JP4766457B2 - Method and apparatus for treating fluorine-containing wastewater - Google Patents

Method and apparatus for treating fluorine-containing wastewater Download PDF

Info

Publication number
JP4766457B2
JP4766457B2 JP2008064473A JP2008064473A JP4766457B2 JP 4766457 B2 JP4766457 B2 JP 4766457B2 JP 2008064473 A JP2008064473 A JP 2008064473A JP 2008064473 A JP2008064473 A JP 2008064473A JP 4766457 B2 JP4766457 B2 JP 4766457B2
Authority
JP
Japan
Prior art keywords
fluorine
calcium
containing wastewater
calcium carbonate
packed tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008064473A
Other languages
Japanese (ja)
Other versions
JP2009219953A (en
Inventor
万規子 宇田川
康之 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008064473A priority Critical patent/JP4766457B2/en
Publication of JP2009219953A publication Critical patent/JP2009219953A/en
Application granted granted Critical
Publication of JP4766457B2 publication Critical patent/JP4766457B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Separation Of Suspended Particles By Flocculating Agents (AREA)
  • Removal Of Specific Substances (AREA)

Description

本発明はフッ素含有排水の処理方法及び装置に係り、特に半導体製造工場等から排出されるフッ素含有排水を処理するフッ素含有排水の処理方法及び装置に関する。   The present invention relates to a fluorine-containing wastewater treatment method and apparatus, and more particularly to a fluorine-containing wastewater treatment method and apparatus for treating fluorine-containing wastewater discharged from a semiconductor manufacturing factory or the like.

半導体製造工場やその関連工場等では、フッ化水素やフッ化アンモニウムを主成分とするエッチング剤が多量に使用されている。このため、工場排水には、フッ化水素やフッ化アンモニウムを主成分としたフッ素含有排水が排出されており、このフッ素含有排水からフッ素を除去する処理が必要になる。   In semiconductor manufacturing factories and related factories, a large amount of an etchant mainly composed of hydrogen fluoride or ammonium fluoride is used. For this reason, the fluorine-containing waste water which has hydrogen fluoride and ammonium fluoride as a main component is discharged | emitted in factory waste water, The process which removes fluorine from this fluorine-containing waste water is needed.

従来、フッ素含有排水の処理は、凝集沈殿等によって行われており、フッ素含有排水に水酸化カルシウム等のカルシウム塩を添加して難溶解性のフッ化カルシウムを生成させ、このフッ化カルシウムを凝集させることによって、フッ素成分を取り除いている。しかし、この方法は、沈降性の乏しい大量の汚泥が発生するという問題があり、汚泥発生量を低減することが必要となる。   Conventionally, treatment of fluorine-containing wastewater has been carried out by coagulation sedimentation, etc., and calcium salts such as calcium hydroxide are added to fluorine-containing wastewater to form poorly soluble calcium fluoride, and this calcium fluoride is agglomerated. By doing so, the fluorine component is removed. However, this method has a problem that a large amount of sludge with poor sedimentation is generated, and it is necessary to reduce the amount of sludge generated.

そこで、汚泥発生量を低減する方法として、炭酸カルシウム充填塔を用いた方法が提案されている。この方法は、フッ素含有排水を炭酸カルシウム充填塔に通水し、フッ素を粒状のフッ化カルシウムに転換し、除去している。   Therefore, a method using a calcium carbonate packed tower has been proposed as a method for reducing the amount of sludge generated. In this method, fluorine-containing waste water is passed through a calcium carbonate packed tower to convert fluorine into granular calcium fluoride and remove it.

しかし、上記の方法は、フッ素処理を長期間、安定して行うことができないという問題があった。すなわち、フッ素含有排水には、フッ酸の他に塩酸や硝酸などの酸が共存しており、その酸によって炭酸カルシウムが溶解するため、フッ素処理を長期間安定して行うことができないという問題があった。これに対応すべく、フッ素含有排水に含まれるフッ酸以外の酸の当量以上の量のアルカリ剤を添加する方法が提案されている(特許文献1参照)。
特開平5−293475号公報
However, the above method has a problem that the fluorine treatment cannot be stably performed for a long period of time. That is, in the fluorine-containing wastewater, acids such as hydrochloric acid and nitric acid coexist in addition to hydrofluoric acid, and calcium carbonate is dissolved by the acid, so that the fluorine treatment cannot be stably performed for a long time. there were. In order to cope with this, a method has been proposed in which an alkali agent is added in an amount equal to or greater than the equivalent of an acid other than hydrofluoric acid contained in fluorine-containing wastewater (see Patent Document 1).
JP-A-5-293475

しかしながら、この方法は、フッ素含有排水の性状によって処理水水質への影響があり、フッ素含有排水中にフッ酸以外の酸成分が多く含まれる場合、炭酸カルシウムが過剰に溶解する。   However, this method has an effect on the quality of treated water depending on the properties of the fluorine-containing wastewater. When the acid content other than hydrofluoric acid is contained in the fluorine-containing wastewater, calcium carbonate is excessively dissolved.

そして、フッ素含有排水に含有するフッ素の多くがフッ化アンモニウム由来である場合は、フッ素処理性能の低下を引き起こし、フッ素が高濃度に残留する。   When most of the fluorine contained in the fluorine-containing wastewater is derived from ammonium fluoride, the fluorine treatment performance is lowered, and fluorine remains at a high concentration.

また、フッ素が過剰に残留する処理水を炭酸カルシウム充填塔からフルオロアパタイトを析出させる晶析塔に通水すると、添加するリン酸系薬剤とカルシウム化合物量が不足して処理水にフッ素が残留したり、晶析塔内で濁質が発生したりするという問題がある。   In addition, if treated water containing excess fluorine is passed from a calcium carbonate packed tower to a crystallization tower for precipitating fluoroapatite, the amount of phosphate chemical and calcium compound to be added is insufficient, and fluorine remains in the treated water. Or turbidity is generated in the crystallization tower.

更に、晶析塔に通水するまでに十分にフッ素濃度を低下させるために、炭酸カルシウム充填塔と晶析塔の間にカルシウム凝集・固液分離処理をする場合に、フッ酸以外の酸成分が多く含まれる排水が流入する際には濁質が大量に発生するという問題がある。即ち、炭酸カルシウムの過剰溶解による炭酸カルシウム充填塔処理水中の溶解性カルシウムや、次段の凝集・固液分離処理で添加するカルシウム化合物や、その後段の晶析処理で添加するカルシウム化合物により、晶析塔でのカルシウム濃度が高くなり濁質が発生する。   Further, when calcium aggregation / solid-liquid separation treatment is performed between the calcium carbonate packed tower and the crystallization tower in order to sufficiently reduce the fluorine concentration before passing through the crystallization tower, an acid component other than hydrofluoric acid. There is a problem that a large amount of turbidity is generated when wastewater containing a large amount of wastewater flows. In other words, the crystallization is caused by the soluble calcium in the treated water of the calcium carbonate packed tower due to excessive dissolution of calcium carbonate, the calcium compound added in the next aggregation / solid-liquid separation treatment, and the calcium compound added in the subsequent crystallization treatment. The calcium concentration in the precipitation tower increases and turbidity is generated.

なお、半導体製造工場やその関連工場等から排出されるフッ素含有排水は、一般に、フッ酸とフッ化アンモニウム及びフッ酸以外の酸が共存するが、その各成分の濃度が一定で排出されることは稀である。   In addition, fluorine-containing wastewater discharged from semiconductor manufacturing factories and related factories generally contains hydrofluoric acid, ammonium fluoride, and acids other than hydrofluoric acid, but the concentration of each component is discharged at a constant level. Is rare.

以上のように、炭酸カルシウムの過剰溶解又はフッ素の残留、晶析塔での濁質発生により、フッ素含有排水を炭酸カルシウム充填塔から晶析塔に順次通水して高度なフッ素処理を行うことは困難であった。   As described above, due to excessive dissolution of calcium carbonate, residual fluorine, and turbidity generation in the crystallization tower, the fluorine-containing waste water is sequentially passed from the calcium carbonate packed tower to the crystallization tower for advanced fluorination treatment. Was difficult.

