9によって垂直方向に移動させられる垂直スライダ10からアーム11が下方に延在し、アーム11の下端に取り付けた保持プレート12で太陽電池セル13を保持することができる。内フレーム4には、水槽5内の水中において垂直方向に延在する第1支持具14が取り付けられ、第1支持具14の先端に第1探触子15が固定されており、同様に水中に延在する第2支持具16に第2探触子17が固定されている。第1探触子15と第2探触子17とは、水中において水平方向逆向きに対向して設けられているが、第2探触子17は、第1探触子15より深い位置に固定されており、第1探触子15と、第2探触子17とは、それらの軸が相互に一致しないように互い違いに固定されている。
次に、図7に示した被検体13の保持状態を、図8を参照しながら、更に詳しく説明する。
図示するように、図8に示すように、保持プレート12の四隅には、吸引パッド18が取り付けられ、各吸引パッド18で被検体13を吸着して第1探触子15と、第2探触子17との間に垂直に直立して保持する。第1探触子15は、被検体13の垂直第1端面13aの上端から約40mm下方の位置に当該第1端面13aと正対するように支持され、第2探触子17は、上記第1端面13aと反対側の垂直第2端面13bの下端から約40mm上方の位置に当該第2端面13bと正対するように支持されている。
次に、本発明の探傷方法の好適な実施形態を、図9を参照しながら、説明する。
先ず、探傷システム制御装置20を用い、保持装置6で被検体13を吸着し、水槽5の中の第1探触子15と第2探触子17との間に被検体13を移動させて保持させる。そして、図9に示す流れに従って被検体13が良品であるか欠陥のある不良品であるかを判定する探傷検出を行う。先ず、ステップS1では、探傷システム制御装置20を用い、第1探触子15に超音波を発射させて反射波の波形データを採取する。次に、ステップS2では、採取した波形データを、良品の反射波の波形データである時系列マスターデータ(記憶装置22に記憶済み)と比較し、被検体13の欠陥の有無を判定し、その結果を記憶装置22に記憶させる。さらに、ステップS3において、ステップS1で採取した波形データを高速フーリエ変換(FFT)処理してFFTデータを得、このFFTデータを、良品の反射波の波形データである周波数系列マスターデータ(記憶装置22に記憶済み)と比較して被検体13の欠陥の有無を判定し、その結果を記憶装置22に記憶させる。
次に、第2探触子17を用いて、前記したS1〜S3と同じ処理を反復する(ステップS4〜S6、参照)。
ステップ6ののち、ステップS7でステップS2、S3、S5およびS6の各判定結果を確認し、すべての判定結果が良品であれば、ステップS8でその被検体13は良品であるとの最終判定を行い、いずれか1つでも不良品であるという判定結果があれば、ステップS9でその被検体13は欠陥を有する不良品であると最終判定を行う。以上のように最終判定した後、保持装置6は、被検体13を水槽から取り出し、所定のハンドリング装置(図示せず)に受け渡す。
次に、探触子15,17によるデータ採取工程(図9のステップS1/ステップS4)を、図10を参照しながら、更に詳しく説明する。
図示するように、ステップS11において、探傷システム制御装置20によって、探触子制御装置19に対してトリガ信号を与える。すると、探触子制御装置19は、探触子15,17において超音波を発生させて被検体13に超音波を投射する。ステップS12において、探触子15,17は、被検体13に反射した超音波を受信してアナログ波形の電気信号に変換して探触子制御装置19に出力する。そして、ステップS13において、探触子制御装置19は、受信したアナログ波形信号からハイパスフィルタによって低周波域の信号を除去する。そして、ステップS14において、A/D変換して、デジタル波形データに変換して、探傷システム制御装置20に対して出力する。このようにして、探傷システム制御装置20は、必要に応じて、第1探触子15または第2探触子17による波形データを採取することができる。
次に、波形データの時系列比較判定(図9のステップS2/ステップS5)を、図11を参照しながら、更に詳細に説明する。
図示するように、ステップS21において、採取した各時刻における被検体・反射波の時系列波形データを絶対値に変換する。そして、ステップS22において、被検体・時系列波形データと、良品の波形データを絶対値に変換した時系列マスターデータ(記憶装置22に記憶済み)との差を、各時刻について求め、時系列の差分データを得る。ステップS23ですべての差分を合計し、ステップS24で差分の合計値が予め設定した上限値に満たない場合は、ステップS25で被検体13を良品と判断して記憶装置22に良品のフラグを立てる。ステップS24で差分の合計値が上限値以上である場合は、ステップS26で被検体13を不良品と判断して記憶装置22に不良品のフラグを立てる。
同様に、波形データのフーリエ変換判定(周波数系列判定)(図9のステップS3/ステップS6)を、図12を参照しながら、更に詳しく説明する。
図示するように、ステップS31において、採取した時系列波形データを高速フーリエ変換処理して周波数成分ごとの振幅を算出する。そして、ステップS32で、被検体13から得た反射波の各周波数成分の振幅と、良品の波形データを高速フーリエ変換した各周波数成分の振幅であるフーリエ変換マスターデータ(記憶装置22に記憶済み)との差分を、周波数ごとに算出する。ステップS33ですべての周波数成分の差分を合計し、ステップS34で差分の合計値が予め設定した上限値に満たない場合は、ステップS35で被検体13を良品と判断して記憶装置22に良品のフラグを立てる。ステップS34で差分の合計値が上限値以上である場合は、ステップS36で被検体13を不良品と判断して記憶装置22に不良品のフラグを立てる。
なお、フーリエ変換データは、周波数ごとに分解したデータであるため、時系列判定では時間的に重複して判定できないような受信波データであっても、有効に分析することができる。
以上のように、本発明の超音波探傷方法の好適な実施形態によれば、時系列比較判定およびフーリエ変換判定を、コンピュータ技術により瞬時に行うことができ、これにより、被検体13の欠陥の有無を非常に短時間で判定することができる。
本発明の超音波探傷方法は、太陽電池セルや液晶パネルなどを含め、薄板状の被検体の欠陥を検出するのに適用することができる。
本発明の方法に従い2つの探触子を用いた場合の超音波の伝播状態を示す模式図 本発明の方法に従い3つの探触子を用いた場合の超音波の伝播状態を示す模式図 本発明の方法に従い2つの探触子を用いた場合の超音波の伝播状態を示す模式図 本発明の方法に従い2つの探触子を用いた場合の超音波の伝播状態を示す模式図 探触子による超音波の受信状態を示す模式図 本発明の超音波探傷設備の構成を示すブロック図 図5の超音波探傷設備の保持装置の構成を示す正面図 被検体の保持状態を示す斜視図 本発明の超音波探傷方法の好適な実施形態を示すフローチャート 探触子によるデータ採取の工程を詳細に示すフローチャート 波形データの時系列比較判定の工程を詳細に示すフローチャート 波形データのフーリエ変換判定の工程を詳細に示すフローチャート
符号の説明
13:被検体、13a:第1端面、13b:第2端面、15:第1探触子、17:第2探触子

Claims (5)

  1. 被検体の欠陥を検出する超音波探傷方法であって、
    端面を有する薄板状被検体を液体中に静止状態に保持し、
    超音波を所定の距離に焦点を結ぶように発射する焦点型、且つ、自身が投射した超音波の反射波を受信する送受信一体型の固定した探触子によって、前記薄板状被検体の1つの前記端面から前記被検体の内部に広がるように超音波を投射して、前記被検体の他の前記端面、不連続点および欠陥が反射した反射波を受信波として受信し、
    前記受信波の波形データと、基準となる波形データとを比較して、前記被検体の欠陥の有無を判定することを特徴とする超音波探傷方法。
  2. 前記探触子を複数用い、複数の前記探触子は、超音波を前記被検体の対向する各端面に投射しうるように保持される請求項1記載の超音波探傷方法。
  3. 複数の前記探触子は、長手方向の軸を有し、
    前記探触子は、それらの軸が一致しないような互い違いの位置に配置される請求項2記載の超音波探傷方法。
  4. 記探触子は、前記焦点が前記被検体の内部に位置するように保持される請求項1〜3のいずれかに記載の超音波探傷方法。
  5. 請求項1に記載の超音波探傷方法を実施するための超音波探傷設備であって、
    超音波を所定の距離に焦点を結ぶように発射する焦点型、且つ、自身が投射した超音波の反射波を受信する送受信一体型の探触子と、
    被検体の端面に前記探触子が発した超音波が投射されるように、前記被検体を液体中に保持するための保持装置と、
    前記保持装置を制御するための保持装置制御装置と、
    前記探触子を制御するための探触子制御装置と、
    前記保持装置制御装置および前記探触子制御装置を制御するための探傷システム制御装置とを含んでなることを特徴とする超音波探傷設備。
JP2004259652A 2004-09-07 2004-09-07 機能デバイスの欠陥を検出する超音波探傷方法および設備 Expired - Fee Related JP4583847B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004259652A JP4583847B2 (ja) 2004-09-07 2004-09-07 機能デバイスの欠陥を検出する超音波探傷方法および設備

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004259652A JP4583847B2 (ja) 2004-09-07 2004-09-07 機能デバイスの欠陥を検出する超音波探傷方法および設備

Publications (2)

Publication Number Publication Date
JP2006078208A JP2006078208A (ja) 2006-03-23
JP4583847B2 true JP4583847B2 (ja) 2010-11-17

Family

ID=36157805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004259652A Expired - Fee Related JP4583847B2 (ja) 2004-09-07 2004-09-07 機能デバイスの欠陥を検出する超音波探傷方法および設備

Country Status (1)

Country Link
JP (1) JP4583847B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8091426B2 (en) 2007-03-29 2012-01-10 Panasonic Corporation Ultrasonic wave measuring method and apparatus
JP4952489B2 (ja) * 2007-10-05 2012-06-13 株式会社Ihi 探傷方法及び装置
JP2015145785A (ja) * 2014-01-31 2015-08-13 株式会社コベルコ科研 超音波顕微鏡及び超音波検査方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952750A (ja) * 1982-09-20 1984-03-27 Sumitomo Metal Ind Ltd 鋼板の超音波探傷方法および装置
JPS61241659A (ja) * 1985-04-19 1986-10-27 Hitachi Micro Comput Eng Ltd 検査装置
JPH04132953A (ja) * 1990-09-25 1992-05-07 Matsushita Electric Works Ltd ガラス破壊検知器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952750A (ja) * 1982-09-20 1984-03-27 Sumitomo Metal Ind Ltd 鋼板の超音波探傷方法および装置
JPS61241659A (ja) * 1985-04-19 1986-10-27 Hitachi Micro Comput Eng Ltd 検査装置
JPH04132953A (ja) * 1990-09-25 1992-05-07 Matsushita Electric Works Ltd ガラス破壊検知器

Also Published As

Publication number Publication date
JP2006078208A (ja) 2006-03-23

Similar Documents

Publication Publication Date Title
CN108169331B (zh) 薄板栅格翼结构焊缝相控阵超声检测装置及检测方法
CN104865317B (zh) 一种透射式空气耦合超声扫描成像方法
JP5800667B2 (ja) 超音波検査方法,超音波探傷方法及び超音波検査装置
JP5306919B2 (ja) 超音波探傷法及び装置
CN105353043A (zh) 基于abaqus的金属薄板微裂纹时间反转定位方法
CN106802323A (zh) 一种基于全矩阵数据的超声全聚焦成像系统
CN101699278A (zh) 靶材的检测方法
JP4595117B2 (ja) 超音波伝搬の映像化方法および装置
JP2009097942A (ja) 非接触式アレイ探触子とこれを用いた超音波探傷装置及び方法
KR101477607B1 (ko) 필터를 이용한 초음파 선형/비선형 하이브리드 영상 장치 및 그 제어 방법
CN111024825A (zh) 一种薄板拐角结构检测装置、方法及其楔块优化方法
JP5804497B2 (ja) ラム波損傷画像化システム
JP4583847B2 (ja) 機能デバイスの欠陥を検出する超音波探傷方法および設備
EP2594935A1 (en) Method of determining a size of a defect using an ultrasonic linear phased array
JP2012068209A (ja) 超音波材料診断方法及び装置
JPWO2013114545A1 (ja) 超音波探傷方法および超音波探傷装置
JP2002062281A (ja) 欠陥深さ測定方法および装置
JP5863591B2 (ja) 超音波検査装置
JP2007003197A (ja) 超音波材料診断方法及び装置
JP4682921B2 (ja) 超音波探傷方法及び超音波探傷装置
JP2005114376A (ja) 超音波を用いる物体検査方法および装置
JP6173636B1 (ja) 超音波検査方法及び超音波検査装置
CN202614726U (zh) 一种金属材料缺陷裂缝检测仪
JP2007263956A (ja) 超音波探傷方法および装置
JP3754669B2 (ja) 超音波探傷装置及び超音波探傷方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100824

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees