JP7274379B2 - water treatment method - Google Patents

water treatment method Download PDF

Info

Publication number
JP7274379B2
JP7274379B2 JP2019135632A JP2019135632A JP7274379B2 JP 7274379 B2 JP7274379 B2 JP 7274379B2 JP 2019135632 A JP2019135632 A JP 2019135632A JP 2019135632 A JP2019135632 A JP 2019135632A JP 7274379 B2 JP7274379 B2 JP 7274379B2
Authority
JP
Japan
Prior art keywords
adsorption tower
water
adsorption
treated
fluorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019135632A
Other languages
Japanese (ja)
Other versions
JP2021016847A (en
Inventor
耕大 吉崎
俊一 池田
麻未 冨田
郁 村上
幸男 樋口
崇良 張本
総太 岩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION
Kubota Corp
Original Assignee
KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION, Kubota Corp filed Critical KUBOTA ENVIRONMENTAL ENGINEERING CORPORATION
Priority to JP2019135632A priority Critical patent/JP7274379B2/en
Publication of JP2021016847A publication Critical patent/JP2021016847A/en
Application granted granted Critical
Publication of JP7274379B2 publication Critical patent/JP7274379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、フッ素イオンと硫酸イオンを含有する被処理水を処理する水処理方法に関する。 The present invention relates to a water treatment method for treating water containing fluoride ions and sulfate ions.

石炭火力発電所やコークス工場や製鉄工場等では、石炭やコークスを燃焼させることにより発生した排ガスを脱硫処理することで、硫酸イオンとともにフッ素イオンを含む排煙脱硫排水が発生する。排煙脱硫排水には、通常、硫酸イオンが数万mg/L以上含まれ、さらにフッ素イオンが数十mg/L~数百mg/L程度含まれる。そのため、これを放流するに当たっては、当該排水中からフッ素イオンを除去することが必要となる。 In coal-fired power plants, coke plants, steel plants, and the like, flue gas desulfurization wastewater containing sulfate ions and fluorine ions is generated by desulfurizing exhaust gas generated by burning coal or coke. Flue gas desulfurization effluent usually contains tens of thousands mg/L or more of sulfate ions, and further contains several tens of mg/L to several hundreds of mg/L of fluoride ions. Therefore, it is necessary to remove fluorine ions from the waste water before discharging it.

排煙脱硫排水からフッ素イオンを除去する方法として、従来、様々な方法が提案されている。例えば特許文献1には、フッ素イオンとマグネシウムイオンと硫酸イオンを含有する排水にカルシウムイオンを添加してpHを9.4~9.8に調整する処理方法が開示されている。特許文献2には、水酸化マグネシウムを脱硫剤として用いた排煙脱硫排水中からフッ素イオンを除去する方法であって、排水中の懸濁物質を固液分離し、固液分離した液に水酸化ナトリウムを添加してpH9以上とし、生成した沈殿物にフッ素イオンを吸着させ、固液分離する処理方法が開示されている。特許文献3には、COD成分分解工程と第1凝集沈殿工程と第2凝集沈殿工程とフッ素吸着工程を含む排煙脱硫排水の処理方法が開示されている。 Conventionally, various methods have been proposed as methods for removing fluoride ions from flue gas desulfurization wastewater. For example, Patent Document 1 discloses a treatment method in which calcium ions are added to wastewater containing fluoride ions, magnesium ions and sulfate ions to adjust the pH to 9.4 to 9.8. Patent Document 2 discloses a method for removing fluoride ions from flue gas desulfurization wastewater using magnesium hydroxide as a desulfurizing agent, wherein suspended solids in the wastewater are separated into solid and liquid, and water is added to the solid-liquid separated liquid. A treatment method is disclosed in which sodium oxide is added to adjust the pH to 9 or higher, fluorine ions are adsorbed on the precipitates formed, and solid-liquid separation is performed. Patent Document 3 discloses a flue gas desulfurization wastewater treatment method including a COD component decomposition step, a first coagulation-sedimentation step, a second coagulation-sedimentation step, and a fluorine adsorption step.

一方、半導体製造分野等におけるエッチング洗浄廃液やアルミニウム電解製錬工程やガラス製造工程等から排出されるフッ素含有廃液の処理方法として、フッ素吸着剤を用いたフッ素イオンの除去方法も知られている。例えば特許文献4には、フッ素含有水をカルシウム化合物と反応させてフッ化カルシウムに変換して固液分離した後、分離液をフッ素吸着剤と接触させる処理方法が開示されている。特許文献5には、フッ素含有水を低濃度フッ素含有水と高濃度フッ素含有水に分別する工程、低濃度フッ素含有水にカルシウム化合物を添加後固液分離し、分離液をフッ素吸着剤と接触させる工程、フッ素吸着剤を再生処理する工程、および、高濃度フッ素含有水にフッ素吸着剤の再生廃液を添加した後、炭酸カルシウム結晶種充填槽に通液する工程を有するフッ素含有水の処理方法が開示されている。特許文献6には、フッ素吸着剤が充填された吸着塔にフッ素含有被処理水を通水し、フッ素が低減された処理水を生じさせる水中のフッ素除去方法において、吸着塔でフッ素を吸着除去して生じるフッ素が低減された処理水を、フッ素含有被処理水と混合することにより、吸着塔入口におけるフッ素含有被処理水のフッ素濃度を15mg/L以下に調整する水中のフッ素除去方法が開示されている。 On the other hand, a method for removing fluorine ions using a fluorine adsorbent is also known as a method for treating fluorine-containing waste liquids discharged from etching cleaning waste liquids, aluminum electrolytic refining processes, glass manufacturing processes, etc. in the field of semiconductor manufacturing and the like. For example, Patent Document 4 discloses a treatment method in which fluorine-containing water is reacted with a calcium compound to be converted into calcium fluoride, solid-liquid separated, and then the separated liquid is brought into contact with a fluorine adsorbent. Patent Document 5 discloses a process of separating fluorine-containing water into low-concentration fluorine-containing water and high-concentration fluorine-containing water, adding a calcium compound to the low-concentration fluorine-containing water, performing solid-liquid separation, and contacting the separated liquid with a fluorine adsorbent. a step of regenerating the fluorine adsorbent; and a step of adding the regeneration waste liquid of the fluorine adsorbent to the high-concentration fluorine-containing water and then passing the liquid through a tank filled with calcium carbonate crystal seeds. is disclosed. Patent Document 6 describes a method for removing fluorine from water in which fluorine-containing water to be treated is passed through an adsorption tower filled with a fluorine adsorbent to produce treated water with reduced fluorine, in which fluorine is removed by adsorption in the adsorption tower. Disclosed is a method for removing fluorine from water in which the fluorine concentration of the fluorine-containing water to be treated at the inlet of the adsorption tower is adjusted to 15 mg/L or less by mixing the treated water in which fluorine is reduced generated by It is

特開平8-57486号公報JP-A-8-57486 特開2000-176241号公報JP-A-2000-176241 特開平11-137958号公報JP-A-11-137958 特開平5-92187号公報JP-A-5-92187 特開平5-253575号公報JP-A-5-253575 特開2006-314957号公報JP 2006-314957 A

従来、フッ素吸着剤を用いたフッ素除去処理は、比較的フッ素イオン濃度が低い被処理水に対して行われてきた。フッ素イオン濃度が高い被処理水を処理する場合は、通常、まず凝集沈殿や共沈等によりフッ素イオンの不溶化処理を行ってある程度フッ素イオンを除去した後、フッ素イオン濃度が低減された被処理水を吸着剤と接触させることにより、フッ素イオンの高度除去を行う。このような処理が行われる理由としては、凝集沈殿や共沈による処理と比べて吸着剤を用いればより高度にフッ素イオンを除去できることや、フッ素イオン濃度が高い被処理水を凝集沈殿や共沈等の前処理を経ずにいきなり吸着剤と接触させると、十分にフッ素濃度が低減された処理水を安定して得ることが難しいことが挙げられる。特に、フッ素イオン以外の共存イオン濃度が高い場合は、フッ素吸着処理への影響が懸念される。 Conventionally, fluorine removal treatment using a fluorine adsorbent has been performed on water to be treated that has a relatively low concentration of fluorine ions. When treating water with a high concentration of fluoride ions, usually first the fluoride ions are insolubilized by coagulation sedimentation or coprecipitation to remove the fluoride ions to some extent, and then the water with a reduced concentration of fluoride ions is treated. is brought into contact with an adsorbent to remove fluoride ions to a high degree. The reasons for this type of treatment are that fluorine ions can be removed to a higher degree by using an adsorbent compared to coagulation-sedimentation or co-precipitation treatment, and that water to be treated with a high concentration of fluoride ions can be treated by coagulation-sedimentation or co-precipitation. It is difficult to stably obtain treated water in which the fluorine concentration is sufficiently reduced if the water is brought into direct contact with the adsorbent without undergoing such pretreatment. In particular, when the concentration of coexisting ions other than fluorine ions is high, there is concern about the effect on the fluorine adsorption treatment.

本発明は前記事情に鑑みてなされたものであり、その目的は、フッ素イオンを含むとともに、硫酸イオンを高濃度に含む被処理水からフッ素イオンを除去する方法であって、フッ素吸着剤により安定して処理することができる水処理方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for removing fluorine ions from water to be treated that contains fluoride ions and a high concentration of sulfate ions, and is stabilized by a fluorine adsorbent. To provide a water treatment method capable of treating as

前記課題を解決することができた本発明の水処理方法とは、フッ素イオンと硫酸イオンを含有する被処理水をフッ素吸着剤が充填された吸着塔に導入し、被処理水中のフッ素イオンの少なくとも一部が除去された第1処理水を得る吸着工程と、吸着工程の前に、吸着工程で得られる第1処理水を吸着塔に導入する前処理工程とを有し、吸着塔に導入される被処理水の硫酸イオン濃度が30,000mg/L以上であり、吸着塔に導入される第1処理水の硫酸イオン濃度が30,000mg/L以上であるところに特徴を有する。 The water treatment method of the present invention, which was able to solve the above-mentioned problems, is to introduce the water to be treated containing fluoride ions and sulfate ions into an adsorption tower filled with a fluorine adsorbent, and remove the fluorine ions in the water to be treated. and a pretreatment step of introducing the first treated water obtained in the adsorption step into the adsorption tower before the adsorption step, and introducing the water into the adsorption tower. The first treated water introduced into the adsorption tower has a sulfate ion concentration of 30,000 mg/L or more.

フッ素イオンとともに硫酸イオンを30,000mg/L以上と高濃度に含む被処理水は、これをいきなりフッ素吸着剤が充填された吸着塔に導入して処理すると、フッ素イオンが十分に吸着除去できない場合があり、特に被処理水を吸着塔に導入した初期において処理水のフッ素イオン濃度が高くなる。しかし、本発明の水処理方法は、被処理水のフッ素吸着処理に先立って、予め当該吸着処理の処理水を準備し、この処理水をフッ素吸着剤が充填された吸着塔に導入するようにしている。すなわち、吸着工程の前に、吸着工程で得られる第1処理水を吸着塔に導入する前処理工程を設けており、前処理工程で吸着塔に導入する第1処理水の硫酸イオン濃度が30,000mg/L以上となっている。このように前処理工程を設けることにより、吸着工程において被処理水を吸着塔に導入した際に、吸着工程の初期から好適にフッ素イオンが吸着除去され、十分にフッ素イオン濃度が低減された処理水を安定して得ることができる。 If the water to be treated contains sulfate ions at a high concentration of 30,000 mg/L or more together with fluoride ions, the fluoride ions cannot be sufficiently adsorbed and removed if the water is suddenly introduced into an adsorption tower filled with a fluorine adsorbent for treatment. Especially at the initial stage when the water to be treated is introduced into the adsorption tower, the fluorine ion concentration of the treated water becomes high. However, in the water treatment method of the present invention, prior to the fluorine adsorption treatment of the water to be treated, the treated water for the adsorption treatment is prepared in advance, and the treated water is introduced into the adsorption tower filled with the fluorine adsorbent. ing. That is, before the adsorption step, a pretreatment step of introducing the first treated water obtained in the adsorption step into the adsorption tower is provided, and the first treated water introduced into the adsorption tower in the pretreatment step has a sulfate ion concentration of 30 ,000 mg/L or more. By providing the pretreatment step in this way, when the water to be treated is introduced into the adsorption tower in the adsorption step, fluorine ions are preferably adsorbed and removed from the beginning of the adsorption step, and the fluorine ion concentration is sufficiently reduced. Water can be obtained stably.

前処理工程において、吸着塔に導入される第1処理水のフッ素イオン濃度は、15mg/L以下であることが好ましい。また、吸着塔に導入される第1処理水のpHは、2.0以上3.5以下であることが好ましい。前処理工程においては、第1処理水を吸着塔に循環させながら導入してもよい。 In the pretreatment step, the fluorine ion concentration of the first treated water introduced into the adsorption tower is preferably 15 mg/L or less. Moreover, the pH of the first treated water introduced into the adsorption tower is preferably 2.0 or more and 3.5 or less. In the pretreatment step, the first treated water may be introduced while being circulated to the adsorption tower.

前処理工程において吸着塔から排出される第2処理水のpHが4.0以下となったら、吸着工程を行うことが好ましい。 It is preferable to perform the adsorption step when the pH of the second treated water discharged from the adsorption tower in the pretreatment step becomes 4.0 or less.

吸着工程において、吸着塔に導入される被処理水のフッ素イオン濃度は、50mg/L以上であることが好ましい。また、吸着塔に導入される被処理水のpHは、2.0以上3.5以下であることが好ましい。フッ素吸着剤としては、セリウム系吸着剤を用いることが好ましい。 In the adsorption step, the fluorine ion concentration of the water to be treated introduced into the adsorption tower is preferably 50 mg/L or more. Moreover, the pH of the water to be treated introduced into the adsorption tower is preferably 2.0 or more and 3.5 or less. A cerium-based adsorbent is preferably used as the fluorine adsorbent.

本発明の水処理方法は、吸着工程の後に、吸着塔にアルカリ溶液を導入し、フッ素吸着剤からフッ素イオンを脱着させる脱着工程と、脱着工程の後に、吸着塔に酸溶液を導入する酸処理工程とをさらに有し、酸処理工程の後に前処理工程を行い、その後再び吸着工程を行うものであることが好ましい。 The water treatment method of the present invention comprises a desorption step in which an alkaline solution is introduced into the adsorption tower after the adsorption step to desorb fluorine ions from the fluorine adsorbent, and an acid treatment in which an acid solution is introduced into the adsorption tower after the desorption step. It is preferable that the pretreatment step is performed after the acid treatment step, and then the adsorption step is performed again.

本発明の水処理方法は、吸着工程の後に、吸着塔にアルカリ溶液を導入し、フッ素吸着剤からフッ素イオンを脱着させる脱着工程と、脱着工程の後に、吸着塔に酸溶液を導入する酸処理工程とをさらに有し、吸着塔として第1吸着塔と第2吸着塔が設けられ、下記(1)~(4)のステージを順に繰り返し行うことで、第1吸着塔と第2吸着塔で各工程を行うものであってもよい。
(1)第1吸着塔と第2吸着塔をこの順で直列接続し、被処理水を第1吸着塔と第2吸着塔に順次導入して、第1吸着塔で吸着工程を行い、第2吸着塔で前処理工程を行う。
(2)脱着工程と酸処理工程を第1吸着塔で行うとともに、第2吸着塔に被処理水を導入して吸着工程を行う。
(3)第2吸着塔と第1吸着塔をこの順で直列接続し、被処理水を第2吸着塔と第1吸着塔に順次導入して、第2吸着塔で吸着工程を行い、第1吸着塔で前処理工程を行う。
(4)脱着工程と酸処理工程を第2吸着塔で行うとともに、第1吸着塔に被処理水を導入して吸着工程を行う。
The water treatment method of the present invention comprises a desorption step in which an alkaline solution is introduced into the adsorption tower after the adsorption step to desorb fluorine ions from the fluorine adsorbent, and an acid treatment in which an acid solution is introduced into the adsorption tower after the desorption step. A first adsorption tower and a second adsorption tower are provided as adsorption towers, and the following stages (1) to (4) are repeated in order, so that the first adsorption tower and the second adsorption tower Each step may be performed.
(1) The first adsorption tower and the second adsorption tower are connected in series in this order, the water to be treated is sequentially introduced into the first adsorption tower and the second adsorption tower, the adsorption step is performed in the first adsorption tower, and the A pretreatment step is performed in two adsorption towers.
(2) The desorption step and the acid treatment step are performed in the first adsorption tower, and the water to be treated is introduced into the second adsorption tower to perform the adsorption step.
(3) The second adsorption tower and the first adsorption tower are connected in series in this order, the water to be treated is sequentially introduced into the second adsorption tower and the first adsorption tower, the adsorption step is performed in the second adsorption tower, and the A pretreatment step is performed in one adsorption tower.
(4) The desorption step and the acid treatment step are performed in the second adsorption tower, and the water to be treated is introduced into the first adsorption tower to perform the adsorption step.

上記のように処理する場合、(1)のステージにおいて、第1吸着塔から排出される第1処理水のフッ素イオン濃度を測定し、当該フッ素イオン濃度が所定値を超えたら(2)のステージに移り、(3)のステージにおいて、第2吸着塔から排出される第1処理水のフッ素イオン濃度を測定し、当該フッ素イオン濃度が所定値を超えたら(4)のステージに移ることが好ましい。あるいは、(1)のステージにおいて、第1吸着塔の吸着剤によって吸着されたフッ素イオンの累積吸着量が所定値を超えたら(2)のステージに移り、(3)のステージにおいて、第2吸着塔の吸着剤によって吸着されたフッ素イオンの累積吸着量が所定値を超えたら(4)のステージに移るようにしてもよい。 In the case of processing as described above, in the stage (1), the fluorine ion concentration of the first treated water discharged from the first adsorption tower is measured, and when the fluorine ion concentration exceeds a predetermined value, the stage of (2) , and in the stage (3), the fluorine ion concentration of the first treated water discharged from the second adsorption tower is measured, and when the fluorine ion concentration exceeds a predetermined value, it is preferable to move to the stage (4). . Alternatively, in stage (1), when the cumulative adsorption amount of fluorine ions adsorbed by the adsorbent in the first adsorption tower exceeds a predetermined value, the stage moves to (2), and in stage (3), the second adsorption If the cumulative adsorption amount of fluorine ions adsorbed by the adsorbent in the tower exceeds a predetermined value, the process may proceed to stage (4).

フッ素イオンとともに、硫酸イオンを比較的高濃度に含有する被処理水としては、排煙脱硫設備から排出される排煙脱硫排水を用いることが好ましい。 As the water to be treated containing sulfate ions at a relatively high concentration together with fluoride ions, it is preferable to use flue gas desulfurization wastewater discharged from flue gas desulfurization equipment.

本発明の水処理方法によれば、硫酸イオンを高濃度に含む被処理水であっても、当該被処理水をフッ素吸着剤が充填された吸着塔に導入して処理する際に、安定してフッ素イオン濃度が低減された処理水を得ることができる。 According to the water treatment method of the present invention, even if the water to be treated contains a high concentration of sulfate ions, when the water to be treated is introduced into the adsorption tower filled with the fluorine adsorbent and treated, the water is stable. treated water with a reduced fluoride ion concentration can be obtained.

高濃度に硫酸イオンを含む被処理水を、前処理工程を行わずに吸着工程を行った場合と、前処理工程を行った後に吸着工程を行った場合について、処理水のフッ素イオン濃度とpHの経時変化を表す。Fluoride ion concentration and pH of the treated water containing a high concentration of sulfate ions were measured when the adsorption step was performed without performing the pretreatment step and when the adsorption step was performed after the pretreatment step. represents the change over time. 本発明の水処理方法で用いられる水処理システムの構成例を表す。1 shows a configuration example of a water treatment system used in the water treatment method of the present invention. 本発明の水処理方法で用いられる水処理システムの構成例を表す。1 shows a configuration example of a water treatment system used in the water treatment method of the present invention. 本発明の水処理方法で用いられる水処理システムの構成例を表す。1 shows a configuration example of a water treatment system used in the water treatment method of the present invention.

本発明は、フッ素イオンと硫酸イオンを含有する被処理水を処理する水処理方法に関する。詳細には、フッ素イオンとともに硫酸イオンを30,000mg/L以上の高濃度で含む被処理水を、フッ素吸着剤が充填された吸着塔に導入して、被処理水中のフッ素イオンの少なくとも一部を除去する水処理方法に関するものである。 The present invention relates to a water treatment method for treating water containing fluoride ions and sulfate ions. Specifically, water to be treated containing sulfate ions at a high concentration of 30,000 mg/L or more together with fluoride ions is introduced into an adsorption tower filled with a fluorine adsorbent, and at least a portion of the fluorine ions in the water to be treated is It relates to a water treatment method for removing

石炭火力発電所やコークス工場や製鉄工場等では、石炭やコークスを燃焼させることにより硫黄分やフッ素分を含む排ガスが排出されるが、当該排ガスを排煙脱硫装置により脱硫処理を行うと、硫酸イオンとフッ素イオンを高濃度に含む排煙脱硫排水が発生する。排煙脱硫装置における脱硫方法としては、水酸化カルシウムや水酸化マグネシウムや水酸化ナトリウムを用いて湿式処理する方法が知られているが、脱硫剤として水酸化マグネシウムや水酸化ナトリウムを用いると、フッ素イオンとともに硫酸イオンが数万mg/L以上の濃度で含まれる排煙脱硫排水が発生する。 Coal-fired power plants, coke plants, steel plants, etc., emit exhaust gas containing sulfur and fluorine by burning coal and coke. Flue gas desulfurization effluent containing high concentrations of ions and fluoride ions is generated. As a desulfurization method in flue gas desulfurization equipment, a wet treatment method using calcium hydroxide, magnesium hydroxide, or sodium hydroxide is known. Flue gas desulfurization wastewater containing ions and sulfate ions at a concentration of tens of thousands of mg/L or more is generated.

従来、このような排煙脱硫排水からフッ素イオンを除去する場合、通常、まず凝集沈殿や共沈等によりフッ素イオンの不溶化処理を行ってある程度フッ素イオンを除去し、その後必要に応じて、フッ素イオン濃度が低減された被処理水を吸着剤と接触させることにより、フッ素イオンの高度除去を行ってきた。このような処理が行われる理由としては、凝集沈殿や共沈による処理と比べて吸着剤を用いればより高度にフッ素イオンを除去できることや、フッ素イオン濃度が高い被処理水を凝集沈殿や共沈等の前処理を経ずにいきなり吸着剤と接触させると、十分にフッ素イオン濃度が低減された処理水が得られない場合があることが挙げられる。一方、排煙脱硫排水に対して凝集沈殿や共沈等の処理を行うと、フッ素イオンとともに硫酸イオンも不溶化され、多量の汚泥が発生する。そのため、汚泥処分にかかる費用が高くなり、処理コストの増大に繋がる。 Conventionally, when removing fluorine ions from such flue gas desulfurization effluent, usually first, fluorine ions are insolubilized by coagulation sedimentation, coprecipitation, etc. to remove fluorine ions to some extent, and then, if necessary, fluorine ions Fluoride ions have been removed to a high degree by contacting treated water with a reduced concentration with an adsorbent. The reasons for this type of treatment are that fluorine ions can be removed to a higher degree by using an adsorbent compared to coagulation-sedimentation or co-precipitation treatment, and that water to be treated with a high concentration of fluoride ions can be treated by coagulation-sedimentation or co-precipitation. If the water is brought into direct contact with the adsorbent without undergoing such pretreatment, it may not be possible to obtain treated water with a sufficiently reduced fluorine ion concentration. On the other hand, when flue gas desulfurization wastewater is treated by coagulation sedimentation, coprecipitation, or the like, both fluorine ions and sulfate ions are insolubilized, generating a large amount of sludge. As a result, the cost of sludge disposal increases, leading to an increase in treatment costs.

本発明者らは、フッ素イオンとともに硫酸イオンを高濃度に含む被処理水について、フッ素吸着剤が充填された吸着塔に導入して処理する場合に、安定してフッ素除去が行える方法を検討した。そうしたところ、フッ素イオンとともに硫酸イオンを高濃度に含む被処理水は、これをいきなりフッ素吸着剤が充填された吸着塔に導入して処理すると、フッ素イオンが十分に吸着除去できない場合があり、特に被処理水を吸着塔に導入した初期において処理水のフッ素イオン濃度が高くなる傾向を示すことが分かった。そして、この対応策として、被処理水のフッ素吸着処理に先立って、予め当該吸着処理の処理水を準備し、この処理水をフッ素吸着剤が充填された吸着塔に導入することが有効であることが明らかになった。すなわち本発明の水処理方法とは、フッ素イオンと硫酸イオンを含有する被処理水をフッ素吸着剤が充填された吸着塔に導入し、被処理水中のフッ素イオンの少なくとも一部が除去された第1処理水を得る吸着工程と、吸着工程の前に、吸着工程で得られる第1処理水を吸着塔に導入する前処理工程とを有し、吸着工程において吸着塔に導入される被処理水の硫酸イオン濃度が30,000mg/L以上であり、前処理工程において吸着塔に導入される第1処理水(吸着工程で得られた処理水)の硫酸イオン濃度が30,000mg/L以上であるものである。 The inventors of the present invention have investigated a method for stably removing fluorine when treating water containing a high concentration of sulfate ions as well as fluorine ions by introducing it into an adsorption tower filled with a fluorine adsorbent. . However, if the water to be treated, which contains a high concentration of sulfate ions as well as fluoride ions, is immediately introduced into an adsorption tower filled with a fluorine adsorbent for treatment, the fluorine ions may not be sufficiently adsorbed and removed. It was found that the fluorine ion concentration in the treated water tends to increase at the initial stage when the water to be treated is introduced into the adsorption tower. As a countermeasure against this, it is effective to prepare the treated water for the adsorption treatment in advance prior to the fluorine adsorption treatment of the water to be treated, and introduce the treated water into an adsorption tower filled with a fluorine adsorbent. It became clear. That is, the water treatment method of the present invention comprises introducing water to be treated containing fluoride ions and sulfate ions into an adsorption tower filled with a fluorine adsorbent, and removing at least part of the fluorine ions in the water to be treated. and a pretreatment step of introducing the first treated water obtained in the adsorption step into the adsorption tower prior to the adsorption step, wherein the water to be treated is introduced into the adsorption tower in the adsorption step. has a sulfate ion concentration of 30,000 mg/L or more, and the first treated water (treated water obtained in the adsorption step) introduced into the adsorption tower in the pretreatment step has a sulfate ion concentration of 30,000 mg/L or more. There is something.

フッ素吸着剤により被処理水のフッ素吸着処理を行う場合、フッ素イオンは吸着剤が有するアニオンとイオン交換されることにより、被処理水からフッ素イオンが除去される。フッ素吸着剤が有するアニオンとしては、通常、水酸化物イオンであるため、フッ素イオンがフッ素吸着剤に吸着されると、フッ素吸着剤から水酸化物イオンが脱着し、被処理水のpHが上昇する傾向を示す。一方、フッ素吸着剤にはフッ素イオンの吸着除去に適したpH範囲が存在し、被処理水のpHが上昇すると、当該至適pH範囲から外れてフッ素イオンが十分に吸着除去されにくくなる。このようなpH上昇は、被処理水のフッ素イオン濃度が高くなるほど、水酸化物イオンとの交換量が増えるため、顕著に表れるようになる。 When the fluorine adsorption treatment of the water to be treated is performed using a fluorine adsorbent, fluorine ions are removed from the water to be treated by ion exchange with the anions of the adsorbent. Since the anions possessed by the fluorine adsorbent are usually hydroxide ions, when the fluorine ions are adsorbed by the fluorine adsorbent, the hydroxide ions are desorbed from the fluorine adsorbent, increasing the pH of the water to be treated. tend to On the other hand, the fluorine adsorbent has a pH range suitable for adsorbing and removing fluorine ions, and when the pH of the water to be treated rises, the pH deviates from the optimum pH range, making it difficult to adsorb and remove fluorine ions sufficiently. Such an increase in pH becomes more conspicuous as the fluorine ion concentration in the water to be treated increases, because the amount of exchange with hydroxide ions increases.

一方、本発明者らが様々な被処理水についてフッ素吸着処理を行ったところ、硫酸イオン濃度が30,000mg/L以上と高濃度に硫酸イオンを含む被処理水をフッ素吸着剤で処理する場合は、被処理水のフッ素イオン濃度が低い場合でも処理水のpH上昇が見られ、フッ素イオンの吸着性能が低下することが分かった。この原因について検討したところ、フッ素吸着剤はフッ素イオンを優先的に吸着するものの、被処理水中の硫酸イオン濃度が過度に高い場合は、硫酸イオンのフッ素吸着剤への吸着が無視できない程度となり、その結果、吸着剤から多量の水酸化物イオンが脱離して、処理水のpHが上昇することが考えられた。なお、この場合にフッ素吸着剤に吸着される硫酸イオンの量は、被処理水に含まれる硫酸イオンのごく一部に過ぎない。そして、その対応策として、吸着工程において被処理水のフッ素吸着処理を行うのに先立って、前処理工程を設け、フッ素吸着剤が有する水酸化物イオンを強制的に硫酸イオンに置換することが有効であることが明らかになった。これによりフッ素吸着剤がアニオンとして硫酸イオンを有するものとなり、その後、被処理水をフッ素吸着剤と接触させると、吸着剤の有する硫酸イオンがフッ素イオンとイオン交換され、処理水のpH上昇を抑えることができる。そして、フッ素吸着剤が有する水酸化物イオンを硫酸イオンに置き換えるためには、高濃度に硫酸イオンを含有する被処理水をフッ素吸着剤と接触させることにより得られた処理水を用いることが効率的であることが明らかになった。 On the other hand, when the present inventors performed fluorine adsorption treatment on various waters to be treated, it was found that when water to be treated containing sulfate ions at a high concentration of 30,000 mg/L or more was treated with a fluorine adsorbent, It was found that even when the fluorine ion concentration of the water to be treated is low, the pH of the treated water rises and the fluorine ion adsorption performance decreases. When we investigated the cause of this, we found that although the fluorine adsorbent preferentially adsorbs fluorine ions, if the concentration of sulfate ions in the water to be treated is excessively high, the adsorption of sulfate ions to the fluorine adsorbent cannot be ignored. As a result, it was considered that a large amount of hydroxide ions were desorbed from the adsorbent and the pH of the treated water increased. In this case, the amount of sulfate ions adsorbed by the fluorine adsorbent is only a small portion of the amount of sulfate ions contained in the water to be treated. As a countermeasure, a pretreatment step may be provided prior to the fluorine adsorption treatment of the water to be treated in the adsorption step to forcibly replace the hydroxide ions in the fluorine adsorbent with sulfate ions. proved to be effective. As a result, the fluorine adsorbent has sulfate ions as anions. After that, when the water to be treated is brought into contact with the fluorine adsorbent, the sulfate ions in the adsorbent are ion-exchanged with the fluorine ions, suppressing the increase in the pH of the treated water. be able to. In order to replace the hydroxide ions possessed by the fluorine adsorbent with sulfate ions, it is efficient to use treated water obtained by bringing the water to be treated containing a high concentration of sulfate ions into contact with the fluorine adsorbent. It became clear that the

図1には、硫酸イオン濃度が30,000mg/L以上の被処理水を、前処理工程を行わずに吸着工程を行った場合と、前処理工程を行った後に吸着工程を行った場合について、得られた処理水のフッ素イオン濃度とpHの測定結果を示した。被処理水のフッ素イオン濃度は100mg/Lであり、被処理水を空間速度(SV)20hr-1で吸着塔に導入した。図1に示した結果からも分かるように、前処理工程を設けることにより、吸着工程において特に初期の処理水のpH上昇が抑えられ、高度にフッ素イオンが除去された処理水を容易に得ることができる。また、吸着工程で得られた処理水を、前処理工程でフッ素吸着剤の改質のために用いることにより、簡便にフッ素吸着剤の改質を行うことができる。以下、本発明の水処理方法について詳しく説明する。 FIG. 1 shows the case where the water to be treated with a sulfate ion concentration of 30,000 mg/L or more was subjected to the adsorption step without performing the pretreatment step and the case where the adsorption step was performed after the pretreatment step. , the measurement results of the fluoride ion concentration and pH of the treated water obtained. The fluorine ion concentration of the water to be treated was 100 mg/L, and the water to be treated was introduced into the adsorption tower at a space velocity (SV) of 20 hr -1 . As can be seen from the results shown in FIG. 1, by providing the pretreatment step, the increase in pH of the treated water, especially in the initial stage of the adsorption step, can be suppressed, and treated water from which fluorine ions are highly removed can be easily obtained. can be done. Further, by using the treated water obtained in the adsorption step to modify the fluorine adsorbent in the pretreatment step, the fluorine adsorbent can be easily modified. Hereinafter, the water treatment method of the present invention will be described in detail.

吸着工程では、フッ素イオンと硫酸イオンを含有する被処理水をフッ素吸着剤が充填された吸着塔に導入し、被処理水中のフッ素イオンの少なくとも一部が除去された第1処理水を得る。なお、吸着工程で吸着塔から排出される処理水を「第1処理水」と称する。被処理水は、少なくともフッ素イオンと硫酸イオンを含有するものであれば特に限定されないが、本発明では、そのようなイオンを比較的高濃度に含む被処理水として、石炭火力発電所やコークス工場や製鉄工場等の排煙脱硫排水を用いることが好ましい。 In the adsorption step, water to be treated containing fluorine ions and sulfate ions is introduced into an adsorption tower filled with a fluorine adsorbent to obtain first treated water from which at least part of the fluorine ions in the water to be treated has been removed. The treated water discharged from the adsorption tower in the adsorption step is referred to as "first treated water". The water to be treated is not particularly limited as long as it contains at least fluoride ions and sulfate ions. It is preferable to use flue gas desulfurization effluent from a steel factory or the like.

吸着工程において吸着塔に導入される被処理水の硫酸イオン濃度は30,000mg/L以上であるが、硫酸イオン濃度はこれより高くてもよく、例えば35,000mg/L以上であってもよく、40,000mg/L以上、または50,000mg/L以上であってもよい。被処理水の硫酸イオン濃度の上限は特に限定されないが、例えば150,000mg/L以下であってもよく、100,000mg/L以下、または80,000mg/L以下であってもよい。本発明において、硫酸イオン濃度は、遊離イオンの形態のみならず塩形成している形態も含む濃度を意味し、硫酸イオン濃度はイオンクロマトグラフィー等により求めることができる。 The sulfate ion concentration of the water to be treated introduced into the adsorption tower in the adsorption step is 30,000 mg/L or more, but the sulfate ion concentration may be higher than this, for example, 35,000 mg/L or more. , 40,000 mg/L or greater, or 50,000 mg/L or greater. Although the upper limit of the sulfate ion concentration of the water to be treated is not particularly limited, it may be, for example, 150,000 mg/L or less, 100,000 mg/L or less, or 80,000 mg/L or less. In the present invention, the sulfate ion concentration means the concentration including not only the free ion form but also the salt-formed form, and the sulfate ion concentration can be determined by ion chromatography or the like.

吸着工程において吸着塔に導入される被処理水のフッ素イオン濃度は特に限定されず、例えば10mg/L以上であってもよく、15mg/L以上、20mg/L以上、または25mg/L以上であってもよい。なお、本発明の効果、すなわち、前処理工程を組み合わせることにより吸着工程で得られる第1処理水のフッ素イオン濃度を十分に低減できるという効果がより奏効されるから、被処理水のフッ素イオン濃度は50mg/L以上が好ましく、60mg/L以上がより好ましく、70mg/L以上がさらに好ましい。本発明によれば、このような高いフッ素イオン濃度の被処理水であっても、高度にフッ素イオンを吸着除去することができる。一方、被処理水のフッ素イオン濃度の上限は、安定してフッ素濃度の低い第1処理水を得る点から、200mg/L以下が好ましく、150mg/L以下がより好ましく、120mg/L以下がさらに好ましく、100mg/L以下がさらにより好ましい。フッ素イオン濃度は、イオンクロマトグラフィー等により求めることができる。 The fluorine ion concentration of the water to be treated introduced into the adsorption tower in the adsorption step is not particularly limited, and may be, for example, 10 mg/L or more, 15 mg/L or more, 20 mg/L or more, or 25 mg/L or more. may In addition, the effect of the present invention, that is, the effect that the fluorine ion concentration of the first treated water obtained in the adsorption step can be sufficiently reduced by combining the pretreatment step is more effective. is preferably 50 mg/L or more, more preferably 60 mg/L or more, and even more preferably 70 mg/L or more. According to the present invention, fluorine ions can be adsorbed and removed to a high degree even in the water to be treated having such a high fluorine ion concentration. On the other hand, the upper limit of the fluorine ion concentration of the water to be treated is preferably 200 mg / L or less, more preferably 150 mg / L or less, and further preferably 120 mg / L or less, in order to stably obtain the first treated water with a low fluorine concentration. Preferably, 100 mg/L or less is even more preferable. The fluorine ion concentration can be determined by ion chromatography or the like.

被処理水は、マグネシウムイオンやナトリウムイオン等を含有していてもよい。被処理水が石炭火力発電所やコークス工場や製鉄工場等の排煙脱硫排水を含む場合は、硫酸イオンとともにマグネシウムイオンやナトリウムイオンも被処理水中に含まれうる。排煙脱硫排水が脱硫剤として水酸化マグネシウムを用いたものである場合は、被処理水中のマグネシウムイオンと硫酸イオンの含有比は、例えばマグネシウムイオン/硫酸イオンのモル比で2/8~8/2の範囲が好ましく、3/7~7/3の範囲がより好ましく、4/6~6/4の範囲がさらに好ましい。排煙脱硫排水が脱硫剤として水酸化ナトリウムを用いたものである場合は、被処理水中のナトリウムイオンと硫酸イオンの含有比は、例えばナトリウムイオン/硫酸イオンのモル比で3/7~9/1の範囲が好ましく、4/6~8/2の範囲がより好ましく、5/5~7/3の範囲がさらに好ましい。なお、被処理水は、脱硫剤として水酸化マグネシウムを用いた排煙脱硫排水を含むことが好ましく、これにより吸着剤の長寿命化を図ることができ、例えば、吸着剤からフッ素の吸着に寄与する有効成分(金属成分)の流出を抑えやすくなる。 The water to be treated may contain magnesium ions, sodium ions, and the like. When the water to be treated includes flue gas desulfurization effluent from coal-fired power plants, coke plants, steel plants, etc., the water to be treated may contain sulfate ions as well as magnesium ions and sodium ions. When the flue gas desulfurization effluent uses magnesium hydroxide as a desulfurizing agent, the content ratio of magnesium ions and sulfate ions in the water to be treated is, for example, a magnesium ion/sulfate ion molar ratio of 2/8 to 8/. A range of 2 is preferred, a range of 3/7 to 7/3 is more preferred, and a range of 4/6 to 6/4 is even more preferred. When the flue gas desulfurization effluent uses sodium hydroxide as a desulfurizing agent, the content ratio of sodium ions and sulfate ions in the water to be treated is, for example, a sodium ion/sulfate ion molar ratio of 3/7 to 9/. A range of 1 is preferred, a range of 4/6 to 8/2 is more preferred, and a range of 5/5 to 7/3 is even more preferred. The water to be treated preferably contains flue gas desulfurization effluent using magnesium hydroxide as a desulfurizing agent. It becomes easier to suppress the outflow of active ingredients (metallic components).

フッ素吸着剤としては、フッ素イオンを吸着することができる公知の吸着剤を用いればよく、例えば、アルミナ系吸着剤、フェライト鉄系吸着剤、ジルコニウム系吸着剤、セリウム系吸着剤等を用いることができる。なかでも、高度にフッ素イオンを吸着除去できる吸着剤として、セリウム系吸着剤を用いることが好ましい。セリウム系吸着剤としては、酸化セリウム(CeO2)、特に含水酸化セリウム(CeO2・nH2O)を含む吸着剤が挙げられる。当該吸着剤は樹脂を含有し、酸化セリウムまたは含水酸化セリウムが樹脂によって固定化あるいは補強されていてもよい。 As the fluorine adsorbent, a known adsorbent capable of adsorbing fluorine ions may be used. For example, an alumina-based adsorbent, a ferrite iron-based adsorbent, a zirconium-based adsorbent, a cerium-based adsorbent, etc. may be used. can. Among them, it is preferable to use a cerium-based adsorbent as an adsorbent capable of adsorbing and removing fluorine ions to a high degree. Cerium- based adsorbents include those containing cerium oxide ( CeO2 ), particularly hydrous cerium oxide ( CeO2.nH2O ). The adsorbent contains a resin, and cerium oxide or hydrous cerium oxide may be immobilized or reinforced by the resin.

被処理水のpHは、吸着剤によるフッ素イオンの吸着除去が好適に行われるようにする点から、2.0以上が好ましく、2.1以上がより好ましく、2.2以上がさらに好ましく、また3.5以下が好ましく、3.3以下がより好ましく、3.1以下がさらに好ましい。被処理水のpHが高い場合は、酸を添加することにより被処理水のpHを調整すればよく、当該酸としては塩酸や硫酸を用いることが好ましい。逆に被処理水のpHが低い場合は、アルカリを添加することにより被処理水のpHを調整すればよく、当該アルカリとしてはアルカリ金属水酸化物を用いることが好ましく、水酸化ナトリウムを用いることがより好ましい。なお、被処理水として排煙脱硫排水を用いる場合は、排煙脱硫排水のpHが常時このような範囲となるとは限らないため、吸着塔に導入される被処理水は、酸またはアルカリを添加することによって所定のpH範囲に調整することが好ましい。 The pH of the water to be treated is preferably 2.0 or higher, more preferably 2.1 or higher, and still more preferably 2.2 or higher, in order to ensure that the adsorption and removal of fluorine ions by the adsorbent is performed favorably. 3.5 or less is preferable, 3.3 or less is more preferable, and 3.1 or less is even more preferable. When the pH of the water to be treated is high, the pH of the water to be treated may be adjusted by adding an acid, and it is preferable to use hydrochloric acid or sulfuric acid as the acid. Conversely, when the pH of the water to be treated is low, the pH of the water to be treated may be adjusted by adding an alkali. As the alkali, an alkali metal hydroxide is preferably used, and sodium hydroxide is preferably used. is more preferred. When flue gas desulfurization effluent is used as the water to be treated, the pH of the flue gas desulfurization effluent is not always in such a range. It is preferable to adjust the pH to a predetermined range by

被処理水のpHの調整は、吸着塔の前にpH調整手段を設けることにより行えばよい。pH調整手段は、吸着塔の前に酸またはアルカリ添加手段を備えたpH調整槽を設けたり、被処理水を吸着塔に供給する流路に酸またはアルカリ添加手段を設ければよい。酸またはアルカリ添加手段としては、薬注ポンプ等が挙げられる。またpH調整手段として、酸またはアルカリ添加手段とともにpH測定手段を設けてもよい。pH測定手段は、pH調整槽に設置したり、被処理水を吸着塔に供給する流路の酸またはアルカリ添加手段と吸着塔の間に設置することが好ましい。 Adjustment of the pH of the water to be treated may be performed by providing a pH adjustment means in front of the adsorption tower. As the pH adjusting means, a pH adjusting tank having an acid or alkali addition means may be provided before the adsorption tower, or an acid or alkali addition means may be provided in the flow path for supplying the water to be treated to the adsorption tower. The means for adding acid or alkali includes a chemical feeding pump and the like. Further, as pH adjusting means, pH measuring means may be provided together with acid or alkali adding means. It is preferable that the pH measuring means is installed in the pH adjusting tank or between the acid or alkali adding means and the adsorption tower in the channel for supplying the water to be treated to the adsorption tower.

被処理水を吸着塔に導入するのに先立って、被処理水の酸化還元電位の調整を行ってもよい。例えば被処理水中に還元物質が多く含まれていると、フッ素吸着剤を構成するセリウム等の金属が溶出しやすくなるため、被処理水の酸化還元電位を所定値以上に調整することで、フッ素吸着剤からの金属の溶出を抑えることができる。そのような観点から、被処理水の酸化還元電位は600mV以上とすることが好ましく、700mV以上がより好ましい。一方、フッ素吸着樹脂の劣化(例えば、フッ素吸着剤を構成する樹脂の劣化)を抑制する観点から、被処理水の酸化還元電位は1000mV以下とすることが好ましく、950mV以下がより好ましい。被処理水は、pHとともに酸化還元電位を調整するようにしてもよい。 Prior to introducing the water to be treated into the adsorption tower, the oxidation-reduction potential of the water to be treated may be adjusted. For example, if the water to be treated contains a large amount of reducing substances, metals such as cerium that make up the fluorine adsorbent are likely to leach out. Elution of metals from the adsorbent can be suppressed. From such a point of view, the oxidation-reduction potential of the water to be treated is preferably 600 mV or higher, more preferably 700 mV or higher. On the other hand, the redox potential of the water to be treated is preferably 1000 mV or less, more preferably 950 mV or less, from the viewpoint of suppressing deterioration of the fluorine-adsorbing resin (for example, deterioration of the resin constituting the fluorine-adsorbing agent). You may make it the to-be-processed water adjust an oxidation-reduction potential with pH.

被処理水の酸化還元電位を調整するための薬剤としては、次亜塩素酸ナトリウム等の塩素系酸化剤を用いることが簡便である。当該薬剤は、被処理水が吸着塔に導入される前段で、被処理水に供給されることが好ましい。被処理水の酸化還元電位の調整は、吸着塔の入側に連通した被処理水流路に酸化還元電位計を設置し、被処理水の酸化還元電位を測定することにより行うことができる。また、被処理水の酸化還元電位を測定する代わりに、あるいは酸化還元電位を測定するとともに、被処理水の残留塩素濃度を調整することも好ましい。この場合、吸着塔に導入する被処理水の残留塩素濃度は0.5mg/L以上が好ましく、1.0mg/L以上がより好ましく、また18mg/L以下が好ましく、15mg/L以下がより好ましい。 As a chemical for adjusting the oxidation-reduction potential of the water to be treated, it is convenient to use a chlorine-based oxidizing agent such as sodium hypochlorite. The chemical is preferably supplied to the water to be treated before the water to be treated is introduced into the adsorption tower. The oxidation-reduction potential of the water to be treated can be adjusted by installing an oxidation-reduction potentiometer in the water-to-be-treated channel communicating with the inlet side of the adsorption tower and measuring the oxidation-reduction potential of the water to be treated. Further, instead of measuring the oxidation-reduction potential of the water to be treated, or in addition to measuring the oxidation-reduction potential, it is also preferable to adjust the residual chlorine concentration of the water to be treated. In this case, the residual chlorine concentration of the water to be treated introduced into the adsorption tower is preferably 0.5 mg/L or more, more preferably 1.0 mg/L or more, and preferably 18 mg/L or less, more preferably 15 mg/L or less. .

被処理水とフッ素吸着剤との接触は、フッ素吸着剤が充填された吸着塔に被処理水を導入することにより行う。被処理水は、吸着塔を上向流式で通液させてもよく、下向流式で通液させてもよい。このときの通液速度は、被処理水の性状やフッ素吸着剤の充填量などに応じて適宜設定すればよく、例えば空間速度(SV)として1hr-1~50hr-1の範囲で適宜調整すればよい。なお、吸着塔設備が過大にならないようにする観点から、空間速度(SV)は3hr-1以上が好ましく、5hr-1以上がより好ましく、8hr-1以上がさらに好ましく、12hr-1以上がさらにより好ましい。また、安定してフッ素イオン濃度が低減された第1処理水が得やすくなる観点から、空間速度(SV)は40hr-1以下が好ましく、30hr-1以下がより好ましく、25hr-1以下がさらに好ましい。 The water to be treated is brought into contact with the fluorine adsorbent by introducing the water to be treated into an adsorption tower filled with the fluorine adsorbent. The water to be treated may be passed through the adsorption tower in an upward flow manner or a downward flow manner. The flow rate at this time may be appropriately set according to the properties of the water to be treated and the filling amount of the fluorine adsorbent . Just do it. From the viewpoint of preventing the adsorption tower equipment from becoming excessively large, the space velocity (SV) is preferably 3 hr -1 or more, more preferably 5 hr -1 or more, still more preferably 8 hr -1 or more, and further preferably 12 hr -1 or more. more preferred. In addition, from the viewpoint of easily obtaining the first treated water in which the fluorine ion concentration is stably reduced, the space velocity (SV) is preferably 40 hr -1 or less, more preferably 30 hr -1 or less, and further 25 hr -1 or less. preferable.

被処理水を吸着塔に導入しフッ素吸着剤と接触させることにより、フッ素イオン濃度が低減された第1処理水が得られる。吸着塔によるフッ素吸着処理は1段で行ってもよく、多段(2段以上)で行ってもよい。特に、被処理水のフッ素イオン濃度が高い場合は、多段接続した吸着塔により被処理水を処理したり、吸着塔1段による処理と多段接続した吸着塔による処理を組み合わせて被処理水を処理することが好ましい。これにより第1処理水のフッ素イオン濃度を安定して低減させることが可能となる。多段接続する吸着塔の数は2以上であればよいが、直列接続する吸着塔の数(すなわち被処理水が通過する吸着塔の数)が多すぎても吸着塔の管理が煩雑になることから、5以下が好ましく、4以下がより好ましく、3以下がさらに好ましい。 By introducing the water to be treated into the adsorption tower and bringing it into contact with the fluorine adsorbent, the first treated water having a reduced fluorine ion concentration is obtained. The fluorine adsorption treatment using the adsorption tower may be performed in one stage or in multiple stages (two or more stages). In particular, when the fluorine ion concentration of the water to be treated is high, the water to be treated is treated with multi-staged adsorption towers, or the water is treated by combining treatment with one stage of adsorption towers and treatment with multi-staged adsorption towers. preferably. This makes it possible to stably reduce the fluorine ion concentration of the first treated water. The number of adsorption towers connected in multiple stages should be two or more, but if the number of adsorption towers connected in series (that is, the number of adsorption towers through which the water to be treated passes) is too large, the management of the adsorption towers becomes complicated. Therefore, it is preferably 5 or less, more preferably 4 or less, and even more preferably 3 or less.

吸着塔を多段に直列接続する場合、被処理水は、多段に直列接続された各吸着塔に導入する前にそれぞれpHを調整してもよい。このときの各pHは、上記に説明したように、2.0以上が好ましく、2.1以上がより好ましく、2.2以上がさらに好ましく、また3.5以下が好ましく、3.3以下がより好ましく、3.1以下がさらに好ましい。なお本発明の水処理方法では、吸着工程において被処理水を吸着塔に通液した際のpH変化は小さく、通常は、被処理水を最初の吸着塔に導入する際にpH調整を行うだけで十分である。 When the adsorption towers are connected in series in multiple stages, the water to be treated may be adjusted in pH before being introduced into each adsorption tower connected in series in multiple stages. At this time, as described above, each pH is preferably 2.0 or more, more preferably 2.1 or more, further preferably 2.2 or more, and preferably 3.5 or less, and 3.3 or less. More preferably, 3.1 or less is even more preferable. In the water treatment method of the present invention, the pH change is small when the water to be treated is passed through the adsorption tower in the adsorption step, and usually, the pH is adjusted only when the water to be treated is first introduced into the adsorption tower. is sufficient.

吸着工程で得られる第1処理水のフッ素イオン濃度は、吸着塔に導入する被処理水のフッ素イオン濃度よりも基本的に低いものとなる。吸着工程により得られる第1処理水は、環境中に放流するのに適した程度までのフッ素イオン濃度が低減されていることが好ましい。例えば環境省の定めた一律排水基準によれば、フッ素およびその化合物の許容限度は、海域に排出されるもので15mgF/Lと定められ、海域以外の公共用水域に排出されるもので8mgF/Lと定められている。従って、第1処理水のフッ素イオン濃度は15mg/L以下であることが好ましく、8mg/L以下がより好ましい。第1処理水のフッ素イオン濃度はそれよりも低くてもよく、例えば5mg/L以下、3mg/L以下、あるいは1mg/L以下であってもよい。吸着塔を多段に直列接続して吸着処理を行う場合は、最も後段の吸着塔から得られる第1処理水のフッ素イオン濃度がこのような範囲となればよい。なお、吸着工程で得られる第1処理水の硫酸イオン濃度は、通常、被処理水の硫酸イオン濃度と大きく変わらない。 The fluorine ion concentration of the first treated water obtained in the adsorption step is basically lower than the fluorine ion concentration of the water to be treated introduced into the adsorption tower. It is preferable that the first treated water obtained by the adsorption step has a fluorine ion concentration reduced to a level suitable for discharge into the environment. For example, according to the uniform wastewater standards set by the Ministry of the Environment, the permissible limit for fluorine and its compounds is 15 mgF/L for those discharged into sea areas, and 8 mgF/L for those discharged into public water areas other than sea areas. defined as L. Therefore, the fluorine ion concentration of the first treated water is preferably 15 mg/L or less, more preferably 8 mg/L or less. The fluorine ion concentration of the first treated water may be lower, such as 5 mg/L or less, 3 mg/L or less, or 1 mg/L or less. When adsorption treatment is performed by connecting multiple adsorption towers in series, the concentration of fluorine ions in the first treated water obtained from the rearmost adsorption tower should be within such a range. In addition, the sulfate ion concentration of the first treated water obtained in the adsorption step is generally not significantly different from the sulfate ion concentration of the water to be treated.

吸着工程に先立って前処理工程を行う。前処理工程では、吸着工程で得られる第1処理水を吸着塔に導入する。なお、前処理工程で吸着塔から排出される処理水を「第2処理水」と称する。前処理工程において第1処理水を吸着塔に導入することにより、吸着塔に充填されたフッ素吸着剤の有する水酸化物イオンを硫酸イオンに置換することができる。これにより、前処理工程に続いて行う吸着工程においてフッ素吸着剤がフッ素イオンを吸着した際に、得られる第1処理水のpH上昇が抑えられ、被処理水中のフッ素イオンを高度に吸着除去することが可能となる。前処理工程で吸着塔から排出された第2処理水は、フッ素イオンが除去された処理水として、系外に排出することができる。 A pretreatment step is performed prior to the adsorption step. In the pretreatment step, the first treated water obtained in the adsorption step is introduced into the adsorption tower. The treated water discharged from the adsorption tower in the pretreatment step is referred to as "second treated water". By introducing the first treated water into the adsorption tower in the pretreatment step, the hydroxide ions of the fluorine adsorbent packed in the adsorption tower can be replaced with sulfate ions. As a result, when the fluorine adsorbent adsorbs fluorine ions in the adsorption step that follows the pretreatment step, the resulting first treated water is prevented from increasing in pH, and the fluorine ions in the water to be treated are highly adsorbed and removed. becomes possible. The second treated water discharged from the adsorption tower in the pretreatment step can be discharged out of the system as treated water from which fluorine ions have been removed.

前処理工程で吸着塔に導入する第1処理水は、同じ吸着塔で吸着工程を行うことにより得られた第1処理水であってもよく、別の吸着塔で吸着工程を行うことにより得られた第1処理水であってもよい。後者の場合、別の吸着塔に吸着工程で導入される被処理水は、第1処理水が導入される吸着塔で吸着工程を行う場合に当該吸着塔に導入される被処理水と同じ由来であることが好ましい。 The first treated water introduced into the adsorption tower in the pretreatment step may be the first treated water obtained by performing the adsorption step in the same adsorption tower, or the first treated water obtained by performing the adsorption step in another adsorption tower. It may be the first treated water. In the latter case, the water to be treated introduced into another adsorption tower in the adsorption step has the same origin as the water to be treated introduced into the adsorption tower when the adsorption step is performed in the adsorption tower into which the first treated water is introduced. is preferably

前処理工程において吸着塔に導入される第1処理水の硫酸イオン濃度は30,000mg/L以上であるが、硫酸イオン濃度はこれより高くてもよく、例えば35,000mg/L以上であってもよく、40,000mg/L以上、または50,000mg/L以上であってもよい。被処理水の硫酸イオン濃度の上限は特に限定されないが、例えば150,000mg/L以下であってもよく、100,000mg/L以下、または80,000mg/L以下であってもよい。 The first treated water introduced into the adsorption tower in the pretreatment step has a sulfate ion concentration of 30,000 mg/L or more, but the sulfate ion concentration may be higher than this, for example, 35,000 mg/L or more. may be 40,000 mg/L or higher, or 50,000 mg/L or higher. Although the upper limit of the sulfate ion concentration of the water to be treated is not particularly limited, it may be, for example, 150,000 mg/L or less, 100,000 mg/L or less, or 80,000 mg/L or less.

前処理工程において吸着塔に導入される第1処理水のフッ素イオン濃度は、上記に説明したように、15mg/L以下であることが好ましく、8mg/L以下がより好ましい。第1処理水のフッ素イオン濃度はそれよりも低くてもよく、例えば5mg/L以下、3mg/L以下、あるいは1mg/L以下であってもよい。このようにフッ素イオン濃度の低い第1処理水を前処理工程において吸着塔に導入することにより、前処理工程で第1処理水中のフッ素イオンが吸着除去されなくても、吸着塔から排出される第2処理水のフッ素イオン濃度が十分に低いものとなる。 As described above, the fluorine ion concentration of the first treated water introduced into the adsorption tower in the pretreatment step is preferably 15 mg/L or less, more preferably 8 mg/L or less. The fluorine ion concentration of the first treated water may be lower, such as 5 mg/L or less, 3 mg/L or less, or 1 mg/L or less. By introducing the first treated water having a low fluorine ion concentration into the adsorption tower in the pretreatment step in this way, even if the fluorine ions in the first treated water are not removed by adsorption in the pretreatment step, they are discharged from the adsorption tower. The fluoride ion concentration of the second treated water becomes sufficiently low.

前処理工程において吸着塔に導入される第1処理水のpHは、2.0以上が好ましく、2.1以上がより好ましく、2.2以上がさらに好ましく、また3.5以下が好ましく、3.3以下がより好ましく、3.1以下がさらに好ましい。第1処理水のpHが高い場合は、酸を添加することにより第1処理水のpHを調整すればよく、当該酸としては塩酸や硫酸を用いることが好ましい。逆に第1処理水のpHが低い場合は、アルカリを添加することにより第1処理水のpHを調整すればよく、当該アルカリとしてはアルカリ金属水酸化物を用いることが好ましく、水酸化ナトリウムを用いることがより好ましい。このように吸着塔に導入する第1処理水のpHを調整することにより、前処理工程においてフッ素吸着剤の有する水酸化物イオンを効率的に硫酸イオンに置換することができる。 The pH of the first treated water introduced into the adsorption tower in the pretreatment step is preferably 2.0 or higher, more preferably 2.1 or higher, still more preferably 2.2 or higher, and preferably 3.5 or lower. .3 or less is more preferable, and 3.1 or less is even more preferable. When the pH of the first treated water is high, the pH of the first treated water may be adjusted by adding an acid, and it is preferable to use hydrochloric acid or sulfuric acid as the acid. Conversely, when the pH of the first treated water is low, the pH of the first treated water may be adjusted by adding an alkali. As the alkali, an alkali metal hydroxide is preferably used, and sodium hydroxide is used. It is more preferable to use By adjusting the pH of the first treated water introduced into the adsorption tower in this manner, the hydroxide ions of the fluorine adsorbent can be efficiently replaced with sulfate ions in the pretreatment step.

第1処理水は、吸着塔を上向流式で通液させてもよく、下向流式で通液させてもよい。このときの通液速度は、例えば空間速度(SV)として1hr-1~100hr-1の範囲で適宜調整すればよい。当該空間速度(SV)は、前処理工程に要する時間の短縮化や吸着塔から排出される第2処理水のpHの過度な上昇を抑える観点から、3hr-1以上が好ましく、5hr-1以上がより好ましく、8hr-1以上がさらに好ましく、12hr-1以上がさらにより好ましい。また、吸着剤の有する水酸化物イオンの硫酸イオンへの置換効率を高める観点から、空間速度(SV)は70hr-1以下が好ましく、50hr-1以下がより好ましく、30hr-1以下がさらに好ましい。 The first treated water may be passed through the adsorption tower in an upward flow manner or may be passed in a downward flow manner. At this time, the liquid permeation rate may be appropriately adjusted, for example, in the range of 1 hr -1 to 100 hr -1 as a space velocity (SV). The space velocity (SV) is preferably 3 hr -1 or more, and 5 hr -1 or more from the viewpoint of shortening the time required for the pretreatment step and suppressing an excessive increase in the pH of the second treated water discharged from the adsorption tower. is more preferable, 8 hr -1 or more is more preferable, and 12 hr -1 or more is even more preferable. In addition, from the viewpoint of increasing the efficiency of replacing hydroxide ions in the adsorbent with sulfate ions, the space velocity (SV) is preferably 70 hr -1 or less, more preferably 50 hr -1 or less, and even more preferably 30 hr -1 or less. .

前処理工程では、第1処理水を吸着塔に循環させながら導入してもよい。例えば、第1処理水の保持タンクを準備し、当該保持タンクと吸着塔との間を第1処理水を循環させることができる。この場合、吸着塔から排出された第2処理水が、前処理工程において吸着塔に導入される第1処理水として再び使用されることとなる。もちろん、第1処理水を吸着塔に循環供給せずに、吸着塔から排出された第2処理水を、フッ素イオンが除去された処理水として、そのまま系外に排出してもよい。 In the pretreatment step, the first treated water may be introduced while being circulated to the adsorption tower. For example, a holding tank for the first treated water can be prepared and the first treated water can be circulated between the holding tank and the adsorption tower. In this case, the second treated water discharged from the adsorption tower is reused as the first treated water introduced into the adsorption tower in the pretreatment step. Of course, without circulating the first treated water to the adsorption tower, the second treated water discharged from the adsorption tower may be discharged as it is to the outside of the system as treated water from which fluorine ions have been removed.

前処理工程では、吸着工程で得られた第1処理水の全部を吸着塔に導入してもよく、一部のみを吸着塔に導入してもよい。前処理工程においてフッ素吸着剤の有する水酸化物イオンが十分に硫酸イオンに置換されれば、第1処理水の吸着塔への供給を止め、前処理工程を終了してもよい。 In the pretreatment step, all of the first treated water obtained in the adsorption step may be introduced into the adsorption tower, or only a portion thereof may be introduced into the adsorption tower. When the hydroxide ions of the fluorine adsorbent are sufficiently replaced with sulfate ions in the pretreatment step, the supply of the first treated water to the adsorption tower may be stopped and the pretreatment step may be terminated.

前処理工程の終了のタイミングは、第2処理水のpHを測定することにより判断することができる。第2処理水は、前処理工程の初期はpHが高く、あるいはpHが上昇し、例えばpHが6~9程度となる。一方、前処理工程を継続していくと、フッ素吸着剤の有する水酸化物イオンの硫酸イオンとの交換量が減り、第2処理水のpHは徐々に低下する。従って、前処理工程において第2処理水のpHが所定値以下となったら、前処理工程を終了して、吸着工程に移行することができる。目安となる第2処理水のpHは、4.0以下が好ましく、3.8以下がより好ましく、3.5以下がさらに好ましい。 The timing of completion of the pretreatment process can be determined by measuring the pH of the second treated water. The second treated water has a high pH at the beginning of the pretreatment process, or the pH increases, for example, the pH is about 6-9. On the other hand, as the pretreatment step continues, the amount of hydroxide ions in the fluorine adsorbent exchanged with sulfate ions decreases, and the pH of the second treated water gradually decreases. Therefore, when the pH of the second treated water becomes equal to or lower than the predetermined value in the pretreatment process, the pretreatment process can be terminated and the adsorption process can be started. The pH of the second treated water, which is a standard, is preferably 4.0 or less, more preferably 3.8 or less, and even more preferably 3.5 or less.

前処理工程の終了のタイミングは、第1処理水の吸着塔への供給量に基づき決定してもよい。例えば、前処理工程における第1処理水の吸着塔への供給量(体積)は、吸着塔に充填されたフッ素吸着剤の見かけ体積の20倍以上とすることが好ましく、30倍以上がより好ましく、40倍以上がさらに好ましい。第1処理水の吸着塔への供給量の上限は特に限定されないが、過剰に供給しても第1処理水を導入することの効果がそれほど向上しないことから、第1処理水の吸着塔への供給量は、吸着塔に充填されたフッ素吸着剤の見かけ体積の200倍以下が好ましく、150倍以下がより好ましく、100倍以下がさらに好ましい。なお、ここで説明した第1処理水の吸着塔への供給量は、第1処理水を吸着塔に循環供給する場合は、吸着塔に導入する第1処理水の延べ量を意味する。 The timing for ending the pretreatment step may be determined based on the amount of first treated water supplied to the adsorption tower. For example, the amount (volume) of the first treated water supplied to the adsorption tower in the pretreatment step is preferably at least 20 times the apparent volume of the fluorine adsorbent packed in the adsorption tower, more preferably at least 30 times. , more preferably 40 times or more. The upper limit of the amount of the first treated water supplied to the adsorption tower is not particularly limited, but since the effect of introducing the first treated water is not so improved even if it is supplied in excess, the first treated water is supplied to the adsorption tower. is preferably 200 times or less, more preferably 150 times or less, and even more preferably 100 times or less the apparent volume of the fluorine adsorbent packed in the adsorption tower. The supply amount of the first treated water to the adsorption tower described here means the total amount of the first treated water introduced into the adsorption tower when the first treated water is circulated and supplied to the adsorption tower.

上記のように前処理工程を行うことにより、フッ素吸着剤がアニオンとして硫酸イオンを有するものとなる。そして、その後、吸着工程において被処理水をフッ素吸着剤と接触させると、吸着剤の有する硫酸イオンがフッ素イオンとイオン交換され、第1処理水のpH上昇を抑えることができる。そのため、第1処理水のpHをフッ素吸着除去に適したpH範囲に維持することが容易になり、被処理水からのフッ素吸着除去を安定して行えるようになる。 By performing the pretreatment step as described above, the fluorine adsorbent has sulfate ions as anions. Thereafter, when the water to be treated is brought into contact with the fluorine adsorbent in the adsorption step, the sulfate ions contained in the adsorbent are ion-exchanged with the fluorine ions, and the increase in pH of the first treated water can be suppressed. Therefore, it becomes easy to maintain the pH of the first treated water in a pH range suitable for removing fluorine by adsorption, and the adsorption and removal of fluorine from the water to be treated can be stably performed.

前処理工程は、吸着工程の後、フッ素吸着剤を脱着・再生処理して、次の吸着工程でフッ素吸着処理を行う前に行うものであってもよい。この場合の本発明の水処理方法は、吸着工程の後に、吸着塔にアルカリ溶液を導入し、フッ素吸着剤からフッ素イオンを脱着させる脱着工程と、脱着工程の後に、吸着塔に酸溶液を導入する酸処理工程とをさらに有し、酸処理工程の後に前処理工程を行い、その後再び吸着工程を行うものとなる。このように吸着工程の後に脱着工程と酸処理工程を設けることにより、フッ素吸着剤を繰り返し使用できるようになる。 The pretreatment step may be performed after the adsorption step, desorbing and regenerating the fluorine adsorbent, and before carrying out the fluorine adsorption treatment in the next adsorption step. In this case, in the water treatment method of the present invention, after the adsorption step, an alkaline solution is introduced into the adsorption tower to desorb fluorine ions from the fluorine adsorbent, and after the desorption step, an acid solution is introduced into the adsorption tower. After the acid treatment step, the pretreatment step is performed, and then the adsorption step is performed again. By thus providing the desorption step and the acid treatment step after the adsorption step, the fluorine adsorbent can be used repeatedly.

脱着工程では、吸着工程でフッ素イオンを吸着した吸着剤をアルカリ溶液と接触させる。これにより、フッ素イオンが吸着剤から脱着して、フッ素イオンを含有する脱離液が得られる。このようにして得られた脱離液は、被処理水よりもフッ素イオンを濃縮することができ、しかも高純度のフッ素イオン含有液となるため、フッ素の効率的な回収が可能となる。 In the desorption step, the adsorbent that has adsorbed fluorine ions in the adsorption step is brought into contact with an alkaline solution. As a result, fluorine ions are desorbed from the adsorbent to obtain a desorbed liquid containing fluorine ions. The desorbed liquid thus obtained can concentrate fluorine ions more than the water to be treated, and becomes a high-purity fluorine ion-containing liquid, so that fluorine can be efficiently recovered.

アルカリ溶液としては、アルカリ金属水酸化物の溶液を用いることが好ましい。アルカリ金属水酸化物としては、水酸化リチウム、水酸化カリウム、水酸化ナトリウム、水酸化ルビジウム、水酸化セシウム等を用いることができ、これらは1種のみを用いてもよく、2種以上を併用してもよい。なお、アルカリ金属水酸化物としては、コスト面から水酸化ナトリウムを用いることが好ましい。 As the alkaline solution, it is preferable to use a solution of an alkali metal hydroxide. As the alkali metal hydroxide, lithium hydroxide, potassium hydroxide, sodium hydroxide, rubidium hydroxide, cesium hydroxide, etc. can be used, and these may be used alone or in combination of two or more. You may In addition, it is preferable to use sodium hydroxide as an alkali metal hydroxide from the aspect of cost.

脱着工程で用いるアルカリ溶液は、水酸化物イオン濃度が高いほどフッ素イオンを高濃度に含む脱離液が得られることから、ある程度高い水酸化物イオン濃度を有するアルカリ溶液を使用することが好ましい。アルカリ溶液の水酸化物イオン濃度は、例えば0.05mol/L以上が好ましく、0.1mol/L以上がより好ましく、0.2mol/L以上がさらに好ましい。一方、アルカリ溶液の取り扱い性や設備仕様への影響を考慮すると、アルカリ溶液の水酸化物イオン濃度は3mol/L以下が好ましく、1mol/L以下がより好ましい。 As the alkali solution used in the desorption step, it is preferable to use an alkali solution having a relatively high hydroxide ion concentration, because the higher the hydroxide ion concentration, the higher the concentration of fluorine ions in the desorbed solution. The hydroxide ion concentration of the alkaline solution is, for example, preferably 0.05 mol/L or higher, more preferably 0.1 mol/L or higher, and even more preferably 0.2 mol/L or higher. On the other hand, considering the handling properties of the alkaline solution and the influence on the equipment specifications, the hydroxide ion concentration of the alkaline solution is preferably 3 mol/L or less, more preferably 1 mol/L or less.

脱着工程でフッ素イオンを脱着させた吸着剤は、次に酸処理工程で酸溶液と接触させることにより、再びフッ素吸着剤として使用することができる。このときの酸としては、塩酸や硫酸を用いることが好ましい。酸溶液の水素イオン濃度は、例えば0.01mol/Lより高いことが好ましく、0.03mol/L以上がより好ましく、また2.0mol/L以下が好ましく、1.0mol/L以下がより好ましい。なお、酸処理工程の前に、脱着工程でフッ素イオンを脱着させた吸着剤を水洗してもよい。また、酸処理工程の後に、吸着剤を水洗してもよい。 The adsorbent from which fluorine ions have been desorbed in the desorption step can be used again as a fluorine adsorbent by contacting it with an acid solution in the acid treatment step. As the acid at this time, it is preferable to use hydrochloric acid or sulfuric acid. The hydrogen ion concentration of the acid solution is, for example, preferably higher than 0.01 mol/L, more preferably 0.03 mol/L or more, and preferably 2.0 mol/L or less, more preferably 1.0 mol/L or less. Before the acid treatment step, the adsorbent from which fluorine ions have been desorbed in the desorption step may be washed with water. Moreover, after the acid treatment step, the adsorbent may be washed with water.

酸処理工程の後に上記に説明した前処理工程を行う。酸処理工程で酸溶液と接触させた後に水洗した場合は、この水洗の後で前処理工程を行う。このようにフッ素吸着剤を再生処理した後に前処理工程を行い、その後再び吸着工程を行うことで、再び行う吸着工程において、初期段階からフッ素イオン濃度が十分に低減された第1処理水が得られるようになる。 After the acid treatment step, the pretreatment step described above is performed. When washing with water after contacting with the acid solution in the acid treatment step, the pretreatment step is performed after this washing with water. By performing the pretreatment step after regenerating the fluorine adsorbent in this manner and then performing the adsorption step again, the first treated water in which the fluorine ion concentration is sufficiently reduced from the initial stage can be obtained in the adsorption step performed again. will be available.

なお、酸処理工程で硫酸を用いた場合に、酸処理工程が上記に説明した前処理工程を兼ねることが可能か検討したが、酸処理工程で硫酸を用いても前処理工程を行った場合と同等の効果を得ることはできなかった。すなわち、酸処理工程を行った後、前処理工程を行わずに吸着工程を行った場合は、吸着工程において第1処理水のpH上昇が見られ、特に吸着工程の初期において第1処理水のフッ素イオン濃度が高くなる傾向を示した。 In addition, when sulfuric acid is used in the acid treatment process, it was examined whether the acid treatment process can also serve as the pretreatment process described above. could not obtain the same effect. That is, when the adsorption step is performed without performing the pretreatment step after performing the acid treatment step, the pH of the first treated water increases in the adsorption step, especially at the beginning of the adsorption step. Fluoride ion concentration tended to increase.

上記に説明した前処理工程は、フッ素吸着剤により最初に吸着工程を行う前や、フッ素吸着剤を再生処理後、最初に吸着工程を行う前に行うことが有効である。従って、吸着工程を一旦中断して、その後吸着工程を再開するような場合には、再開した吸着工程の前に前処理工程を行わなくてもよい。 It is effective to carry out the above-described pretreatment step before performing the first adsorption step with the fluorine adsorbent, or after regenerating the fluorine adsorbent and before performing the first adsorption step. Therefore, when the adsorption step is temporarily interrupted and then resumed, the pretreatment step may not be performed before the resumed adsorption step.

次に、本発明の水処理方法で用いるシステム構成例について、図面を参照して説明する。なお、本発明は、図面に示した実施態様に限定されるものではない。 Next, a system configuration example used in the water treatment method of the present invention will be described with reference to the drawings. It should be noted that the present invention is not limited to the embodiments shown in the drawings.

図2に示した水処理システムは、フッ素吸着剤が充填された吸着塔11と、吸着塔11の入側に連通し、被処理水1が供給される被処理水流路21を有している。吸着塔11に導入される被処理水1は、少なくともフッ素イオンと硫酸イオンを含有し、硫酸イオン濃度が30,000mg/L以上となっている。被処理水1を吸着塔11に導入してフッ素吸着剤と接触させることにより、フッ素イオン濃度が低減された第1処理水2が得られる(吸着工程)。第1処理水2は、環境中に放流できる程度までフッ素イオン濃度が低減されたものとなる。第1処理水2は、吸着塔11の出側に連通して設けられた処理水流路22を通して得られ、その少なくとも一部が処理水タンク23に一時的に貯留される。 The water treatment system shown in FIG. 2 has an adsorption tower 11 filled with a fluorine adsorbent and a water flow path 21 that communicates with the inlet side of the adsorption tower 11 and supplies the water 1 to be treated. . The water to be treated 1 introduced into the adsorption tower 11 contains at least fluorine ions and sulfate ions, and has a sulfate ion concentration of 30,000 mg/L or more. By introducing the water 1 to be treated into the adsorption tower 11 and bringing it into contact with the fluorine adsorbent, the first treated water 2 with reduced fluorine ion concentration is obtained (adsorption step). The first treated water 2 has a fluorine ion concentration reduced to such an extent that it can be discharged into the environment. The first treated water 2 is obtained through a treated water flow path 22 provided in communication with the outlet side of the adsorption tower 11 , and at least part of it is temporarily stored in a treated water tank 23 .

吸着塔11の入側には、被処理水1のpHを調整するためのpH調整手段12が設けられることが好ましい。pH調整手段12としては、酸やアルカリを添加する薬注ポンプ等が挙げられる。酸やアルカリは被処理水流路21の配管内に供給してもよく、被処理水流路21にpH調整槽を設けて、pH調整槽で酸やアルカリを供給してもよい。この際、被処理水1のpHを測定しながら酸やアルカリを供給することが好ましい。従って、吸着塔11の入側にはpH計が設けられることが好ましい。被処理水1のpHを吸着に好適な範囲に調整することにより、被処理水1を吸着塔11に導入した際にフッ素イオンを効率的に吸着除去できるようになる。 It is preferable that a pH adjusting means 12 for adjusting the pH of the water 1 to be treated is provided on the inlet side of the adsorption tower 11 . Examples of the pH adjusting means 12 include a chemical injection pump for adding acid or alkali. The acid or alkali may be supplied into the piping of the water flow path 21 to be treated, or a pH adjustment tank may be provided in the water flow path 21 to supply the acid or alkali to the pH adjustment tank. At this time, it is preferable to supply acid or alkali while measuring the pH of the water 1 to be treated. Therefore, it is preferable to provide a pH meter on the entrance side of the adsorption tower 11 . By adjusting the pH of the water to be treated 1 to a range suitable for adsorption, fluorine ions can be efficiently adsorbed and removed when the water to be treated 1 is introduced into the adsorption tower 11 .

吸着塔11の出側には、フッ素イオン濃度計が設けられることが好ましい。フッ素イオン濃度計によって第1処理水2のフッ素イオン濃度を測定することにより、吸着工程を終了するタイミングを判断することができる。例えば、第1処理水2のフッ素イオン濃度の基準値を予め定めておき、当該基準値を超えたら吸着工程を終了することができる。なお、吸着塔11の入側にもフッ素イオン濃度計を設けてもよく、被処理水1のフッ素イオン濃度と第1処理水2のフッ素イオン濃度の差分および被処理水1の供給量(または第1処理水2の排出量)から吸着塔11に充填された吸着剤へのフッ素イオンの累積吸着量を計算し、当該累積吸着量が所定値を超えたら、吸着工程を終了するようにしてもよい。 A fluorine ion concentration meter is preferably provided on the exit side of the adsorption tower 11 . By measuring the fluorine ion concentration of the first treated water 2 with a fluorine ion concentration meter, it is possible to determine the timing for ending the adsorption step. For example, a reference value for the fluorine ion concentration of the first treated water 2 is determined in advance, and the adsorption step can be terminated when the reference value is exceeded. In addition, a fluorine ion concentration meter may be provided on the inlet side of the adsorption tower 11, and the difference between the fluorine ion concentration of the water to be treated 1 and the fluorine ion concentration of the first treated water 2 and the supply amount of the water to be treated 1 (or The cumulative adsorption amount of fluorine ions to the adsorbent filled in the adsorption tower 11 is calculated from the discharge amount of the first treated water 2), and when the cumulative adsorption amount exceeds a predetermined value, the adsorption step is terminated. good too.

フッ素イオンを吸着した吸着剤は、アルカリ溶液と接触させることにより、吸着剤からフッ素イオンを脱着させることができる(脱着工程)。従って、吸着塔11の入側には薬液流路25が連通して設けられることが好ましい。吸着塔11の出側には、吸着剤と接触したアルカリ溶液すなわち脱離液3を排出する廃液流路26が連通して設けられることが好ましい。なお、図2では、薬液流路25が吸着塔11の入側に直接接続しているが、被処理水流路21に接続するものであってもよい。薬液流路25からアルカリ溶液を供給する際には、吸着塔11への被処理水1の供給を止め、吸着塔11から廃液流路26を通って排出された脱離液3を回収する。 The adsorbent that has adsorbed fluorine ions can be desorbed from the adsorbent by bringing it into contact with an alkaline solution (desorption step). Therefore, it is preferable that the inlet side of the adsorption tower 11 is provided with the chemical liquid flow path 25 in communication therewith. It is preferable that the exit side of the adsorption tower 11 is provided in communication with a waste liquid flow path 26 for discharging the alkaline solution, that is, the desorbed liquid 3 that has come into contact with the adsorbent. In addition, in FIG. 2, the chemical liquid flow path 25 is directly connected to the inlet side of the adsorption tower 11, but it may be connected to the water flow path 21 to be treated. When the alkaline solution is supplied from the chemical liquid channel 25, the supply of the water 1 to be treated to the adsorption tower 11 is stopped, and the desorbed liquid 3 discharged from the adsorption tower 11 through the waste liquid channel 26 is recovered.

フッ素イオンを脱着した吸着剤は、酸溶液と接触させることにより再生され、再びフッ素吸着能が付与される(酸処理工程)。図2では、薬液流路25から酸溶液を供給することができ、吸着剤と接触した酸溶液すなわち酸洗浄廃液4が廃液流路26を通して排出される。なお、酸溶液はアルカリ溶液とは異なる流路を通して吸着塔11に供給されてもよく、酸洗浄廃液4は脱離液3とは異なる流路を通して吸着塔11から排出されてもよい。また、吸着塔11への酸溶液の供給に先立って、吸着塔11に水を供給して、吸着塔11内のアルカリ溶液を洗い流してもよい。酸溶液と接触させた吸着剤は、フッ素イオンの吸着サイトに水酸化物イオンを有するものとなる。 The adsorbent that has desorbed fluorine ions is regenerated by bringing it into contact with an acid solution, and is given fluorine adsorption capacity again (acid treatment step). In FIG. 2, the acid solution can be supplied from the chemical liquid channel 25, and the acid solution in contact with the adsorbent, that is, the acid cleaning waste liquid 4 is discharged through the waste liquid channel 26. In FIG. The acid solution may be supplied to the adsorption tower 11 through a channel different from that for the alkaline solution, and the acid washing waste liquid 4 may be discharged from the adsorption tower 11 through a channel different from that for the desorbed liquid 3 . Moreover, prior to supplying the acid solution to the adsorption tower 11 , water may be supplied to the adsorption tower 11 to wash away the alkaline solution in the adsorption tower 11 . The adsorbent brought into contact with the acid solution has hydroxide ions at the adsorption sites of fluorine ions.

酸溶液との接触により再生した吸着剤は、再び被処理水1のフッ素イオンの吸着除去に使用することができるが、被処理水1の吸着塔11への導入に先立って、処理水タンク23に貯留された第1処理水2を返送流路24を通して吸着塔11に導入する(前処理工程)。吸着塔11からは第2処理水5が得られる。第1処理水2の硫酸イオン濃度は30,000mg/L以上となっており、このように高濃度に硫酸イオンを含む第1処理水2を吸着塔11に導入することにより、吸着塔11に充填された吸着剤の有する水酸化物イオンが硫酸イオンに置換される。これにより、その後、被処理水1を吸着塔11に導入した際に、吸着塔11から排出される第1処理水2のpHの上昇が抑えられ、被処理水1からフッ素イオンを安定して吸着除去できるようになる。なお、酸溶液との接触後、第1処理水2の導入前に、吸着塔11に水を供給して、吸着塔11内の酸溶液を洗い流すことも好ましい。 The adsorbent regenerated by contact with the acid solution can be used again to adsorb and remove fluorine ions in the water 1 to be treated. The first treated water 2 stored in is introduced into the adsorption tower 11 through the return flow path 24 (pretreatment step). A second treated water 5 is obtained from the adsorption tower 11 . The first treated water 2 has a sulfate ion concentration of 30,000 mg/L or higher. Hydroxide ions of the packed adsorbent are replaced with sulfate ions. As a result, when the water to be treated 1 is subsequently introduced into the adsorption tower 11, the increase in pH of the first treated water 2 discharged from the adsorption tower 11 is suppressed, and fluorine ions are stably released from the water to be treated 1. It can be removed by adsorption. It is also preferable to supply water to the adsorption tower 11 to wash away the acid solution in the adsorption tower 11 after the contact with the acid solution and before the introduction of the first treated water 2 .

前処理工程の終了のタイミングは、吸着塔11の出側にpH計を設け、第2処理水5のpHを測定することにより判断することができる。具体的には、第2処理水5のpHが所定値以下(例えば、pHが4.0以下)となったら、前処理工程を終了して、吸着工程に移行することができる。なお、前処理工程における第1処理水2の吸着塔11への供給量は、吸着塔11に充填された吸着剤の見かけ体積の20倍以上とすることが好ましい。 The timing of the end of the pretreatment process can be determined by providing a pH meter on the outlet side of the adsorption tower 11 and measuring the pH of the second treated water 5 . Specifically, when the pH of the second treated water 5 becomes equal to or lower than a predetermined value (for example, the pH is 4.0 or lower), the pretreatment step can be terminated and the adsorption step can be started. The amount of the first treated water 2 supplied to the adsorption tower 11 in the pretreatment step is preferably 20 times or more the apparent volume of the adsorbent filled in the adsorption tower 11 .

本発明の水処理システムの他の例について、図3および図4を参照して説明する。なお下記の説明において、図2と重複する部分の説明は省く。 Another example of the water treatment system of the present invention will be described with reference to FIGS. 3 and 4. FIG. In the following description, the description of the parts overlapping with FIG. 2 will be omitted.

図3に示した構成例では、吸着塔として第1吸着塔11Aと第2吸着塔11Bが並列して設けられ、第1吸着塔11Aと第2吸着塔11Bのそれぞれに被処理水流路21と処理水流路22と処理水タンク23と返送流路24と薬液流路25と廃液流路26が設けられている。図3に示した構成例によれば、第1吸着塔11Aと第2吸着塔11Bのそれぞれで吸着工程と脱着・酸洗浄・前処理工程を行うことができる。そのため、第1吸着塔11Aで吸着処理を行うのと同時に第2吸着塔11Bで脱着・再生処理および吸着剤の前処理を行うことができ、またその逆も可能となるため、被処理水の連続的な吸着処理が可能となる。 In the configuration example shown in FIG. 3, a first adsorption tower 11A and a second adsorption tower 11B are provided in parallel as adsorption towers. A treated water channel 22 , a treated water tank 23 , a return channel 24 , a chemical solution channel 25 and a waste liquid channel 26 are provided. According to the configuration example shown in FIG. 3, the adsorption step and the desorption/acid washing/pretreatment step can be performed in each of the first adsorption tower 11A and the second adsorption tower 11B. Therefore, it is possible to perform the adsorption treatment in the first adsorption tower 11A and the desorption/regeneration treatment and the pretreatment of the adsorbent in the second adsorption tower 11B at the same time, and vice versa. Continuous adsorption treatment becomes possible.

図3に示した構成例では、第1吸着塔11Aと第2吸着塔11Bの2つの吸着塔を交互に吸着工程と脱着・酸洗浄・前処理工程に供することで、被処理水の連続的な吸着処理を可能としたが、3つ以上の吸着塔を用いて被処理水の連続的な吸着処理を行うこともできる。例えば、第1吸着塔と第2吸着塔と第3吸着塔の3つの吸着塔を用いる場合は、第1吸着塔と第2吸着塔をこの順で直列接続して吸着工程を行い、第3吸着塔で脱着・酸洗浄・前処理工程を行い、次に第2吸着塔と第3吸着塔をこの順で直列接続して吸着工程を行い、第1吸着塔で脱着・酸洗浄・前処理工程を行い、さらにその次に第3吸着塔と第1吸着塔をこの順で直列接続して吸着工程を行い、第2吸着塔で脱着・酸洗浄・前処理工程を行うことを繰り返すことで、3つの吸着塔を用いて被処理水の連続的な吸着処理を行うことができる。4つ以上の吸着塔を用いる場合は、3つ以上の吸着塔を多段に直列接続して吸着処理を行ってもよく、2つ以上の吸着塔で脱着・酸洗浄・前処理工程を行ってもよい。 In the configuration example shown in FIG. 3, two adsorption towers, the first adsorption tower 11A and the second adsorption tower 11B, are alternately subjected to the adsorption process and the desorption/acid washing/pretreatment process, thereby continuously However, three or more adsorption towers can be used to continuously adsorb the water to be treated. For example, when three adsorption towers, a first adsorption tower, a second adsorption tower, and a third adsorption tower, are used, the adsorption step is performed by connecting the first adsorption tower and the second adsorption tower in series in this order. Desorption, acid washing and pretreatment are carried out in the adsorption tower, then adsorption is carried out by connecting the second adsorption tower and the third adsorption tower in series in this order, and desorption, acid washing and pretreatment are carried out in the first adsorption tower. By repeating the steps of performing the steps, then performing the adsorption step by connecting the third adsorption tower and the first adsorption tower in series in this order, and performing the desorption, acid washing, and pretreatment steps in the second adsorption tower. , three adsorption towers can be used for continuous adsorption treatment of the water to be treated. When four or more adsorption towers are used, adsorption treatment may be performed by connecting three or more adsorption towers in series in multiple stages. good too.

図4には、吸着塔が多段に直列接続された構成例を示した。図4では、吸着塔として第1吸着塔11Aと第2吸着塔11Bを設け、第1吸着塔11Aの出側と第2吸着塔11Bの入側に連通して直列接続流路27が設けられ、これにより第1吸着塔11Aと第2吸着塔11Bをこの順で直列接続することができる。このように吸着塔を直列接続した場合、被処理水1を第1吸着塔11Aに導入して第1吸着塔11Aで吸着工程を行って第1処理水2Aを得た後、得られた第1処理水2Aを直列接続流路27を通して第2吸着塔11Bに導入し、第2吸着塔11Bで前処理工程を行うことができる。従って、前処理工程を行うための第1処理水2Aの処理水タンクの設置が不要となる。第2吸着塔11Bから排出された第2処理水5Bは、環境中に放流することができる。なお、第2吸着塔11Bに第1処理水2Aを導入するのに先立って、第2吸着塔11Bにおいて、脱着工程と酸処理工程を行うことが好ましい。従って、第2吸着塔11Bにおいて脱着工程と酸処理工程を行っている間は、第1吸着塔11Aから排出された第1処理水2Aは、第2吸着塔11Bを介さずにそのまま系外に排出することが好ましい。 FIG. 4 shows a configuration example in which adsorption towers are connected in series in multiple stages. In FIG. 4, a first adsorption tower 11A and a second adsorption tower 11B are provided as adsorption towers, and a series connection flow path 27 is provided to communicate with the outlet side of the first adsorption tower 11A and the inlet side of the second adsorption tower 11B. Thus, the first adsorption tower 11A and the second adsorption tower 11B can be connected in series in this order. When the adsorption towers are connected in series in this way, the water to be treated 1 is introduced into the first adsorption tower 11A and the adsorption step is performed in the first adsorption tower 11A to obtain the first treated water 2A. 1 Treated water 2A can be introduced into the second adsorption tower 11B through the series connection channel 27, and a pretreatment step can be performed in the second adsorption tower 11B. Therefore, installation of a treated water tank for the first treated water 2A for carrying out the pretreatment process becomes unnecessary. The second treated water 5B discharged from the second adsorption tower 11B can be discharged into the environment. In addition, in the 2nd adsorption tower 11B, it is preferable to perform a desorption process and an acid treatment process prior to introduce|transducing 2 A of 1st treated water into the 2nd adsorption tower 11B. Therefore, while the desorption step and the acid treatment step are being performed in the second adsorption tower 11B, the first treated water 2A discharged from the first adsorption tower 11A is directly outside the system without passing through the second adsorption tower 11B. Ejection is preferred.

図4ではまた、第2吸着塔11Bの出側と第1吸着塔11Aの入側に連通してさらに直列接続流路28が設けられており、これにより第2吸着塔11Bと第1吸着塔11Aをこの順で直列接続することができる。このように吸着塔を直列接続した場合、被処理水1を第2吸着塔11Bに導入して第2吸着塔11Bで吸着工程を行って第1処理水2Bを得た後、得られた第1処理水2Bを直列接続流路28を通して第1吸着塔11Aに導入し、第1吸着塔11Aで前処理工程を行うことができる。従って、前処理工程を行うための第1処理水2Bの処理水タンクの設置が不要となる。第1吸着塔11Aから排出された第2処理水5Aは、環境中に放流することができる。なお、第1吸着塔11Aに第1処理水2Bを導入するのに先立って、第1吸着塔11Aにおいて、脱着工程と酸処理工程を行うことが好ましい。従って、第1吸着塔11Aにおいて脱着工程と酸処理工程を行っている間は、第2吸着塔11Bから排出された第1処理水2Bは、第1吸着塔11Aを介さずにそのまま系外に排出することが好ましい。 In FIG. 4, a series connection flow path 28 is further provided in communication with the outlet side of the second adsorption tower 11B and the inlet side of the first adsorption tower 11A, whereby the second adsorption tower 11B and the first adsorption tower are connected. 11A can be connected in series in this order. When the adsorption towers are connected in series in this way, the water to be treated 1 is introduced into the second adsorption tower 11B and the adsorption step is performed in the second adsorption tower 11B to obtain the first treated water 2B. 1 Treated water 2B can be introduced into the first adsorption tower 11A through the series connection channel 28, and a pretreatment step can be performed in the first adsorption tower 11A. Therefore, installation of a treated water tank for the first treated water 2B for performing the pretreatment process is not required. The second treated water 5A discharged from the first adsorption tower 11A can be discharged into the environment. In addition, prior to introducing the first treated water 2B into the first adsorption tower 11A, it is preferable to perform the desorption step and the acid treatment step in the first adsorption tower 11A. Therefore, while the desorption step and the acid treatment step are being performed in the first adsorption tower 11A, the first treated water 2B discharged from the second adsorption tower 11B is discharged from the system as it is without passing through the first adsorption tower 11A. Ejection is preferred.

図4に示した構成例では、具体的には次のように各吸着塔で吸着工程と脱着工程と酸処理工程と前処理工程を行うことが好ましい。すなわち、次の(1)~(4)のステージを順に行うことで、第1吸着塔11Aと第2吸着塔11Bで吸着工程と脱着工程と酸処理工程と前処理工程の各工程を行うことが好ましい。(1)第1吸着塔11Aと第2吸着塔11Bをこの順で直列接続し、被処理水1を第1吸着塔11Aと第2吸着塔11Bに順次導入して、第1吸着塔11Aで吸着工程を行い、第2吸着塔11Bで前処理工程を行う。(2)脱着工程と酸処理工程を第1吸着塔11Aで行うとともに、第2吸着塔11Bに被処理水1を導入して吸着工程を行う。(3)第2吸着塔11Bと第1吸着塔11Aをこの順で直列接続し、被処理水1を第2吸着塔11Bと第1吸着塔11Aに順次導入して、第2吸着塔11Bで吸着工程を行い、第1吸着塔11Aで前処理工程を行う。(4)脱着工程と酸処理工程を第2吸着塔11Bで行うとともに、第1吸着塔11Aに被処理水1を導入して吸着工程を行う。これらの(1)~(4)のステージは繰り返し行うことができ、すなわち(4)のステージが終わったら次に(1)のステージに戻ることができる。これにより、吸着塔の脱着・再生処理頻度を減らして、被処理水からの効率的なフッ素イオン除去が可能となる。 In the configuration example shown in FIG. 4, specifically, it is preferable to perform an adsorption step, a desorption step, an acid treatment step, and a pretreatment step in each adsorption tower as follows. That is, by performing the following stages (1) to (4) in order, each step of the adsorption step, the desorption step, the acid treatment step, and the pretreatment step is performed in the first adsorption tower 11A and the second adsorption tower 11B. is preferred. (1) The first adsorption tower 11A and the second adsorption tower 11B are connected in series in this order, the water to be treated 1 is sequentially introduced into the first adsorption tower 11A and the second adsorption tower 11B, and the first adsorption tower 11A An adsorption step is performed, and a pretreatment step is performed in the second adsorption tower 11B. (2) The desorption process and the acid treatment process are performed in the first adsorption tower 11A, and the water to be treated 1 is introduced into the second adsorption tower 11B to perform the adsorption process. (3) The second adsorption tower 11B and the first adsorption tower 11A are connected in series in this order, the water to be treated 1 is sequentially introduced into the second adsorption tower 11B and the first adsorption tower 11A, and An adsorption step is performed, and a pretreatment step is performed in the first adsorption tower 11A. (4) The desorption step and the acid treatment step are performed in the second adsorption tower 11B, and the water to be treated 1 is introduced into the first adsorption tower 11A to perform the adsorption step. These stages (1) to (4) can be repeated, that is, after stage (4) is completed, stage (1) can be returned to. As a result, the frequency of desorption/regeneration treatment in the adsorption tower can be reduced, and fluorine ions can be efficiently removed from the water to be treated.

(1)のステージでは、第1吸着塔11Aと第2吸着塔11Bをこの順で直列接続し、被処理水1を第1吸着塔11Aと第2吸着塔11Bに順次導入する。(1)のステージではまず、硫酸イオン濃度が30,000mg/L以上の被処理水1を第1吸着塔11Aに導入し、被処理水1からフッ素イオンの少なくとも一部が除去された第1処理水2Aが得られる。第1処理水2Aのフッ素イオン濃度は、環境中に放流できる程度までフッ素イオンが除去され、硫酸イオン濃度は30,000mg/L以上に維持される。第1吸着塔11Aで得られた第1処理水2Aは第2吸着塔11Bに導入され、第2吸着塔11Bから第2処理水5Bが得られる。第2処理水5Bは、処理水流路22を通って系外に排出される。第2吸着塔11Bでは、次の(2)のステージで吸着工程が行われるのに先立って前処理工程が行われ、第2吸着塔11Bに充填された吸着剤が有する水酸化物イオンが硫酸イオンに置換される。 In stage (1), the first adsorption tower 11A and the second adsorption tower 11B are connected in series in this order, and the water to be treated 1 is sequentially introduced into the first adsorption tower 11A and the second adsorption tower 11B. In the stage (1), first, the water to be treated 1 having a sulfate ion concentration of 30,000 mg / L or more is introduced into the first adsorption tower 11A, and at least part of the fluorine ions is removed from the water to be treated 1. A treated water 2A is obtained. The fluoride ion concentration of the first treated water 2A is removed to the extent that it can be discharged into the environment, and the sulfate ion concentration is maintained at 30,000 mg/L or more. The first treated water 2A obtained in the first adsorption tower 11A is introduced into the second adsorption tower 11B, and the second treated water 5B is obtained from the second adsorption tower 11B. The second treated water 5B is discharged out of the system through the treated water flow path 22 . In the second adsorption tower 11B, a pretreatment step is performed prior to the adsorption step being performed in the next stage (2), and hydroxide ions possessed by the adsorbent packed in the second adsorption tower 11B are converted to sulfuric acid. replaced by ions.

(1)のステージでは、第2吸着塔11Bから排出される第2処理水5BのpHを測定することにより、第2吸着塔11Bに充填された吸着剤の有する水酸化物イオンの硫酸イオンへの置換がどの程度進行したのか把握することができる。第2処理水5BのpHは、通常は、一旦pHが6~9程度まで上昇した後、処理の継続に従いpHが低下する。(1)のステージは、第2処理水5BのpHが所定値以下(例えば、pHが4.0以下)となるまで行うことが好ましい。なお、(1)のステージにおいて、第2処理水5BのpHが所定値以下となっても、第2吸着塔11Bへの第1処理水2Aの導入を継続してもよい。これにより、仮に第1吸着塔11Aから排出された第1処理水2Aのフッ素イオン濃度が基準値を超えた場合に、第1処理水2Aが第2吸着塔11Bに導入されることで、第1処理水2Aに含まれるフッ素イオンを第2吸着塔11Bによって吸着除去することができる。 In the stage (1), by measuring the pH of the second treated water 5B discharged from the second adsorption tower 11B, the hydroxide ions of the adsorbent packed in the second adsorption tower 11B are converted into sulfate ions. It is possible to grasp how much the replacement of has progressed. The pH of the second treated water 5B normally once increases to about 6 to 9, and then decreases as the treatment continues. The stage (1) is preferably performed until the pH of the second treated water 5B becomes a predetermined value or less (for example, pH is 4.0 or less). In the stage (1), even if the pH of the second treated water 5B becomes equal to or lower than the predetermined value, the introduction of the first treated water 2A into the second adsorption tower 11B may be continued. As a result, if the fluorine ion concentration of the first treated water 2A discharged from the first adsorption tower 11A exceeds the reference value, the first treated water 2A is introduced into the second adsorption tower 11B, Fluorine ions contained in the first treated water 2A can be removed by adsorption by the second adsorption tower 11B.

(1)のステージにおいて、第1吸着塔11Aのフッ素イオンの吸着除去性能が低下した段階で、あるいは低下する前段階で、(2)のステージに移る。例えば、(1)のステージにおいて、第1吸着塔11Aから排出される第1処理水2Aのフッ素イオン濃度を測定し、当該フッ素イオン濃度が所定値を超えたら(2)のステージに移るようにすればよい。あるいは、(1)のステージにおいて、第1吸着塔11Aの吸着剤によって吸着されたフッ素イオンの累積吸着量が所定値を超えたら(2)のステージに移るようにしてもよい。第1吸着塔11Aの吸着剤によって吸着されたフッ素イオンの累積吸着量は、被処理水1のフッ素イオン濃度と第1処理水2Aのフッ素イオン濃度の差分および被処理水1の第1吸着塔11Aへの供給量(または第1処理水2Aの排出量)から求めることができる。 Stage (1) WHEREIN: At the stage where the adsorption-removal performance of the fluorine ion of 11 A of 1st adsorption towers fell, or the stage before it falls, it moves to the stage of (2). For example, in the stage (1), the fluorine ion concentration of the first treated water 2A discharged from the first adsorption tower 11A is measured, and when the fluorine ion concentration exceeds a predetermined value, the stage is shifted to (2). do it. Alternatively, in the stage (1), when the cumulative adsorption amount of fluorine ions adsorbed by the adsorbent in the first adsorption tower 11A exceeds a predetermined value, the stage may be shifted to (2). The cumulative adsorption amount of fluorine ions adsorbed by the adsorbent of the first adsorption tower 11A is the difference between the fluorine ion concentration of the water to be treated 1 and the fluorine ion concentration of the first treated water 2A, and It can be obtained from the amount supplied to 11A (or the amount of discharge of the first treated water 2A).

(2)のステージでは、第1吸着塔11Aの吸着剤の脱着・再生処理が行われ、第2吸着塔11Bでは、被処理水1のフッ素イオンの吸着処理が行われる。第2吸着塔11Bは、(1)のステージで前処理工程が行われたことにより、硫酸イオン濃度が30,000mg/L以上と高濃度に硫酸イオンを含む被処理水1が導入されても、得られる第1処理水2BのpHの上昇が抑えられ、環境中に放流できる程度までフッ素イオンが除去された第1処理水2Bが得られる。 In the stage (2), desorption/regeneration treatment of the adsorbent in the first adsorption tower 11A is performed, and fluorine ion adsorption treatment of the water 1 to be treated is performed in the second adsorption tower 11B. In the second adsorption tower 11B, even if the water to be treated 1 containing sulfate ions at a high concentration of 30,000 mg/L or more is introduced due to the pretreatment step being performed in the stage (1), , the increase in pH of the first treated water 2B obtained is suppressed, and the first treated water 2B from which fluorine ions are removed to the extent that it can be discharged into the environment is obtained.

(2)のステージで第1吸着塔11Aの吸着剤の脱着・再生処理が終わったら、次に(3)のステージに移行する。(3)のステージでは、第2吸着塔11Bと第1吸着塔11Aをこの順で直列接続し、被処理水1を第2吸着塔11Bと第1吸着塔11Aに順次導入する。(3)のステージではまず、硫酸イオン濃度が30,000mg/L以上の被処理水1を第2吸着塔11Bに導入し、被処理水1からフッ素イオンの少なくとも一部が除去された第1処理水2Bが得られる。第1処理水2Bのフッ素イオン濃度は、環境中に放流できる程度までフッ素イオンが除去され、硫酸イオン濃度は30,000mg/L以上に維持される。第1吸着塔11Bで得られた第1処理水2Bは第1吸着塔11Aに導入され、第1吸着塔11Aから第2処理水5Aが得られる。第1吸着塔11Aでは、(2)のステージで行われた脱着工程と酸処理工程に引き続いて前処理工程が行われ、第1吸着塔11Aに充填された吸着剤が有する水酸化物イオンが硫酸イオンに置換される。 After the desorption/regeneration treatment of the adsorbent in the first adsorption tower 11A is completed in the stage (2), the process proceeds to the stage (3). In the stage (3), the second adsorption tower 11B and the first adsorption tower 11A are connected in series in this order, and the water to be treated 1 is sequentially introduced into the second adsorption tower 11B and the first adsorption tower 11A. In the stage (3), first, the water to be treated 1 having a sulfate ion concentration of 30,000 mg / L or more is introduced into the second adsorption tower 11B, and at least part of the fluorine ions is removed from the water to be treated 1. Treated water 2B is obtained. The fluoride ion concentration of the first treated water 2B is removed to the extent that it can be discharged into the environment, and the sulfate ion concentration is maintained at 30,000 mg/L or more. The first treated water 2B obtained in the first adsorption tower 11B is introduced into the first adsorption tower 11A, and the second treated water 5A is obtained from the first adsorption tower 11A. In the first adsorption tower 11A, a pretreatment step is performed subsequent to the desorption step and the acid treatment step performed in the stage (2), and hydroxide ions possessed by the adsorbent packed in the first adsorption tower 11A are replaced by sulfate ions.

(3)のステージでは、第1吸着塔11Aから排出される第2処理水5AのpHを測定することにより、第1吸着塔11Aに充填された吸着剤の有する水酸化物イオンの硫酸イオンへの置換がどの程度進行したのか把握することができる。第2処理水5AのpHは、通常は、一旦pHが6~9程度まで上昇した後、処理の継続に従いpHが低下する。(3)のステージは、第2処理水5AのpHが所定値以下(例えば、pHが4.0以下)となるまで行うことが好ましい。なお、(3)のステージにおいて、第2処理水5AのpHが所定値以下となっても、第1吸着塔11Aへの第1処理水2Bの導入を継続してもよい。これにより、仮に第2吸着塔11Bから排出された第1処理水2Bのフッ素イオン濃度が基準値を超えた場合に、第1処理水2Bが第1吸着塔11Aに導入されることで、第1処理水2Bに含まれるフッ素イオンを第1吸着塔11Aによって吸着除去することができる。 In the stage (3), by measuring the pH of the second treated water 5A discharged from the first adsorption tower 11A, the hydroxide ions of the adsorbent packed in the first adsorption tower 11A are converted into sulfate ions. It is possible to grasp how much the replacement of has progressed. The pH of the second treated water 5A normally once increases to about 6 to 9, and then decreases as the treatment continues. The stage (3) is preferably performed until the pH of the second treated water 5A becomes a predetermined value or less (for example, pH is 4.0 or less). In stage (3), even if the pH of the second treated water 5A becomes equal to or lower than the predetermined value, the introduction of the first treated water 2B into the first adsorption tower 11A may be continued. As a result, if the fluorine ion concentration of the first treated water 2B discharged from the second adsorption tower 11B exceeds the reference value, the first treated water 2B is introduced into the first adsorption tower 11A, Fluorine ions contained in the first treated water 2B can be removed by adsorption by the first adsorption tower 11A.

(3)のステージにおいて、第2吸着塔11Bのフッ素イオンの吸着除去性能が低下した段階で、あるいは低下する前段階で、(4)のステージに移る。例えば、(3)のステージにおいて、第2吸着塔11Bから排出される第1処理水2Bのフッ素イオン濃度を測定し、当該フッ素イオン濃度が所定値を超えたら(4)のステージに移るようにすればよい。あるいは、(3)のステージにおいて、第2吸着塔11Bの吸着剤によって吸着されたフッ素イオンの累積吸着量が所定値を超えたら(4)のステージに移るようにしてもよい。第2吸着塔11Bの吸着剤によって吸着されたフッ素イオンの累積吸着量は、被処理水1のフッ素イオン濃度と第1処理水2Bのフッ素イオン濃度の差分および被処理水1の第2吸着塔11Bへの供給量(または第1処理水2Bの排出量)から求めることができる。 Stage (3) WHEREIN: At the stage where the adsorption removal performance of the fluorine ion of the 2nd adsorption tower 11B falls, or the stage before it falls, it moves to the stage of (4). For example, in the stage (3), the fluorine ion concentration of the first treated water 2B discharged from the second adsorption tower 11B is measured, and when the fluorine ion concentration exceeds a predetermined value, the stage is moved to (4). do it. Alternatively, in stage (3), if the cumulative adsorption amount of fluorine ions adsorbed by the adsorbent in second adsorption tower 11B exceeds a predetermined value, stage (4) may be performed. The cumulative adsorption amount of fluorine ions adsorbed by the adsorbent of the second adsorption tower 11B is the difference between the fluorine ion concentration of the water to be treated 1 and the fluorine ion concentration of the first treated water 2B and the second adsorption tower of the water to be treated 1 11B (or the discharge amount of the first treated water 2B).

(4)のステージでは、第2吸着塔11Bの吸着剤の脱着・再生処理が行われ、第1吸着塔11Aでは、被処理水1のフッ素イオンの吸着処理が行われる。第1吸着塔11Aは、(3)のステージで前処理工程が行われたことにより、硫酸イオン濃度が30,000mg/L以上と高濃度に硫酸イオンを含む被処理水1が導入されても、得られる第1処理水2AのpHの上昇が抑えられ、環境中に放流できる程度までフッ素イオンが除去された第1処理水2Aが得られる。 In the stage (4), desorption/regeneration treatment of the adsorbent in the second adsorption tower 11B is performed, and fluorine ion adsorption treatment of the water 1 to be treated is performed in the first adsorption tower 11A. In the first adsorption tower 11A, even if the water to be treated 1 containing sulfate ions at a high concentration of 30,000 mg/L or more is introduced due to the pretreatment step being performed in the stage (3), , the increase in pH of the first treated water 2A to be obtained is suppressed, and the first treated water 2A from which fluorine ions have been removed to the extent that it can be discharged into the environment is obtained.

(4)のステージで第2吸着塔11Bの吸着剤の脱着・再生処理が終わったら、次に再び(1)のステージに移行する。このように(1)~(4)のステージからなるサイクルを繰り返し行うことで、吸着塔に充填された吸着剤の脱着・再生処理頻度を減らして、被処理水からの効率的なフッ素イオン除去が可能となる。吸着剤の脱着・再生処理頻度の減少は、吸着剤の長寿命化にも繋がり、これにより処理コストの低減を図ることができる。 After the desorption/regeneration treatment of the adsorbent in the second adsorption tower 11B is completed in the stage (4), the process proceeds to the stage (1) again. By repeating the cycle consisting of stages (1) to (4) in this way, the frequency of desorption/regeneration treatment of the adsorbent packed in the adsorption tower is reduced, and fluorine ions are efficiently removed from the water to be treated. becomes possible. A reduction in the frequency of desorption/regeneration treatment of the adsorbent leads to extension of the life of the adsorbent, thereby reducing treatment costs.

図4に示した構成例では、吸着塔が2段に直列接続されていたが、吸着塔は3段以上直列接続されていてもよい。この場合、上記の(1)のステージと(3)のステージに相当するステージにおいて、最後段の吸着塔で前処理工程を行い、最前段の吸着塔は次のステージにおいて脱着工程と酸処理工程を行うようにすればよい。 In the configuration example shown in FIG. 4, the adsorption towers are connected in series in two stages, but the adsorption towers may be connected in series in three or more stages. In this case, in the stages corresponding to the above stages (1) and (3), the pretreatment process is performed in the last adsorption tower, and the first adsorption tower performs the desorption process and the acid treatment process in the next stage. should be done.

本発明は、石炭火力発電所、コークス工場、製鉄工場等の排煙脱硫排水の処理に用いることができる。 INDUSTRIAL APPLICABILITY The present invention can be used to treat flue gas desulfurization wastewater from coal-fired power plants, coke plants, steel plants, and the like.

1:被処理水
2,2A,2B:第1処理水
3:脱離液
4:酸洗浄廃液
5,5A,5B:第2処理水
11:吸着塔、11A:第1吸着塔、11B:第2吸着塔
12:pH調整手段
21:被処理水流路
22:処理水流路
23:処理水タンク
24:返送流路
25:薬液流路
26:廃液流路
27,28:直列接続流路
1: water to be treated 2, 2A, 2B: first treated water 3: desorption liquid 4: acid washing waste liquid 5, 5A, 5B: second treated water 11: adsorption tower, 11A: first adsorption tower, 11B: second 2 adsorption tower 12: pH adjusting means 21: water to be treated channel 22: treated water channel 23: treated water tank 24: return channel 25: chemical solution channel 26: waste liquid channel 27, 28: series connection channel

Claims (13)

フッ素イオンと硫酸イオンを含有する被処理水をフッ素吸着剤が充填された吸着塔に導入し、被処理水中のフッ素イオンの少なくとも一部が除去された第1処理水を得る吸着工程と、
前記吸着工程の前に、前記吸着工程で得られる第1処理水を前記吸着塔に導入する前処理工程とを有し、
前記吸着塔に導入される被処理水の硫酸イオン濃度が30,000mg/L以上であり、
前記吸着塔に導入される第1処理水の硫酸イオン濃度が30,000mg/L以上であることを特徴とする水処理方法。
an adsorption step of introducing water to be treated containing fluorine ions and sulfate ions into an adsorption tower filled with a fluorine adsorbent to obtain first treated water from which at least part of the fluorine ions in the water to be treated has been removed;
Before the adsorption step, a pretreatment step of introducing the first treated water obtained in the adsorption step into the adsorption tower,
The water to be treated introduced into the adsorption tower has a sulfate ion concentration of 30,000 mg/L or more,
A water treatment method, wherein the first treated water introduced into the adsorption tower has a sulfate ion concentration of 30,000 mg/L or more.
前記前処理工程において、前記吸着塔に導入される第1処理水のフッ素イオン濃度が15mg/L以下である請求項1に記載の水処理方法。 2. The water treatment method according to claim 1, wherein in said pretreatment step, the first treated water introduced into said adsorption tower has a fluorine ion concentration of 15 mg/L or less. 前記前処理工程において、前記吸着塔に導入される第1処理水のpHが2.0以上3.5以下である請求項1または2に記載の水処理方法。 The water treatment method according to claim 1 or 2, wherein in the pretreatment step, the first treated water introduced into the adsorption tower has a pH of 2.0 or more and 3.5 or less. 前記前処理工程において前記吸着塔から排出される第2処理水のpHが4.0以下となったら前記吸着工程を行う請求項3に記載の水処理方法。 4. The water treatment method according to claim 3, wherein the adsorption step is performed when the second treated water discharged from the adsorption tower in the pretreatment step has a pH of 4.0 or less. 前記前処理工程において、前記第1処理水を前記吸着塔に循環させながら導入する請求項1~4のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 4, wherein in the pretreatment step, the first treated water is introduced into the adsorption tower while being circulated. 前記吸着工程の後に、前記吸着塔にアルカリ溶液を導入し、前記フッ素吸着剤からフッ素イオンを脱着させる脱着工程と、
前記脱着工程の後に、前記吸着塔に酸溶液を導入する酸処理工程とをさらに有し、
前記酸処理工程の後に前記前処理工程を行い、その後再び前記吸着工程を行う請求項1~5のいずれか一項に記載の水処理方法。
After the adsorption step, a desorption step of introducing an alkaline solution into the adsorption tower to desorb fluorine ions from the fluorine adsorbent;
After the desorption step, further comprising an acid treatment step of introducing an acid solution into the adsorption tower,
The water treatment method according to any one of claims 1 to 5, wherein the pretreatment step is performed after the acid treatment step, and then the adsorption step is performed again.
前記吸着工程において、前記吸着塔に導入される被処理水のフッ素イオン濃度が50mg/L以上である請求項1~6のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 6, wherein in the adsorption step, the water to be treated introduced into the adsorption tower has a fluorine ion concentration of 50 mg/L or more. 前記吸着工程において、前記吸着塔に導入される被処理水のpHが2.0以上3.5以下である請求項1~7のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 7, wherein in the adsorption step, the water to be treated introduced into the adsorption tower has a pH of 2.0 or more and 3.5 or less. 前記フッ素吸着剤がセリウム系吸着剤である請求項1~8のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 8, wherein the fluorine adsorbent is a cerium-based adsorbent. 前記吸着工程の後に、前記吸着塔にアルカリ溶液を導入し、前記フッ素吸着剤からフッ素イオンを脱着させる脱着工程と、
前記脱着工程の後に、前記吸着塔に酸溶液を導入する酸処理工程とをさらに有し、
前記吸着塔として第1吸着塔と第2吸着塔が設けられ、下記(1)~(4)のステージを順に繰り返し行うことで、第1吸着塔と第2吸着塔で各工程を行う請求項1~9のいずれか一項に記載の水処理方法。
(1)第1吸着塔と第2吸着塔をこの順で直列接続し、被処理水を第1吸着塔と第2吸着塔に順次導入して、第1吸着塔で吸着工程を行い、第2吸着塔で前処理工程を行う。
(2)脱着工程と酸処理工程を第1吸着塔で行うとともに、第2吸着塔に被処理水を導入して吸着工程を行う。
(3)第2吸着塔と第1吸着塔をこの順で直列接続し、被処理水を第2吸着塔と第1吸着塔に順次導入して、第2吸着塔で吸着工程を行い、第1吸着塔で前処理工程を行う。
(4)脱着工程と酸処理工程を第2吸着塔で行うとともに、第1吸着塔に被処理水を導入して吸着工程を行う。
After the adsorption step, a desorption step of introducing an alkaline solution into the adsorption tower to desorb fluorine ions from the fluorine adsorbent;
After the desorption step, further comprising an acid treatment step of introducing an acid solution into the adsorption tower,
A first adsorption tower and a second adsorption tower are provided as the adsorption towers, and each step is performed in the first adsorption tower and the second adsorption tower by repeating the following stages (1) to (4) in order. 10. The water treatment method according to any one of 1 to 9.
(1) The first adsorption tower and the second adsorption tower are connected in series in this order, the water to be treated is sequentially introduced into the first adsorption tower and the second adsorption tower, the adsorption step is performed in the first adsorption tower, and the A pretreatment step is performed in two adsorption towers.
(2) The desorption step and the acid treatment step are performed in the first adsorption tower, and the water to be treated is introduced into the second adsorption tower to perform the adsorption step.
(3) The second adsorption tower and the first adsorption tower are connected in series in this order, the water to be treated is sequentially introduced into the second adsorption tower and the first adsorption tower, the adsorption step is performed in the second adsorption tower, and the A pretreatment step is performed in one adsorption tower.
(4) The desorption step and the acid treatment step are performed in the second adsorption tower, and the water to be treated is introduced into the first adsorption tower to perform the adsorption step.
前記(1)のステージにおいて、第1吸着塔から排出される第1処理水のフッ素イオン濃度を測定し、当該フッ素イオン濃度が所定値を超えたら前記(2)のステージに移り、
前記(3)のステージにおいて、第2吸着塔から排出される第1処理水のフッ素イオン濃度を測定し、当該フッ素イオン濃度が所定値を超えたら前記(4)のステージに移る請求項10に記載の水処理方法。
In the stage (1), the fluorine ion concentration of the first treated water discharged from the first adsorption tower is measured, and when the fluorine ion concentration exceeds a predetermined value, the stage moves to (2),
In the stage (3), the fluorine ion concentration of the first treated water discharged from the second adsorption tower is measured, and when the fluorine ion concentration exceeds a predetermined value, the stage (4) is performed. The described water treatment method.
前記(1)のステージにおいて、第1吸着塔の吸着剤によって吸着されたフッ素イオンの累積吸着量が所定値を超えたら前記(2)のステージに移り、
前記(3)のステージにおいて、第2吸着塔の吸着剤によって吸着されたフッ素イオンの累積吸着量が所定値を超えたら前記(4)のステージに移る請求項10または11に記載の水処理方法。
In the stage (1), when the cumulative adsorption amount of fluorine ions adsorbed by the adsorbent of the first adsorption tower exceeds a predetermined value, the stage moves to (2),
The water treatment method according to claim 10 or 11, wherein in the stage (3), when the cumulative adsorption amount of fluorine ions adsorbed by the adsorbent in the second adsorption tower exceeds a predetermined value, the stage (4) is performed. .
前記被処理水が、排煙脱硫設備から排出される排煙脱硫排水である請求項1~12のいずれか一項に記載の水処理方法。 The water treatment method according to any one of claims 1 to 12, wherein the water to be treated is flue gas desulfurization effluent discharged from flue gas desulfurization equipment.
JP2019135632A 2019-07-23 2019-07-23 water treatment method Active JP7274379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019135632A JP7274379B2 (en) 2019-07-23 2019-07-23 water treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019135632A JP7274379B2 (en) 2019-07-23 2019-07-23 water treatment method

Publications (2)

Publication Number Publication Date
JP2021016847A JP2021016847A (en) 2021-02-15
JP7274379B2 true JP7274379B2 (en) 2023-05-16

Family

ID=74565727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019135632A Active JP7274379B2 (en) 2019-07-23 2019-07-23 water treatment method

Country Status (1)

Country Link
JP (1) JP7274379B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144370A (en) 2003-11-17 2005-06-09 Japan Organo Co Ltd Method for regenerating fluorine or phosphate adsorbent
JP2006314957A (en) 2005-05-13 2006-11-24 Japan Organo Co Ltd Removing method of fluorine in water using fluorine adsorbent
JP2006346545A (en) 2005-06-14 2006-12-28 Asahi Kasei Chemicals Corp Water treatment device and method
JP2008272742A (en) 2007-03-30 2008-11-13 Asahi Kasei Chemicals Corp Water treatment device and water treatment method
JP2018130677A (en) 2017-02-15 2018-08-23 株式会社クボタ Water treatment method and water treatment system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144370A (en) 2003-11-17 2005-06-09 Japan Organo Co Ltd Method for regenerating fluorine or phosphate adsorbent
JP2006314957A (en) 2005-05-13 2006-11-24 Japan Organo Co Ltd Removing method of fluorine in water using fluorine adsorbent
JP2006346545A (en) 2005-06-14 2006-12-28 Asahi Kasei Chemicals Corp Water treatment device and method
JP2008272742A (en) 2007-03-30 2008-11-13 Asahi Kasei Chemicals Corp Water treatment device and water treatment method
JP2018130677A (en) 2017-02-15 2018-08-23 株式会社クボタ Water treatment method and water treatment system

Also Published As

Publication number Publication date
JP2021016847A (en) 2021-02-15

Similar Documents

Publication Publication Date Title
Knocke et al. Removal of soluble manganese by oxide‐coated filter media: Sorption rate and removal mechanism issues
TWI749166B (en) Water treatment method and water treatment system
JP5157941B2 (en) Method for treating boron-containing water
KR101775888B1 (en) Method and device for treating fluorine-containing water
JP2009226250A (en) Phosphorus recovery method and system
JP4115815B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP7057212B2 (en) Water treatment method
CN112400039A (en) Acid liquid regeneration device and regeneration method
JP7261152B2 (en) water treatment method
JP7274379B2 (en) water treatment method
JP5167253B2 (en) Processing method of developing waste liquid containing tetraalkylammonium ions
JP4820266B2 (en) Etching waste liquid recycling method and recycling apparatus
JP3203745B2 (en) Fluorine-containing water treatment method
JP6211779B2 (en) Treatment method for boron-containing wastewater
TW201309852A (en) Method of regenerating chelating material and substrate processing apparatus
JP5913087B2 (en) Wastewater treatment system
JP4927670B2 (en) Etching waste liquid recycling method and recycling apparatus
JP2010274226A (en) Water treatment apparatus
JP2000294266A (en) Method and device for recovering energy
JP2751874B2 (en) Treatment method for wastewater containing fluorine
JP6159053B2 (en) Operation method of amphoteric ion exchange resin
JP2004261734A (en) Method for treating ammonia-containing waste water
JP2010240615A (en) Method for regenerating used denitration catalyst
JP6517314B2 (en) Method and apparatus for treating radioactive liquid waste
WO2021141528A1 (en) Method of treating wastewater containing fluoride

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220623

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221019

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230501

R150 Certificate of patent or registration of utility model

Ref document number: 7274379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150