本発明はこのような事情に鑑みて成されたもので、晶析塔へ通水される処理水のフッ素濃度とカルシウム濃度を好適にコントロールすることで、高いフッ素除去性能が得られるとともに、炭酸カルシウムの利用効率の向上と汚泥発生量の低減をすることができるフッ素含有排水の処理方法及び装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and by appropriately controlling the fluorine concentration and calcium concentration of treated water that is passed to the crystallization tower, high fluorine removal performance can be obtained, and carbonic acid can be obtained. It aims at providing the processing method and apparatus of fluorine-containing wastewater which can improve the utilization efficiency of calcium and reduction of sludge generation amount.

請求項1に記載の発明は前記目的を達成するために、フッ素含有排水からフッ素を除去するフッ素含有排水の処理方法において、前記フッ素含有排水のpHとフッ素イオン濃度を測定し、前記測定したフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHを算出し、前記フッ酸溶液の算出pHに対する前記フッ素含有排水の測定pHの差である差pHを求め、前記差pHが−0.5〜+1.0の範囲内になるようにpH調整したフッ素含有排水を炭酸カルシウム充填塔に通水する炭酸カルシウム充填塔処理工程と、前記炭酸カルシウム充填塔処理水に、カルシウム化合物を添加してフッ素濃度を20mg/L以下に処理する凝集・分離工程と、前記凝集・分離工程後のフッ素含有排水に、リン酸系薬剤とカルシウム化合物とのうち少なくともリン酸系薬剤を添加して晶析塔に通水する晶析工程と、を備えることを特徴とする。   In order to achieve the above object, the invention according to claim 1 is a method for treating fluorine-containing wastewater that removes fluorine from fluorine-containing wastewater. The pH and fluorine ion concentration of the fluorine-containing wastewater are measured, and the measured fluorine Calculate the pH of the hydrofluoric acid solution when all of the ion concentration is derived from hydrofluoric acid and do not contain other acids, and the difference is the difference in the measured pH of the fluorine-containing wastewater relative to the calculated pH of the hydrofluoric acid solution Calcium carbonate packed tower treatment step of passing a fluorine-containing waste water whose pH is adjusted so that the difference pH falls within the range of -0.5 to +1.0 to the calcium carbonate packed tower, and the calcium carbonate filling A coagulation / separation step in which a calcium compound is added to the tower treated water to treat the fluorine concentration to 20 mg / L or less, and the fluorine-containing wastewater after the coagulation / separation step is treated with phosphoric acid. It characterized in that it and a crystallization step of Rohm added to crystallize 析塔 at least phosphoric acid drugs of the agent and the calcium compound.

請求項1の発明によれば、フッ素含有排水のpHとフッ素イオン濃度を測定し、測定したフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHを算出し、フッ酸溶液の算出pHに対するフッ素含有排水の測定pHの差である差pHを求め、差pHが−0.5〜+1.0の範囲内になるようにpH調整したフッ素含有排水を炭酸カルシウム充填塔に通水し、カルシウム化合物を添加してフッ素濃度を20mg/L以下に凝集・分離処理し、リン酸系薬剤とカルシウム化合物とのうち少なくともリン酸系薬剤を添加して晶析塔に通水することで、炭酸カルシウムの過剰溶解やフッ素処理性能の低下、濁質の発生を防止することができる。ここで、「フッ酸溶液」は仮想溶液であり、実際に調製はしない。なお、炭酸カルシウム充填塔処理工程でのフッ素含有排水の差pHの設定は、−0.5〜+1.0の範囲であるが、好ましくは−0.5〜+0.5の範囲である。また、上記のように、差pHが−0.5〜+1.0の範囲内を満足するフッ素含有排水においては、炭酸カルシウム充填塔を通した後の処理水のフッ素イオン濃度、及びカルシウム濃度が低濃度であり、且つpH−0.5〜+1.0の領域において略一定の傾きを有するフッ素イオン濃度曲線、カルシウム濃度曲線を有する。したがって、差pHが−0.5〜+1.0の範囲内において、所定の差pHに設定することにより、炭酸カルシウム充填塔を通した処理水中のフッ素イオン濃度、及びカルシウム濃度を、差pHを幾つに設定するかによって間接的にコントロールすることができる。これにより、後工程でのカルシウム化合物の添加量等を調整できるので、炭酸カルシウムの利用効率の向上と、汚泥発生の低減、更には濁質の発生防止に寄与できる。   According to the invention of claim 1, the pH and fluorine ion concentration of the fluorine-containing wastewater are measured, and the hydrofluoric acid solution when all the measured fluorine ion concentrations are derived from hydrofluoric acid and do not contain other acids. Calculating the pH, obtaining the difference pH, which is the difference in the measured pH of the fluorine-containing wastewater relative to the calculated pH of the hydrofluoric acid solution, and adjusting the pH so that the difference pH is within the range of -0.5 to +1.0 The waste water is passed through a calcium carbonate packed tower, a calcium compound is added, the fluorine concentration is aggregated and separated to 20 mg / L or less, and at least a phosphate-based drug is added out of the phosphate-based drug and calcium compound. By passing water through the crystallization tower, it is possible to prevent excessive dissolution of calcium carbonate, deterioration of the fluorine treatment performance, and generation of turbidity. Here, the “hydrofluoric acid solution” is a virtual solution and is not actually prepared. In addition, although the setting of the difference pH of the fluorine-containing waste water in a calcium carbonate packed tower processing process is the range of -0.5- + 1.0, Preferably it is the range of -0.5- + 0.5. Further, as described above, in the fluorine-containing waste water that satisfies the difference pH in the range of −0.5 to +1.0, the fluorine ion concentration and the calcium concentration of the treated water after passing through the calcium carbonate packed tower are It has a fluorine ion concentration curve and a calcium concentration curve that have a low concentration and a substantially constant slope in a pH range of −0.5 to +1.0. Therefore, by setting the difference pH within a range of −0.5 to +1.0 to a predetermined difference pH, the fluorine ion concentration and the calcium concentration in the treated water that has passed through the calcium carbonate packed tower are set to the difference pH. It can be controlled indirectly depending on how many are set. Thereby, since the addition amount etc. of the calcium compound in a post process can be adjusted, it can contribute to the improvement in utilization efficiency of calcium carbonate, reduction of sludge generation, and prevention of occurrence of turbidity.

炭酸カルシウム充填塔処理工程次段の凝集・分離工程で、炭酸カルシウム充填塔処理水に残留するフッ素をフッ化カルシウムとして除去するためにカルシウム化合物を添加して凝集・固液分離処理水のフッ素濃度を20mg/L以下に処理する。カルシウム化合物は、フッ素がフッ化カルシウムとなるために必要なカルシウム量よりも過剰に添加して、凝集・固液分離処理水が晶析塔に通水できる濃度である20mg/L以下までフッ素を除去することが好ましい。ここで残留するカルシウムは、後段の晶析塔で利用でき、それを考慮に入れたカルシウム化合物の添加であり、薬品添加量過剰によるランニングコストの増加には繋がらない。このようにすることで、フッ素が過剰に残留する処理水を炭酸カルシウム充填塔からフルオロアパタイトを析出させる晶析塔に通水すると、添加するリン酸系薬剤とカルシウム化合物量が不足して処理水にフッ素が残留したり、晶析塔内で濁質が発生したりするという問題を解消することができる。   Calcium carbonate packed tower treatment process Fluorine concentration in coagulation / solid-liquid separation treated water by adding calcium compound to remove fluorine remaining in calcium carbonate packed tower treated water as calcium fluoride in the next aggregation / separation process To 20 mg / L or less. The calcium compound is added in excess of the amount of calcium necessary for the fluorine to become calcium fluoride, and the fluorine is reduced to 20 mg / L or less, which is the concentration at which the agglomerated solid-liquid separation treated water can pass through the crystallization tower. It is preferable to remove. The calcium remaining here can be used in a subsequent crystallization tower, and is a calcium compound addition that takes it into account, and does not lead to an increase in running cost due to excessive addition of chemicals. In this way, when the treated water in which fluorine remains excessively is passed from the calcium carbonate packed tower to the crystallization tower for precipitating fluoroapatite, the amount of the phosphoric acid agent and calcium compound to be added is insufficient. The problem that fluorine remains in the crystallization tower and turbidity is generated in the crystallization tower can be solved.

そして、処理水にリン酸系薬剤とカルシウム化合物とのうち少なくともリン酸系薬剤を添加して晶析塔に通水する晶析工程により好適にフッ素を処理することができる。カルシウムが不足であればカルシウム化合物をさらに添加してフッ素を高度に処理する。   Then, fluorine can be suitably treated by a crystallization step in which at least a phosphoric acid chemical agent is added to the treated water and water is passed through the crystallization tower. If calcium is insufficient, a calcium compound is further added to highly treat fluorine.

以上のように本発明のフッ素含有排水の処理方法でフッ素含有排水の処理をすることで、炭酸カルシウムの過剰溶解の防止、汚泥発生量の削減、及び、添加薬品のコストの削減をすることができるとともに、高度にフッ素処理をすることができる。   As described above, by treating the fluorine-containing wastewater with the method for treating fluorine-containing wastewater of the present invention, it is possible to prevent excessive dissolution of calcium carbonate, reduce the amount of sludge generated, and reduce the cost of added chemicals. In addition, it can be highly fluorinated.

請求項2に記載の発明は請求項1において、前記凝集・分離工程でのカルシウム化合物の添加は、前記炭酸カルシウム充填塔処理水に残留するフッ素イオンを、フッ化カルシウムとするのに必要な当量のカルシウムよりも50mg/L以上多く、且つ、前記炭酸カルシウム充填塔処理水に溶解するカルシウムと添加するカルシウムを合わせて500mg/Lを超えないようにすることを特徴とする。   The invention according to claim 2 is the invention according to claim 1, wherein the addition of the calcium compound in the aggregation / separation step is equivalent to the amount of fluorine ion remaining in the calcium carbonate packed tower treated water being calcium fluoride. More than 50 mg / L of calcium, and the calcium dissolved in the calcium carbonate packed tower treated water and the added calcium are combined so as not to exceed 500 mg / L.

請求項2の発明によれば、上記の範囲で凝集・分離工程でのカルシウム化合物の添加を行うことで、充填塔処理水のフッ素濃度を20mg/L以下に処理することができるので、後段の晶析塔に通水する際に白濁を発生させる要因にならない。尚、フッ素含有排水を所定の差pHに調整することによって、炭酸カルシウム充填塔処理水中のカルシウム濃度は推定できるため、炭酸カルシウム充填塔での処理水の溶解性カルシウム濃度を監視する等の特別な制御は必要はない。   According to the invention of claim 2, by adding the calcium compound in the aggregation / separation step within the above range, the fluorine concentration of the packed tower treated water can be treated to 20 mg / L or less. It does not cause white turbidity when passing through the crystallization tower. In addition, since the calcium concentration in the treated water of the calcium carbonate packed tower can be estimated by adjusting the fluorine-containing waste water to a predetermined difference pH, a special measure such as monitoring the dissolved calcium concentration of the treated water in the calcium carbonate packed tower Control is not necessary.

請求項3に記載の発明は請求項1又は2において、前記凝集・分離工程では、前記カルシウム化合物の添加とともに、無機凝集剤と高分子凝集剤との少なくとも一方を添加することを特徴とする。   A third aspect of the present invention is characterized in that in the first or second aspect, in the aggregation / separation step, at least one of an inorganic flocculant and a polymer flocculant is added together with the addition of the calcium compound.

請求項3によれば、凝集・分離工程では、無機凝集剤と高分子凝集剤との少なくとも一方を添加することが好ましい。   According to claim 3, it is preferable to add at least one of an inorganic flocculant and a polymer flocculant in the flocculation / separation step.

請求項4に記載の発明は請求項1〜3の何れか1において、前記凝集・分離工程後のフッ素含有排水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L以上多いカルシウムが溶解している場合には、前記晶析工程において、前記カルシウム化合物は添加しないことを特徴とする。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein 300 mg / of the equivalent of calcium required to produce fluoroapatite with fluorine ions remaining in the fluorine-containing wastewater after the aggregation / separation step is provided. When calcium of more than L is dissolved, the calcium compound is not added in the crystallization step.

凝集・分離工程後のフッ素含有排水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L以上多いカルシウムが溶解している場合には、更にカルシウム化合物を添加すると晶析塔内で白濁が発生する可能性があり、また、この溶解しているカルシウムで十分フッ素処理ができるため、カルシウム化合物を添加しなくても晶析塔に通水することでフッ素を処理することができる。従って、請求項4によれば、凝集・分離工程後のフッ素含有排水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L多いカルシウムが溶解している場合には、晶析工程において、カルシウム化合物は添加せず、リン酸系薬剤だけを添加することで、炭酸カルシウムの溶解によるランニングコストを抑えることができる。   If more than 300 mg / L of calcium is dissolved in the fluorine ion remaining in the fluorine-containing wastewater after the coagulation / separation step, the amount of calcium is more than 300 mg / L than the equivalent amount of calcium necessary to produce fluoroapatite, There is a possibility that white turbidity may occur in the precipitation tower, and since the dissolved calcium can be sufficiently treated with fluorine, the fluorine can be treated by passing water through the crystallization tower without adding a calcium compound. be able to. Therefore, according to claim 4, when 300 mg / L more calcium is dissolved than the equivalent amount of calcium required to produce fluoroapatite with the fluorine ions remaining in the fluorine-containing wastewater after the aggregation / separation step, In the crystallization step, the running cost due to the dissolution of calcium carbonate can be suppressed by adding only the phosphoric acid-based agent without adding the calcium compound.

請求項5に記載の発明は前記目的を達成するために、フッ素含有排水からフッ素を除去するフッ素含有排水の処理装置において、前記フッ素含有排水のpHを測定するpH測定手段と、フッ素イオン濃度を測定するフッ素イオン濃度測定手段と、前記測定したフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHを算出し、前記フッ酸溶液の算出pHに対する前記フッ素含有排水の測定pHの差である差pHを求める演算手段と、前記差pHが−0.5〜+1.0の範囲内になるようにフッ素含有排水をpH調整する排水調整手段と、を備えたpH調整槽と、前記pH調整槽でpH調整されたフッ素含有排水が通水される炭酸カルシウム充填塔と、前記炭酸カルシウム充填塔に通水後のフッ素含有排水中に残留するフッ素を、フッ化カルシウムにするためのカルシウム化合物を添加し、前記フッ素含有排水中のフッ素と前記カルシウム化合物とからフッ化カルシウム汚泥を凝集させる凝集槽と、前記凝集されたフッ化カルシウム汚泥を沈殿させる沈殿槽と、前記沈殿槽を通水後のフッ素含有排水に、リン酸系薬剤とカルシウム化合物とのうち少なくともリン酸系薬剤を添加する添加手段を上流側に備えた晶析塔と、を備えることを特徴とする。   In order to achieve the above object, the invention according to claim 5 is a fluorine-containing wastewater treatment apparatus for removing fluorine from fluorine-containing wastewater, a pH measuring means for measuring the pH of the fluorine-containing wastewater, and a fluorine ion concentration. Fluorine ion concentration measuring means for measuring, and calculating the pH of the hydrofluoric acid solution when all of the measured fluorine ion concentrations are derived from hydrofluoric acid and do not contain other acids, and the calculated pH of the hydrofluoric acid solution A calculation means for obtaining a difference pH, which is a difference in measured pH of the fluorine-containing wastewater, and a drainage adjustment means for adjusting the pH of the fluorine-containing wastewater so that the difference pH falls within a range of −0.5 to +1.0. A pH adjusting tank equipped with, a calcium carbonate packed tower through which fluorine-containing wastewater adjusted in pH in the pH adjusting tank is passed, and a fluorine containing water after passing through the calcium carbonate packed tower A flocculant tank for aggregating calcium fluoride sludge from fluorine and the calcium compound in the fluorine-containing wastewater by adding a calcium compound for converting the fluorine remaining in water into calcium fluoride; and the agglomerated fluoride Crystallization equipped with a precipitation tank for precipitating calcium sludge, and an addition means for adding at least a phosphoric acid-based chemical among a phosphoric acid-based chemical and a calcium compound to the fluorine-containing wastewater after passing through the precipitation tank And a tower.

請求項6に記載の発明は請求項5において、前記凝集槽のカルシウム化合物添加手段は、前記炭酸カルシウム充填塔処理水に残留するフッ素イオンを、フッ化カルシウムを生成するに必要な当量のカルシウムよりも50mg/L以上多く、且つ、前記pH調整槽を通水後のフッ素含有排水に溶解するカルシウムと添加するカルシウムを合わせて500mg/Lを超えないようにカルシウム化合物を添加することを特徴とする。   According to a sixth aspect of the present invention, in the fifth aspect of the present invention, the calcium compound addition means in the coagulation tank is configured so that the fluorine ions remaining in the calcium carbonate packed tower treated water are more than the equivalent amount of calcium necessary for generating calcium fluoride. More than 50 mg / L, and the calcium compound is added so that the calcium dissolved in the fluorine-containing wastewater after passing through the pH adjusting tank and the calcium to be added do not exceed 500 mg / L. .

請求項7に記載の発明は請求項5又は6において、前記沈殿槽での処理水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L以上多いカルシウムが溶解している場合には、前記晶析塔に、前記カルシウム化合物は添加しないことを特徴とする。   The invention according to claim 7 is the invention according to claim 5 or 6, wherein more than 300 mg / L of calcium is dissolved than the equivalent amount of calcium necessary for producing fluoroapatite with fluorine ions remaining in the treated water in the settling tank. The calcium compound is not added to the crystallization tower.

請求項5〜7は、請求項1〜4の方法発明を装置発明としたものである。このような処理装置でフッ素を処理することで、炭酸カルシウムの過剰溶解の防止・汚泥発生量の削減、添加薬品のコストの削減をしながらも、高度にフッ素処理することができる。   Claims 5 to 7 are the inventions of the methods according to claims 1 to 4. By treating fluorine with such a treatment apparatus, it is possible to highly treat fluorine while preventing excessive dissolution of calcium carbonate, reducing the amount of sludge generated, and reducing the cost of added chemicals.

本発明によれば、高いフッ素除去性能が得られるとともに、炭酸カルシウムの利用効率の向上と汚泥発生量の低減をすることができるフッ素含有排水の処理方法及び装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to obtain high fluorine removal performance, the processing method and apparatus of fluorine-containing wastewater which can improve the utilization efficiency of calcium carbonate and reduce sludge generation amount can be provided.

以下添付図面に従って本発明に係るフッ素含有排水の処理方法及び装置の好ましい実施形態について説明する。   Preferred embodiments of a fluorine-containing wastewater treatment method and apparatus according to the present invention will be described below with reference to the accompanying drawings.

図1は、本実施の形態の排水処理装置の構成を模式的に示している。同図に示すように、排水処理装置10は、主に、pH調整槽(原水槽とも云う)12、炭酸カルシウム充填塔13、凝集槽14、沈殿槽15、及び晶析槽16を備える。そして、本発明のフッ素含有排水の処理方法は、同図に示すように、炭酸カルシウム充填塔処理工程A、凝集・分離工程B、晶析工程Cと、を備えている。   FIG. 1 schematically shows the configuration of the waste water treatment apparatus of the present embodiment. As shown in the figure, the waste water treatment apparatus 10 mainly includes a pH adjustment tank (also referred to as a raw water tank) 12, a calcium carbonate packed tower 13, a coagulation tank 14, a precipitation tank 15, and a crystallization tank 16. And the processing method of the fluorine-containing waste_water | drain of this invention is equipped with the calcium carbonate packed tower processing process A, the aggregation / separation process B, and the crystallization process C, as shown in the figure.

原水槽12に貯留されたフッ素含有排水は、炭酸カルシウム充填塔13に送水し、上向流で処理され上部から処理水を排出する。また、循環ポンプ42により、炭酸カルシウム充填塔13の上部、処理水排出口よりも下方部から塔下部へと該炭酸カルシウム充填塔内液を送水する循環ライン46を設けている。この循環流によって充填された炭酸カルシウムの粒を浮遊させて膨張床を形成し、炭酸カルシウム同士の固着や炭酸カルシウムから排出する炭酸ガスが炭酸カルシウム充填層内に蓄積することを防止する。   The fluorine-containing wastewater stored in the raw water tank 12 is sent to the calcium carbonate packed tower 13 where it is treated in an upward flow and discharged from the upper part. In addition, a circulation line 46 for feeding the solution in the calcium carbonate packed tower from the upper part of the calcium carbonate packed tower 13 and the lower part of the treated water discharge port to the lower part of the tower is provided by the circulation pump 42. The particles of calcium carbonate filled by this circulating flow are floated to form an expanded bed, thereby preventing the calcium carbonate from adhering to each other and accumulation of carbon dioxide gas discharged from the calcium carbonate in the calcium carbonate packed layer.

循環は炭酸カルシウム充填塔13上部から下部へ、直接送水することもできるが、循環槽(不図示)を設置して、循環液を炭酸カルシウム充填塔上部から越流させ、循環槽から循環ポンプにより炭酸カルシウム充填塔下部へ送水することもできる。循環槽を設置する場合、処理水は炭酸カルシウム充填塔上部からではなく、循環槽から排出させる。   Circulation can be carried directly from the upper part of the calcium carbonate packed tower 13 to the lower part, but a circulation tank (not shown) is installed, the circulating liquid is allowed to overflow from the upper part of the calcium carbonate packed tower, and the circulation tank is pumped by a circulation pump. Water can also be sent to the bottom of the calcium carbonate packed tower. When a circulation tank is installed, the treated water is discharged from the circulation tank, not from the top of the calcium carbonate packed tower.

原水槽12にはpH計20とフッ素イオン濃度計22が設置されており、演算装置24により、測定したフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHを算出し、フッ酸溶液の算出pHに対する前記フッ素含有排水の測定pHの差である差pHを求め、差pHが−0.5〜+1.0の範囲内になるように塩酸や水酸化ナトリウム等の酸・アルカリを添加、調整することでpH調整したフッ素含有排水を炭酸カルシウム充填塔に通水する、差pHは、−0.5〜+1.0の範囲が好ましいが、更に好ましくは−0.5〜+0.5の範囲である。   The raw water tank 12 is provided with a pH meter 20 and a fluorine ion concentration meter 22, and when the calculation device 24 determines that all of the measured fluorine ion concentration is derived from hydrofluoric acid and does not contain other acids. Calculate the pH of the acid solution, determine the difference pH, which is the difference between the measured pH of the fluorine-containing wastewater relative to the calculated pH of the hydrofluoric acid solution, and adjust the pH so that the difference pH is within the range of -0.5 to +1.0. Fluorine-containing wastewater whose pH is adjusted by adding or adjusting acid or alkali such as sodium hydroxide is passed through a calcium carbonate packed tower, and the difference pH is preferably in the range of -0.5 to +1.0, More preferably, it is in the range of -0.5 to +0.5.

原水槽12は、配管26を介して酸貯留槽28に接続されるとともに、配管30を介してアルカリ貯留槽32に接続される。配管26、30にはそれぞれ、ポンプ34、36が配設されており、ポンプ34、36を駆動することによって酸貯留槽28内の酸液(たとえば塩酸)、アルカリ貯留槽32内のアルカリ液(たとえば水酸化ナトリウム)が原水槽12に添加される。ポンプ34、36はそれぞれ制御装置24に接続されており、制御装置24によってポンプ34、36が制御され、原水槽12に添加される酸又はアルカリの量が調節される。   The raw water tank 12 is connected to an acid storage tank 28 via a pipe 26 and is connected to an alkali storage tank 32 via a pipe 30. Pumps 34 and 36 are respectively provided in the pipes 26 and 30. By driving the pumps 34 and 36, an acid solution (for example, hydrochloric acid) in the acid storage tank 28 and an alkali solution ( For example, sodium hydroxide) is added to the raw water tank 12. The pumps 34 and 36 are respectively connected to the control device 24, and the pumps 34 and 36 are controlled by the control device 24 to adjust the amount of acid or alkali added to the raw water tank 12.

例えば、差pHを−0.3に設定した場合、フッ素イオン濃度計22で測定された排水のフッ素イオン濃度から演算装置24にて求めたフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHが2.5であったとき、排水のpHを2.2になるように調整すればよい。設定値は炭酸カルシウム充填塔13からの処理水として得たい水質をもとに設定すればよく、これにより炭酸カルシウム充填塔からの処理水のフッ素イオン濃度、カルシウムイオン濃度を間接的にコントロールできる。なお、フッ素含有排水に含有するフッ素イオン濃度が比較的安定している場合、フッ素イオン濃度計22は必ずしも設置する必要はなく、pH計20の測定値からフッ酸液との差pHを求め、フッ素含有排水のpH調整を行うことができる。   For example, when the difference pH is set to −0.3, all of the fluorine ion concentrations obtained by the arithmetic unit 24 from the fluorine ion concentration of the wastewater measured by the fluorine ion concentration meter 22 are derived from hydrofluoric acid and other When the pH of the hydrofluoric acid solution when it does not contain an acid is 2.5, the pH of the wastewater may be adjusted to 2.2. The set value may be set based on the water quality desired to be obtained as the treated water from the calcium carbonate packed tower 13, whereby the fluorine ion concentration and calcium ion concentration of the treated water from the calcium carbonate packed tower can be indirectly controlled. When the fluorine ion concentration contained in the fluorine-containing wastewater is relatively stable, the fluorine ion concentration meter 22 is not necessarily installed, and the pH difference from the hydrofluoric acid solution is obtained from the measured value of the pH meter 20, The pH of the fluorine-containing wastewater can be adjusted.

炭酸カルシウム充填塔13から流出した処理水は、処理水配管44を介して凝集槽14に流入し、カルシウム化合物とPAC(ポリ塩化アルミニウム)等の無機凝集剤及び/又は高分子凝集剤を添加し、沈殿槽15でフッ化カルシウム汚泥と次に述べる晶析塔16への供給水とに凝集・固液分離される。   The treated water flowing out from the calcium carbonate packed tower 13 flows into the flocculation tank 14 through the treated water pipe 44, and an inorganic flocculant such as a calcium compound and PAC (polyaluminum chloride) and / or a polymer flocculant is added. In the precipitation tank 15, the calcium fluoride sludge and the water supplied to the crystallization tower 16 described below are agglomerated and solid-liquid separated.

凝集槽14は、配管52を介してカルシウム化合物貯留槽50に接続されるとともに、配管58を介して凝集剤貯留槽56に接続される。配管52、58にはそれぞれ、ポンプ54、60が配設されており、ポンプ54、60を駆動することによってカルシウム化合物貯留槽50内のカルシウム化合物、凝集剤貯留槽56内の無機凝集剤及び/又は高分子凝集剤が凝集槽14に添加される。   The coagulation tank 14 is connected to the calcium compound storage tank 50 via a pipe 52 and is connected to a coagulant storage tank 56 via a pipe 58. The pipes 52 and 58 are provided with pumps 54 and 60, respectively. By driving the pumps 54 and 60, the calcium compound in the calcium compound reservoir 50, the inorganic flocculant in the coagulant reservoir 56, and / or Alternatively, a polymer flocculant is added to the aggregation tank 14.

カルシウム化合物は炭酸カルシウム充填塔13からの処理水中に含有するカルシウム濃度をモニタし、凝集槽15において所定カルシウム濃度になるように添加量を制御することもできるが、定量注入でもよく、またはこれらを組み合わせた方法でもよい。   Calcium compounds can be monitored by monitoring the calcium concentration contained in the treated water from the calcium carbonate packed tower 13 and the amount of addition can be controlled so as to achieve a predetermined calcium concentration in the agglomeration tank 15. A combined method may be used.

カルシウム化合物の添加量は、炭酸カルシウム充填塔処理水に残留するフッ素イオンを、フッ化カルシウムを生成するに必要な当量のカルシウムよりも50mg/L以上多く、且つ、炭酸カルシウム充填塔に通水後のフッ素含有排水に溶解するカルシウムと添加するカルシウムを合わせて500mg/Lを超えないようにすることが好ましい。   The amount of the calcium compound added is 50 mg / L or more of fluorine ions remaining in the treated water of the calcium carbonate packed tower more than the equivalent amount of calcium necessary to produce calcium fluoride, and after passing through the calcium carbonate packed tower It is preferable that the calcium dissolved in the fluorine-containing waste water and the calcium to be added do not exceed 500 mg / L.

晶析塔16には、処理水配管62を介して凝集槽15から接続される。処理水配管62には、配管66が接続され、配管66に配設されたポンプ68を介してカルシウム化合物貯留槽50に接続される。そして、後述の循環ライン70には、配管76、82が配設されている。また、配管76、82にはそれぞれ、ポンプ78、84が配設されており、ポンプ78、84を駆動することによってリン酸系薬剤貯留槽74内のリン酸系薬剤、水酸化ナトリウム貯留槽80内の水酸化ナトリウムが循環ライン70を介して晶析塔16に添加される。   The crystallization tower 16 is connected from the agglomeration tank 15 through a treated water pipe 62. A pipe 66 is connected to the treated water pipe 62, and is connected to the calcium compound reservoir 50 via a pump 68 disposed in the pipe 66. Further, piping 76 and 82 are disposed in the circulation line 70 described later. The pipes 76 and 82 are provided with pumps 78 and 84, respectively, and by driving the pumps 78 and 84, the phosphate drug in the phosphate drug reservoir 74 and the sodium hydroxide reservoir 80 are provided. The sodium hydroxide inside is added to the crystallization tower 16 via the circulation line 70.

炭酸カルシウム充填塔13と凝集・固液分離した晶析塔16への供給水にカルシウム化合物、リン酸系薬剤とpH調整剤として水酸化ナトリウムを添加し、晶析塔16に送水して上向流で処理され上部からフッ素が高度に除去された処理水を排出する。また、晶析塔16の上部、処理水排出口よりも下方部より塔下部へと晶析塔内液を送水する循環ライン70を設けており、この循環流によって充填された晶析材を浮遊させて膨張床を形成し、晶析材同士が固まり、偏流が起こることを防止する。   Calcium compound, phosphoric acid-based chemical and sodium hydroxide as pH adjuster are added to the water supplied to the calcium carbonate packed tower 13 and the crystallization tower 16 which has been agglomerated and solid-liquid separated. The treated water from which fluorine has been removed from the upper part after being treated with a stream is discharged. In addition, a circulation line 70 is provided for feeding the liquid in the crystallization tower from the upper part of the crystallization tower 16 to the lower part of the tower below the treated water discharge port, and the crystallization material filled by this circulation flow is floated. The expanded bed is formed, and the crystallized materials are solidified to prevent drifting.

晶析塔16においては、例えば、炭酸カルシウム充填塔処理水中のカルシウムイオンと、凝集・固液分離処理で添加するカルシウム化合物の合計濃度を、凝集・固液分離処理後、晶析塔16による処理で十分に足りるカルシウムイオン濃度にすることで、晶析塔16へのカルシウム化合物の添加は不要とすることも可能である。処理水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L以上多いカルシウムが溶解している場合には、カルシウム化合物は添加せず、リン酸を添加することが好ましい。   In the crystallization tower 16, for example, the total concentration of calcium ions in the calcium carbonate packed tower treated water and the calcium compound added in the flocculation / solid-liquid separation treatment is treated by the crystallization tower 16 after the flocculation / solid-liquid separation treatment. It is possible to eliminate the need for the addition of a calcium compound to the crystallization tower 16 by setting the calcium ion concentration to a sufficient level. When 300 mg / L or more of calcium is dissolved in the fluorine ion remaining in the treated water in an amount of 300 mg / L or more than the equivalent amount of calcium necessary for producing fluoroapatite, it is possible to add phosphoric acid without adding a calcium compound. preferable.

この場合、凝集・固液分離処理でのカルシウムイオンが高濃度であり、溶解度積の関係から、本処理水のフッ素イオン濃度は低濃度化できるため、晶析塔16へのフッ素負荷が低減できるという利点もある。   In this case, the concentration of calcium ions in the aggregation / solid-liquid separation treatment is high, and the fluorine ion concentration of the treated water can be reduced from the relationship of the solubility product, so that the fluorine load on the crystallization tower 16 can be reduced. There is also an advantage.

本発明によって、各工程から排出するフッ素濃度、カルシウム濃度が管理できることから、高いフッ素除去性能が得られるとともに、炭酸カルシウム利用効率の向上と汚泥発生量の低減が可能となる。   According to the present invention, since the fluorine concentration and calcium concentration discharged from each process can be controlled, high fluorine removal performance can be obtained, and calcium carbonate utilization efficiency can be improved and sludge generation amount can be reduced.

次に上記の如く構成された排水処理装置10の作用について、試験を行った結果に基づいて説明する。   Next, the operation of the wastewater treatment apparatus 10 configured as described above will be described based on the results of tests.

本実施の形態において、フッ酸液の差pHを±0pHに調整したフッ素含有排水を通水した場合、炭酸カルシウム充填塔でのフッ酸液の差pHを+1.2pHに調整した排水を炭酸カルシウム充填塔に通水すると、フッ素処理性能は低下し、通水当初から処理水フッ素イオン濃度が高くなる結果となった。この様な炭酸カルシウム充填塔13処理水を後段の晶析塔16に供給できる水質にするためには、炭酸カルシウム充填塔13の次段の凝集・固液分離において、大量のカルシウム化合物の添加が必要となり、汚泥発生量が増加することが分かる。   In this embodiment, when the fluorine-containing wastewater whose pH difference of hydrofluoric acid solution is adjusted to ± 0 pH is passed, the wastewater whose pH difference of hydrofluoric acid solution in the calcium carbonate packed tower is adjusted to +1.2 pH is calcium carbonate. When water was passed through the packed tower, the fluorine treatment performance decreased, and the treated water fluorine ion concentration increased from the beginning of the water flow. In order to make the treated water of the calcium carbonate packed tower 13 treated in such a manner that it can be supplied to the subsequent crystallization tower 16, a large amount of calcium compound is added in the next stage of aggregation / solid-liquid separation of the calcium carbonate packed tower 13. It becomes necessary and it turns out that the amount of sludge generation increases.

フッ酸液の差pHを±0pHに調整した排水は、フッ素処理性能は良好であり、充填した炭酸カルシウムを長期間使用することが可能であった。次に、炭酸カルシウム充填塔処理水にカルシウム化合物として塩化カルシウムを100mg−Ca/L、無機凝集剤としてPACを100mg/L添加した処理水のフッ素イオン濃度は14mg/Lとなり、晶析塔供給水として十分なフッ素濃度まで低下させることができた。ここまでの処理で発生した汚泥はSSとして250mg/L程度であり、従来のカルシウム凝集沈殿処理に比べ、大幅に汚泥発生量が削減できることが確認された。さらに凝集・固液分離処理水を晶析塔に通水することで、フッ素イオン濃度4mg/L以下、SSが1mg/L以下の最終処理水が得られた。本発明によりフッ素含有排水を処理することで、炭酸カルシウム充填塔、凝集・固液分離処理によりフッ素濃度、カルシウム濃度が管理され、安定した晶析塔供給水が得られ、フッ素濃度、カルシウム濃度の変動による晶析塔処理水フッ素が高濃度に残留したり、濁質が発生したりする等の問題は起きなかった。   The drainage in which the pH difference of the hydrofluoric acid solution was adjusted to ± 0 pH had good fluorine treatment performance, and the filled calcium carbonate could be used for a long time. Next, the fluoride ion concentration of the treated water obtained by adding 100 mg-Ca / L of calcium chloride as the calcium compound and 100 mg / L of PAC as the inorganic flocculant to the treated water of the calcium carbonate packed tower becomes 14 mg / L, and the crystallization tower supply water As a result, the fluorine concentration could be reduced to a sufficient level. The sludge generated by the treatment so far is about 250 mg / L as SS, and it was confirmed that the amount of sludge generated can be greatly reduced as compared with the conventional calcium coagulation sedimentation treatment. Furthermore, final treated water having a fluorine ion concentration of 4 mg / L or less and SS of 1 mg / L or less was obtained by passing the coagulation / solid-liquid separation treated water through the crystallization tower. By treating the fluorine-containing wastewater according to the present invention, the fluorine concentration and calcium concentration are controlled by the calcium carbonate packed tower and the coagulation / solid-liquid separation treatment, and stable crystallization tower supply water is obtained. There were no problems such as high concentration of fluorine in the crystallization tower treated water due to fluctuations or the occurrence of turbidity.

図2は、フッ素含有排水のフッ酸液との差pHと処理水カルシウムイオン濃度との関係を、図3は、フッ素含有排水のフッ酸液との差pHと処理水フッ素イオン濃度との関係を示したものである。   FIG. 2 shows the relationship between the difference pH between the fluorine-containing wastewater and the hydrofluoric acid solution, and FIG. 3 shows the relationship between the pH difference between the fluorine-containing wastewater and the hydrofluoric acid solution. Is shown.

フッ素含有排水中のフッ素濃度をある幅で限定し、フッ酸とフッ化アンモニウムの混合比率、酸の種類や濃度によりフッ素含有排水のフッ酸液との差pHを変化させて炭酸カルシウム充填塔13に通水したところ、フッ酸液との差pHと処理水カルシウムイオン濃度には関係性があることが確認された。また、フッ酸液との差pHが±0以下で、急激に処理水のカルシウムイオン濃度が上昇し、フッ酸液との差pHが−0.5を下回ると後段の晶析塔16で濁質が発生しやすいカルシウムイオン濃度を超えることが分かる。   Calcium carbonate packed tower 13 by limiting the fluorine concentration in fluorine-containing wastewater within a certain range, and changing the difference pH from the hydrofluoric acid solution of fluorine-containing wastewater by the mixing ratio of hydrofluoric acid and ammonium fluoride, the kind and concentration of acid. It was confirmed that there is a relationship between the pH difference from the hydrofluoric acid solution and the calcium ion concentration of the treated water. Further, when the difference pH from the hydrofluoric acid solution is ± 0 or less and the calcium ion concentration of the treated water suddenly increases, and the difference pH from the hydrofluoric acid solution falls below −0.5, the crystallization tower 16 in the latter stage becomes turbid. It can be seen that the quality exceeds the calcium ion concentration where the quality tends to occur.

フッ酸液との差pHが−0.5では、炭酸カルシウムの溶解が多いため、炭酸カルシウムの目減りが大きく、早期に充填した炭酸カルシウムでの処理ができなくなる。   When the pH difference from the hydrofluoric acid solution is -0.5, the dissolution of calcium carbonate is large, so the reduction of calcium carbonate is large, and treatment with calcium carbonate filled at an early stage becomes impossible.

しかし、炭酸カルシウム充填塔処理水中のカルシウム濃度が高くなることが、処理水フッ素イオン濃度の低下につながる。更に、この様な場合、次段の凝集・固液分離処理では、カルシウム化合物の添加量を低減、または添加せずにPAC等の無機凝集剤による凝集・固液分離処理をすればよく、さらに晶析塔16への通水においても同様の処置ができ、炭酸カルシウム溶解によるランニングコストの上昇には繋がらない。   However, an increase in the calcium concentration in the treated water of the calcium carbonate packed tower leads to a decrease in the concentration of fluorine ions in the treated water. Furthermore, in such a case, in the next aggregation / solid-liquid separation treatment, the addition amount of the calcium compound may be reduced or the aggregation / solid-liquid separation treatment with an inorganic flocculant such as PAC may be performed without adding, The same treatment can be performed in the water flow to the crystallization tower 16, and the running cost is not increased due to dissolution of calcium carbonate.

処理水のフッ素イオン濃度についてはフッ酸液との差pHが+1.0を超えたところから、AとBの2種類の排水フッ素濃度による差が生じたが、+1.0以下では排水フッ素濃度による影響が小さいことが確認された。また、同様に、フッ酸液との差pHが+1.0を超えたところから、処理水フッ素イオン濃度が急激に上昇する傾向にあり、処理水フッ素イオン濃度が高濃度になると、炭酸カルシウム充填塔13の次段の凝集・固液分離工程の凝集槽14と沈殿槽25において、汚泥発生量が増加することが分かる。   Regarding the fluorine ion concentration of the treated water, the difference between the pH difference from the hydrofluoric acid solution exceeded +1.0, and the difference was caused by the two types of drainage fluorine concentrations of A and B. It was confirmed that the effect of was small. Similarly, when the pH difference from the hydrofluoric acid solution exceeds +1.0, the treated water fluoride ion concentration tends to increase rapidly. When the treated water fluoride ion concentration becomes high, the calcium carbonate filling It can be seen that the amount of sludge generated increases in the agglomeration tank 14 and the sedimentation tank 25 in the next aggregation / solid-liquid separation step of the tower 13.

以上の結果から、フッ素含有排水のフッ酸液との差pHで処理水中のカルシウムイオン濃度、フッ素イオン濃度のおおよその予測が可能であり、フッ酸液との差pHを調整することで、炭酸カルシウム充填塔処理水の水質をコントロールすることが可能であることが確認された。これにより、凝集・固液分離処理工程や晶析工程における薬剤添加量も決定でき、各工程の処理水水質もコントロールできることから、安定した処理が可能となる。   From the above results, it is possible to roughly estimate the calcium ion concentration and the fluorine ion concentration in the treated water with the difference pH from the hydrofluoric acid solution of the fluorine-containing wastewater. By adjusting the difference pH with the hydrofluoric acid solution, It was confirmed that the water quality of the calcium packed tower treated water can be controlled. Thereby, the amount of chemicals added in the coagulation / solid-liquid separation treatment step and the crystallization step can be determined, and the quality of treated water in each step can be controlled, so that stable treatment is possible.

本実施の形態の排水処理装置の構成を示す図The figure which shows the structure of the waste water treatment equipment of this Embodiment フッ素含有排水pHとフッ酸液のpHとの差と、処理水カルシウムイオン濃度との関係を示す図The figure which shows the relationship between the difference between the fluorine-containing wastewater pH and the pH of the hydrofluoric acid solution and the calcium ion concentration of the treated water フッ素含有排水pHとフッ酸液のpHとの差と、処理水フッ素イオン濃度との関係を示す図The figure which shows the relationship between the difference between the fluorine-containing wastewater pH and the pH of the hydrofluoric acid solution and the fluorine ion concentration of the treated water

符号の説明Explanation of symbols

10…排水処理装置、12…pH調整槽(原水槽)、13…炭酸カルシウム充填塔、14…凝集槽、15…沈殿槽、16…晶析塔、18…原水配管、20…pH計、22…フッ素イオン濃度計、24…制御装置、28…酸貯留槽、32…アルカリ貯留槽(水酸化ナトリウム貯留槽)、44…処理水配管、46…循環ライン、48…ポンプ、50…カルシウム化合物貯留槽、56…凝集剤貯留槽、62…処理水配管、64…カルシウム化合物貯留槽、72…ポンプ、74…リン酸系薬剤貯留槽、80…水酸化ナトリウム貯留槽、A…炭酸カルシウム充填塔処理工程、B…凝集・分離工程、C…晶析工程   DESCRIPTION OF SYMBOLS 10 ... Waste water treatment apparatus, 12 ... pH adjustment tank (raw water tank), 13 ... Calcium carbonate packed tower, 14 ... Coagulation tank, 15 ... Precipitation tank, 16 ... Crystallization tower, 18 ... Raw water piping, 20 ... pH meter, 22 DESCRIPTION OF SYMBOLS ... Fluorine ion concentration meter, 24 ... Control apparatus, 28 ... Acid storage tank, 32 ... Alkali storage tank (sodium hydroxide storage tank), 44 ... Treatment water piping, 46 ... Circulation line, 48 ... Pump, 50 ... Calcium compound storage Tank, 56 ... flocculant reservoir, 62 ... treated water piping, 64 ... calcium compound reservoir, 72 ... pump, 74 ... phosphoric acid chemical reservoir, 80 ... sodium hydroxide reservoir, A ... calcium carbonate packed tower treatment Process, B ... Aggregation / separation process, C ... Crystallization process

Claims (7)

フッ素含有排水からフッ素を除去するフッ素含有排水の処理方法において、
前記フッ素含有排水のpHとフッ素イオン濃度を測定し、前記測定したフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHを算出し、前記フッ酸溶液の算出pHに対する前記フッ素含有排水の測定pHの差である差pHを求め、前記差pHが−0.5〜+1.0の範囲内になるようにpH調整したフッ素含有排水を炭酸カルシウム充填塔に通水する炭酸カルシウム充填塔処理工程と、
前記炭酸カルシウム充填塔処理水に、カルシウム化合物を添加してフッ素濃度を20mg/L以下に処理する凝集・分離工程と、
前記凝集・分離工程後のフッ素含有排水に、リン酸系薬剤とカルシウム化合物とのうち少なくともリン酸系薬剤を添加して晶析塔に通水する晶析工程と、を備えることを特徴とするフッ素含有排水の処理方法。
In the treatment method of fluorine-containing wastewater that removes fluorine from fluorine-containing wastewater,
The pH and fluorine ion concentration of the fluorine-containing wastewater are measured, and the pH of the hydrofluoric acid solution is calculated when all of the measured fluorine ion concentrations are derived from hydrofluoric acid and do not contain other acids. A difference pH, which is a difference in measured pH of the fluorine-containing wastewater with respect to the calculated pH of the acid solution, is obtained, and the fluorine-containing wastewater whose pH is adjusted so that the difference pH is in the range of −0.5 to +1.0 is obtained by calcium carbonate. A calcium carbonate packed tower treatment step for passing water through the packed tower;
An aggregation / separation step of adding a calcium compound to the calcium carbonate packed tower treated water to treat the fluorine concentration to 20 mg / L or less;
A crystallization step of adding at least a phosphoric acid-based agent out of a phosphoric acid-based agent and a calcium compound to the fluorine-containing wastewater after the aggregation / separation step, and allowing water to pass through a crystallization tower. Treatment method for fluorine-containing wastewater.
前記凝集・分離工程でのカルシウム化合物の添加は、
前記炭酸カルシウム充填塔処理水に残留するフッ素イオンを、フッ化カルシウムとするのに必要な当量のカルシウムよりも50mg/L以上多く、且つ、前記炭酸カルシウム充填塔処理水に溶解するカルシウムと添加するカルシウムを合わせて500mg/Lを超えないようにすることを特徴とする請求項1に記載のフッ素含有排水の処理方法。
The addition of the calcium compound in the aggregation / separation step is as follows:
Fluorine ions remaining in the calcium carbonate packed tower treated water are added by 50 mg / L or more than the equivalent amount of calcium necessary to make calcium fluoride, and added with calcium dissolved in the calcium carbonate packed tower treated water. The treatment method of fluorine-containing wastewater according to claim 1, wherein calcium is combined so as not to exceed 500 mg / L.
前記凝集・分離工程では、
前記カルシウム化合物の添加とともに、無機凝集剤と高分子凝集剤との少なくとも一方を添加することを特徴とする請求項1又は2に記載のフッ素含有排水の処理方法。
In the aggregation / separation step,
The method for treating fluorine-containing wastewater according to claim 1 or 2, wherein at least one of an inorganic flocculant and a polymer flocculant is added together with the addition of the calcium compound.
前記凝集・分離工程後のフッ素含有排水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L以上多いカルシウムが溶解している場合には、
前記晶析工程において、前記カルシウム化合物は添加しないことを特徴とする請求項1〜3の何れか1に記載のフッ素含有排水の処理方法。
When 300 mg / L or more of calcium is dissolved in the fluorine ion remaining in the fluorine-containing wastewater after the coagulation / separation step, more than 300 mg / L of calcium equivalent to the amount of calcium necessary to produce fluoroapatite,
The method for treating fluorine-containing wastewater according to any one of claims 1 to 3, wherein the calcium compound is not added in the crystallization step.
フッ素含有排水からフッ素を除去するフッ素含有排水の処理装置において、
前記フッ素含有排水のpHを測定するpH測定手段と、フッ素イオン濃度を測定するフッ素イオン濃度測定手段と、前記測定したフッ素イオン濃度の全てがフッ酸由来であり且つ他の酸を含まないとしたときのフッ酸溶液のpHを算出し、前記フッ酸溶液の算出pHに対する前記フッ素含有排水の測定pHの差である差pHを求める演算手段と、前記差pHが−0.5〜+1.0の範囲内になるようにフッ素含有排水をpH調整する排水調整手段と、を備えたpH調整槽と、
前記pH調整槽でpH調整されたフッ素含有排水が通水される炭酸カルシウム充填塔と、
前記炭酸カルシウム充填塔に通水後のフッ素含有排水中に残留するフッ素を、フッ化カルシウムにするためのカルシウム化合物を添加し、前記フッ素含有排水中のフッ素と前記カルシウム化合物とからフッ化カルシウム汚泥を凝集させる凝集槽と、
前記凝集されたフッ化カルシウム汚泥を沈殿させる沈殿槽と、
前記沈殿槽を通水後のフッ素含有排水に、リン酸系薬剤とカルシウム化合物とのうち少なくともリン酸系薬剤を添加する添加手段を上流側に備えた晶析塔と、を備えることを特徴とするフッ素含有排水の処理装置。
In a fluorine-containing wastewater treatment device that removes fluorine from fluorine-containing wastewater,
A pH measuring means for measuring the pH of the fluorine-containing wastewater, a fluorine ion concentration measuring means for measuring the fluorine ion concentration, and all the measured fluorine ion concentrations are derived from hydrofluoric acid and do not contain other acids. A calculation means for calculating a pH of the hydrofluoric acid solution and calculating a difference pH which is a difference of the measured pH of the fluorine-containing wastewater with respect to the calculated pH of the hydrofluoric acid solution; and the difference pH is -0.5 to +1.0 Drainage adjusting means for adjusting pH of fluorine-containing drainage so as to be in the range of
A calcium carbonate packed tower through which fluorine-containing wastewater whose pH is adjusted in the pH adjusting tank is passed;
Calcium fluoride sludge is added from the fluorine in the fluorine-containing wastewater and the calcium compound by adding a calcium compound for converting the fluorine remaining in the fluorine-containing wastewater after passing through the calcium carbonate packed tower to calcium fluoride. A coagulation tank for coagulating
A settling tank for precipitating the agglomerated calcium fluoride sludge;
A crystallization tower provided with an adding means on the upstream side for adding at least a phosphoric acid-based chemical among a phosphoric acid-based chemical and a calcium compound to the fluorine-containing wastewater after passing through the settling tank, Fluorine-containing wastewater treatment equipment.
前記凝集槽のカルシウム化合物添加手段は、
前記炭酸カルシウム充填塔処理水に残留するフッ素イオンを、フッ化カルシウムを生成するに必要な当量のカルシウムよりも50mg/L以上多く、且つ、前記pH調整槽を通水後のフッ素含有排水に溶解するカルシウムと添加するカルシウムを合わせて500mg/Lを超えないようにカルシウム化合物を添加することを特徴とする請求項5に記載のフッ素含有排水の処理装置。
The calcium compound addition means of the aggregation tank is
More than 50 mg / L of fluorine ions remaining in the calcium carbonate packed tower treated water than the equivalent amount of calcium required to produce calcium fluoride, and dissolved in the fluorine-containing wastewater after passing through the pH adjustment tank The apparatus for treating fluorine-containing wastewater according to claim 5, wherein the calcium compound is added so that the combined calcium and the added calcium do not exceed 500 mg / L.
前記沈殿槽での処理水に残留するフッ素イオンでフルオロアパタイトを生成するに必要な当量のカルシウムよりも300mg/L以上多いカルシウムが溶解している場合には、
前記晶析塔に、前記カルシウム化合物は添加しないことを特徴とする請求項5又は6に記載のフッ素含有排水の処理装置。
In the case where 300 mg / L or more of calcium is dissolved in the fluorine ions remaining in the treated water in the settling tank, more than 300 mg / L of calcium equivalent to the amount of calcium necessary to produce fluoroapatite,
The apparatus for treating fluorine-containing wastewater according to claim 5 or 6, wherein the calcium compound is not added to the crystallization tower.
JP2008064473A 2008-03-13 2008-03-13 Method and apparatus for treating fluorine-containing wastewater Expired - Fee Related JP4766457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008064473A JP4766457B2 (en) 2008-03-13 2008-03-13 Method and apparatus for treating fluorine-containing wastewater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008064473A JP4766457B2 (en) 2008-03-13 2008-03-13 Method and apparatus for treating fluorine-containing wastewater

Publications (2)

Publication Number Publication Date
JP2009219953A JP2009219953A (en) 2009-10-01
JP4766457B2 true JP4766457B2 (en) 2011-09-07

Family

ID=41237341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008064473A Expired - Fee Related JP4766457B2 (en) 2008-03-13 2008-03-13 Method and apparatus for treating fluorine-containing wastewater

Country Status (1)

Country Link
JP (1) JP4766457B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8801307B2 (en) 2009-09-25 2014-08-12 Nikon Corporation Substrate cartridge, substrate processing apparatus, substrate processing system, control apparatus, and method of manufacturing display element
JP6299421B2 (en) * 2014-05-20 2018-03-28 栗田工業株式会社 Method and apparatus for treating fluorine-containing water
CN107082514A (en) * 2017-06-19 2017-08-22 浙江富通光纤技术有限公司 Preform hydrofluoric acid disposal system and method
CN114835197B (en) * 2022-05-11 2024-08-27 天华化工机械及自动化研究设计院有限公司 PH detection and adjustment device for circulating water system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2565110B2 (en) * 1993-09-30 1996-12-18 栗田工業株式会社 Method and apparatus for treating fluorine-containing water
JP2000042571A (en) * 1998-07-29 2000-02-15 Japan Organo Co Ltd Fluorine-containing waste water treating device
JP2000070962A (en) * 1998-08-27 2000-03-07 Japan Organo Co Ltd Treatment of waste water containing fluorine
JP4139600B2 (en) * 2002-02-06 2008-08-27 オルガノ株式会社 Treatment method of wastewater containing fluorine
JP4581430B2 (en) * 2004-03-05 2010-11-17 株式会社日立プラントテクノロジー Method and apparatus for treating fluorine-containing wastewater
JP2007021293A (en) * 2005-07-12 2007-02-01 Hitachi Plant Technologies Ltd Crystallization treatment apparatus and method of fluorine-containing water
JP4789017B2 (en) * 2007-11-21 2011-10-05 株式会社日立プラントテクノロジー Method and apparatus for treating fluorine-containing wastewater

Also Published As

Publication number Publication date
JP2009219953A (en) 2009-10-01

Similar Documents

Publication Publication Date Title
JP5359898B2 (en) Water treatment method and water treatment system
WO2015181999A1 (en) Water treatment device and water treatment method
JP4766457B2 (en) Method and apparatus for treating fluorine-containing wastewater
EP2993159B1 (en) Water treatment device and water treatment method
JP5961916B2 (en) Water treatment equipment
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP4858449B2 (en) Treatment method for fluorine-containing wastewater
JP5157040B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP2005296838A (en) Method for treating water containing fluorine and phosphorus, and apparatus therefor
JP5110013B2 (en) Method and apparatus for treating fluorine-containing wastewater
JP4789017B2 (en) Method and apparatus for treating fluorine-containing wastewater
JPH07265869A (en) Treatment of fluorine-phosphorus-containing discharged water
JP2000070962A (en) Treatment of waste water containing fluorine
JP3157347B2 (en) Treatment of wastewater containing fluorine compounds
JP2005021855A (en) Crystallization method of silicon/fluorine-containing wastewater
JP5334264B2 (en) Fluorine and sulfuric acid containing wastewater treatment method and fluorine and sulfuric acid containing wastewater treatment equipment
JP2007021293A (en) Crystallization treatment apparatus and method of fluorine-containing water
JP2021065803A (en) Treatment method of fluorine-containing wastewater
JP2021037449A (en) Method for treating fluorine-containing waste water
JP3349637B2 (en) Fluorine-containing wastewater treatment apparatus and method
JPH11300370A (en) Device for treating fluorine-containing waste water
JP5650164B2 (en) Crystallization reactor and crystallization reaction method
JPH10151456A (en) Wastewater treatment method
JP2004314009A (en) Fluorine crystallization treatment method for fluorine-containing waste water
JP2009226232A (en) Crystallization reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110605

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees