JP4581430B2 - Method and apparatus for treating fluorine-containing wastewater - Google Patents

Method and apparatus for treating fluorine-containing wastewater Download PDF

Info

Publication number
JP4581430B2
JP4581430B2 JP2004062804A JP2004062804A JP4581430B2 JP 4581430 B2 JP4581430 B2 JP 4581430B2 JP 2004062804 A JP2004062804 A JP 2004062804A JP 2004062804 A JP2004062804 A JP 2004062804A JP 4581430 B2 JP4581430 B2 JP 4581430B2
Authority
JP
Japan
Prior art keywords
reaction tank
crystallization
crystallization reaction
fluorine
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004062804A
Other languages
Japanese (ja)
Other versions
JP2005246318A (en
Inventor
雅智 渡部
康之 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2004062804A priority Critical patent/JP4581430B2/en
Publication of JP2005246318A publication Critical patent/JP2005246318A/en
Application granted granted Critical
Publication of JP4581430B2 publication Critical patent/JP4581430B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Description

本発明はフッ素含有排水の処理方法及び装置に係り、特にフッ素含有排水をフッ素及びカルシウムから構成される種晶と接触させることにより、排水中のフッ素を晶析させて除去するフッ素含有排水の処理方法及び装置に関する。   The present invention relates to a method and apparatus for treating fluorine-containing wastewater, and in particular, treatment of fluorine-containing wastewater that causes fluorine in the wastewater to crystallize and remove by contacting the fluorine-containing wastewater with a seed crystal composed of fluorine and calcium. The present invention relates to a method and an apparatus.

従来、フッ素含有排水の処理は、消石灰などのカルシウム化合物を添加することによりフッ化カルシウムを生成させ、フッ素及びカルシウムから構成される種晶の表面にフッ化カルシウムを析出させる晶析法や凝集沈澱法を用いることにより、生成されたフッ化カルシウムを排水から固液分離してフッ素を除去する方法が多く採用される。これにより、処理水中のフッ素濃度を10〜15mg/Lまで低減することができる。   Conventionally, treatment of fluorine-containing wastewater has been carried out by adding a calcium compound such as slaked lime to produce calcium fluoride, and crystallization method or coagulation precipitation in which calcium fluoride is deposited on the surface of seed crystals composed of fluorine and calcium. By using this method, a method of removing the fluorine by solid-liquid separation of the generated calcium fluoride from the waste water is often employed. Thereby, the fluorine concentration in the treated water can be reduced to 10 to 15 mg / L.

しかしながら、平成13年に改正された水質汚濁防止法施行令では、フッ素に関する規制として河川への排水基準値が8mg/L以下に強化されたため、従来のフッ化カルシウムを生成させて晶析又は凝集沈澱させる方法のみでは排水基準値を達成することが難しいという問題が生じた。   However, according to the Enforcement Order of the Water Pollution Control Law revised in 2001, the standard value for drainage into rivers was strengthened to 8 mg / L or less as a regulation related to fluorine. There was a problem that it was difficult to achieve the drainage standard value only by the precipitation method.

この問題に対処するために、生成したフッ化カルシウムを分離する晶析法や凝集沈澱法の後段に、フッ素の高度処理を行なう方法が採用されている。   In order to cope with this problem, a method of performing a high-level treatment of fluorine is employed after the crystallization method for separating the produced calcium fluoride or the coagulation precipitation method.

フッ素の高度処理としては、硫酸ばん土などのアルミニウム化合物を添加することにより、排水中のフッ素を凝集沈澱させるアルミニウム凝沈法や、フッ素吸着樹脂を用いて排水中のフッ素を吸着させて除去する吸着除去法が提案されている。また、特許文献1のように、フッ素含有排水に対してカルシウム化合物とともに、リン酸類及び/又はリン酸化合物を添加することにより、カルシウムとリンを含有するフルオロアパタイトを形成させて、排水中のフッ素を除去する方法が提案されている。
特開2002−370093号公報
For advanced treatment of fluorine, aluminum compounds such as sulfated clay are added to agglomerate and precipitate fluorine in wastewater, and fluorine in the wastewater is adsorbed and removed using a fluorine adsorption resin. Adsorption removal methods have been proposed. Moreover, like patent document 1, the fluoroapatite containing calcium and phosphorus is formed by adding phosphoric acid and / or a phosphoric acid compound with a calcium compound with respect to fluorine-containing wastewater, and fluorine in wastewater There has been proposed a method for removing the above.
JP 2002-370093 A

しかしながら、従来のフッ素の高度処理において、アルミニウム凝沈法では除去されるフッ素量と比べて汚泥発生量が大量になる上、沈殿池を必要とされるため設備に要するスペースが増大するという欠点があった。   However, in the conventional advanced treatment of fluorine, the aluminum coagulation method has a disadvantage that the amount of sludge generated is larger than the amount of fluorine removed, and a space for the equipment is increased because a sedimentation basin is required. there were.

また、吸着除去法では、処理された一時処理水はカルシウム化合物が添加されることにより通常中性からアルカリ性の範囲となるため、樹脂通水前にpHを3以下に調整しなければならない上、処理水として放流する前にpHを中性に再調整しなければならず、処理工程全体として煩雑な操作が要求されるという欠点があった。   In addition, in the adsorption removal method, the treated temporary treated water is usually in a neutral to alkaline range by adding a calcium compound, so the pH must be adjusted to 3 or less before the resin is passed through. Before discharging as treated water, the pH has to be readjusted to neutral, and there is a drawback that complicated operations are required for the entire treatment process.

さらに、特許文献1の方法では、フルオロアパタイトを形成させてフッ素を沈殿して除去することが開示されているだけであり、具体的な装置構成が開示されていない。ましてや、リン酸類及び/又はリン酸化合物を添加することによる、処理水中へのリンの残留に関する問題については全く解決されていない。   Furthermore, the method of Patent Document 1 only discloses that fluoroapatite is formed and fluorine is precipitated and removed, and a specific apparatus configuration is not disclosed. Furthermore, the problem regarding the residue of phosphorus in treated water by adding phosphoric acids and / or phosphoric acid compounds is not solved at all.

本発明はこのような事情に鑑みてなされたもので、フッ素濃度が10〜15mg/Lの低濃度の排水を排水基準値の8mg/L以下まで安定して低減することができ、しかも処理水中のリンの残留を最小限に抑えることができるフッ素含有排水の処理方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and it is possible to stably reduce low-concentration wastewater having a fluorine concentration of 10 to 15 mg / L to a wastewater reference value of 8 mg / L or less, and to treat treated water. It is an object of the present invention to provide a method and apparatus for treating fluorine-containing wastewater that can minimize residual phosphorus.

請求項1に記載の発明は前記目的を達成するために、カルシウムが共存するとともにフッ素濃度が10〜15mg/Lの低濃度の排水中からフッ素を晶析させて除去するフッ素含有排水の処理方法であって、多数の種晶で形成された流動床を備えた晶析反応槽を2段直列に設け、前記排水を順次通水しながら該晶析反応槽にリンを含有する晶析用薬剤を注入することにより前記排水中のフッ素を晶析させる際に、前記前段の晶析反応槽内のpHを6〜9の範囲に調整し、後段の晶析反応槽のpHを前段の晶析反応槽よりも0.2〜1.5高くなるように調整するとともに、前記前段及び後段の晶析反応槽に注入する全注入量のうち、前記前段の晶析反応槽に注入する晶析用薬剤量の注入割合が、後段の晶析反応槽に注入する晶析用薬剤量の注入割合に対して1〜2倍量になるように、前記晶析用薬剤の全注入量を分注制御することを特徴とする。 In order to achieve the above object, the invention according to claim 1 is a method for treating fluorine-containing wastewater, in which calcium coexists and fluorine is crystallized and removed from low-concentration wastewater having a fluorine concentration of 10 to 15 mg / L. A crystallization reaction vessel comprising two stages of crystallization reaction tanks provided with a fluidized bed formed of a large number of seed crystals, and containing phosphorus in the crystallization reaction tank while sequentially passing the waste water. When the fluorine in the waste water is crystallized by injecting the liquid, the pH in the preceding crystallization reaction tank is adjusted to a range of 6 to 9, and the pH of the latter crystallization reaction tank is adjusted to the crystallization in the previous stage. For crystallization to be adjusted to 0.2 to 1.5 higher than the reaction tank, and to be injected into the preceding crystallization reaction tank out of the total injection amount to be injected into the preceding and subsequent crystallization reaction tanks The injection rate of the chemical amount is the amount of the crystallization chemical injected into the subsequent crystallization reaction tank. As will be 1 to 2 times the ratio, and wherein the dispensing controls all injection amount of the crystal析用agent.

本発明によれば、カルシウムが共存するとともにフッ素濃度が10〜15mg/Lの低濃度の排水にリン酸を含有する晶析用薬剤が添加されるとともに、種晶で形成された流動床と接触する。これにより、排水中に含有されるカルシウム及びフッ素が、添加された晶析用薬剤に含有されるリン酸と反応して、フルオロアパタイトを析出して種晶の表面上に晶析される。このとき、種晶は流動した状態であるため、排水中に低濃度で存在するフッ素に対して効率よく晶析させることができる。この場合、晶析用薬剤の注入量が多すぎると、種晶表面への晶析を超えた過剰な析出物がフッ素やリンを含有した濁質となって処理水中に流出して、処理水の水質を悪化させる要因となる。その上、流動床を通過する時間内に晶析反応が充分に行なわれず、処理水中に未反応のリンが残留するという問題が発生する。   According to the present invention, the crystallization agent containing phosphoric acid is added to the low-concentration wastewater with the coexistence of calcium and the fluorine concentration of 10 to 15 mg / L, and in contact with the fluidized bed formed of seed crystals. To do. As a result, calcium and fluorine contained in the waste water react with phosphoric acid contained in the added crystallization agent to precipitate fluoroapatite and crystallize on the surface of the seed crystal. At this time, since the seed crystal is in a fluidized state, it can be efficiently crystallized with respect to fluorine present at a low concentration in the waste water. In this case, if the injection amount of the crystallization agent is too large, excess precipitate exceeding the crystallization on the seed crystal surface becomes a turbid substance containing fluorine or phosphorus and flows into the treated water. It becomes a factor to deteriorate the water quality. In addition, there is a problem that the crystallization reaction is not sufficiently performed within the time passing through the fluidized bed, and unreacted phosphorus remains in the treated water.

そこで、本発明では、多数の種晶で形成された流動床を備えた晶析反応槽を2段直列に設け、前記排水を順次通水しながら該晶析反応槽にリンを含有する晶析用薬剤を注入することにより前記排水中のフッ素を晶析させる際に、前記前段の晶析反応槽内のpHを6〜9の範囲に調整し、後段の晶析反応槽のpHを前段の晶析反応槽よりも0.2〜1.5高くなるように調整するとともに、前記前段及び後段の晶析反応槽に注入する全注入量のうち、前記前段の晶析反応槽に注入する晶析用薬剤量の注入割合が、後段の晶析反応槽に注入する晶析用薬剤量の注入割合に対して1〜2倍量になるように、前記晶析用薬剤の全注入量を分注制御するようにした。Therefore, in the present invention, a crystallization reaction tank having a fluidized bed formed of a large number of seed crystals is provided in two stages in series, and the crystallization reaction tank contains phosphorus in the crystallization reaction tank while sequentially passing the waste water. When the fluorine in the waste water is crystallized by injecting a chemical, the pH in the preceding crystallization reaction tank is adjusted to a range of 6 to 9, and the pH in the latter crystallization reaction tank is adjusted to A crystal that is adjusted to be 0.2 to 1.5 higher than the crystallization reaction tank and out of the total injection amount that is injected into the preceding and subsequent crystallization reaction tanks, the crystal that is injected into the preceding crystallization reaction tank. The total injection amount of the crystallization agent is divided so that the injection rate of the crystallization agent amount is 1 to 2 times the injection rate of the crystallization agent amount to be injected into the subsequent crystallization reaction tank. Note to be controlled.

このとき、晶析反応槽に流入する排水のpHが9以上であることが好ましい。排水のpHをアルカリ側へ調整する際にはナトリウム化合物が添加されるが、添加されたナトリウムはアパタイトの生成を阻害する。したがって、排水のpHが9以上であればナトリウムの添加量を低減できるため、晶析反応槽における晶析反応を安定して行なうことができる。   At this time, the pH of the waste water flowing into the crystallization reaction tank is preferably 9 or more. When adjusting the pH of the wastewater to the alkali side, a sodium compound is added, but the added sodium inhibits the formation of apatite. Therefore, if the pH of the waste water is 9 or more, the amount of sodium added can be reduced, so that the crystallization reaction in the crystallization reaction tank can be performed stably.

請求項3に記載の発明は前記目的を達成するために、カルシウムが共存するとともにフッ素濃度が10〜15mg/Lの低濃度の排水中からフッ素を晶析させて除去するフッ素含有排水の処理装置であって、前記処理装置は、多数の種晶を充填した晶析反応槽が2段直列に設けられ、前段の晶析反応槽の上面と後段の晶析反応槽の底部とが連結管で連結されるとともに、前記前段及び後段の晶析反応槽にそれぞれ設けられ、晶析反応槽の下方から流入させて処理した水の一部を循環させることにより晶析反応槽内に種晶の流動床を形成させる流動手段と、前記前段及び後段の晶析反応槽にそれぞれ設けられ、晶析反応槽にリン酸を含有する晶析用薬剤を注入する薬剤注入手段と、前記前段及び後段の晶析反応槽にそれぞれ設けられ、晶析反応槽内のpHを測定するpH測定手段と、前記それぞれのpH測定手段の測定値に基づいて前記後段の晶析反応槽のpHが前段の晶析反応槽のpHよりも所定pH差高くなるように調整するpH調整手段と、前記前段及び後段に注入する晶析用薬剤の全注入量のうち、前記前段の晶析反応槽に注入する晶析用薬剤量の注入割合が、後段の晶析反応槽に注入する晶析用薬剤量の注入割合に対して所定倍量になるように、前記晶析用薬剤の全注入量を分注する薬剤調整手段と、を備えたことを特徴とする。 In order to achieve the above object, the invention according to claim 3 is a treatment apparatus for fluorine-containing wastewater that coexists with calcium and removes fluorine by crystallization from low-concentration wastewater having a fluorine concentration of 10 to 15 mg / L. In the processing apparatus, a crystallization reaction tank filled with a large number of seed crystals is provided in two stages in series, and the upper surface of the preceding crystallization reaction tank and the bottom of the subsequent crystallization reaction tank are connected by a connecting pipe. In addition to being connected to each of the preceding and subsequent crystallization reaction tanks, the seed crystal flows into the crystallization reaction tank by circulating a part of the treated water introduced from below the crystallization reaction tank. A flow means for forming a bed; a chemical injection means for injecting a crystallization chemical containing phosphoric acid into the crystallization reaction tank; and a pre-stage crystal and a post-stage crystal. Crystallization reaction is provided in each crystallization reaction tank. PH measuring means for measuring the pH of the inside, and based on the measured values of the respective pH measuring means, the pH of the latter crystallization reaction tank is higher than the pH of the preceding crystallization reaction tank by a predetermined pH difference. Of the total injection amount of the pH adjusting means to adjust and the crystallization agent to be injected into the preceding stage and the subsequent stage, the injection ratio of the amount of the crystallization agent injected into the crystallization reaction tank in the preceding stage is the crystallization reaction in the subsequent stage. And a drug adjusting means for dispensing the total injection amount of the crystallization drug so as to be a predetermined amount with respect to the injection ratio of the crystallization drug amount to be injected into the tank .

請求項3はフッ素含有排水の処理装置を構成したものである。請求項3によれば、晶析反応槽を2段直列に設けることにより、1段の処理装置にかかる処理負荷を軽減することができる。しかも、全体における晶析用薬剤の最大添加量を1段の晶析反応槽における最大添加量であるフッ素7mg/L低減させるのに相当する相当量よりも多くできるので、処理水中のリン濃度を抑制できるとともにフッ素濃度をより低減できる。  Claim 3 constitutes a treatment apparatus for fluorine-containing wastewater. According to the third aspect, by providing the crystallization reaction tank in two stages in series, the processing load applied to the one-stage processing apparatus can be reduced. Moreover, since the maximum amount of the crystallization agent in the whole can be increased more than the equivalent amount corresponding to the reduction of 7 mg / L of fluorine, which is the maximum amount of addition in a single crystallization reaction tank, the phosphorus concentration in the treated water can be reduced. It can be suppressed and the fluorine concentration can be further reduced.
また、後段の晶析反応槽のpHが前段の晶析反応槽のpHよりも所定pH差(例えば請求項5の0.2〜1.5)高くなるように調整することにより、前段及び後段の晶析反応槽において晶析反応されずに残存するリン濃度を低減することができる。これにより、処理水中に残存するリン濃度を低減できる。  Further, by adjusting the pH of the subsequent crystallization reaction tank to be higher than the pH of the previous crystallization reaction tank by a predetermined pH difference (for example, 0.2 to 1.5 in claim 5), In this crystallization reaction tank, the concentration of phosphorus remaining without crystallization reaction can be reduced. Thereby, the phosphorus concentration remaining in the treated water can be reduced.
また、1段の晶析反応槽における晶析用薬剤の最大添加量はフッ素を7mg/L低減させるのに相当する量であるが、晶析反応槽が2段直列に設けられているため、フッ素を7mg/L低減させるのに相当する量よりも多くの晶析用薬剤を全体量として添加することができる。しかも、前段の晶析用薬剤の注入量が後段の晶析反応槽における晶析用薬剤の注入量に対して所定倍率(例えば請求項6の1〜2倍)になるように分注手段を制御するようにした。すなわち、前段の晶析反応槽では高いリン濃度下で晶析反応が行なわれ、後段の晶析反応槽では残存するリンがフッ素の晶析に効率よく利用される。これにより、処理水に残存するリン濃度を最小限に抑えることができ、しかも処理水中のフッ素濃度を4mg/L以下の低濃度まで効率的に低減できる。  Moreover, although the maximum addition amount of the crystallization agent in the one-stage crystallization reaction tank is an amount corresponding to reducing fluorine by 7 mg / L, since the crystallization reaction tank is provided in two stages in series, More crystallization agent can be added as a total amount than the amount corresponding to a 7 mg / L reduction in fluorine. In addition, the dispensing means is arranged so that the injection amount of the crystallization agent in the preceding stage is a predetermined magnification (for example, 1 to 2 times that in claim 6) with respect to the injection amount of the crystallization agent in the crystallization reaction tank in the subsequent stage. I tried to control it. That is, the crystallization reaction is carried out at a high phosphorus concentration in the preceding crystallization reaction tank, and the remaining phosphorus is efficiently used for crystallization of fluorine in the latter crystallization reaction tank. Thereby, the phosphorus concentration remaining in the treated water can be minimized, and the fluorine concentration in the treated water can be efficiently reduced to a low concentration of 4 mg / L or less.

請求項4に記載の発明は、請求項3に記載の晶析反応槽の上流に、排水中のフッ素濃度を10〜15mg/Lの範囲に調整する調整槽を設けたことを特徴とする。これにより、晶析反応槽に流入する排水のフッ素濃度を10〜15mg/Lに安定させることができるので、処理水のフッ素濃度を8mg/L以下に安定して処理することができる。   The invention described in claim 4 is characterized in that an adjustment tank for adjusting the fluorine concentration in the waste water to a range of 10 to 15 mg / L is provided upstream of the crystallization reaction tank described in claim 3. Thereby, since the fluorine concentration of the waste_water | drain which flows into a crystallization reaction tank can be stabilized at 10-15 mg / L, the fluorine concentration of a treated water can be stably processed to 8 mg / L or less.

