JP6159053B2 - Operation method of amphoteric ion exchange resin - Google Patents

Operation method of amphoteric ion exchange resin Download PDF

Info

Publication number
JP6159053B2
JP6159053B2 JP2011121687A JP2011121687A JP6159053B2 JP 6159053 B2 JP6159053 B2 JP 6159053B2 JP 2011121687 A JP2011121687 A JP 2011121687A JP 2011121687 A JP2011121687 A JP 2011121687A JP 6159053 B2 JP6159053 B2 JP 6159053B2
Authority
JP
Japan
Prior art keywords
exchange resin
amphoteric ion
ion exchange
leachate
calcium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011121687A
Other languages
Japanese (ja)
Other versions
JP2012245507A (en
Inventor
典敏 田村
典敏 田村
大谷 裕一
裕一 大谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2011121687A priority Critical patent/JP6159053B2/en
Publication of JP2012245507A publication Critical patent/JP2012245507A/en
Application granted granted Critical
Publication of JP6159053B2 publication Critical patent/JP6159053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Ion Exchange (AREA)

Description

本発明は、両性イオン交換樹脂の運転方法に関し、特に、最終処分場においてカルシウムに起因するスケールの発生を防止するために用いられる両性イオン交換樹脂の運転方法に関する。 The present invention relates to a method of operating an amphoteric ion exchange resin, in particular, to a method of operating an amphoteric ion-exchange resin used in order to prevent the occurrence of scale caused by Oite calcium final disposal site.

従来、塩水等において硫酸根(SO4 2-)と塩化ナトリウムとを分離する目的で両性イオン交換樹脂が用いられている。この両性イオン交換樹脂は、母体を架橋ポリスチレン等とし、同一官能基鎖中に四級アンモニウム基とカルボン酸基等を持たせて、陽イオン陰イオンの両方とイオン交換をさせる機能を持たせた樹脂であり、「イオン遅滞樹脂」や「スネークケージ樹脂」とも呼ばれ、異なる種類のイオンの樹脂内での通過速度の違いを利用したクロマト分離を行うものである。例えば、三菱化学株式会社製の両性イオン交換樹脂、ダイヤイオン(登録商標)、AMP03を用いることができる。この両性イオン交換樹脂は、水溶液中の電解質と非電解質の分離を行うことができると共に、電解質の相互分離を行うこともできる。 Conventionally, amphoteric ion exchange resins have been used for the purpose of separating sulfate radicals (SO 4 2− ) and sodium chloride in salt water or the like. This amphoteric ion exchange resin has a function of allowing ion exchange with both cationic anions by using a crosslinked polystyrene or the like as a base and having a quaternary ammonium group and a carboxylic acid group in the same functional group chain. It is a resin, also called an “ion-retarding resin” or a “snake cage resin”, and performs chromatographic separation utilizing the difference in the passing speed of different types of ions in the resin. For example, amphoteric ion exchange resin, Diaion (registered trademark), AMP03 manufactured by Mitsubishi Chemical Corporation can be used. This amphoteric ion exchange resin can separate electrolytes and non-electrolytes in an aqueous solution, and can also perform mutual separation of electrolytes.

しかし、上記塩水における硫酸根と塩化ナトリウムとの分離等の際には、通常、両性イオン交換樹脂の樹脂量に対する処理液(塩水)の通水量Rを0.1〜0.3に調整して両性イオン交換樹脂の分離性能を良好に維持しているため、大量の塩水を処理するには、高価な樹脂を多く必要とし、設置コスト及び運転コストの面で改善の余地があった。 However, during the separation or the like of the sulfate group and the sodium chloride in the brine is usually adjusted liquid to the resin amount of the amphoteric ion-exchange resin water flow amount R of (salt water) to 0.1 to 0.3 Since the separation performance of the amphoteric ion exchange resin is maintained well, a large amount of expensive resin is required to treat a large amount of salt water, and there is room for improvement in terms of installation cost and operation cost.

そこで、本発明は、上記従来の技術における問題点に鑑みてなされたものであって、両性イオン交換樹脂の設置コスト及び運転コストを低く抑えることなどが可能な両性イオン交換樹脂の運転方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above-described problems in the conventional technology, and provides an operation method of an amphoteric ion exchange resin capable of keeping the installation cost and operation cost of the amphoteric ion exchange resin low. The purpose is to do.

上記目的を達成するため、本発明は、両性イオン交換樹脂の運転方法であって、最終処分場の浸出水と、両性イオン交換樹脂を再生させる再生水とをダイヤイオン(登録商標)AMP03に交互に供給し、該ダイヤイオンAMP03から時間の経過と共に徐々に連続的に排出される排出液であって、カルシウムイオン濃度の低い溶液とカルシウムイオン濃度の高い溶液とが交互に排出される排出液を、カルシウムイオン濃度の低い溶液とカルシウムイオン濃度の高い溶液とに分離するにあたり、前記ダイヤイオンAMP03の樹脂量に対する前記最終処分場の浸出水の通水量を容積比で0.5以上2.5以下に制御することを特徴とする。尚、両性イオン交換樹脂の樹脂量は、樹脂を充填するカラム等の容器の容積から求める。 To achieve the above object, the present invention is an operating method of an amphoteric ion exchange resin, alternating with leachate final disposal site, and a recycled water to regenerate the amphoteric ion exchange resin Diaion (registered trademark) AMP03 An exhaust liquid that is gradually and continuously discharged from the diamond ion AMP03 over time, and in which a solution having a low calcium ion concentration and a solution having a high calcium ion concentration are alternately discharged. , per to separate the high low solution and mosquitoes Rushiumuion concentrations of calcium ion concentration solution, the passed water amount of leaching water in the final disposal site for the resin amount of the Diaion AMP03 by volume 0.5 to 2.5 Control is as follows . The resin amount of the amphoteric ion exchange resin is determined from the volume of a container such as a column filled with the resin.

そして、本発明によれば、両性イオン交換樹脂の樹脂量に対する最終処分場の浸出水の通水量を0.5以上2.5以下にしたため、カルシウムイオンの分離にあたり、高価な樹脂の必要量を低減することで、両性イオン交換樹脂の設置コスト及び運転コストを低く抑えることができる。また、両性イオン交換樹脂のカラムを小型化できるため、両性イオン交換樹脂の取り扱いが容易となる。尚、両性イオン交換樹脂の樹脂量に対する最終処分場の浸出水の通水量が2.5を超えると、カルシウムの交換能力が不足して分離性能が低下するため好ましくない。 And according to the present invention, the amount of leachate in the final disposal site with respect to the resin amount of the amphoteric ion exchange resin is set to 0.5 or more and 2.5 or less, so that the necessary amount of expensive resin is separated in separating calcium ions. By reducing, the installation cost and operation cost of amphoteric ion exchange resin can be kept low. In addition, since the amphoteric ion exchange resin column can be downsized, the amphoteric ion exchange resin can be handled easily. If the amount of leachate in the final disposal site with respect to the resin amount of the amphoteric ion exchange resin exceeds 2.5, it is not preferable because the calcium exchange ability is insufficient and the separation performance is lowered.

以上のように、本発明によれば、両性イオン交換樹脂の設置コスト及び運転コストを低く抑えることができ、その取り扱いも容易となる。   As described above, according to the present invention, the installation cost and operation cost of the amphoteric ion exchange resin can be kept low, and the handling thereof is facilitated.

本発明にかかる両性イオン交換樹脂の運転方法を適用した最終処分場の浸出水処理システムを示すフローチャートである。It is a flowchart which shows the leachate treatment system of the final disposal site which applied the driving | operation method of the amphoteric ion exchange resin concerning this invention. 両性イオン交換樹脂の動作を説明するための概略図である。It is the schematic for demonstrating operation | movement of an amphoteric ion exchange resin. 図2に示す両性イオン交換樹脂の運転例を示すグラフである。It is a graph which shows the operation example of amphoteric ion exchange resin shown in FIG. 図2に示す両性イオン交換樹脂の運転例を示すグラフである。It is a graph which shows the operation example of amphoteric ion exchange resin shown in FIG. 図2に示す両性イオン交換樹脂の運転例を示すグラフである。It is a graph which shows the operation example of amphoteric ion exchange resin shown in FIG. 図2に示す両性イオン交換樹脂の運転例を示すグラフである。It is a graph which shows the operation example of amphoteric ion exchange resin shown in FIG. 図2に示す両性イオン交換樹脂の運転例を示すグラフである。It is a graph which shows the operation example of amphoteric ion exchange resin shown in FIG.

次に、本発明を実施するための形態について、図面を参照しながら説明する Next, modes for carrying out the present invention will be described with reference to the drawings .

図1は、本発明を適用した最終処分場の浸出水処理システム(以下、「処理システム」と略称する)を示し、この処理システム1は、最終処分場2からの浸出水W1を貯留する調整槽3と、調整槽3からの浸出水W2をカルシウムイオン濃度の高い溶液(以下「カルシウム含有水」という)L3と、カルシウムイオン濃度が低くSO4 2-濃度の高い溶液(以下「SO4含有水」という)L4とに分離する両性イオン交換樹脂4と、両性イオン交換樹脂4に供給する再生水L5を貯留する再生水タンク5と、両性イオン交換樹脂4から排出されたカルシウム含有水L3及びSO4含有水L4を各々貯留するカルシウム含有水タンク6、SO4含有水タンク7と、重金属除去装置8と、COD処理装置9とを備える。 FIG. 1 shows a leachate treatment system (hereinafter abbreviated as “treatment system”) of a final disposal site to which the present invention is applied, and this treatment system 1 adjusts to store leachate W1 from the final disposal site 2. The leachate W2 from the tank 3 and the adjustment tank 3 is a solution having a high calcium ion concentration (hereinafter referred to as “calcium-containing water”) L3 and a solution having a low calcium ion concentration and a high SO 4 2− concentration (hereinafter referred to as “SO 4 containing”). Amphoteric ion exchange resin 4 separated into L4), reclaimed water tank 5 for storing reclaimed water L5 supplied to amphoteric ion exchange resin 4, calcium-containing water L3 and SO 4 discharged from amphoteric ion exchange resin 4 A calcium-containing water tank 6, an SO 4 -containing water tank 7, a heavy metal removing device 8, and a COD processing device 9 that respectively store the contained water L 4 are provided.

調整槽3は、最終処分場2のごみ層を浸透した雨水等の浸出水W1を集め、浸出水W1の水質、水量の変化を抑えて均一化を図るために備えられ、その前段には、土砂を沈降分離する沈砂槽等が備えられる。   The adjustment tank 3 collects the leachate W1 such as rainwater that has permeated through the waste layer of the final disposal site 2, and is prepared for uniformizing the change of the water quality and the amount of the leachate W1. A sand settling tank for sedimentation and separation of earth and sand is provided.

両性イオン交換樹脂4は、上記背景技術の欄に記載したものと同様の構成を有し、調整槽3から排出された浸出水W2に含まれるカルシウムを除去するために備えられる。   The amphoteric ion exchange resin 4 has the same configuration as that described in the background section above, and is provided for removing calcium contained in the leachate W2 discharged from the adjustment tank 3.

重金属除去装置8は、SO4含有水L4に含まれる鉛等の重金属を除去するために備えられ、薬液反応槽、フィルタープレス等一般的に用いられる装置を利用することができる。 The heavy metal removing device 8 is provided for removing heavy metals such as lead contained in the SO 4 -containing water L4, and a commonly used device such as a chemical reaction tank or a filter press can be used.

COD処理装置9は、重金属除去装置8において重金属が除去されたSO4含有水L4のCODを低下させるために備えられ、一般的な浄化槽等を利用することができる。 The COD treatment device 9 is provided to reduce the COD of the SO 4 -containing water L4 from which heavy metals have been removed by the heavy metal removal device 8, and a general septic tank or the like can be used.

次に、上記構成を有する処理システム1の動作について、図1を参照しながら説明する。   Next, the operation of the processing system 1 having the above configuration will be described with reference to FIG.

最終処分場2の浸出水W1を調整槽3に集めて水質、水量の変化を抑え、調整槽3から浸出水W2を両性イオン交換樹脂4に供給し、カルシウム含有水L3とSO4含有水L4とに分離する。図2に示すように、この両性イオン交換樹脂4は、バッチ処理を連続的に行うものであって、予め水を充填し(図2(a))、その後、調整槽3より両性イオン交換樹脂4に浸出水W2を導入し、次に両性イオン交換樹脂4の再生を行うための再生水L5を導入する(図2(b))。すると、図2(c)に示すように、まずSO4含有水L4が排出され、その後、カルシウム含有水L3が時間経過とともにこの順序で排出される。 Suppressed water, a change in the amount of water collected leachate W1 of the final disposal site 2 to the adjusting tank 3 is supplied from the adjusting tank 3 leachate W2 amphoteric ion-exchange resin 4, calcium-containing water L3 and SO 4 containing water L4 And to separate. As shown in FIG. 2, this amphoteric ion exchange resin 4 performs batch processing continuously, and is previously filled with water (FIG. 2A), and then the amphoteric ion exchange resin from the adjustment tank 3. The leachate W2 is introduced into 4 and then the reclaimed water L5 for regenerating the amphoteric ion exchange resin 4 is introduced (FIG. 2 (b)). Then, as shown in FIG. 2 (c), it is first discharged SO 4 containing water L4, then, calcium-containing water L3 is discharged in this order over time.

ここで、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを0.5〜2.5に制御すると共に、SO4含有水L4、カルシウム含有水L3の切換タイミングを、両性イオン交換樹脂4から排出される処理液のCa2+、SO4 2-、塩化物及びPb2+の濃度の測定結果等に基づいて制御することができる。この両性イオン交換樹脂4の運転例については後述する。両性イオン交換樹脂4から排出されたSO4含有水L4及びカルシウム含有水L3は、各々SO4含有水タンク7及びカルシウム含有水タンク6に一旦貯留する。 Here, the flow rate R of the leachate W2 with respect to the resin amount of the amphoteric ion exchange resin 4 is controlled to 0.5 to 2.5, and the switching timing of the SO 4 -containing water L4 and the calcium-containing water L3 is changed to the amphoteric ion exchange. Control can be performed based on the measurement results of the concentrations of Ca 2+ , SO 4 2− , chloride, and Pb 2+ in the treatment liquid discharged from the resin 4. An operation example of the amphoteric ion exchange resin 4 will be described later. The SO 4 -containing water L4 and the calcium-containing water L3 discharged from the amphoteric ion exchange resin 4 are temporarily stored in the SO 4 -containing water tank 7 and the calcium-containing water tank 6, respectively.

次に、カルシウム含有水タンク6に貯留したカルシウム含有水L3を放流する。一方、SO4含有水タンク7に貯留したSO4含有水L4は、重金属除去装置8を用いて重金属を除去し、さらにCOD処理装置9でCODを低減した後、放流する。 Next, the calcium-containing water L3 stored in the calcium-containing water tank 6 is discharged. On the other hand, the SO 4 -containing water L 4 stored in the SO 4 -containing water tank 7 removes heavy metals using the heavy metal removing device 8, further reduces COD by the COD processing device 9, and then discharges it.

以上のように、上記処理システム1によれば、浸出水W2を両性イオン交換樹脂4を介してカルシウム含有水L3と、SO4含有水L4とに分離した後、各々を別々に処理するため、従来のようにカルシウムを除去するための炭酸ナトリウム等を添加せずにCaSO4によるスケールの発生を最小限に抑えることができ、運転コストを大幅に低減することができる。 As described above, according to the processing system 1, a calcium-containing water L3 and leachate W2 via an amphoteric ion exchange resin 4 after separation in the SO 4 containing water L4, for processing each separately, The generation of scale due to CaSO 4 can be minimized without adding sodium carbonate or the like for removing calcium as in the prior art, and the operating cost can be greatly reduced.

次に、上記処理システム1に適用した両性イオン交換樹脂4の運転例について説明する。   Next, an operation example of the amphoteric ion exchange resin 4 applied to the processing system 1 will be described.

両性イオン交換樹脂4として、上述の三菱化学株式会社製の両性イオン交換樹脂、ダイヤイオンAMP03(カラム径25mm、カラム長さ800mm)を用い、原水として、表1に示す化学成分を有する最終処分場2の浸出水W2を両性イオン交換樹脂4に通し、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを変化させ、両性イオン交換樹脂4を通過した処理液に含まれる各成分の濃度を測定した。その結果を図3〜図7に示す。 As the amphoteric ion exchange resin 4, the above-mentioned amphoteric ion exchange resin manufactured by Mitsubishi Chemical Corporation, Diaion AMP03 (column diameter 25 mm, column length 800 mm) is used, and the final disposal site having the chemical components shown in Table 1 as raw water 2 of leachate W2 and passing water amphoteric ion-exchange resin 4, each changing the passing water amount R leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4, contained in the processing liquid that has passed through the amphoteric ion exchange resin 4 The concentration of the component was measured. The results are shown in FIGS.

Figure 0006159053
Figure 0006159053

図3は、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを0.5に設定した場合の各成分の濃度測定結果を示す。縦軸に各成分の濃度測定結果、横軸に通液量/樹脂量を示し、左側から右側に向かって破線で仕切られた領域が、脱イオン水、SO4含有水L4、カルシウム含有水L3を示している。 Figure 3 shows the result of measurement of the concentration of each component in the case of setting the water flow amount R of leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4 to 0.5. The concentration measurement result of each component is shown on the vertical axis, the amount of liquid flow / resin amount is shown on the horizontal axis, and regions partitioned by broken lines from the left to the right are deionized water, SO 4 -containing water L4, and calcium-containing water L3. Is shown.

同図より、SO4含有水L4には、Ca2+がほとんど含まれていないのに対し、カルシウム含有水L3には、僅かながらCa2+が含まれ、浸出水W2を両性イオン交換樹脂4に通過させることで、カルシウムイオン濃度の低い溶液と、カルシウムイオン濃度の高い溶液とに分離できていることが判る。 From the figure, the SO 4 -containing water L4 contains almost no Ca 2+ , whereas the calcium-containing water L3 contains a little Ca 2+ , and the leachate W2 is used as the amphoteric ion exchange resin 4. It can be seen that the solution can be separated into a solution having a low calcium ion concentration and a solution having a high calcium ion concentration.

図4は、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを0.75に設定した場合の各成分の濃度測定結果を示す。この場合でも、SO4含有水L4には、Ca2+がほとんど含まれていないのに対し、カルシウム含有水L3にはCa2+が多く含まれ、浸出水W2を両性イオン交換樹脂4に通過させることで、カルシウムイオン濃度の低い溶液と、カルシウムイオン濃度の高い溶液とに分離できていることが判る。 Figure 4 shows the density measurement results of the respective components in the case of setting the water flow amount R of leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4 to 0.75. Even in this case, the SO 4 -containing water L4 contains almost no Ca 2+ , whereas the calcium-containing water L3 contains a lot of Ca 2+ and passes through the leachate W2 to the amphoteric ion exchange resin 4. It can be seen that the solution can be separated into a solution having a low calcium ion concentration and a solution having a high calcium ion concentration.

図5は、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを1.0に設定した場合の各成分の濃度測定結果を示す。この場合には、SO4含有水L4には、Ca2+がほとんど含まれていないのに対し、カルシウム含有水L3にはCa2+が大量に含まれ、浸出水W2を両性イオン交換樹脂4に通過させることで、カルシウムイオン濃度の低い溶液と、カルシウムイオン濃度の高い溶液とに明確に分離できていることが判る。 Figure 5 shows the density measurement results of the respective components in the case of setting the water flow amount R of leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4 to 1.0. In this case, the SO 4 -containing water L4 contains almost no Ca 2+ , whereas the calcium-containing water L3 contains a large amount of Ca 2+ , and the leachate W2 is used as the amphoteric ion exchange resin 4. It can be seen that the solution is clearly separated into a solution having a low calcium ion concentration and a solution having a high calcium ion concentration.

図6は、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを1.25に設定した場合の各成分の濃度測定結果を示す。この場合にも、上記通水量Rを1.0に設定した場合と同様、SO4含有水L4には、Ca2+がほとんど含まれていないのに対し、カルシウム含有水L3にはCa2+が大量に含まれている。 Figure 6 shows the result of measurement of the concentration of each component in the case of setting the water flow amount R of leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4 to 1.25. In this case, similarly to the case of setting the water passage amount R to 1.0, the SO 4 containing water L4, while Ca 2+ is hardly contained, the calcium-containing water L3 Ca 2 + Contains a large amount.

図7は、両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rを1.5に設定した場合の各成分の濃度測定結果を示す。この場合にも、上記通水量Rを1.0又は1.25に設定した場合と同様、SO4含有水L4には、Ca2+がほとんど含まれていないのに対し、カルシウム含有水L3にはCa2+が大量に含まれている。 Figure 7 shows the density measurement results of the respective components in the case of setting the water flow amount R of leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4 to 1.5. In this case, similarly to the case of setting the water passage amount R to 1.0 or 1.25, the SO 4 containing water L4 is, while the Ca 2+ is hardly contained, calcium-containing water L3 Contains a large amount of Ca 2+ .

両性イオン交換樹脂4の樹脂量に対する浸出水W2の通水量Rが2.5を超えると、カルシウムの交換能力が不足して分離性能が低下するため、通水量Rは2.5が上限である。 When water flow amount R of leachate W2 with respect to the resin amount of the amphoteric ion-exchange resin 4 is more than 2.5, since the separation performance is reduced by insufficient exchange capacity of calcium, water flow amount R 2.5 is an upper limit It is.

1 最終処分場の浸出水処理システム
2 最終処分場
3 調整槽
4 両性イオン交換樹脂
5 再生水タンク
6 カルシウム含有水タンク
7 SO4含有水タンク
8 重金属除去装置
9 COD処理装置
1 Final leachate treatment system 2 Final disposal site 3 Conditioning tank 4 Amphoteric ion exchange resin 5 Reclaimed water tank 6 Calcium-containing water tank 7 SO 4 -containing water tank 8 Heavy metal removal device 9 COD treatment device

Claims (1)

終処分場の浸出水と、両性イオン交換樹脂を再生させる再生水とをダイヤイオン(登録商標)AMP03に交互に供給し、該ダイヤイオンAMP03から時間の経過と共に徐々に連続的に排出される排出液であって、カルシウムイオン濃度の低い溶液とカルシウムイオン濃度の高い溶液とが交互に排出される排出液を、カルシウムイオン濃度の低い溶液とカルシウムイオン濃度の高い溶液とに分離するにあたり、
前記ダイヤイオンAMP03の樹脂量に対する前記最終処分場の浸出水の通水量を容積比で0.5以上2.5以下に制御することを特徴とする両性イオン交換樹脂の運転方法。
And leachate final disposal site, and a recycled water to regenerate the amphoteric ion exchange resin is supplied alternately to Diaion (registered trademark) AMP03, it is gradually continuously discharged over time from the Diaion AMP03 discharge a liquid, per the effluent and the high low solution and the calcium ion concentration in calcium ion concentration solution is discharged alternately to separate into a high low solution and mosquitoes Rushiumuion concentrations of calcium ion concentration solution,
A method for operating an amphoteric ion exchange resin, wherein a flow rate of leachate in the final disposal site with respect to a resin amount of Diaion AMP03 is controlled to 0.5 to 2.5 in volume ratio .
JP2011121687A 2011-05-31 2011-05-31 Operation method of amphoteric ion exchange resin Active JP6159053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011121687A JP6159053B2 (en) 2011-05-31 2011-05-31 Operation method of amphoteric ion exchange resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011121687A JP6159053B2 (en) 2011-05-31 2011-05-31 Operation method of amphoteric ion exchange resin

Publications (2)

Publication Number Publication Date
JP2012245507A JP2012245507A (en) 2012-12-13
JP6159053B2 true JP6159053B2 (en) 2017-07-05

Family

ID=47466490

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011121687A Active JP6159053B2 (en) 2011-05-31 2011-05-31 Operation method of amphoteric ion exchange resin

Country Status (1)

Country Link
JP (1) JP6159053B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114772792B (en) * 2022-05-23 2023-06-23 北部湾大学 Seawater treatment method with synergistic effect of electrostatic adsorption and ultrasonic waves

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364958A (en) * 2001-06-11 2002-12-18 Sanyo Electric Co Ltd Freezing refrigerator
JP4766719B1 (en) * 2010-06-21 2011-09-07 太平洋セメント株式会社 Disposal method of leachate at final disposal site

Also Published As

Publication number Publication date
JP2012245507A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP4766719B1 (en) Disposal method of leachate at final disposal site
JP5873771B2 (en) Organic wastewater treatment method and treatment apparatus
CN101857321B (en) Method and equipment for treating and recycling reverse osmosis concentrated water and complex wastewater with high salt content
JP2010274227A (en) Water treatment apparatus
CN102020375A (en) Equipment for reclaiming lead acid battery waste water
US20160145132A1 (en) Water treatment device and water treatment method
CN103708666A (en) Method and equipment for desulfurization waste water reuse and zero discharge treatment
WO2018096700A1 (en) System for producing ultrapure water and method for producing ultrapure water
EP2792645B1 (en) Process for removing fluorides from water
JP6047957B2 (en) Treatment method of wastewater containing radioactive strontium
JP6159053B2 (en) Operation method of amphoteric ion exchange resin
US20120080376A1 (en) Use of desalination brine for ion exchange regeneration
RU2383498C1 (en) Method of obtaining desalinated water and high-purity water for nuclear power plants for research centres
RU2537313C2 (en) Method of sorption purification of industrial flow sewage and drinking water from lead (ii) cations on glauconite concentrate
JP3884407B2 (en) Method and apparatus for treating fluorine-containing water
JP2019118891A (en) Pure water producing apparatus and pure water producing method
JP3473472B2 (en) Treatment method for fluorine-containing water
JP2010274226A (en) Water treatment apparatus
CN105431383A (en) Brackish water desalination using tunable anion exchange bed
WO2005105677A1 (en) Regeneration process
CN209292143U (en) A kind of circulating water cooling treatment Zero discharging system
JP2014161801A (en) Method for regenerating amphoteric ion exchange resin
JP6175354B2 (en) Method and apparatus for treating contaminated water
JP2002187707A (en) Method of collecting dissolved matter from iodine- containing brine
JP2001170658A (en) Treating device for fluorine-containing waste water and treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160118

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20160325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170609

R150 Certificate of patent or registration of utility model

Ref document number: 6159053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250