請求項7に記載の発明は、請求項3〜6の何れか1に記載の晶析用薬剤の全注入量を前記2段直列に設けた晶析反応槽のうちの前段の晶析反応槽に注入するとともに、前記後段の晶析反応槽の空塔速度が、前記前段の晶析反応槽の空塔速度に対して2〜6倍になるようにしたことを特徴とする。 The invention according to claim 7 is the preceding crystallization reaction tank among the crystallization reaction tanks in which the total injection amount of the crystallization drug according to any one of claims 3 to 6 is provided in series in the two stages. And the superficial velocity of the latter crystallization reaction tank is 2 to 6 times the superficial velocity of the preceding crystallization reaction tank.

なお、ここで述べる空塔速度(SV)とは、晶析反応槽に充填された種晶の体積に対する排水の処理量である。   The superficial velocity (SV) described here is the amount of wastewater treated relative to the volume of seed crystals charged in the crystallization reaction tank.

請求項7によれば、薬剤注入手段により前段の晶析反応槽のみに一段当たりの最大注入量であるフッ素を7mg/L低減させる相当量の晶析用薬剤が注入される。したがって、前段の晶析反応槽では高いリン濃度でフッ素の晶析が行なわれて、フッ素濃度が低下するとともにリン濃度が高い状態で残存した処理水が後段の晶析反応槽に流入する。後段の晶析反応槽では、前段の晶析反応槽における空塔速度に対して2〜6倍の空塔速度で流入が設定されているため、低い濃度のフッ素を残存するリンによって効率よく晶析させることができる。これにより、後段の晶析反応槽から流出されるリン濃度を低減することができる。 According to the seventh aspect of the present invention, a considerable amount of the crystallization drug for reducing fluorine, which is the maximum injection amount per stage, by 7 mg / L is injected only into the preceding crystallization reaction tank by the chemical injection means. Accordingly, fluorine is crystallized at a high phosphorus concentration in the preceding crystallization reaction tank, and the treated water remaining in a state where the fluorine concentration is low and the phosphorus concentration is high flows into the subsequent crystallization reaction tank. In the subsequent crystallization reaction tank, the inflow is set at a superficial velocity of 2 to 6 times the superficial velocity in the previous crystallization reaction tank, so that low-concentration fluorine is efficiently crystallized by the remaining phosphorus. Can be analyzed. Thereby, the phosphorus concentration discharged | emitted from a crystallization reaction tank of a back | latter stage can be reduced.

以上説明したように本発明に係るフッ素含有排水の処理方法及び装置によれば、フッ素濃度が10〜15mg/Lの低濃度の排水を排水基準値の8mg/L以下まで安定して低減することができ、しかも処理水中のリンの残留を最小限に抑えることができる。   As described above, according to the method and apparatus for treating fluorine-containing wastewater according to the present invention, low concentration wastewater having a fluorine concentration of 10 to 15 mg / L can be stably reduced to 8 mg / L or less of the wastewater standard value. In addition, residual phosphorus in the treated water can be minimized.

以下添付図面に従って本発明に係るフッ素含有排水の処理方法及び装置の好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a method and apparatus for treating fluorine-containing wastewater according to the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明の第1の実施の形態であるフッ素含有排水の処理装置10の構成を示したブロック図である。   FIG. 1 is a block diagram showing the configuration of a fluorine-containing wastewater treatment apparatus 10 according to the first embodiment of the present invention.

晶析反応槽12は、流入管14を底部に、流出管16を上面に、流入管14と連結した返送管18を内部上側に配置することにより、流動手段を有している。返送管18には返送ポンプ20が設けられており、返送ポンプ20の駆動により晶析反応槽12の上部から処理水の一部が流入管14へ返送される。   The crystallization reaction tank 12 has a flow means by disposing an inflow pipe 14 on the bottom, an outflow pipe 16 on the top surface, and a return pipe 18 connected to the inflow pipe 14 on the inside upper side. A return pump 20 is provided in the return pipe 18, and a part of the treated water is returned from the upper part of the crystallization reaction tank 12 to the inflow pipe 14 by driving the return pump 20.

晶析反応槽12の内部には通水可能な構造を有する晶析部12aが設けられており、晶析部12a内には図示しない多数の種晶が充填されている。使用される種晶としては、リン酸ヒドロキシアパタイト、フルオロアパタイト、及びリン酸カルシウムの結晶及び粉末を造粒したペレットであることが好ましいが、フルオロアパタイトを形成可能な粒子であればよく、フッ化カルシウムやけい砂等を用いてもよい。なお、種晶の粒径は2.0mm以下であることが好ましい。   The crystallization reaction tank 12 is provided with a crystallization part 12a having a structure capable of passing water, and the crystallization part 12a is filled with a large number of seed crystals (not shown). The seed crystal used is preferably a pellet obtained by granulating hydroxyapatite, fluoroapatite, and calcium phosphate crystals and powder, but may be any particle capable of forming fluoroapatite, such as calcium fluoride and Silica sand or the like may be used. The seed crystal particle size is preferably 2.0 mm or less.

また、晶析反応槽12の内部にはpH測定手段であるpHセンサ22が設置されるとともに、流入管14にはpH調整手段であるpH調整管24が連結される。pHセンサ22は槽内のpHを常時測定し、その測定値を付属するpH調整制御部26へ送信する。pH調整制御部26は、送信された測定値がpH6〜9、好ましくはpH7〜8.5の範囲になるように、pH調整管24に付属するpH調整ポンプ28の駆動を制御して、流入管14へ添加されるpH調整剤の量を調整する。pH調整剤としては、塩酸や硫酸、苛性ソーダ、消石灰等、特に限定なく使用することができる。   In addition, a pH sensor 22 as pH measuring means is installed inside the crystallization reaction tank 12, and a pH adjusting pipe 24 as pH adjusting means is connected to the inflow pipe 14. The pH sensor 22 constantly measures the pH in the tank and transmits the measured value to the attached pH adjustment control unit 26. The pH adjustment control unit 26 controls the driving of the pH adjustment pump 28 attached to the pH adjustment pipe 24 so that the transmitted measurement value is in the range of pH 6 to 9, preferably pH 7 to 8.5, and flows in. The amount of pH adjuster added to the tube 14 is adjusted. As the pH adjuster, hydrochloric acid, sulfuric acid, caustic soda, slaked lime and the like can be used without any particular limitation.

さらに、流出管16にはフッ素濃度測定手段であるフッ素センサ30が設置されるとともに、流入管14には薬剤注入手段である薬剤注入管32が連結される。フッ素センサ30は流出管16を通水する処理水中のフッ素濃度を常時測定し、その測定値を制御手段である薬剤注入制御部34へ送信する。薬剤注入制御部34は、送信された測定値に基づいて排水のフッ素濃度に対する処理水のフッ素濃度の差が7mg/Lを超えない範囲になるように、薬剤注入管32に付属する薬剤注入ポンプ36の駆動を制御して、流入管14に注入される晶析用薬剤の量が調整される。本発明で使用される晶析用薬剤としては、リン酸類又は/及びリン酸化合物が好ましい。   Further, the outflow pipe 16 is provided with a fluorine sensor 30 as a fluorine concentration measuring means, and the inflow pipe 14 is connected with a medicine injection pipe 32 as a medicine injection means. The fluorine sensor 30 constantly measures the fluorine concentration in the treated water flowing through the outflow pipe 16, and transmits the measured value to the drug injection control unit 34 that is a control means. The drug injection control unit 34 includes a drug injection pump attached to the drug injection pipe 32 so that the difference in the fluorine concentration of the treated water with respect to the fluorine concentration of the waste water does not exceed 7 mg / L based on the transmitted measurement value. The amount of the crystallization agent injected into the inflow pipe 14 is adjusted by controlling the drive 36. As the crystallization agent used in the present invention, phosphoric acids and / or phosphoric acid compounds are preferable.

次に、上記の如く構成された本発明の第1の実施の形態である処理装置10の作用について説明する。   Next, the operation of the processing apparatus 10 according to the first embodiment of the present invention configured as described above will be described.

本発明において注目すべき点は、処理対象である排水がフッ素濃度が10〜15mg/Lの範囲であり、カルシウムが含有されるという点にある。すなわち、従来のカルシウム添加による処理で得られる処理水と同様であるため、その処理水を再度処理するために本発明の処理装置10を採用することにより、フッ素濃度を排水基準値である8mg/L以下に効率よく処理することができる。   What should be noted in the present invention is that the wastewater to be treated has a fluorine concentration in the range of 10 to 15 mg / L and contains calcium. That is, since it is the same as the treated water obtained by the treatment by the conventional addition of calcium, by adopting the treatment apparatus 10 of the present invention to treat the treated water again, the fluorine concentration is 8 mg / L or less can be processed efficiently.

すなわち、フッ素濃度が10〜15mg/Lの範囲であり、かつカルシウムが含有される排水を流入管14から晶析反応槽12に流入させると、処理水が流出管16から流出されるとともに、その一部が返送管18によって流入管14へ返送される。これにより、晶析反応槽12内に上向流を発生させて、晶析部12aに充填された種晶の流動床を形成させることができる。   That is, when wastewater containing fluorine in a range of 10 to 15 mg / L and containing calcium is caused to flow from the inflow pipe 14 into the crystallization reaction tank 12, the treated water flows out from the outflow pipe 16, A part is returned to the inflow pipe 14 by the return pipe 18. Thereby, an upward flow can be generated in the crystallization reaction tank 12 to form a fluidized bed of seed crystals filled in the crystallization part 12a.

同時に、流入管14を通過する排水には薬剤注入管32から晶析用薬剤が注入されるため、晶析部12aで排水中のフッ素及びカルシウムが晶析用薬剤のリン酸と反応し、析出されたフルオロアパタイトが種晶の表面上に晶析される。このフルオロアパタイトの晶析は流動床の状態である種晶表面で行なわれるため、排水中に比較的低濃度に存在するフッ素を効率よく晶析させて除去することができる。   At the same time, since the crystallization agent is injected into the waste water passing through the inflow pipe 14 from the chemical injection pipe 32, the fluorine and calcium in the waste water react with the phosphoric acid of the crystallization agent in the crystallization part 12a and precipitate. The formed fluoroapatite is crystallized on the surface of the seed crystal. Since the crystallization of this fluoroapatite is performed on the seed crystal surface in a fluidized bed state, fluorine existing in a relatively low concentration in the waste water can be efficiently crystallized and removed.

フッ素を晶析させる際、晶析反応槽12内のpHが低いとリンの晶析率が低下するため、処理水中のリン濃度が高くなってしまう。一方、晶析反応槽12内のpHが高いと、析出されたフルオロアパタイトが種晶の表面上に晶析されずに処理水中に残存するため、処理水が白濁して水質が悪化してしまう。   When crystallization of fluorine is performed, if the pH in the crystallization reaction tank 12 is low, the crystallization rate of phosphorus is lowered, so that the phosphorus concentration in the treated water is increased. On the other hand, if the pH in the crystallization reaction tank 12 is high, the precipitated fluoroapatite remains in the treated water without being crystallized on the surface of the seed crystal, so that the treated water becomes cloudy and the water quality deteriorates. .

そこで、晶析反応槽12にpHセンサ22と、pH調整ポンプ28を備えたpH調整管24を設けて、晶析反応槽12がpH6〜9、好ましくはpH7〜8.5になるように、pH調整制御部26で制御するようにした。これにより、晶析反応槽12からの処理水において、残存するリン濃度の上昇や、析出したフルオロアパタイトによる白濁を抑制できるとともに、安定したフッ素の晶析を行なうことができる。   Therefore, the crystallization reaction tank 12 is provided with a pH sensor 22 and a pH adjustment pipe 24 equipped with a pH adjustment pump 28 so that the crystallization reaction tank 12 has a pH of 6 to 9, preferably a pH of 7 to 8.5. It was controlled by the pH adjustment control unit 26. Thereby, in the treated water from the crystallization reaction tank 12, an increase in the residual phosphorus concentration and white turbidity due to the precipitated fluoroapatite can be suppressed, and stable crystallization of fluorine can be performed.

また、フッ素が晶析される量は添加する晶析用薬剤のリン酸量に比例するが、リン酸の量を多くしすぎると処理水中に残存するリン濃度が高くなるため、処理水においてリンに関する排水基準を満たせなくなる可能性がある。したがって、一段の晶析反応槽12に添加される晶析用薬剤の最大添加量を排水のフッ素濃度に対する処理水のフッ素濃度の差が7mg/Lを超えない範囲、すなわち処理水中のフッ素除去率を50〜60%にすることが好ましい。   The amount of crystallization of fluorine is proportional to the amount of phosphoric acid in the crystallization agent to be added. However, if the amount of phosphoric acid is excessively increased, the concentration of phosphorus remaining in the treated water increases. May not meet the drainage standards. Therefore, the maximum addition amount of the crystallization agent added to the single-stage crystallization reaction tank 12 is within a range where the difference of the fluorine concentration of the treated water with respect to the fluorine concentration of the waste water does not exceed 7 mg / L, that is, the fluorine removal rate in the treated water Is preferably 50 to 60%.

そこで、本発明の処理装置10では、晶析反応槽12にフッ素センサ30を設けて、処理水中のフッ素除去率が50〜60%になるように、薬剤注入制御部34で薬剤注入管32から注入される晶析用薬剤の量を調整するようにした。これにより、処理水中に残存するリン濃度を最小限に抑制できるとともに、処理水中のフッ素濃度を8mg/L以下に低減することができる。   Therefore, in the treatment apparatus 10 of the present invention, the crystallization reaction tank 12 is provided with a fluorine sensor 30, and the chemical injection control unit 34 uses the chemical injection pipe 32 so that the fluorine removal rate in the treated water is 50 to 60%. The amount of the crystallization drug injected was adjusted. As a result, the concentration of phosphorus remaining in the treated water can be minimized, and the fluorine concentration in the treated water can be reduced to 8 mg / L or less.

図2は、本発明の第2の実施の形態である処理装置40の構成を示したブロック図であり、2段の槽を直列に設けて、各槽に分注する晶析用薬剤の量を調整した一例である。   FIG. 2 is a block diagram showing the configuration of the processing apparatus 40 according to the second embodiment of the present invention. The amount of the crystallization agent dispensed into each tank by providing two tanks in series. This is an example of adjusting.

前段及び後段の晶析反応槽42,44の内部には、図示しない種晶が充填された晶析部42a,44aが設けられる。   In the first and second crystallization reaction tanks 42 and 44, crystallization parts 42a and 44a filled with seed crystals (not shown) are provided.

前段の晶析反応槽42の底部には流入管46が設置されるとともに、後段の晶析反応槽44の上面には流出管48が設置され、前段の晶析反応槽42の上面と後段の晶析反応槽44の底部とが連結管50で連結される。前段の返送管52は前段の晶析反応槽42の内部上側と流入管46とを連結し、付属する前段の返送ポンプ52aの駆動により前段の晶析反応槽42の処理水の一部を流入管46に返送する。また、後段の返送管54は後段の晶析反応槽44の内部上側と連結管50とを連結し、付属する後段の返送ポンプ54aの駆動により後段の晶析反応槽44の処理水の一部を連結管50へ返送する。これにより、前段及び後段の晶析反応槽42,44に対して、図2の黒色矢印で示した方向へ流れる上向流を発生させる。なお、前段及び後段の晶析反応槽42,44における空塔速度はSV5〜20の範囲であることが好ましい。   An inflow pipe 46 is installed at the bottom of the crystallization reaction tank 42 at the front stage, and an outflow pipe 48 is installed at the upper surface of the crystallization reaction tank 44 at the rear stage. The bottom of the crystallization reaction tank 44 is connected by a connecting pipe 50. The upstream return pipe 52 connects the inside upper side of the upstream crystallization reaction tank 42 and the inflow pipe 46, and a part of the treated water in the upstream crystallization reaction tank 42 flows in by driving the attached upstream return pump 52 a. Return to tube 46. The rear return pipe 54 connects the upper side of the rear stage crystallization reaction tank 44 and the connecting pipe 50, and a part of the treated water in the rear stage crystallization reaction tank 44 is driven by the attached rear return pump 54 a. Is returned to the connecting pipe 50. Thus, an upward flow that flows in the direction indicated by the black arrows in FIG. In addition, it is preferable that the superficial velocity in the crystallization reaction tanks 42 and 44 of the front | former stage and back | latter stage is the range of SV5-20.

連結管50には連結ポンプ56が設置されており、その駆動により前段の晶析反応槽42から後段の晶析反応槽44への流量を調整することができる。   A connection pump 56 is installed in the connection pipe 50, and the flow rate from the preceding crystallization reaction tank 42 to the subsequent crystallization reaction tank 44 can be adjusted by driving thereof.

前段及び後段の晶析反応槽42,44には、pH測定手段であるpHセンサ58,60が各々に内蔵され、前段及び後段の晶析反応槽42,44のpHが常時測定される。また、流入管46及び連結管50にはpH調整手段であるpH調整管62,64が各々に連結され、付属するpH調整ポンプ62a,64aの駆動により流入管46及び連結管50に注入されるpH調整剤の量が調整される。pH調整剤としては、塩酸や硫酸、苛性ソーダ、消石灰等、特に限定なく使用することができる。pH調整制御部66は、各pHセンサ58,60及び各pH調整ポンプ62a,64aを接続し、各pHセンサ58,60で測定された測定値を受信する。そして、前段のpHセンサ58の測定値がpH6〜9、好ましくはpH7〜8.5になるように前段のpH調整ポンプ62aの駆動を制御するとともに、後段のpHセンサ60の測定値が前段のpHセンサ58の測定値よりも0.2〜1.5高くなるように、後段のpH調整ポンプ64aの駆動を制御する。   The front and rear crystallization reaction tanks 42 and 44 are respectively provided with pH sensors 58 and 60 which are pH measuring means, and the pH of the front and rear crystallization reaction tanks 42 and 44 is constantly measured. Further, pH adjusting pipes 62 and 64, which are pH adjusting means, are connected to the inflow pipe 46 and the connecting pipe 50, respectively, and are injected into the inflow pipe 46 and the connecting pipe 50 by driving the pH adjusting pumps 62a and 64a attached thereto. The amount of pH adjuster is adjusted. As the pH adjuster, hydrochloric acid, sulfuric acid, caustic soda, slaked lime and the like can be used without any particular limitation. The pH adjustment control unit 66 connects the pH sensors 58 and 60 and the pH adjustment pumps 62a and 64a, and receives measurement values measured by the pH sensors 58 and 60. Then, while controlling the driving of the pH adjusting pump 62a at the front stage so that the measured value of the pH sensor 58 at the front stage is pH 6-9, preferably pH 7-8.5, the measured value of the pH sensor 60 at the rear stage is The driving of the pH adjustment pump 64a at the subsequent stage is controlled so that it is 0.2 to 1.5 higher than the measured value of the pH sensor 58.

また、流入管46及び連結管50には薬剤注入手段である薬剤注入管68,70が各々に連結され、付属する薬剤注入ポンプ68a,70aの駆動により晶析用薬剤が注入される。晶析用薬剤としては、リン酸類又は/及びリン酸化合物を使用することが好ましい。各薬剤注入ポンプ66a,68aは、前段の晶析反応槽42に注入する晶析用薬剤の量が後段の晶析反応槽44に注入する晶析用薬剤の量に対して1〜2倍になるように、その駆動が調整される。なお、処理装置40で使用される晶析用薬剤の全量はリン濃度で略50mg/L程度であれば、フッ素濃度が15mg/Lの排水を6mg/L以下まで低減することができる。したがって、上記条件であれば、前段の薬剤注入管68から注入される晶析用薬剤の量はリン濃度で25〜33mg/Lの範囲であるとともに、後段の薬剤注入管70から注入される晶析用薬剤量はリン濃度で16〜25mg/Lの範囲であることが好適である。   Further, drug injection pipes 68 and 70, which are drug injection means, are connected to the inflow pipe 46 and the connecting pipe 50, respectively, and the crystallization drug is injected by driving the attached drug injection pumps 68a and 70a. As the crystallization agent, it is preferable to use phosphoric acids or / and phosphoric acid compounds. In each of the chemical injection pumps 66a and 68a, the amount of the crystallization chemical injected into the preceding crystallization reaction tank 42 is 1 to 2 times the amount of the crystallization chemical injected into the subsequent crystallization reaction tank 44. The drive is adjusted so that In addition, if the total amount of the crystallization agent used in the processing apparatus 40 is about 50 mg / L in terms of phosphorus concentration, wastewater having a fluorine concentration of 15 mg / L can be reduced to 6 mg / L or less. Therefore, under the above conditions, the amount of the crystallization drug injected from the preceding drug injection tube 68 is in the range of 25 to 33 mg / L in phosphorus concentration, and the crystal injected from the subsequent drug injection tube 70. The amount of drug for analysis is preferably in the range of 16 to 25 mg / L in terms of phosphorus concentration.

次に、上記の如く構成された本発明の第2の実施の形態である処理装置40の作用について説明する。   Next, the operation of the processing apparatus 40 according to the second embodiment of the present invention configured as described above will be described.

処理装置40では、排水は前段及び後段の晶析反応槽42,44で2段直列に処理が行なわれる。これにより、各槽42,44にかかる処理負荷を軽減することができるので、安定してフッ素を除去することができる。   In the processing apparatus 40, the waste water is processed in two stages in series in the crystallization reaction tanks 42 and 44 in the former stage and the latter stage. Thereby, since the processing load concerning each tank 42 and 44 can be reduced, a fluorine can be removed stably.

ところで、一段の晶析反応槽における晶析用薬剤の最大添加量は、処理水中に残存するリン濃度を考慮すると、フッ素を7mg/L低減させるのに相当する量であることが好ましい。本発明の処理装置40では2段直列で設けられているので、処理装置40の全体における晶析用薬剤の最大添加量をフッ素を7mg/L低減させるのに相当する量よりも多くすることができる。しかも、前段の晶析反応槽42には後段の晶析反応槽44に比べ1〜2倍量の晶析用薬剤が注入されるようにした。   By the way, it is preferable that the maximum addition amount of the crystallization agent in the one-stage crystallization reaction tank is an amount corresponding to a 7 mg / L reduction in fluorine considering the concentration of phosphorus remaining in the treated water. Since the treatment apparatus 40 of the present invention is provided in two stages in series, the maximum addition amount of the crystallization agent in the entire treatment apparatus 40 may be made larger than the amount corresponding to reducing fluorine by 7 mg / L. it can. In addition, the crystallization reaction tank 42 in the former stage was injected with an amount of the crystallization agent 1 to 2 times that in the crystallization reaction tank 44 in the subsequent stage.

そのため、前段の晶析反応槽42ではリン濃度が1〜2倍高い状態で晶析部42aに形成された種晶の流動床と接触して、積極的にリン、フッ素、及びカルシウムによる晶析反応が行なわれ、種晶に多くのフッ素を晶析させることができる。このとき、前段の晶析反応槽42で処理された排水は、フッ素濃度が低下しているものの、未反応のリンが残存した状態となるため、後段の晶析反応槽44では注入される晶析用薬剤の量が低減されている。したがって、後段の晶析反応槽44では前段の晶析反応槽44で残存したリンを晶析反応に効率よく利用することができるので、後段の晶析反応槽44の処理水中に残存するリン濃度を低減できるとともに、低濃度に存在するフッ素を効率よく晶析させることができる。   For this reason, in the crystallization reaction tank 42 in the previous stage, the crystallization by the phosphorus, fluorine and calcium is positively brought into contact with the fluidized bed of the seed crystal formed in the crystallization part 42a in a state where the phosphorus concentration is 1 to 2 times higher. The reaction takes place and a large amount of fluorine can be crystallized in the seed crystal. At this time, the wastewater treated in the crystallization reaction tank 42 in the former stage is in a state in which unreacted phosphorus remains although the fluorine concentration is lowered. The amount of drug for analysis is reduced. Accordingly, since the phosphorus remaining in the crystallization reaction tank 44 in the subsequent stage can be efficiently used for the crystallization reaction, the concentration of phosphorus remaining in the treated water in the crystallization reaction tank 44 in the subsequent stage is ensured. Can be reduced, and fluorine existing at a low concentration can be efficiently crystallized.

さらに、後段の晶析反応槽44のpHは、前段の晶析反応槽42のpHよりも0.2〜1.5高く設定されている。これにより、前段の晶析反応槽42で残留したリンを効率よく後段の晶析反応槽44で晶析させることができるので、処理水中に残存するリン濃度を最小限に抑制することができる。   Further, the pH of the subsequent crystallization reaction tank 44 is set to be 0.2 to 1.5 higher than the pH of the previous crystallization reaction tank 42. Thereby, phosphorus remaining in the preceding crystallization reaction tank 42 can be efficiently crystallized in the subsequent crystallization reaction tank 44, so that the concentration of phosphorus remaining in the treated water can be minimized.

したがって、本発明の処理装置40を採用することにより、フッ素濃度が10〜15mg/Lの範囲であり、かつカルシウムを含有する排水に対して、処理水中に残存するリン濃度を最小限に抑制できるとともに、フッ素濃度を4mg/L以下まで効率よく低減することができる。   Therefore, by adopting the treatment apparatus 40 of the present invention, the concentration of phosphorus remaining in the treated water can be minimized with respect to the wastewater containing calcium having a fluorine concentration in the range of 10 to 15 mg / L and containing calcium. At the same time, the fluorine concentration can be efficiently reduced to 4 mg / L or less.

図3は、本発明の第3の実施の形態である処理装置90の構成を示したブロック図であり、2段の晶析反応槽を直列に設けて空塔速度を調整した一例である。なお、図2に示した本発明の第2の実施の形態である処理装置40と同様の装置及び部材は同符号で明記するとともに、その説明は省略する。   FIG. 3 is a block diagram showing the configuration of the processing apparatus 90 according to the third embodiment of the present invention, which is an example in which a two-stage crystallization reaction tank is provided in series to adjust the superficial velocity. Note that the same devices and members as those of the processing device 40 according to the second embodiment of the present invention shown in FIG.

本発明の処理装置90によれば、後段の晶析反応槽44における空塔速度は前段の晶析反応槽42の空塔速度に対して2〜6倍になるように、各返送ポンプ52a,54a及び連結ポンプ56の駆動や、各晶析部42a,44aの体積、種晶の充填量が設定される。なお、後段の晶析反応槽44に充填される種晶の材質及び粒径は前段の晶析反応槽42と同様であることが好ましいが、特に限定するものではなく、前段と異なるものを使用してもよい。また、後段の晶析反応槽44には返送管54及び返送ポンプ54aを設けたが、特に限定するものではない。後段の晶析反応槽44に上向流を発生させることができ、かつ空塔速度が上記の条件で保持できるのであれば、設置しなくてもよい。さらに、前段及び後段の晶析反応槽42,44において、必要とされる量のカルシウムを再度添加する手段を設けてもよい。これにより、さらに効率のよい晶析反応を行なうことができる。   According to the processing apparatus 90 of the present invention, each return pump 52a, so that the superficial velocity in the subsequent crystallization reaction tank 44 is 2 to 6 times the superficial velocity in the previous crystallization reaction tank 42. The drive of 54a and the connection pump 56, the volume of each crystallization part 42a, 44a, and the filling amount of a seed crystal are set. The material and particle size of the seed crystal filled in the latter stage crystallization reaction tank 44 are preferably the same as those in the former stage crystallization reaction tank 42, but are not particularly limited, and those different from the former stage are used. May be. Moreover, although the return pipe 54 and the return pump 54a are provided in the latter stage crystallization reaction tank 44, it is not specifically limited. As long as an upward flow can be generated in the subsequent crystallization reaction tank 44 and the superficial velocity can be maintained under the above-described conditions, it is not necessary to install it. Furthermore, a means for re-adding the required amount of calcium may be provided in the crystallization reaction tanks 42 and 44 in the former stage and the latter stage. Thereby, a more efficient crystallization reaction can be performed.

また、処理装置90において、流入管46のみに薬剤注入手段である薬剤注入管68が設置されており、前段の晶析反応槽42における最大添加量、すなわちフッ素を7mg/L低減させるのに相当する量の晶析用薬剤が前段の晶析反応槽42に注入される。   Further, in the processing apparatus 90, a chemical injection pipe 68 as a chemical injection means is installed only in the inflow pipe 46, which is equivalent to reducing the maximum addition amount in the crystallization reaction tank 42 in the preceding stage, that is, fluorine by 7 mg / L. A sufficient amount of the crystallization agent is injected into the crystallization reaction tank 42 in the previous stage.

そのため、処理装置90では、前段の晶析反応槽42で高いリン濃度下で晶析反応が行なわれ、後段の晶析反応槽44で残存するリンを用いて空塔速度の大きい状態で晶析反応が行なわれる。これにより、前段の晶析反応槽42で排水中のフッ素を積極的に晶析させてフッ素濃度を低減することができるとともに、後段の晶析反応槽44で低濃度のフッ素を残存するリンで効率よく晶析させることができる。   Therefore, in the processing apparatus 90, the crystallization reaction is performed in the upstream crystallization reaction tank 42 at a high phosphorus concentration, and the remaining crystallization in the subsequent crystallization reaction tank 44 is used to crystallize at a high superficial velocity. Reaction takes place. As a result, the fluorine in the waste water can be actively crystallized in the crystallization reaction tank 42 in the former stage to reduce the fluorine concentration, and the phosphorus in which the low concentration of fluorine remains in the crystallization reaction tank 44 in the latter stage. Crystallization can be performed efficiently.

これらのことから、本発明の処理装置90を採用することにより、フッ素濃度が10〜15mg/Lの範囲であり、かつカルシウムを含有する排水に対して処理水中に残存するリン濃度を最小限に抑制できるとともに、フッ素濃度を8mg/L以下まで低減することができる処理を効率よく行うことができる。   From these facts, by adopting the treatment apparatus 90 of the present invention, the fluorine concentration is in the range of 10 to 15 mg / L, and the phosphorus concentration remaining in the treated water is minimized with respect to the waste water containing calcium. While being able to suppress, the process which can reduce a fluorine density | concentration to 8 mg / L or less can be performed efficiently.

なお、上述した処理装置10,40,90において、各部材及び装置の個数、形状、材質などは特に限定するものではない。   In the processing apparatuses 10, 40, and 90 described above, the number, shape, material, and the like of each member and apparatus are not particularly limited.

また、処理装置10,40,90において、フッ素濃度が10〜15mg/Lの範囲の排水を対象としたが、特に限定するものではない。排水のフッ素濃度を10〜15mg/Lの範囲に調整する不図示の調整槽を最上流に設ければ、15mg/L以上のフッ素含有排水に対しても適用させることができる。   Moreover, in the processing apparatus 10, 40, 90, although drainage | emission in the range whose fluorine concentration is 10-15 mg / L was made into object, it does not specifically limit. If an adjustment tank (not shown) for adjusting the fluorine concentration of the wastewater to the range of 10 to 15 mg / L is provided in the uppermost stream, it can be applied to fluorine-containing wastewater of 15 mg / L or more.

(実施例1)実施例1では、図1に示した処理装置10を用いて、フッ素含有排水の処理試験を行なった。   (Example 1) In Example 1, a treatment test of fluorine-containing waste water was conducted using the treatment apparatus 10 shown in FIG.

晶析反応槽12としては、内径が750mm、高さが4000mmの円筒型の槽を使用した。晶析部12aには、ヒドロキシアパタイト及びリン酸カルシウムで構成され、平均粒径が0.8mmの種晶が1m3 充填された。そして、晶析反応槽12の排水供給量を5m3 /hに、かつ返送管18の流量を30m3 /hに調整することにより、晶析反応槽12の空塔速度をSV5に設定した。 As the crystallization reaction tank 12, a cylindrical tank having an inner diameter of 750 mm and a height of 4000 mm was used. The crystallization part 12a was filled with 1 m 3 of a seed crystal composed of hydroxyapatite and calcium phosphate and having an average particle diameter of 0.8 mm. And the superficial velocity of the crystallization reaction tank 12 was set to SV5 by adjusting the waste water supply amount of the crystallization reaction tank 12 to 5 m 3 / h and the flow rate of the return pipe 18 to 30 m 3 / h.

また、薬剤注入管32において、注入される晶析用薬剤中のリン濃度が排水に対して19mg/Lになるように、薬剤注入制御部34により薬剤注入ポンプ36の駆動を制御した。   Further, in the drug injection tube 32, the drug injection control unit 34 controlled the driving of the drug injection pump 36 so that the phosphorus concentration in the injected crystallization drug was 19 mg / L with respect to the waste water.

さらに、pH調整剤として苛性ソーダが使用され、pHセンサ22の測定値がpH7.0〜7.5になるように、pH調整制御部26によりpH調整ポンプ28の駆動を制御した。   Further, caustic soda was used as a pH adjusting agent, and the pH adjustment control unit 26 controlled the driving of the pH adjusting pump 28 so that the measured value of the pH sensor 22 became pH 7.0 to 7.5.

供試される排水は、金属表面処理工程により発生したフッ酸含有水をカルシウム添加による凝集沈澱法で処理した処理水を使用した。なお、供試排水のフッ素濃度は10〜12mg/Lの範囲であり、カルシウム濃度は300〜1000mg/Lの範囲であった。   As the waste water to be tested, treated water obtained by treating hydrofluoric acid-containing water generated in the metal surface treatment process by a coagulation precipitation method by adding calcium was used. In addition, the fluorine concentration of the test waste water was in the range of 10 to 12 mg / L, and the calcium concentration was in the range of 300 to 1000 mg / L.

その結果を下記に示す。表1は、排水及び処理水におけるpH及び各成分濃度の平均を示している。   The results are shown below. Table 1 shows the average pH and concentration of each component in the wastewater and treated water.

Figure 0004581430
表1に示すように、処理水は排水と比べてpHやSSを特に変動させることなく、リン濃度が0.7mg/Lに抑制されるとともに、フッ素濃度が6.9mg/Lまで低減された。したがって、本発明の処理装置10を採用することにより、フッ素濃度が10〜15mg/Lの範囲であり、かつカルシウムを含有する排水に対して、処理水中のフッ素濃度を排水基準値である8mg/L以下に処理できることが判明した。
Figure 0004581430
As shown in Table 1, in the treated water, the phosphorus concentration was suppressed to 0.7 mg / L and the fluorine concentration was reduced to 6.9 mg / L without particularly changing pH and SS as compared with the waste water. . Therefore, by adopting the treatment apparatus 10 of the present invention, the fluorine concentration in the treated water is 8 mg / L, which is the drainage standard value, for the wastewater containing calcium in the range of 10 to 15 mg / L and containing calcium. It turned out that it can process below L.

(実施例2)実施例2では、図3に示した処理装置90を用いて、フッ素含有排水の処理試験を行なった。   (Example 2) In Example 2, a treatment test of fluorine-containing wastewater was conducted using the treatment apparatus 90 shown in FIG.

前段の晶析反応槽42として、内径が750mmで高さが4000mmの円筒型の槽が使用され、前段の晶析部42aにはヒドロキシアパタイト及びリン酸カルシウムで構成され、平均粒径が0.8mmの種晶が1m3 充填された。そして、前段の晶析反応槽42の排水供給量を5m3 /hに、かつ返送管18の流量を30m3 /hに調整することにより、前段の晶析反応槽42における空塔速度をSV5に設定した。 A cylindrical tank having an inner diameter of 750 mm and a height of 4000 mm is used as the crystallization reaction tank 42 in the previous stage. The seed crystal was filled with 1 m 3 . Then, by adjusting the waste water supply amount of the crystallization reaction tank 42 in the previous stage to 5 m 3 / h and the flow rate of the return pipe 18 to 30 m 3 / h, the superficial velocity in the crystallization reaction tank 42 in the previous stage is set to SV5. Set to.

また、前段の薬剤注入管68において、注入される晶析用薬剤中のリン濃度が排水に対して30mg/Lになるように、前段の薬剤注入ポンプ68aの駆動を調整した。   In addition, in the former-stage drug injection tube 68, the drive of the previous-stage drug injection pump 68a was adjusted so that the phosphorus concentration in the injected crystallization drug was 30 mg / L with respect to the waste water.

さらに、pH調整剤として苛性ソーダが使用され、前段のpHセンサ22の測定値がpH7.0〜7.5になるように、pH調整制御部26により前段のpH調整ポンプ28の駆動を制御した。   Further, caustic soda was used as a pH adjuster, and the pH adjustment control unit 26 controlled the drive of the previous pH adjustment pump 28 so that the measured value of the previous pH sensor 22 was pH 7.0 to 7.5.

一方、後段の晶析反応槽44として、内径が50mmで高さが1000mmの塩化ビニル製のカラムが使用され、後段の晶析部44aには前段の晶析部42aと同じ種晶が1L充填された。また、後段の晶析反応槽44の排水供給量を20L/hに、かつ返送管18の流量を160L/hに調整することにより、後段の晶析反応槽44における空塔速度をSV20に設定した。   On the other hand, a vinyl chloride column having an inner diameter of 50 mm and a height of 1000 mm is used as the latter stage crystallization reaction tank 44, and the latter stage crystallization part 44a is filled with 1 L of the same seed crystal as the former stage crystallization part 42a. It was done. Moreover, the superficial velocity in the latter crystallization reaction tank 44 is set to SV20 by adjusting the waste water supply amount of the latter crystallization reaction tank 44 to 20 L / h and the flow rate of the return pipe 18 to 160 L / h. did.

供試される排水は、金属表面処理工程により発生したフッ酸含有水をカルシウム添加による凝集沈澱法で処理した処理水を使用した。なお、供試排水のフッ素濃度は10〜12mg/Lの範囲であり、カルシウム濃度は300〜1000mg/Lの範囲であった。   As the waste water to be tested, treated water obtained by treating hydrofluoric acid-containing water generated in the metal surface treatment process by a coagulation precipitation method by adding calcium was used. In addition, the fluorine concentration of the test waste water was in the range of 10 to 12 mg / L, and the calcium concentration was in the range of 300 to 1000 mg / L.

pH調整剤として苛性ソーダが使用され、前段のpHセンサ58の測定値がpH7.0〜7.5になるように、pH調整制御部66によって前段のpH調整ポンプ62aの駆動を制御した。   Caustic soda was used as the pH adjusting agent, and the pH adjustment control unit 66 controlled the driving of the pH adjusting pump 62a so that the measured value of the pH sensor 58 at the previous stage was pH 7.0 to 7.5.

その結果を表2に示す。表2は、排水と、前段の晶析反応槽42における処理水(以下、前段の処理水と記す)と、後段の晶析反応槽44における処理水(以下、後段の処理水と記す)との平均水質を示している。   The results are shown in Table 2. Table 2 shows drainage, treated water in the preceding crystallization reaction tank 42 (hereinafter referred to as the treated water in the preceding stage), treated water in the subsequent crystallization reaction tank 44 (hereinafter referred to as the treated water in the subsequent stage). The average water quality is shown.

Figure 0004581430
表2に示すように、フッ素濃度は前段及び後段の晶析反応槽42,44に差が見られなかったものの、リン濃度は後段の晶析反応槽44において低下した。したがって、本発明の処理装置90を採用することにより、フッ素濃度が10〜15mg/Lの範囲であり、かつカルシウムを含有する排水に対し、処理水中に残存するリン濃度を最小限に抑制できるとともに、フッ素濃度を排水基準値である8mg/L以下に安定して処理できることが判明した。
Figure 0004581430
As shown in Table 2, although there was no difference in the fluorine concentration between the first and second crystallization reaction tanks 42 and 44, the phosphorus concentration decreased in the second crystallization reaction tank 44. Therefore, by adopting the treatment apparatus 90 of the present invention, the concentration of phosphorus remaining in the treated water can be minimized with respect to the wastewater containing calcium having a fluorine concentration in the range of 10 to 15 mg / L and containing calcium. It has been found that the fluorine concentration can be stably treated to the drainage standard value of 8 mg / L or less.

(実施例3)実施例3では、空塔速度に対するリン除去率の関係を調査するために、図3の処理装置90を用いてフッ素含有排水の処理試験を行なった。   (Example 3) In Example 3, in order to investigate the relationship between the phosphorus removal rate and the superficial velocity, a treatment test of fluorine-containing wastewater was conducted using the treatment device 90 of FIG.

供試された排水は、カルシウムを含有し、かつフッ素濃度が10〜15mg/Lの範囲のものを使用した。前段の晶析反応槽42では、空塔速度がSV5に、pHが7.5±0.5に設定され、薬剤注入管68から注入される晶析用薬剤の注入量はリン濃度において35mg/Lとした。一方、後段の晶析反応槽44では、流入される前段の処理水はフッ素濃度が8mg/L以下であり、残存するリン濃度は最大3mg/Lであった。そして、前段の処理水が後段の晶析反応槽44へ流入する流入量を変化させることにより、前段の晶析反応槽42の空塔速度(SV)に対する後段の晶析反応槽44の空塔速度(SV)の比率を2〜10倍に変化させて、リンの除去率を測定した。その他の条件は、実施例2と同様である。   The drainage used was one containing calcium and having a fluorine concentration in the range of 10 to 15 mg / L. In the crystallization reaction tank 42 in the previous stage, the superficial velocity is set to SV5, the pH is set to 7.5 ± 0.5, and the injection amount of the crystallization drug injected from the drug injection pipe 68 is 35 mg / day in the phosphorus concentration. L. On the other hand, in the latter stage crystallization reaction tank 44, the treated water in the former stage had a fluorine concentration of 8 mg / L or less and the remaining phosphorus concentration was 3 mg / L at the maximum. Then, by changing the amount of inflow of the treated water in the former stage into the crystallization reaction tank 44 in the latter stage, the empty space in the crystallization reaction tank 44 in the latter stage with respect to the superficial velocity (SV) of the crystallization reaction tank 42 in the former stage. The rate of removal of phosphorus was measured by changing the rate (SV) ratio to 2 to 10 times. Other conditions are the same as in Example 2.

その結果を図4に示す。図4は、後段の晶析反応槽44における空塔速度(SV)の比率に対する処理水中のリン除去率を示したグラフである。   The result is shown in FIG. FIG. 4 is a graph showing the phosphorus removal rate in the treated water with respect to the ratio of the superficial velocity (SV) in the subsequent crystallization reaction tank 44.

図4から分かるように、後段の晶析反応槽44の空塔速度(SV)が、前段の晶析反応槽の空塔速度(SV)に対して2〜6倍の範囲ではリン除去率が80%以上であったが、6倍を超えると急速にリン除去率が低下した。   As can be seen from FIG. 4, when the superficial velocity (SV) of the latter crystallization reaction tank 44 is 2 to 6 times the superficial velocity (SV) of the former crystallization reaction tank, the phosphorus removal rate is high. Although it was 80% or more, when it exceeded 6 times, the phosphorus removal rate decreased rapidly.

このことから、後段の晶析反応槽における空塔速度は、前段の晶析反応槽の空塔速度(SV)に対して2〜6倍の範囲で処理を行うことにより、処理水中に残存するリン濃度を最小限に抑制した処理を行うことができることが判明した。   From this, the superficial velocity in the latter stage crystallization reaction tank remains in the treated water by performing treatment in the range of 2 to 6 times the superficial velocity (SV) of the former stage crystallization reaction tank. It has been found that the treatment can be performed with the phosphorus concentration suppressed to a minimum.

本発明の第1の実施の形態である処理装置の構成を示したブロック図The block diagram which showed the structure of the processing apparatus which is the 1st Embodiment of this invention 本発明の第2の実施の形態である処理装置の構成を示したブロック図The block diagram which showed the structure of the processing apparatus which is the 2nd Embodiment of this invention. 本発明の第3の実施の形態である処理装置の構成を示したブロック図The block diagram which showed the structure of the processing apparatus which is the 3rd Embodiment of this invention. 後段の晶析反応槽における処理水中のリン除去率に対する空塔速度の比率を示したグラフGraph showing the ratio of superficial velocity to phosphorus removal rate in treated water in the latter crystallization reaction tank

符号の説明Explanation of symbols

10,40,90…処理装置、12…晶析反応槽、12a…晶析部、14…流入管、16…流出管、18…返送管、20…返送ポンプ、22…pHセンサ、24…pH調整管、26…pH調整制御部、28…pH調整ポンプ、30…フッ素センサ、32…薬剤注入管、34…薬剤注入制御部、36…薬剤注入ポンプ、42…前段の晶析反応槽、44…後段の晶析反応槽、46…流入管、48…流出管、50…連結管、52…前段の返送管、52a…前段の返送ポンプ、54…後段の返送管、54a…後段の返送ポンプ、56…連結ポンプ、58…前段のpHセンサ、60…後段のpHセンサ、62…前段のpH調整管、62a…前段のpH調整ポンプ、64…後段のpH調整管、64a…後段のpH調整ポンプ、66…pH調整制御部、68…前段の薬剤注入管、68a…前段の薬剤注入ポンプ、70…後段の薬剤注入管、70a…後段の薬剤注入ポンプ   DESCRIPTION OF SYMBOLS 10,40,90 ... Processing apparatus, 12 ... Crystallization reaction tank, 12a ... Crystallization part, 14 ... Inflow pipe, 16 ... Outflow pipe, 18 ... Return pipe, 20 ... Return pump, 22 ... pH sensor, 24 ... pH Adjustment pipe, 26 ... pH adjustment control unit, 28 ... pH adjustment pump, 30 ... Fluorine sensor, 32 ... Drug injection pipe, 34 ... Drug injection control unit, 36 ... Drug injection pump, 42 ... Preliminary crystallization reaction tank, 44 ... latter stage crystallization reaction tank, 46 ... inflow pipe, 48 ... outflow pipe, 50 ... connecting pipe, 52 ... front stage return pipe, 52a ... front stage return pump, 54 ... rear stage return pipe, 54a ... rear stage return pump , 56 ... connection pump, 58 ... front-stage pH sensor, 60 ... rear-stage pH sensor, 62 ... front-stage pH adjustment pipe, 62a ... front-stage pH adjustment pump, 64 ... rear-stage pH adjustment pipe, 64a ... rear-stage pH adjustment Pump, 66... PH adjustment control unit, 68 Preceding drug infusion tubes, 68a ... front of the infusion pump, 70 ... subsequent drug infusion tubes, 70a ... subsequent infusion pump

Claims (7)

カルシウムが共存するとともにフッ素濃度が10〜15mg/Lの低濃度の排水中からフッ素を晶析させて除去するフッ素含有排水の処理方法であって、
多数の種晶で形成された流動床を備えた晶析反応槽を2段直列に設け、前記排水を順次通水しながら該晶析反応槽にリンを含有する晶析用薬剤を注入することにより前記排水中のフッ素を晶析させる際に、
前記前段の晶析反応槽内のpHを6〜9の範囲に調整し、後段の晶析反応槽のpHを前段の晶析反応槽よりも0.2〜1.5高くなるように調整するとともに、
前記前段及び後段の晶析反応槽に注入する全注入量のうち、前記前段の晶析反応槽に注入する晶析用薬剤量の注入割合が、後段の晶析反応槽に注入する晶析用薬剤量の注入割合に対して1〜2倍量になるように、前記晶析用薬剤の全注入量を分注制御することを特徴とするフッ素含有排水の処理方法。
A method for treating fluorine-containing wastewater, in which calcium coexists and fluorine is crystallized and removed from wastewater having a low concentration of 10 to 15 mg / L.
A crystallization reaction tank having a fluidized bed formed of a large number of seed crystals is provided in two stages in series, and a crystallization agent containing phosphorus is injected into the crystallization reaction tank while sequentially passing the waste water. When crystallization of fluorine in the waste water by
The pH in the preceding crystallization reaction tank is adjusted to a range of 6 to 9, and the pH in the subsequent crystallization reaction tank is adjusted to be 0.2 to 1.5 higher than that in the previous crystallization reaction tank. With
Of the total injection amount injected into the preceding and subsequent crystallization reaction tanks, the injection ratio of the amount of crystallization agent injected into the preceding crystallization reaction tank is for crystallization injected into the subsequent crystallization reaction tank. A method for treating fluorine-containing wastewater , wherein the total injection amount of the crystallization drug is controlled to be 1 to 2 times the injection rate of the drug amount .
前記排水が前記晶析反応槽に流入するpHが9以上であることを特徴とする請求項1に記載のフッ素含有排水の処理方法。   The method for treating fluorine-containing wastewater according to claim 1, wherein the pH of the wastewater flowing into the crystallization reaction tank is 9 or more. カルシウムが共存するとともにフッ素濃度が10〜15mg/Lの低濃度の排水中からフッ素を晶析させて除去するフッ素含有排水の処理装置であって、
前記処理装置は、多数の種晶を充填した晶析反応槽が2段直列に設けられ、前段の晶析反応槽の上面と後段の晶析反応槽の底部とが連結管で連結されるとともに、
前記前段及び後段の晶析反応槽にそれぞれ設けられ、晶析反応槽の下方から流入させて処理した水の一部を循環させることにより晶析反応槽内に種晶の流動床を形成させる流動手段と、
前記前段及び後段の晶析反応槽にそれぞれ設けられ、晶析反応槽にリン酸を含有する晶析用薬剤を注入する薬剤注入手段と、
前記前段及び後段の晶析反応槽にそれぞれ設けられ、晶析反応槽内のpHを測定するpH測定手段と、
前記それぞれのpH測定手段の測定値に基づいて前記後段の晶析反応槽のpHが前段の晶析反応槽のpHよりも所定pH差高くなるように調整するpH調整手段と、
前記前段及び後段に注入する晶析用薬剤の全注入量のうち、前記前段の晶析反応槽に注入する晶析用薬剤量の注入割合が、後段の晶析反応槽に注入する晶析用薬剤量の注入割合に対して所定倍量になるように、前記晶析用薬剤の全注入量を分注する薬剤調整手段と、を備えたことを特徴とするフッ素含有排水の処理装置。
A treatment apparatus for fluorine-containing wastewater that coexists with calcium and removes fluorine by crystallization from low-concentration wastewater having a fluorine concentration of 10 to 15 mg / L,
In the processing apparatus, crystallization reaction tanks filled with a large number of seed crystals are provided in two stages in series, and the upper surface of the preceding crystallization reaction tank and the bottom of the subsequent crystallization reaction tank are connected by a connecting pipe. ,
A flow that is provided in each of the preceding and subsequent crystallization reaction tanks, and forms a fluidized bed of seed crystals in the crystallization reaction tank by circulating a part of the water treated by flowing in from below the crystallization reaction tank. Means,
A chemical injection means for injecting a crystallization chemical containing phosphoric acid into the crystallization reaction tank;
PH measurement means for measuring pH in the crystallization reaction tank provided in the crystallization reaction tank in the former stage and the latter stage, respectively.
PH adjusting means for adjusting the pH of the subsequent crystallization reaction tank based on the measured values of the respective pH measuring means so as to be higher than the pH of the preceding crystallization reaction tank by a predetermined pH,
Of the total injection amount of the crystallization agent to be injected into the preceding stage and the subsequent stage, the injection ratio of the amount of the crystallization agent to be injected into the preceding crystallization reaction tank is used for the crystallization to be injected into the subsequent crystallization reaction tank. A fluorine-containing wastewater treatment apparatus , comprising: a medicine adjusting unit that dispenses a total amount of the crystallization drug to be injected in a predetermined amount with respect to an injection ratio of the drug amount .
前記晶析反応槽の上流に、排水中のフッ素濃度を10〜15mg/Lの範囲に調整する調整槽を設けたことを特徴とする請求項3に記載のフッ素含有排水の処理装置。   The apparatus for treating fluorine-containing wastewater according to claim 3, wherein an adjustment tank for adjusting the fluorine concentration in the wastewater to a range of 10 to 15 mg / L is provided upstream of the crystallization reaction tank. 前記pH調整手段は、前記後段の晶析反応槽におけるpH測定手段の測定値が、前記前段の晶析反応槽におけるpH測定手段の測定値よりも0.2〜1.5高くなるように、前記pH調整制御手段を調整することを特徴とする請求項3又は4に記載のフッ素含有排水の処理装置。 The pH adjusting means is such that the measured value of the pH measuring means in the subsequent crystallization reaction tank is 0.2 to 1.5 higher than the measured value of the pH measuring means in the preceding crystallization reaction tank . The apparatus for treating fluorine-containing wastewater according to claim 3 or 4 , wherein the pH adjustment control means is adjusted . 前記薬剤調整手段は、前記前段の晶析反応槽に注入する晶析用薬剤の注入割合が、前記後段の晶析反応槽に注入する晶析用薬剤の注入割合に対して1〜2倍になるように前記全注入量を分注することを特徴とする請求項3〜5の何れか1に記載のフッ素含有排水の処理装置。 Wherein the agent adjusting means, injection rate of crystallization析用agent to be injected into the crystallization reaction tank of the previous stage, one to two times the injection rate of crystallization析用agent to be injected into the crystallization reaction tank of the subsequent The apparatus for treating fluorine-containing wastewater according to any one of claims 3 to 5, wherein the total injection amount is dispensed . 前記晶析用薬剤の全注入量を前記2段直列に設けた晶析反応槽のうちの前段の晶析反応槽に注入するとともに、前記後段の晶析反応槽の空塔速度が、前記前段の晶析反応槽の空塔速度に対して2〜6倍になるようにしたことを特徴とする請求項3〜6の何れか1に記載のフッ素含有排水の処理装置。 The total injection amount of the crystallization agent is injected into the preceding crystallization reaction tank in the crystallization reaction tank provided in two stages in series, and the superficial velocity of the latter crystallization reaction tank is The apparatus for treating fluorine-containing wastewater according to any one of claims 3 to 6, wherein the treatment rate is 2 to 6 times the superficial velocity of the crystallization reaction tank.
JP2004062804A 2004-03-05 2004-03-05 Method and apparatus for treating fluorine-containing wastewater Expired - Fee Related JP4581430B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062804A JP4581430B2 (en) 2004-03-05 2004-03-05 Method and apparatus for treating fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062804A JP4581430B2 (en) 2004-03-05 2004-03-05 Method and apparatus for treating fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JP2005246318A JP2005246318A (en) 2005-09-15
JP4581430B2 true JP4581430B2 (en) 2010-11-17

Family

ID=35027311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062804A Expired - Fee Related JP4581430B2 (en) 2004-03-05 2004-03-05 Method and apparatus for treating fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP4581430B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4726216B2 (en) * 2005-11-02 2011-07-20 オルガノ株式会社 Fluorine / phosphorus treatment method and apparatus for water containing chelating agent
JP4766457B2 (en) * 2008-03-13 2011-09-07 株式会社日立プラントテクノロジー Method and apparatus for treating fluorine-containing wastewater
CN106630084B (en) * 2016-11-29 2023-06-23 中冶京诚工程技术有限公司 Method and system for treating high-fluorine and high-hardness wastewater by two-stage two-phase fluidized bed self-crystallization
CN114950186A (en) * 2022-06-13 2022-08-30 西安交通大学 Nuclear crystal condensation induction granulation salt separation crystallization water treatment device with tangential water inlet/dosing/circulating water inlet structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179957A (en) * 1975-01-08 1976-07-12 Hitachi Ltd FUTSUSOGANJUHAIEKINO SHORIHOHO
JPS5288577A (en) * 1976-01-21 1977-07-25 Hitachi Ltd Treatment of waste liquid containing fluorine
JPS58199088A (en) * 1982-05-14 1983-11-19 Hitachi Plant Eng & Constr Co Ltd Treatment of fluorine ion-containing water
JPH06343977A (en) * 1993-06-04 1994-12-20 Mitsui Toatsu Chem Inc Treatment process for waste water
JP2001259656A (en) * 2000-03-16 2001-09-25 Aquas Corp Method for treating fluorine-containing waste water

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5179957A (en) * 1975-01-08 1976-07-12 Hitachi Ltd FUTSUSOGANJUHAIEKINO SHORIHOHO
JPS5288577A (en) * 1976-01-21 1977-07-25 Hitachi Ltd Treatment of waste liquid containing fluorine
JPS58199088A (en) * 1982-05-14 1983-11-19 Hitachi Plant Eng & Constr Co Ltd Treatment of fluorine ion-containing water
JPH06343977A (en) * 1993-06-04 1994-12-20 Mitsui Toatsu Chem Inc Treatment process for waste water
JP2001259656A (en) * 2000-03-16 2001-09-25 Aquas Corp Method for treating fluorine-containing waste water

Also Published As

Publication number Publication date
JP2005246318A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
FI126285B (en) Method for removing sulfate, calcium and / or other soluble metals from waste water
US20060011550A1 (en) Inorganic contaminant removal from water
US6645385B2 (en) System and method for removal of fluoride from wastewater using single fluoride sensing electrode
JP2009072714A (en) Hydrofluoric acid treatment apparatus
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP4581430B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP5868153B2 (en) Coagulation sedimentation equipment
JP2000070962A (en) Treatment of waste water containing fluorine
JP3362276B2 (en) Wastewater treatment equipment
JP4139600B2 (en) Treatment method of wastewater containing fluorine
CN212269679U (en) Complete equipment for modifying and efficiently settling fluorine-containing wastewater sludge
JP5149736B2 (en) Denitrification treatment method and denitrification treatment apparatus
WO1999050190A1 (en) Method and device for treating manganese containing water
JP4374825B2 (en) Crystalline dephosphorization method
US9650266B2 (en) Method of treating suspended solids and heavy metal ions in sewage
CN104556372B (en) Method for adsorption separation of organic matters by residual sludge
JP6444574B1 (en) Water treatment system and water treatment method
JPH0490888A (en) Treatment of fluoride-containing solution
JP5222596B2 (en) Crystallization reactor
JP2008073690A (en) Treatment method and apparatus of fluorine-containing waste water
JP2006231163A (en) Method of treating rare earth element-containing waste water
JP5650164B2 (en) Crystallization reactor and crystallization reaction method
JPH10151456A (en) Wastewater treatment method
JP4686735B2 (en) Fluorine-containing water treatment method
JP7274379B2 (en) water treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100816

R150 Certificate of patent or registration of utility model

Ref document number: 4581430

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees