JP2009226232A - Crystallization reactor - Google Patents

Crystallization reactor Download PDF

Info

Publication number
JP2009226232A
JP2009226232A JP2008070963A JP2008070963A JP2009226232A JP 2009226232 A JP2009226232 A JP 2009226232A JP 2008070963 A JP2008070963 A JP 2008070963A JP 2008070963 A JP2008070963 A JP 2008070963A JP 2009226232 A JP2009226232 A JP 2009226232A
Authority
JP
Japan
Prior art keywords
crystallization
solid
tank
crystallization reaction
liquid separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070963A
Other languages
Japanese (ja)
Other versions
JP5222596B2 (en
Inventor
Toru Yokoyama
徹 横山
Toru Nakano
徹 中野
Kazuhiko Shimizu
和彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Organo Corp
Original Assignee
Organo Corp
Japan Organo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Organo Corp, Japan Organo Co Ltd filed Critical Organo Corp
Priority to JP2008070963A priority Critical patent/JP5222596B2/en
Publication of JP2009226232A publication Critical patent/JP2009226232A/en
Application granted granted Critical
Publication of JP5222596B2 publication Critical patent/JP5222596B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Removal Of Specific Substances (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a crystallization reactor capable of recovering a substance to be crystallized from raw water containing a substance to be crystallized in a high recovery ratio and capable of obtaining treated water good in quality. <P>SOLUTION: The crystallization reactor is used for adding a crystallizing agent to a raw water containing the substance to be crystallized to produce crystals of a hardly soluble salt, and includes: a crystallizing reaction tank for adding the crystallizing agent to the raw water to produce the crystals of the hardly soluble salt; a solid-liquid separation tank for forming an upward flow and solid-liquid separating while subjecting the reaction liquid sent from the crystallizing reaction tank to flow; a reaction liquid sending means for sending the reaction liquid to the solid-liquid separation tank from the crystallizing reaction tank; and a returning means for returning at least a part of the crystals of the hardly soluble salt subjected to solid-liquid separation to the crystallizing reaction tank from the solid-liquid separation tank. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原水中の晶析対象物質に晶析剤を添加して難溶性塩を晶析させ、結晶として処理、回収する晶析反応装置に関する。例えば、フッ酸含有原水中のフッ素をカルシウム剤と反応させてフッ化カルシウムを回収したり、リン酸含有原水中のリン酸とカルシウム剤とを反応させてリン酸カルシウムを回収するなどの、晶析対象物質と晶析剤とを反応させる晶析法を用いて難溶性塩を回収する回収技術に関する。   The present invention relates to a crystallization reaction apparatus that crystallizes a hardly soluble salt by adding a crystallization agent to a crystallization target substance in raw water, and treats and collects it as a crystal. For example, fluoridation-containing raw water reacts with calcium agent to recover calcium fluoride, and phosphoric acid-containing raw water reacts with phosphoric acid and calcium agent to recover calcium phosphate. The present invention relates to a recovery technique for recovering a hardly soluble salt by using a crystallization method in which a substance and a crystallization agent are reacted.

従来、フッ素、リンなどの晶析対象物質を含む原水を処理するには、カルシウム剤などの晶析剤および凝集剤を添加する凝集沈殿法が一般的に用いられている。しかし、この方法で生成されるフッ化カルシウム、リン酸カルシウムなどの難溶性塩を含む汚泥において、難溶性塩の純度が低いために、難溶性塩の回収再利用は困難である。   Conventionally, in order to treat raw water containing a crystallization target substance such as fluorine and phosphorus, a coagulation precipitation method in which a crystallization agent such as a calcium agent and a coagulant are added is generally used. However, in sludge containing hardly soluble salts such as calcium fluoride and calcium phosphate produced by this method, it is difficult to recover and reuse the hardly soluble salt because the purity of the hardly soluble salt is low.

これに対して、難溶性塩を回収再利用するために晶析法が用いられている。例えば、フッ酸排水中のフッ素をフッ化カルシウムとして回収する場合、粒状のフッ化カルシウムを種晶として晶析反応槽内に保持し、流動させながら晶析対象物質であるフッ素を含む排水と晶析剤であるカルシウム剤とを注入し、反応させながら種晶表面にフッ化カルシウムを析出させて、フッ化カルシウム結晶を得る方法が採用されている。
2HF + CaCl → CaF↓ + 2HCl
On the other hand, a crystallization method is used to recover and reuse the hardly soluble salt. For example, when fluorine in hydrofluoric acid wastewater is recovered as calcium fluoride, wastewater and crystals containing fluorine, which is a crystallization target substance, are retained in the crystallization reaction tank while the granular calcium fluoride is retained as a seed crystal. A method of obtaining calcium fluoride crystals by injecting and reacting with a calcium agent as a depositing agent to precipitate calcium fluoride on the seed crystal surface is employed.
2HF + CaCl 2 → CaF 2 ↓ + 2HCl

例えば、原水中の晶析対象物質が低濃度の場合は、流動床型の晶析反応装置(図3参照)によりpH3〜11で晶析する(特許文献1参照)ことを本発明者らは提案している。   For example, when the concentration of the crystallization target substance in the raw water is low, the inventors of the present invention will crystallize at pH 3 to 11 (see Patent Document 1) using a fluidized bed type crystallization reaction apparatus (see FIG. 3). is suggesting.

また、原水中の晶析対象物質が高濃度の場合は、撹拌式の晶析反応装置が用いられる(図4参照)。本発明者らは、晶析対象物質を含む原水と晶析剤とpH調整剤とをドラフトチューブが付設された撹拌式晶析反応槽の撹拌翼の近辺に注入することで晶析対象物質の回収率が高くなることを提案している(特許文献2参照)。   In addition, when the crystallization target substance in the raw water has a high concentration, a stirring crystallization reaction apparatus is used (see FIG. 4). The present inventors injected the raw water containing the crystallization target substance, the crystallization agent, and the pH adjuster into the vicinity of the stirring blade of the stirring crystallization reaction tank provided with the draft tube. It has been proposed that the recovery rate is high (see Patent Document 2).

図4の晶析反応装置100において、晶析対象物質を含む原水と晶析剤とpH調整剤とは、例えば、撹拌装置104を備えるドラフトチューブ106付きの晶析反応槽102の撹拌翼108の近辺に注入され、晶析反応処理される。その後、処理水は、晶析反応槽102の下部と直接連通して一体化され、上向流が形成された沈殿部110で固液分離され、沈殿部上部から排出される。一方、生成した難溶性塩の結晶は、沈殿部110で界面112を形成して、晶析反応槽102の下部から引抜かれて、回収再利用される。この晶析反応装置100は、晶析反応槽102と沈殿部110とが一体化され、コンパクトである利点がある。   In the crystallization reaction apparatus 100 of FIG. 4, the raw water containing the crystallization target substance, the crystallization agent, and the pH adjusting agent are, for example, of the stirring blade 108 of the crystallization reaction tank 102 with the draft tube 106 provided with the stirring apparatus 104. It is injected in the vicinity and processed for crystallization reaction. Thereafter, the treated water is integrated in direct communication with the lower part of the crystallization reaction tank 102, separated into solid and liquid at the precipitation part 110 where an upward flow is formed, and discharged from the upper part of the precipitation part. On the other hand, the generated crystals of the hardly soluble salt form an interface 112 at the precipitation part 110 and are extracted from the lower part of the crystallization reaction tank 102 and recovered and reused. The crystallization reaction apparatus 100 has an advantage that the crystallization reaction tank 102 and the precipitation unit 110 are integrated and compact.

特開2003−225680号公報JP 2003-225680 A 特願2006−254065号Japanese Patent Application No. 2006-254065

上記の、晶析反応槽102の下部と直接連通し、上向流が形成された沈殿部110で固液分離を行う晶析反応装置100において、晶析反応槽102内で生成した難溶性塩の微細粒子の一部が沈殿部110の上部から排出される処理水に混入し、処理水の水質が悪化して、晶析対象物質の回収率が低下する場合がある。   In the crystallization reaction apparatus 100 that directly communicates with the lower part of the crystallization reaction tank 102 and performs solid-liquid separation in the precipitation part 110 in which an upward flow is formed, the hardly soluble salt generated in the crystallization reaction tank 102. In some cases, some of the fine particles are mixed into the treated water discharged from the upper part of the precipitation unit 110, the quality of the treated water is deteriorated, and the recovery rate of the crystallization target substance is lowered.

この理由としては、晶析反応槽102内の結晶は、撹拌装置104の撹拌力によって激しく流動しているが、晶析反応槽102と沈殿部110とが晶析反応槽102の下部で連通しているため、晶析反応槽102内の結晶が沈殿部110下部の結晶に衝突を繰り返すことで沈殿部110の結晶を流動させるために、沈殿部110内に乱流が生成し、微細粒子を処理水に流出させることが考えられる。   The reason for this is that crystals in the crystallization reaction tank 102 are vigorously flowing by the stirring force of the stirring device 104, but the crystallization reaction tank 102 and the precipitation unit 110 communicate with each other at the lower part of the crystallization reaction tank 102. Therefore, since the crystals in the crystallization reaction tank 102 repeatedly collide with the crystals below the precipitation portion 110 to cause the crystals in the precipitation portion 110 to flow, turbulent flow is generated in the precipitation portion 110 and fine particles are generated. It is conceivable to let it flow into treated water.

また、この晶析反応装置100の沈殿部110では難溶性塩の結晶が固液分離されて、比較的大きな粒子は沈殿部110の下部から晶析反応槽102内に戻るが、沈殿部110の上部には微細粒子の界面が形成されることになり、沈殿部110には比較的微細な粒子が蓄積しやすいことから、上記の乱流の発生のために微細粒子がより処理水に流出しやすいことも考えられる。   In addition, in the precipitation part 110 of the crystallization reaction apparatus 100, crystals of the hardly soluble salt are separated into solid and liquid, and relatively large particles return from the lower part of the precipitation part 110 into the crystallization reaction tank 102. Since an interface of fine particles is formed in the upper part and relatively fine particles are likely to accumulate in the sedimentation part 110, the fine particles are more likely to flow out into the treated water due to the generation of the turbulent flow. It may be easy.

本発明は、晶析対象物質を含む原水から、晶析対象物質を高い回収率で回収することができ、良好な水質の処理水を得ることができる晶析反応装置である。   The present invention is a crystallization reaction apparatus capable of recovering a crystallization target substance at a high recovery rate from raw water containing the crystallization target substance and obtaining treated water with good water quality.

本発明は、晶析対象物質を含む原水に晶析剤を添加して難溶性塩の結晶を生成させる晶析反応装置であって、前記原水に前記晶析剤を添加して難溶性塩の結晶を生成させるための晶析反応槽と、上向流を形成して、前記晶析反応槽から送液された反応液を流動させながら固液分離するための固液分離槽と、前記晶析反応槽から前記固液分離槽へ前記反応液を送液する反応液送液手段と、前記固液分離槽から前記晶析反応槽へ前記固液分離した難溶性塩の結晶の少なくとも一部を返送する返送手段と、を備える晶析反応装置である。   The present invention is a crystallization reaction apparatus for generating a crystal of a hardly soluble salt by adding a crystallization agent to raw water containing a substance to be crystallized, wherein the crystallization agent is added to the raw water to form a hardly soluble salt. A crystallization reaction tank for generating crystals, a solid-liquid separation tank for forming an upward flow and separating the liquid and liquid while flowing the reaction liquid sent from the crystallization reaction tank, and the crystal A reaction liquid feeding means for feeding the reaction liquid from the precipitation tank to the solid-liquid separation tank, and at least a part of the crystals of the hardly soluble salt separated from the solid-liquid separation tank to the crystallization reaction tank. A crystallization reaction apparatus comprising: a return means for returning.

また、前記晶析反応装置において、前記反応液送液手段は、前記晶析反応槽の上部から前記固液分離槽の下部へ前記反応液を送液することが好ましい。   In the crystallization reaction apparatus, it is preferable that the reaction solution feeding unit sends the reaction solution from an upper part of the crystallization reaction tank to a lower part of the solid-liquid separation tank.

また、前記晶析反応装置において、前記返送手段は、前記固液分離槽の下部および中間部のうち少なくとも1つから前記晶析反応槽へ前記固液分離した難溶性塩の結晶の少なくとも一部を返送することが好ましい。   In the crystallization reaction apparatus, the return means includes at least a part of the crystals of the hardly soluble salt separated into the crystallization reaction tank from at least one of the lower part and the intermediate part of the solid-liquid separation tank. Is preferably returned.

本発明では、晶析反応槽と、上向流を形成して、晶析反応槽から送液された反応液を流動させながら固液分離するための固液分離槽と、晶析反応槽から固液分離槽に反応液を送液する反応液送液手段と、固液分離槽から晶析反応槽に固液分離した難溶性塩の結晶の少なくとも一部を返送する返送手段とを備えることにより、晶析対象物質含有原水から、晶析対象物質を高い回収率で回収することができ、良好な水質の処理水を得ることができる。   In the present invention, a crystallization reaction tank, a solid-liquid separation tank for forming an upward flow, and separating the liquid and liquid while flowing the reaction liquid sent from the crystallization reaction tank, and the crystallization reaction tank A reaction liquid feeding means for feeding the reaction liquid to the solid-liquid separation tank, and a return means for returning at least part of the crystals of the hardly soluble salt separated from the solid-liquid separation tank to the crystallization reaction tank. Thus, the crystallization target substance can be recovered at a high recovery rate from the crystallization target substance-containing raw water, and treated water with good water quality can be obtained.

本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。   Embodiments of the present invention will be described below. This embodiment is an example for carrying out the present invention, and the present invention is not limited to this embodiment.

本発明の実施形態に係る晶析反応装置の一例の概略を図1に示し、その構成について説明する。図1の晶析反応装置1は、晶析反応槽10と、固液分離槽12とを備える。   An outline of an example of a crystallization reaction apparatus according to an embodiment of the present invention is shown in FIG. The crystallization reaction apparatus 1 in FIG. 1 includes a crystallization reaction tank 10 and a solid-liquid separation tank 12.

図1の晶析反応装置1において、晶析反応槽10には、原水添加配管14、晶析剤添加配管16、pH調整剤添加配管18が接続されている。また、晶析反応槽10には、モータおよび晶析反応槽10内の流体を撹拌する撹拌翼32を備える撹拌手段である撹拌装置30、pH測定手段であるpHメータ36が設置されており、ドラフトチューブ34を備える。固液分離槽12の下部には、晶析反応槽10から固液分離槽12へ反応液を送液する反応液送液手段である反応液送液配管20が接続されている。また、固液分離槽12の上部には、処理水排出配管22が接続されている。固液分離槽12の中間部には、バルブ46を介して返送配管48が接続され、返送配管48は分岐して、一方が返送配管24としてポンプ38を介して晶析反応槽10の上部に接続されている。バルブ44を介したもう一方の返送配管26と、固液分離槽12の底部に接続され、バルブ56を介した配管50とが連結されている。また、晶析反応槽10の底部に接続され、バルブ40を介した引抜配管28と、返送配管26と配管50との連結点に接続されている引抜配管52とが引抜配管54に連結されている。   In the crystallization reaction apparatus 1 of FIG. 1, a raw water addition pipe 14, a crystallization agent addition pipe 16, and a pH adjuster addition pipe 18 are connected to the crystallization reaction tank 10. Further, the crystallization reaction tank 10 is provided with a stirring device 30 that is a stirring means including a motor and a stirring blade 32 that stirs the fluid in the crystallization reaction tank 10, and a pH meter 36 that is a pH measurement means. A draft tube 34 is provided. Connected to the lower part of the solid-liquid separation tank 12 is a reaction liquid feed pipe 20 which is a reaction liquid feed means for feeding the reaction liquid from the crystallization reaction tank 10 to the solid-liquid separation tank 12. A treated water discharge pipe 22 is connected to the upper part of the solid-liquid separation tank 12. A return pipe 48 is connected to the intermediate part of the solid-liquid separation tank 12 via a valve 46, the return pipe 48 is branched, and one of the return pipes 24 is connected to the upper part of the crystallization reaction tank 10 via a pump 38. It is connected. The other return pipe 26 through the valve 44 and the pipe 50 through the valve 56 are connected to the bottom of the solid-liquid separation tank 12. In addition, a drawing pipe 28 connected to the bottom of the crystallization reaction tank 10 and connected to a connection point between the return pipe 26 and the pipe 50 through the valve 40 is connected to the drawing pipe 54. Yes.

本実施形態に係る晶析反応方法および晶析反応装置1の動作について説明する。   The operation of the crystallization reaction method and the crystallization reaction apparatus 1 according to this embodiment will be described.

フッ素、リンなどの晶析対象物質を含有する晶析対象物質含有原水(以下、単に「原水」と呼ぶ場合がある。)が、原水貯槽などから原水添加配管14を通して晶析反応槽10に添加される。また、カルシウム剤などの晶析剤が、晶析剤貯槽などから晶析剤添加配管16を通して、pH調整剤が、pH調整剤貯槽などからpH調整剤添加配管18を通して、晶析反応槽10に添加される。晶析反応槽10において、原水に含まれる晶析対象物質と、晶析剤とが反応して難溶性塩の結晶が生成される(晶析反応工程)。晶析反応槽10内の反応液は、撹拌装置30によって撹拌される。晶析反応槽10において晶析反応により生じる難溶性塩の結晶を含む反応液は、反応液送液配管20を通して固液分離槽12へ送液される。   Raw water containing crystallization target substances containing crystallization target substances such as fluorine and phosphorus (hereinafter sometimes simply referred to as “raw water”) is added to the crystallization reaction tank 10 from the raw water storage tank through the raw water addition pipe 14. Is done. In addition, a crystallization agent such as a calcium agent is supplied to the crystallization reaction tank 10 from the crystallization agent storage tank or the like through the crystallization agent addition pipe 16, and a pH adjustment agent is supplied from the pH adjustment agent storage tank or the like through the pH adjustment agent addition pipe 18. Added. In the crystallization reaction tank 10, the crystallization target substance contained in the raw water reacts with the crystallization agent to produce crystals of a hardly soluble salt (crystallization reaction step). The reaction solution in the crystallization reaction tank 10 is stirred by the stirring device 30. The reaction liquid containing the hardly soluble salt crystals generated by the crystallization reaction in the crystallization reaction tank 10 is sent to the solid-liquid separation tank 12 through the reaction liquid sending pipe 20.

固液分離槽12において、固液分離槽12の下部に接続された反応液送液配管20から送液される反応液により上向流が形成され、反応液を流動させながら固液分離が行われる(固液分離工程)。固液分離されて、晶析対象物質が低減された上澄水は、処理水として処理水排出配管22を通して系外に排出される。   In the solid-liquid separation tank 12, an upward flow is formed by the reaction liquid fed from the reaction liquid feeding pipe 20 connected to the lower part of the solid-liquid separation tank 12, and the solid-liquid separation is performed while the reaction liquid flows. (Solid-liquid separation process). The supernatant water that has been subjected to solid-liquid separation and reduced in the crystallization target substance is discharged out of the system through the treated water discharge pipe 22 as treated water.

晶析反応槽10と固液分離槽12の下部とを接続するための反応液送液配管20は、晶析反応槽10の上部に接続されることが好ましい。晶析反応槽10の上部から固液分離槽12の底部へ向けて反応液を送液することにより、固液分離槽12において上向流を良好に形成することができる。   It is preferable that the reaction liquid feeding pipe 20 for connecting the crystallization reaction tank 10 and the lower part of the solid-liquid separation tank 12 is connected to the upper part of the crystallization reaction tank 10. By sending the reaction liquid from the top of the crystallization reaction tank 10 toward the bottom of the solid-liquid separation tank 12, an upward flow can be satisfactorily formed in the solid-liquid separation tank 12.

固液分離槽12において固液分離された難溶性塩の結晶の少なくとも一部は、バルブ46が開状態とされ、バルブ44が閉状態とされて、返送配管48,24を通して、ポンプ38により固液分離槽12の中間部から晶析反応槽10へ返送されてもよいし、バルブ56,44が開状態とされ、バルブ42,46が閉状態とされて、配管50、返送配管26,24を通して、固液分離槽12の底部から返送されてもよい(返送工程)。この場合、返送配管48,24,26、配管50、ポンプ38が、返送手段として機能する。   At least a part of the crystals of the hardly soluble salt separated in the solid-liquid separation tank 12 is solidified by the pump 38 through the return pipes 48 and 24 with the valve 46 opened and the valve 44 closed. The liquid separation tank 12 may be returned to the crystallization reaction tank 10, the valves 56 and 44 are opened, the valves 42 and 46 are closed, and the pipe 50 and the return pipes 26 and 24 are closed. And may be returned from the bottom of the solid-liquid separation tank 12 (returning step). In this case, the return pipes 48, 24, 26, the pipe 50, and the pump 38 function as return means.

固液分離槽12の中間部からの返送と、底部からの返送は、いずれか一方でもよいし、併用してもよい。例えば、通常の運転時には、処理水に微細粒子が流出しないように、固液分離槽12の中間部からなるべく微細な粒子を返送して、運転休止時には、固液分離槽12で結晶が固化しないように、固液分離槽12の底部から返送するなど、運転状態によって中間部の返送と底部からの返送とを切り替えるのがよりよい。   Either one of the return from the intermediate part of the solid-liquid separation tank 12 and the return from the bottom may be used, or they may be used in combination. For example, in the normal operation, as fine particles as possible are returned from the middle part of the solid-liquid separation tank 12 so that the fine particles do not flow into the treated water, and the crystals do not solidify in the solid-liquid separation tank 12 during the operation stop. Thus, it is better to switch between the return of the intermediate part and the return from the bottom depending on the operation state, such as returning from the bottom of the solid-liquid separation tank 12.

なお、本明細書において、固液分離槽12の「中間部」とは、処理水排出配管22の接続部と、底部、すなわち配管50の接続部との間のことを指し、特に限定されない。固液分離槽12の中間部からなるべく微細な粒子を返送するためには、固液分離槽12の中間部に設けた、返送配管48の接続部付近に、固液分離された上澄液と結晶との界面が来るように、晶析反応槽10から固液分離槽12への反応液の送液量、固液分離槽12から晶析反応槽10への返送量、固液分離槽12からの引抜量などを調整して運転することが好ましい。   In the present specification, the “intermediate portion” of the solid-liquid separation tank 12 refers to a portion between the connection portion of the treated water discharge pipe 22 and the bottom portion, that is, the connection portion of the pipe 50, and is not particularly limited. In order to return as fine particles as possible from the intermediate part of the solid-liquid separation tank 12, the supernatant liquid separated into solid and liquid is provided in the vicinity of the connection part of the return pipe 48 provided in the intermediate part of the solid-liquid separation tank 12. The amount of reaction liquid sent from the crystallization reaction tank 10 to the solid-liquid separation tank 12, the amount returned from the solid-liquid separation tank 12 to the crystallization reaction tank 10, and the solid-liquid separation tank 12 so that the interface with the crystal comes. It is preferable to operate by adjusting the amount of extraction from the pipe.

固液分離槽12における上澄液と結晶との界面は、例えば、固液分離槽12に設置した図示しない界面計などの界面検知手段により検知することができる。   The interface between the supernatant and the crystal in the solid-liquid separation tank 12 can be detected by, for example, an interface detector such as an interface meter (not shown) installed in the solid-liquid separation tank 12.

固液分離された上澄液と結晶との界面が運転時に変動する場合、例えば、その変動の最低レベルを、返送配管48の接続部付近に合わせるように調整して運転すればよい。   When the interface between the solid-liquid separated supernatant and crystal fluctuates during operation, for example, the minimum level of the fluctuation may be adjusted so as to match the vicinity of the connection portion of the return pipe 48.

回収するために難溶性塩の結晶を引抜く場合は、固液分離槽12の底部からの引抜きと、晶析反応槽10の底部からの引抜きとのいずれか一方でもよいし、所望の引抜き濃度などに応じて併用してもよい。   In the case of pulling out the crystal of the hardly soluble salt for recovery, either the drawing from the bottom of the solid-liquid separation tank 12 or the drawing from the bottom of the crystallization reaction tank 10 may be used, or a desired drawing concentration You may use together according to.

例えば、固液分離槽12において固液分離された難溶性塩の結晶の少なくとも一部は、バルブ56,42が開状態とされ、バルブ46,44,40が閉状態とされて、配管50、引抜配管52,54を通して引抜かれてもよい(引抜工程)。また、晶析反応槽10内の難溶性塩の結晶の少なくとも一部は必要に応じて、バルブ40が開状態とされ、バルブ42が閉状態とされて、引抜配管28,54を通して引抜かれてもよい。この場合、配管50、引抜配管28,52,54、バルブ40,56,42が、結晶を引抜く引抜手段として機能する。   For example, at least part of the crystals of the hardly soluble salt separated in the solid-liquid separation tank 12 are opened in the valves 56, 42 and closed in the valves 46, 44, 40, the pipe 50, It may be drawn through the drawing pipes 52 and 54 (drawing step). Further, at least a part of the crystals of the hardly soluble salt in the crystallization reaction tank 10 is drawn through the drawing pipes 28 and 54 with the valve 40 opened and the valve 42 closed as necessary. Also good. In this case, the pipe 50, the drawing pipes 28, 52, and 54 and the valves 40, 56, and 42 function as a drawing means for drawing out the crystal.

引抜かれた結晶は必要に応じて脱水処理、洗浄処理、乾燥処理されて、回収結晶として回収され、必要に応じて再利用される。   The drawn crystal is dehydrated, washed, and dried as necessary, recovered as a recovered crystal, and reused as necessary.

引抜手段としては、晶析反応槽10、固液分離槽12からバルブ40,56,42の開閉により重力で引抜く方法の他に、ポンプなどで引抜く方法などが挙げられる。   Examples of the extracting means include a method of extracting from the crystallization reaction tank 10 and the solid-liquid separation tank 12 by gravity by opening and closing valves 40, 56 and 42, and a method of extracting by a pump or the like.

上向流を形成する固液分離槽12の形状は、円筒状、上部へ向けて断面が拡大するコーン状など特に制限はないが、固液分離槽12の底部での結晶の堆積を防ぐため、また除々に線速度(LV)を下げて大きな粒子を下部に沈降させることで固液分離を良好に行うために、コーン状が好ましい。   The shape of the solid-liquid separation tank 12 that forms the upward flow is not particularly limited, such as a cylindrical shape or a cone shape whose cross section expands upward, but in order to prevent the deposition of crystals at the bottom of the solid-liquid separation tank 12 Further, a cone shape is preferable in order to achieve good solid-liquid separation by gradually lowering the linear velocity (LV) and allowing large particles to settle in the lower part.

固液分離槽12における流速としては、上部の線速度(LV)が、0.1〜1m/hrの範囲が好ましく、0.1〜0.5m/hrの範囲がより好ましい。上部の線速度(LV)が小さいほど、処理水に微細粒子が流出しにくくなる傾向にある。上部の線速度(LV)が0.1m/hr未満であると、処理が遅くなって固液分離槽12が大きくなる場合があり、1m/hrを超えると、微細粒子の流出が大幅に増加する場合がある。   As a flow rate in the solid-liquid separation tank 12, the upper linear velocity (LV) is preferably in the range of 0.1 to 1 m / hr, and more preferably in the range of 0.1 to 0.5 m / hr. As the upper linear velocity (LV) is smaller, the fine particles tend not to flow out into the treated water. If the upper linear velocity (LV) is less than 0.1 m / hr, the process may slow down and the solid-liquid separation tank 12 may become larger. If it exceeds 1 m / hr, the outflow of fine particles will increase significantly. There is a case.

本実施形態における晶析対象物質含有原水は、晶析処理により除去される晶析対象物質を含むものであれば、如何なる由来の原水であってもよく、例えば、半導体関連産業をはじめとする電子産業、発電所、アルミニウム工業などから排出される原水が挙げられるが、これらに限定されるものではない。   The raw material water containing the target substance for crystallization in the present embodiment may be any source water as long as it contains the target substance for crystallization to be removed by the crystallization process. Examples include, but are not limited to, raw water discharged from industries, power plants, aluminum industries, and the like.

原水中の晶析対象物質としては、晶析反応により晶析し、原水中から除去可能である任意の元素が挙げられ、特に限定されるものではない。また、晶析対象物質となる元素の種類は1種類であってもよいし、2種類以上であってもよい。特に、原水中における存在が問題となるという観点から、本実施形態における晶析対象物質としては、フッ素、リンおよび重金属元素、カルシウムならびにこれらの混合物が挙げられる。重金属元素としては、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Mo、Ag、Cd、Hg、Sn、Pb、Teなどが挙げられるが、これに限定されるものではない。好ましくは、晶析対象物質はフッ素である。   The crystallization target substance in the raw water includes any element that can be crystallized by crystallization reaction and removed from the raw water, and is not particularly limited. Moreover, the kind of element used as a crystallization target substance may be one, and two or more kinds may be sufficient as it. In particular, from the viewpoint that existence in raw water becomes a problem, examples of the crystallization target substance in the present embodiment include fluorine, phosphorus, heavy metal elements, calcium, and mixtures thereof. Examples of heavy metal elements include, but are not limited to, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo, Ag, Cd, Hg, Sn, Pb, and Te. Preferably, the substance to be crystallized is fluorine.

晶析対象物質となる元素は、晶析反応により晶析するのであれば、任意の状態で原水中に存在することが可能である。原水中に溶解しているという観点から、晶析対象物質はイオン化した状態であるのが好ましい。晶析対象物質がイオン化した状態としては、例えば、F、Cu2+などをはじめとする原子がイオン化したもの、メタリン酸、ピロリン酸、オルトリン酸、三リン酸、四リン酸、亜リン酸などをはじめとする晶析対象物質を含む化合物がイオン化したもの、また、重金属などの錯イオンなどが挙げられるが、これらに限定されるものではない。 The element to be crystallized can be present in the raw water in any state as long as it is crystallized by a crystallization reaction. From the viewpoint that it is dissolved in the raw water, the crystallization target substance is preferably in an ionized state. Examples of the state in which the crystallization target substance is ionized include those in which atoms such as F and Cu 2+ are ionized, metaphosphoric acid, pyrophosphoric acid, orthophosphoric acid, triphosphoric acid, tetraphosphoric acid, phosphorous acid, and the like. Examples thereof include compounds obtained by ionizing a compound containing a substance to be crystallized such as, and complex ions such as heavy metals, but are not limited thereto.

フッ素を含む原水は、アルミの電解精錬工程、製綱工程などからも排出されるが、特に半導体工場において大量に排出される。半導体シリコンウェーハの洗浄などに濃厚フッ酸が用いられ、フッ素含有量が%オーダの濃厚フッ酸廃液として排出される。このとき、アンモニアや過酸化水素、リン酸なども洗浄剤として用いられるため、それらを含む排水となることがある。また、半導体シリコンウェーハ上に残存するフッ酸の洗浄、パーフルオロ化合物(PFCs)分解後のガスに含まれるHFの洗浄などに大量の水が使用され、希薄系のフッ素含有原水としても排出される。本実施形態に係る晶析反応装置は、フッ酸(フッ化水素)を含む原水中からフッ素を除去するために特に好適に適用しうる。   Raw water containing fluorine is also discharged from aluminum electrolytic refining process, steelmaking process, etc., but it is discharged in large quantities especially in semiconductor factories. Concentrated hydrofluoric acid is used for cleaning semiconductor silicon wafers, etc., and is discharged as concentrated hydrofluoric acid waste liquid with a fluorine content of the order of%. At this time, ammonia, hydrogen peroxide, phosphoric acid, and the like are also used as cleaning agents, and therefore, wastewater containing them may be produced. In addition, a large amount of water is used for cleaning hydrofluoric acid remaining on the semiconductor silicon wafer, cleaning HF contained in the gas after decomposition of perfluoro compounds (PFCs), etc., and is also discharged as dilute fluorine-containing raw water. . The crystallization reaction apparatus according to the present embodiment can be particularly suitably applied to remove fluorine from raw water containing hydrofluoric acid (hydrogen fluoride).

原水に含まれる晶析対象物質の量は、特に限定されるものではないが、例えば、晶析対象物質がフッ素の場合、5000mg/L〜100000mg/Lの範囲、特に5000mg/L〜20000mg/Lの範囲、リンの場合、500mg/L〜5000mg/Lの範囲である。   The amount of the crystallization target substance contained in the raw water is not particularly limited. For example, when the crystallization target substance is fluorine, a range of 5000 mg / L to 100,000 mg / L, particularly 5000 mg / L to 20000 mg / L. In the case of phosphorus, the range is 500 mg / L to 5000 mg / L.

晶析対象物質がフッ酸含有原水中のフッ素であり、晶析剤であるカルシウム剤と反応させてフッ化カルシウムを回収する場合や、晶析対象物質がリン酸含有原水中のリンであり、晶析剤であるカルシウム剤と反応させてリン酸カルシウムを回収する場合、晶析剤としては塩化カルシウム、消石灰などが用いられる。   The substance to be crystallized is fluorine in hydrofluoric acid-containing raw water, and when calcium fluoride is recovered by reacting with a calcium agent that is a crystallizing agent, or the substance to be crystallized is phosphorus in phosphoric acid-containing raw water, In the case of recovering calcium phosphate by reacting with a calcium agent that is a crystallizing agent, calcium chloride, slaked lime, or the like is used as the crystallizing agent.

晶析対象物質が水中の重金属であり、晶析剤と反応させて難溶性塩を回収する場合、晶析剤としては硫化ソーダ、炭酸ソーダなどが用いられる。晶析対象物質が水中のカルシウムであり、晶析剤と反応させて炭酸カルシウムを回収する場合、晶析剤としては炭酸ソーダなどが用いられる。   When the substance to be crystallized is a heavy metal in water and reacts with a crystallizing agent to recover a hardly soluble salt, sodium sulfide, sodium carbonate, or the like is used as the crystallizing agent. When the substance to be crystallized is calcium in water and is reacted with a crystallizer to recover calcium carbonate, sodium carbonate or the like is used as the crystallizer.

本実施形態においては、晶析用薬液として消石灰と酸とを混合したカルシウム溶液などが使用されてもよい。本明細書における「カルシウム溶液」とは、消石灰(水酸化カルシウム)に酸を添加して得られた液体であって、一定範囲のpHを有する液体である。「カルシウム溶液」は、消石灰が完全に溶解された溶液状態であってもよく、消石灰の固体粒子が含有されていてもよい。消石灰への酸の添加は、消石灰に酸が添加されるのであれば任意の、公知の方法による添加が可能であり、例えば、消石灰スラリに酸を添加する態様、消石灰の乾燥固体に酸を添加する態様またはこれらの組み合わせが挙げられるが、これらに限定されるものではない。消石灰への酸の添加の好ましい態様は、消石灰スラリに酸を添加する態様である。   In the present embodiment, a calcium solution in which slaked lime and an acid are mixed may be used as the crystallization chemical solution. The “calcium solution” in the present specification is a liquid obtained by adding an acid to slaked lime (calcium hydroxide) and having a certain range of pH. The “calcium solution” may be in a solution state in which slaked lime is completely dissolved, or may contain solid particles of slaked lime. The acid can be added to the slaked lime by any known method as long as the acid is added to the slaked lime. For example, the acid is added to the slaked lime slurry, and the acid is added to the dried slaked lime solid. Embodiments, or combinations thereof, but are not limited thereto. The preferable aspect of addition of the acid to slaked lime is an aspect which adds an acid to slaked lime slurry.

本明細書において、「消石灰スラリ」とは、消石灰の乾燥固体に水または水溶液を添加して形成されるスラリをいい、使用される水としては、蒸留水、精製水、水道水など任意のソースの水が可能であり、また、水溶液としては、前記水に、酸、アルカリ、これらの塩など任意の化合物が添加された水溶液が可能である。また、本明細書における「消石灰の乾燥固体」とは、前記消石灰スラリに対する概念を示すものであり、スラリを形成していない、粉体、顆粒、塊状物などの固体であればよく、化合物としての無水物を意味するものではない。   In this specification, “slaked lime slurry” refers to a slurry formed by adding water or an aqueous solution to dry solids of slaked lime, and the water used is any source such as distilled water, purified water, tap water, etc. As the aqueous solution, an aqueous solution in which an arbitrary compound such as an acid, an alkali, or a salt thereof is added to the water can be used. In addition, the “dry slaked lime solid” in the present specification indicates a concept for the slaked lime slurry, and may be any solid, such as powder, granule, or lump, that does not form a slurry. It does not mean the anhydride.

カルシウム溶液の調製に使用される消石灰としては、任意のグレードの消石灰を使用することができ、特に限定されるものではない。カルシウム溶液の調製に使用される酸としては、特に限定されるものではなく、任意の酸が使用可能である。好ましくは、カルシウムと難溶性の塩を形成させる成分を含まない任意の酸であり、例えば、塩酸などが挙げられるがこれらに限定されるものではない。より好ましくは、酸は塩酸である。使用される酸は1種類であってもよいし、複数種類の酸が使用されてもよい。使用される酸の濃度、添加量などは、カルシウム溶液が所望のpHとなるように適宜設定される。例えば、工場内の設備で中和用などに使用される目的で、水と混合して工場内を循環している消石灰スラリを用いると利便性がよい。   As the slaked lime used for preparing the calcium solution, any grade of slaked lime can be used, and it is not particularly limited. The acid used for preparing the calcium solution is not particularly limited, and any acid can be used. Preferably, it is an arbitrary acid that does not contain a component that forms a sparingly soluble salt with calcium, such as hydrochloric acid, but is not limited thereto. More preferably, the acid is hydrochloric acid. One type of acid may be used, or a plurality of types of acids may be used. The concentration and addition amount of the acid used are appropriately set so that the calcium solution has a desired pH. For example, it is convenient to use slaked lime slurry that is mixed with water and circulated in the factory for the purpose of neutralization in facilities in the factory.

本実施形態における、カルシウム溶液のpH範囲は好ましくはpH9以下であり、より好ましくは、pH8以下であり、さらに好ましくは、pH8〜4の範囲であり、特に好ましくは、pH7〜5の範囲である。カルシウム溶液のpHを、上記範囲に調節することにより、消石灰をある程度溶解させることが可能となる。ここで、消石灰スラリが完全な溶解が達成されるような条件、すなわちpHが低い方が晶析処理において良好であると考えられる。しかし、本発明者らは、晶析処理によって得られる処理水中の晶析対象成分の濃度をより低減させるためには、カルシウム溶液のpHを所定の範囲に設定するのが有効であることを見出した。すなわち、カルシウム溶液のpHをpH4未満に低下させるよりも、上述のようにpH8〜4の範囲、さらには、pH7〜5の範囲にすることにより、処理水中の晶析対象成分の濃度を顕著に低減できる。上記適するpH範囲の存在は、pHを一定範囲にすることにより消石灰の微粒子を完全に溶解させるのではなく、一定量の消石灰微粒子をカルシウム溶液中に残存させることにより、晶析反応槽内において、該微粒子によって晶析反応の反応面積を増大させて晶析反応効率を向上させ、処理水中の晶析対象物質の濃度を低減させるためであると考えられる。   In this embodiment, the pH range of the calcium solution is preferably pH 9 or less, more preferably pH 8 or less, still more preferably pH 8 to 4, and particularly preferably pH 7 to 5. . By adjusting the pH of the calcium solution to the above range, slaked lime can be dissolved to some extent. Here, it is considered that conditions under which slaked lime slurry is completely dissolved, that is, a lower pH is better in the crystallization treatment. However, the present inventors have found that it is effective to set the pH of the calcium solution within a predetermined range in order to further reduce the concentration of the crystallization target component in the treated water obtained by the crystallization treatment. It was. That is, rather than lowering the pH of the calcium solution to less than pH 4, the concentration of the crystallization target component in the treated water is remarkably increased by adjusting the pH to the range of 8 to 4 as described above, and further to the range of pH 7 to 5. Can be reduced. The presence of the suitable pH range does not completely dissolve the slaked lime fine particles by making the pH constant, but by leaving a certain amount of slaked lime fine particles in the calcium solution, This is probably because the fine particles increase the reaction area of the crystallization reaction to improve the crystallization reaction efficiency and reduce the concentration of the crystallization target substance in the treated water.

生成する難溶性塩としては、フッ素含有原水とカルシウム剤とを反応させて生成するフッ化カルシウムの他、例えば、リン含有原水とカルシウム剤とを反応させて生成するリン酸カルシウム、ヒドロキシアパタイトなどや、フッ素およびリン含有原水とカルシウム剤とを反応させて生成するフルオロアパタイトなどもこれに含まれる。   As the hardly soluble salt to be produced, in addition to calcium fluoride produced by reacting raw fluorine-containing water with a calcium agent, for example, calcium phosphate, hydroxyapatite produced by reacting raw phosphorus-containing water with a calcium agent, fluorine Also included are fluoroapatite and the like produced by reacting raw phosphorus-containing water with a calcium agent.

本実施形態においては、原水と晶析剤とを晶析反応槽10に添加する前に、あらかじめ、晶析反応槽10に種晶が存在していてもよいし、あらかじめ晶析反応槽10内に種晶が存在していなくてもよい。安定した処理を行うためには、晶析反応槽10にあらかじめ種晶が存在していることが好ましい。晶析反応槽10に充填される種晶の充填量は、晶析対象物質を晶析反応により除去できるのであれば特に限定されるものではなく、原水中の晶析対象物質の濃度、晶析剤の濃度、また、晶析反応装置1の運転条件などに応じて適宜設定される。   In this embodiment, before adding raw water and a crystallization agent to the crystallization reaction tank 10, seed crystals may exist in advance in the crystallization reaction tank 10, or in the crystallization reaction tank 10 in advance. The seed crystal may not exist. In order to perform a stable treatment, it is preferable that seed crystals exist in the crystallization reaction tank 10 in advance. The amount of seed crystals charged in the crystallization reaction tank 10 is not particularly limited as long as the crystallization target substance can be removed by the crystallization reaction. The concentration of the crystallization target substance in the raw water, crystallization The concentration is appropriately set according to the concentration of the agent and the operating conditions of the crystallization reaction apparatus 1.

種晶は、その表面に生成した難溶塩の結晶を析出させることができるものであればよく、任意の材質が選択可能であり、例えば、ろ過砂、活性炭、およびジルコンサンド、ガーネットサンド、サクランダム(商品名、日本カートリット株式会社製)などをはじめとする金属元素の酸化物を含んで構成される粒子、ならびに、晶析反応による析出物である難溶塩を含んで構成される粒子などが挙げられるが、これらに限定されるものではない。より純粋な難溶塩をペレットなどとして入手できるという観点から、晶析反応による析出物である難溶塩を含んで構成される粒子(例えばフッ化カルシウムの場合は蛍石)が好ましい。種晶の形状、粒径は、晶析反応槽10内の流速、晶析対象物質および晶析剤の濃度などに応じて適宜設定され、特に限定されるものではない。   The seed crystal may be any material as long as it can precipitate a hardly soluble salt crystal formed on the surface, and any material can be selected. For example, filtered sand, activated carbon, zircon sand, garnet sand, Particles composed of oxides of metal elements including random (trade name, manufactured by Nippon Carlit Co., Ltd.), and particles composed of hardly soluble salts that are precipitates by crystallization reaction However, it is not limited to these. From the viewpoint that a purer hardly soluble salt can be obtained as a pellet or the like, particles composed of a hardly soluble salt that is a precipitate by a crystallization reaction (for example, fluorite in the case of calcium fluoride) are preferable. The shape and particle size of the seed crystal are appropriately set according to the flow rate in the crystallization reaction tank 10, the crystallization target substance, the concentration of the crystallization agent, and the like, and are not particularly limited.

晶析反応槽10にあらかじめ種晶が充填されている場合は、例えば、原水へ晶析剤を晶析反応槽10において添加し、晶析反応槽10内で、種晶上に難溶性塩を析出させてペレットを形成させる。これに対して、晶析反応槽10にあらかじめ種晶が存在していない場合には、原水へ晶析剤を添加することにより晶析反応槽10内で析出する難溶性塩がペレットを形成し、成長することとなる。いずれの場合も、晶析反応槽10内の結晶がある程度大きく成長すると、晶析反応槽10内から一部の結晶を引抜く引抜操作と、引抜いた結晶よりも小粒径の種晶を新たに補充する補充操作を繰り返し行うことで、連続的に結晶を得るような方法が採用される。   In the case where the seed crystal is filled in the crystallization reaction tank 10 in advance, for example, a crystallization agent is added to the raw water in the crystallization reaction tank 10, and the hardly soluble salt is formed on the seed crystal in the crystallization reaction tank 10. Precipitate to form pellets. On the other hand, when seed crystals are not present in the crystallization reaction tank 10 in advance, the hardly soluble salt precipitated in the crystallization reaction tank 10 forms pellets by adding a crystallization agent to the raw water. Will grow. In any case, when the crystals in the crystallization reaction tank 10 grow to a certain extent, a drawing operation for drawing a part of the crystals from the crystallization reaction tank 10 and a seed crystal having a smaller particle diameter than the drawn crystals are newly added. A method is adopted in which crystals are continuously obtained by repeatedly performing a replenishment operation for replenishing.

晶析反応槽10は、原水中の晶析対象物質と晶析剤とが反応して難溶性塩の結晶を析出させうる反応槽であればよく、長さ、内径、形状などについては任意の態様が可能であり、特に限定されるものではない。   The crystallization reaction tank 10 may be any reaction tank that can cause the crystallization target substance in the raw water to react with the crystallization agent to precipitate a hardly soluble salt crystal, and the length, inner diameter, shape, etc. are arbitrary. Embodiments are possible and are not particularly limited.

晶析反応槽としては、図1のように晶析反応槽10内に、撹拌翼を備える撹拌装置30を設置し、該撹拌装置30により晶析反応槽10内の反応液を撹拌してペレットを流動させる撹拌式の晶析反応槽が挙げられる。撹拌翼は晶析反応槽10内で内容物を撹拌できるものであればよく、撹拌翼の設置態様、撹拌翼の大きさなどは特に限定されるものではない。   As the crystallization reaction tank, as shown in FIG. 1, a stirring device 30 having a stirring blade is installed in the crystallization reaction tank 10, and the reaction solution in the crystallization reaction tank 10 is stirred by the stirring device 30 to pellets. And a stirring type crystallization reaction tank in which the water is fluidized. The stirring blade is not particularly limited as long as the contents can be stirred in the crystallization reaction tank 10 and the installation mode of the stirring blade, the size of the stirring blade, and the like are not particularly limited.

カルシウム溶液などの晶析剤溶液中のカルシウム剤などの晶析剤の濃度は、原水の晶析対象物質濃度、晶析反応槽10の処理能力などに応じて適宜設定され、特に限定されるものではない。晶析対象物質がフッ素でフッ化カルシウムを生成させる場合、カルシウム注入量としては、化学当量としてフッ素の1倍〜2倍の範囲が好ましいが、1倍〜1.2倍の範囲がより好ましい。カルシウムの化学当量が原水のフッ素の化学当量の2倍より多いとフッ化カルシウムが種晶上に析出せずに微細粒子として生成しやすく、処理水にフッ化カルシウムが混入する場合があり、1倍より少ないと原水中のフッ素の全量がフッ化カルシウムとならず、処理水にフッ素が混入する場合がある。同様に晶析対象物質がリンでリン酸カルシウムを生成させる場合、カルシウム注入量としては、化学当量としてリンの1倍〜2倍の範囲が好ましいが、1倍〜1.2倍の範囲がより好ましい。   The concentration of the crystallization agent such as the calcium agent in the crystallization agent solution such as the calcium solution is appropriately set according to the concentration of the crystallization target substance of the raw water, the treatment capacity of the crystallization reaction tank 10 and the like, and is particularly limited. is not. When the crystallization target substance is fluorine and produces calcium fluoride, the amount of calcium injection is preferably in the range of 1 to 2 times that of fluorine as the chemical equivalent, but more preferably in the range of 1 to 1.2 times. If the chemical equivalent of calcium is more than twice the chemical equivalent of fluorine in the raw water, calcium fluoride does not precipitate on the seed crystal and is easily formed as fine particles, and calcium fluoride may be mixed into the treated water. If it is less than twice, the total amount of fluorine in the raw water does not become calcium fluoride, and fluorine may be mixed into the treated water. Similarly, when the crystallization target substance is phosphorus and produces calcium phosphate, the amount of calcium injection is preferably in the range of 1 to 2 times that of phosphorus as the chemical equivalent, but more preferably in the range of 1 to 1.2 times.

本実施形態においては、カルシウム剤を用いて晶析反応槽10内でpH2〜11の条件下で難溶性塩を析出させることが好ましい。フッ化カルシウムを析出させる場合には、pH2〜11、微細粒子生成抑制などの点から好ましくはpH2〜3の条件下でフッ化カルシウムを析出させることが好ましい。フッ化カルシウムの生成反応に伴ってpHが変化する場合は、晶析反応槽10にpH調整剤を適宜添加しうるように構成することが望ましい。フッ化カルシウム析出の際のpHは、pHメータなどのpH測定手段を用いて、晶析反応槽10内の反応場のpHを測定し、測定されたpHに応じて、酸またはアルカリなどのpH調整剤を槽内に添加することにより、pHを制御することができる。pHメータは、フッ化カルシウム析出反応の反応場のpHをモニタできるのであれば、晶析反応槽10のいずれの部分に設置されてもよく、原水の導入部付近、晶析反応槽10からの処理水の出口付近など特に限定されるものではない。同様にリン酸カルシウムを析出させる場合には、pH6〜13、微細粒子生成抑制などの点からpH6〜8の条件下でリン酸カルシウムを析出させることが好ましい。   In this embodiment, it is preferable to deposit a hardly soluble salt in the crystallization reaction tank 10 under the conditions of pH 2 to 11 using a calcium agent. When precipitating calcium fluoride, it is preferable to precipitate calcium fluoride under conditions of pH 2 to 3 and preferably pH 2 to 3 from the viewpoint of suppressing fine particle production. In the case where the pH changes with the calcium fluoride production reaction, it is desirable that the pH adjusting agent can be appropriately added to the crystallization reaction tank 10. The pH at the time of precipitation of calcium fluoride is determined by measuring the pH of the reaction field in the crystallization reaction tank 10 using a pH measuring means such as a pH meter, and depending on the measured pH, the pH of acid or alkali or the like. The pH can be controlled by adding a regulator to the tank. The pH meter may be installed in any part of the crystallization reaction tank 10 as long as the pH of the reaction field of the calcium fluoride precipitation reaction can be monitored. There are no particular limitations on the vicinity of the outlet of the treated water. Similarly, when calcium phosphate is precipitated, it is preferable to precipitate calcium phosphate under the conditions of pH 6 to 8 from the viewpoints of pH 6 to 13 and suppression of fine particle formation.

pH調整剤としては、塩酸、硫酸などの酸または水酸化ナトリウムなどのアルカリなどを用いることができる。   As the pH adjuster, an acid such as hydrochloric acid or sulfuric acid or an alkali such as sodium hydroxide can be used.

原水、晶析剤、pH調整剤の晶析反応槽10への添加は、原水、晶析剤、pH調整剤、を晶析反応槽10に添加できるものであれば任意の態様が可能である。また、原水添加配管14、晶析剤添加配管16およびpH調整剤添加配管18は、晶析反応槽10の任意の部分に接続することができる。図1においては、原水添加配管14、晶析剤添加配管16およびpH調整剤添加配管18はそれぞれ1つであるが、これに限定されるものではなく、これらが複数設けられていてもよい。pH調整剤添加配管18を晶析反応槽10の任意の部位に接続し、当該配管を介してpH調整剤を晶析反応槽10の任意の部位に直接添加する態様であってもよいし、原水添加配管14または晶析剤添加配管16の少なくとも1つにpH調整剤を添加する態様であってもよい。   The raw water, the crystallization agent, and the pH adjusting agent can be added to the crystallization reaction tank 10 as long as the raw water, the crystallization agent, and the pH adjusting agent can be added to the crystallization reaction tank 10. . The raw water addition pipe 14, the crystallization agent addition pipe 16, and the pH adjuster addition pipe 18 can be connected to any part of the crystallization reaction tank 10. In FIG. 1, the raw water addition pipe 14, the crystallization agent addition pipe 16, and the pH adjuster addition pipe 18 are each one, but the present invention is not limited to this, and a plurality of these may be provided. The aspect which connects the pH adjuster addition piping 18 to the arbitrary site | parts of the crystallization reaction tank 10, and adds a pH adjuster directly to the arbitrary site | parts of the crystallization reaction tank 10 through the said piping may be sufficient, The aspect which adds a pH adjuster to at least 1 of the raw | natural water addition piping 14 or the crystallization agent addition piping 16 may be sufficient.

本実施形態において、晶析反応槽10に反応槽内の反応液を撹拌する撹拌翼32などを備える撹拌装置30を設け、撹拌翼32の近傍、すなわち撹拌翼32の撹拌流によって晶析反応槽10の反応液が素早く拡散しうる領域に、原水および晶析剤のうち少なくとも1つを注入することが好ましい。例えば、原水および晶析剤のうち少なくとも1つの注入点が、撹拌翼32などによる撹拌流速が大きい領域に設けられること、撹拌翼32などの近傍に設けられることが好ましい。特に、原水および晶析剤のうち少なくとも1つの注入点の、撹拌翼32の回転軸方向の高さは、撹拌翼32の回転中心から、撹拌翼32の回転半径の2倍以内の距離であることが好ましい。また、撹拌翼32の回転径方向の位置は、撹拌翼32の回転中心から、撹拌翼32の回転半径の2倍以内の距離であることが好ましい。さらに、中心が撹拌翼32の回転中心であって、半径が撹拌翼32の回転半径の2倍である球状の領域内に設けられることが好ましい。これにより、晶析対象物質や晶析剤は、晶析反応槽10内へ注入されると直ちに拡散され、その濃度が素早く低下する。このため、形成された難溶性塩が液中に直接析出することが少なくなり、粒状種晶上の難溶性塩の結晶として液中の晶析対象物質をじっくりと取り込むことができる。したがって、処理水に混入する難溶性塩の微細粒子の量を極めて少なくすることができ、粒径の大きな難溶性塩粒子を安定的に得て、晶析対象物質の回収率を大きく向上させることができる。   In the present embodiment, the crystallization reaction tank 10 is provided with a stirring device 30 including a stirring blade 32 for stirring the reaction liquid in the reaction tank, and the crystallization reaction tank is provided in the vicinity of the stirring blade 32, that is, by the stirring flow of the stirring blade 32. It is preferable to inject at least one of raw water and a crystallization agent into a region where the ten reaction liquids can diffuse quickly. For example, it is preferable that at least one injection point of the raw water and the crystallization agent is provided in a region where the stirring flow velocity by the stirring blade 32 or the like is large, or provided in the vicinity of the stirring blade 32 or the like. In particular, the height in the rotational axis direction of the stirring blade 32 of at least one injection point of the raw water and the crystallization agent is a distance within twice the rotation radius of the stirring blade 32 from the rotation center of the stirring blade 32. It is preferable. In addition, the position of the stirring blade 32 in the direction of the rotation diameter is preferably a distance within twice the rotation radius of the stirring blade 32 from the rotation center of the stirring blade 32. Furthermore, it is preferable that the center is provided in a spherical region whose center is the rotation center of the stirring blade 32 and whose radius is twice the rotation radius of the stirring blade 32. As a result, the crystallization target substance and the crystallization agent are immediately diffused when injected into the crystallization reaction tank 10, and the concentration thereof quickly decreases. For this reason, the formed hardly soluble salt is less likely to be directly deposited in the liquid, and the substance to be crystallized in the liquid can be taken in carefully as crystals of the hardly soluble salt on the granular seed crystal. Therefore, it is possible to extremely reduce the amount of fine particles of the hardly soluble salt mixed in the treated water, stably obtain the hardly soluble salt particles having a large particle size, and greatly improve the recovery rate of the target substance for crystallization. Can do.

また、pH調整剤の注入点も、撹拌翼32などによる撹拌流によって反応槽内に素早く拡散しうる領域に設けることが好ましい。pH調整剤を水面へ滴下するなど、撹拌流速の小さい領域にpH調整剤を注入すると、局所的にpHの高い領域が生じるため、その領域においてフッ化カルシウムなどの難溶性塩の微細粒子の直接生成を促しやすい。しかしpH調整剤を注入後に素早く拡散させるようにすれば、局所的にpHの高い領域が生じることが極めて少なくなり、晶析反応によらない難溶性塩の微細粒子の直接生成を抑制することができる。従って、pH調整剤を撹拌流速が大きい領域へ注入することで、晶析対象物質の回収率をさらに向上させることができる。   The injection point of the pH adjusting agent is also preferably provided in a region where it can be quickly diffused into the reaction vessel by the stirring flow by the stirring blade 32 or the like. When a pH adjusting agent is injected into a region where the stirring flow rate is low, such as when the pH adjusting agent is dropped onto the water surface, a region having a high pH is locally generated. In this region, fine particles of a sparingly soluble salt such as calcium fluoride are directly formed. Easy to promote generation. However, if the pH adjuster is allowed to diffuse quickly after injection, it is extremely unlikely that a region having a high pH will be generated locally, and the direct formation of fine particles of a hardly soluble salt that does not depend on the crystallization reaction can be suppressed. it can. Therefore, the recovery rate of the crystallization target substance can be further improved by injecting the pH adjuster into the region where the stirring flow rate is large.

晶析反応槽10の水面下に、筒内に撹拌装置30の撹拌翼32などが位置するようにドラフトチューブ34を設置することも好ましい。図2にドラフトチューブ34を備える晶析反応槽10の概略構成図を示す。撹拌装置30の撹拌翼32は、撹拌軸を介して伝達されるモータが発生する回転力によって回転する。   It is also preferable to install the draft tube 34 below the water surface of the crystallization reaction tank 10 so that the stirring blade 32 of the stirring device 30 and the like are positioned in the cylinder. FIG. 2 shows a schematic configuration diagram of the crystallization reaction tank 10 including the draft tube 34. The stirring blade 32 of the stirring device 30 is rotated by the rotational force generated by the motor transmitted through the stirring shaft.

このとき、撹拌翼32などはドラフトチューブ34の内側で下降流を形成するものであることが好ましい。このようにドラフトチューブ34を設置すると、チューブ下部に向けて下降流が生じ、拡散流速が比較的大きいゾーンが形成される。このため、原水や晶析剤などをより素早く拡散させることができ、原水や晶析剤の濃度が局所的に濃い領域同士が接触して、難溶性塩の微細粒子が直接生成することを極力抑制することが可能となる。   At this time, it is preferable that the stirring blades 32 and the like form a downward flow inside the draft tube 34. When the draft tube 34 is thus installed, a downward flow is generated toward the lower portion of the tube, and a zone having a relatively large diffusion flow rate is formed. For this reason, raw water and crystallization agents can be diffused more quickly, and the regions where the concentrations of raw water and crystallization agents are locally concentrated are in contact with each other to produce fine particles of sparingly soluble salt as much as possible. It becomes possible to suppress.

また、上記のようにドラフトチューブ34および撹拌翼32などを設置すると、チューブ外周部には流れのゆるやかな上向流ゾーンが形成される。このゾーンでは、粒子が分級されて小粒径の粒子はチューブ外側面に沿って上昇すると共に、チューブ上端からチューブ内部に再侵入して下降し、原水や晶析剤などの注入点付近やその下部の撹拌ゾーンへと再循環する。これら小粒径の結晶が核となって晶析反応が促進される。このため、粒径の大きな難溶性塩の結晶を安定的に形成させることが可能となり、晶析対象物質の回収率を向上させることができる。   Moreover, when the draft tube 34 and the stirring blade 32 are installed as described above, an upward flow zone with a gentle flow is formed on the outer periphery of the tube. In this zone, particles are classified so that small particles rise along the outer surface of the tube, and re-enter from the upper end of the tube to the inside of the tube and descend. Recirculate to lower stirring zone. These small-sized crystals serve as nuclei to promote the crystallization reaction. For this reason, it becomes possible to form stably the crystal | crystallization of a slightly soluble salt with a big particle size, and can improve the recovery rate of the crystallization target substance.

さらに、晶析反応が進んで粒径が大きくなった結晶は、チューブ外周部の上向流によっては上昇せずに下に沈むが、再びドラフトチューブ34内には入り込みにくいため、成長した結晶が撹拌翼32などとの衝突により破壊されてしまうことを防止することができる。このような利点も、粒径の大きな難溶性塩の結晶を安定的に得ることに寄与し、ひいては晶析対象物質の回収率の向上に寄与することができる。   Further, the crystal having a larger particle size due to the progress of the crystallization reaction does not rise due to the upward flow at the outer periphery of the tube but sinks down, but it is difficult to enter the draft tube 34 again. It is possible to prevent destruction due to collision with the stirring blade 32 or the like. Such an advantage also contributes to stably obtaining a crystal of a hardly soluble salt having a large particle size, which in turn can contribute to an improvement in the recovery rate of the crystallization target substance.

チューブ下部に撹拌流速の比較的大きいゾーンを形成し、チューブ外周部に上向流を安定的に形成するためには、撹拌翼32などが、チューブ内でチューブ下半分のいずれかに位置することが好ましい。より好ましくは、チューブ下端より少し上方の位置がよい。このような配置とすれば、撹拌流速の大きなゾーンがチューブ下端付近に渦のように形成され、さらにそこから上向流がチューブ外周部に沿って安定的に形成される。従って、原水や晶析剤などの拡散を効果的に進めることできる。   In order to form a zone with a relatively large stirring flow velocity at the bottom of the tube and to form an upward flow stably on the outer periphery of the tube, the stirring blade 32 or the like must be located in one of the lower half of the tube in the tube. Is preferred. More preferably, a position slightly above the lower end of the tube is good. With such an arrangement, a zone with a high stirring flow rate is formed like a vortex near the lower end of the tube, and an upward flow is stably formed along the outer periphery of the tube. Therefore, diffusion of raw water, a crystallization agent, etc. can be advanced effectively.

ドラフトチューブ34を設ける場合、原水や晶析剤、さらにはpH調整剤の注入点は、これらをドラフトチューブ34内の下降流に乗せて素早く効果的に拡散させるために、ドラフトチューブ34の筒内に配置することが好ましい。より好ましい位置は、ドラフトチューブ34の筒内かつ撹拌翼32などの上方である。   When the draft tube 34 is provided, the injection points of the raw water, the crystallization agent, and further the pH adjusting agent are placed in the cylinder of the draft tube 34 in order to quickly and effectively diffuse them on the downward flow in the draft tube 34. It is preferable to arrange in. A more preferable position is in the cylinder of the draft tube 34 and above the stirring blade 32 and the like.

晶析反応槽10内、固液分離槽12内または処理水中の溶解性のフッ素濃度などの晶析対象物質濃度を測定するために、フッ素濃度計などの晶析対象物質濃度測定手段を晶析反応槽10、固液分離槽12または処理水排出配管22に設置してもよい。また、晶析反応槽10内、固液分離槽12内または処理水中の溶解性カルシウムなどの晶析剤濃度を測定するために、カルシウム濃度計などの晶析剤濃度測定手段を晶析反応槽10、固液分離槽12または処理水排出配管22に設置してもよい。晶析反応槽10内、固液分離槽12内でのフッ素濃度計、カルシウム濃度計などの設置位置は特に限定されるものではないが、例えば、処理水中の濃度を測定する場合には、固液分離槽12の出口付近に設置することができる。   In order to measure the concentration of the substance to be crystallized such as the soluble fluorine concentration in the crystallization reaction tank 10, the solid-liquid separation tank 12, or in the treated water, a crystallization target substance concentration measuring means such as a fluorine concentration meter is crystallized. You may install in the reaction tank 10, the solid-liquid separation tank 12, or the treated water discharge piping 22. FIG. Further, in order to measure the concentration of the crystallization agent such as soluble calcium in the crystallization reaction tank 10, the solid-liquid separation tank 12, or the treated water, a crystallization agent concentration measuring means such as a calcium concentration meter is used as the crystallization reaction tank. 10 may be installed in the solid-liquid separation tank 12 or the treated water discharge pipe 22. The installation position of the fluorine concentration meter, the calcium concentration meter, etc. in the crystallization reaction tank 10 and the solid-liquid separation tank 12 is not particularly limited. For example, when measuring the concentration in the treated water, It can be installed near the outlet of the liquid separation tank 12.

固液分離槽12において晶析対象物質が低減された処理水は、固液分離槽12の外部に排出される。処理水は、固液分離槽12における液体の流れに従って任意の部分から排出されうる。図1では、固液分離槽12の上部から排出される処理水は、処理水排出配管22を通って最終的に系外に排出される。固液分離槽12の後段に処理水貯留槽を設置してもよい。   The treated water in which the crystallization target substance is reduced in the solid-liquid separation tank 12 is discharged to the outside of the solid-liquid separation tank 12. The treated water can be discharged from any part according to the liquid flow in the solid-liquid separation tank 12. In FIG. 1, the treated water discharged from the upper part of the solid-liquid separation tank 12 is finally discharged out of the system through the treated water discharge pipe 22. You may install a treated water storage tank in the back | latter stage of the solid-liquid separation tank 12. FIG.

得られる処理水において、例えばフッ素濃度は、フッ化カルシウムなどの非溶解性フッ素を含む全フッ素として通常500mg−F/L以下、溶解性のフッ素イオンとして通常50mg−F/L以下程度であり、リン濃度は、リン酸カルシウムなどの非溶解性リンを含む全リンとして通常50mg−P/L以下、溶解性のリン酸イオンとして通常5mg−P/L以下程度である。カルシウム濃度は、晶析対象物質がフッ素の場合はpH2〜3で、溶解性のカルシウムイオンとして通常50mg−Ca/L程度であり、晶析対象物質がリンの場合はpH6〜8で、溶解性のカルシウムイオンとして通常10mg−Ca/L程度であるが、これらに限定されるものではない。   In the treated water obtained, for example, the fluorine concentration is usually about 500 mg-F / L or less as total fluorine containing insoluble fluorine such as calcium fluoride, and usually about 50 mg-F / L or less as soluble fluorine ions, The phosphorus concentration is generally about 50 mg-P / L or less as total phosphorus including insoluble phosphorus such as calcium phosphate, and is usually about 5 mg-P / L or less as soluble phosphate ions. The calcium concentration is pH 2 to 3 when the crystallization target substance is fluorine, and is usually about 50 mg-Ca / L as soluble calcium ion, and is pH 6 to 8 when the crystallization target substance is phosphorus and is soluble. The calcium ion is usually about 10 mg-Ca / L, but is not limited thereto.

原水を処理して得られた処理水をさらに沈殿槽において処理してもよい。沈殿槽においては、例えば晶析対象物質がフッ素の場合、pHを3〜12、好ましくは4〜11とすることでフッ化カルシウムを生成させて、フッ素を沈殿除去することにより、さらにフッ素濃度が低減された処理水を得ることができる。例えば晶析対象物質がリンの場合、pHを8〜13、好ましくは9〜12とすることでリン酸カルシウムを生成させて、リンを沈殿除去することにより、さらにリン濃度が低減された処理水を得ることができる。   The treated water obtained by treating the raw water may be further treated in a precipitation tank. In the precipitation tank, for example, when the substance to be crystallized is fluorine, by adjusting the pH to 3 to 12, preferably 4 to 11, calcium fluoride is generated and the fluorine is precipitated and removed, thereby further increasing the fluorine concentration. Reduced treated water can be obtained. For example, when the crystallization target substance is phosphorus, the pH is adjusted to 8 to 13, preferably 9 to 12, calcium phosphate is generated, and phosphorus is precipitated and removed to obtain treated water with further reduced phosphorus concentration. be able to.

本実施形態に係る晶析反応装置では、晶析反応槽と固液分離槽とを分離して、晶析反応槽10内で難溶性塩の結晶を析出させ、固液分離槽12内で固液分離することにより、原水中の晶析対象物質が難溶性塩の結晶として回収され、晶析対象物質が低減された処理水が得られる。本実施形態においては、晶析対象物質の回収率(1−(処理水中の晶析対象物質量/原水中の晶析対象物質量))として、好ましくは80%以上、より好ましくは85%以上、さらにより好ましくは90%以上を達成できる。   In the crystallization reaction apparatus according to the present embodiment, the crystallization reaction tank and the solid-liquid separation tank are separated, and crystals of hardly soluble salts are precipitated in the crystallization reaction tank 10, and are solidified in the solid-liquid separation tank 12. By performing liquid separation, the crystallization target substance in the raw water is recovered as a hardly soluble salt crystal, and treated water in which the crystallization target substance is reduced is obtained. In the present embodiment, the recovery rate of the crystallization target substance (1- (amount of crystallization target substance in treated water / amount of crystallization target substance in raw water)) is preferably 80% or more, more preferably 85% or more. Even more preferably, 90% or more can be achieved.

なお、晶析対象物質含有原水の処理において、凝集反応槽と沈殿槽とを設置し、沈殿槽の汚泥を凝集反応槽に循環する場合があるが、この場合は、凝集反応槽と沈殿槽との間で、無機凝集剤および高分子凝集剤のうち少なくとも1つを添加し、発生粒子を粗大化させて沈殿分離する点、得られる結晶の純度が低く、回収再利用が困難である点で、本実施形態に係る晶析反応装置とは異なる。   In the treatment of raw water containing the substance to be crystallized, there are cases where a coagulation reaction tank and a precipitation tank are installed, and the sludge in the precipitation tank is circulated to the coagulation reaction tank. In the meantime, at least one of an inorganic flocculant and a polymer flocculant is added, the generated particles are coarsened and separated by precipitation, and the purity of the resulting crystals is low, making recovery and reuse difficult. This is different from the crystallization reaction apparatus according to this embodiment.

以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。   Hereinafter, although an example and a comparative example are given and the present invention is explained more concretely in detail, the present invention is not limited to the following examples.

(実施例1〜4)
図1のような実験装置を用い、表1の条件で、固液分離槽の仕様、固液分離槽における返送配管の設置位置を変化させて実験を行い、処理水のフッ素濃度、フッ素回収率を比較した。実験結果を表1に示す。晶析反応槽は共通の仕様のものを用い、実施例1,2では、直胴部径25cmφ、下部60°のコーン状、水平断面積491cmの固液分離槽を用い、実施例3,4では、直胴部径50cmφ、下部60°のコーン状、水平断面積1963cmの固液分離槽を用いた。実施例1,3では、固液分離槽の底部の返送配管から結晶を晶析反応槽へ返送し、実施例2,4では、固液分離槽の中間部(固液分離槽の高さの約半分の位置)の返送配管から結晶を晶析反応槽へ返送した。実施例2,4では、上澄液と結晶との界面の変動の最低レベルを、返送配管の接続部付近に合わせるように調整して運転した。
(Examples 1-4)
Using the experimental apparatus as shown in Fig. 1, the experiment was conducted by changing the specifications of the solid-liquid separation tank and the installation position of the return pipe in the solid-liquid separation tank under the conditions shown in Table 1, and the fluorine concentration of the treated water and the fluorine recovery rate Compared. The experimental results are shown in Table 1. The crystallization reaction tank has a common specification. In Examples 1 and 2, a solid-liquid separation tank having a straight barrel diameter of 25 cmφ, a cone shape with a bottom of 60 °, and a horizontal cross-sectional area of 491 cm 2 was used. In No. 4, a solid-liquid separation tank having a straight body diameter of 50 cmφ, a cone shape with a lower portion of 60 °, and a horizontal cross-sectional area of 1963 cm 2 was used. In Examples 1 and 3, the crystals are returned to the crystallization reaction tank from the return pipe at the bottom of the solid-liquid separation tank. In Examples 2 and 4, the intermediate part of the solid-liquid separation tank (the height of the solid-liquid separation tank is The crystal was returned to the crystallization reaction tank from the return pipe at about half the position. In Examples 2 and 4, the operation was performed by adjusting the minimum level of fluctuation at the interface between the supernatant and the crystal so as to match the vicinity of the connection portion of the return pipe.

原水添加配管、晶析剤添加配管およびpH調整剤添加配管の注入点を、晶析反応槽の撹拌翼近傍(撹拌翼の回転中心に対して100mm高い位置で、かつ撹拌翼の回転中心から回転方向へ100mmの位置(撹拌翼の回転中心からの距離が回転半径の1.25倍))に設置した。また、使用したドラフトチューブは直径が200mmで、上端が水面から150mm、下端が撹拌翼下160mmに位置するように設置した。なお、ここでいう処理水フッ素濃度は、SS性のフッ素(=フッ化カルシウム)と溶解性のフッ素を含む全フッ素濃度である。   The injection point of the raw water addition pipe, the crystallization agent addition pipe and the pH adjuster addition pipe is near the stirring blade of the crystallization reaction tank (rotated from the rotation center of the stirring blade at a position 100 mm higher than the rotation center of the stirring blade). In the direction of 100 mm (the distance from the rotation center of the stirring blade is 1.25 times the rotation radius). The used draft tube was 200 mm in diameter, installed so that the upper end was 150 mm from the water surface and the lower end was located 160 mm below the stirring blade. The treated water fluorine concentration referred to here is the total fluorine concentration including SS-type fluorine (= calcium fluoride) and soluble fluorine.

<実験条件>
原水:フッ酸含有排水
晶析剤:塩化カルシウム溶液
pH調整剤:水酸化ナトリウム水溶液
晶析反応槽pH:2.0〜2.5
フッ酸含有排水のフッ素濃度:10000mg/L
フッ酸含有排水流量:30L/hr
処理水流量:45L/hr
結晶返送流量:4.5L/hr
結晶引抜き量:15L/回、17時間に1回、晶析反応槽底部から引抜き
晶析反応槽結晶濃度:上記の量で結晶引抜きを行った場合、50〜75wt/wt%程度であった。
<Experimental conditions>
Raw water: Hydrofluoric acid-containing wastewater Crystallizer: Calcium chloride solution pH adjuster: Sodium hydroxide aqueous solution Crystallization reactor pH: 2.0 to 2.5
Fluorine concentration in hydrofluoric acid-containing wastewater: 10,000 mg / L
Hydrofluoric acid-containing wastewater flow rate: 30 L / hr
Treated water flow rate: 45L / hr
Crystal return flow rate: 4.5 L / hr
Crystal withdrawal amount: 15 L / times, once every 17 hours, drawn from the bottom of the crystallization reaction tank Crystallization reaction tank crystal concentration: When the crystal withdrawal was performed in the above amount, it was about 50 to 75 wt / wt%.

なお、処理水流量は、晶析剤およびpH調整剤を添加するため、フッ酸含有排水流量に比べて増加する。   In addition, since a crystallizer and a pH adjuster are added, the treated water flow rate increases compared to the hydrofluoric acid-containing wastewater flow rate.

また、晶析反応槽結晶濃度は、固液分離槽における上澄液と結晶との界面の高さで制御した。界面の高さが高くなれば、結晶を引抜いて界面高さを下げた(結晶濃度が薄くなる)。晶析反応が進んで結晶が成長すると、時間の経過と共に界面は上昇してきた(結晶濃度が濃くなる)。   The crystal concentration in the crystallization reaction tank was controlled by the height of the interface between the supernatant and the crystal in the solid-liquid separation tank. When the height of the interface was increased, the crystal was pulled out to lower the interface height (crystal concentration was reduced). As the crystallization reaction progresses and the crystal grows, the interface increases with the passage of time (the crystal concentration increases).

(比較例1,2)
図4のような晶析反応槽と沈殿部とが一体化された実験装置を用い、表1の条件で、沈殿部の仕様を変化させて実験を行い、処理水のフッ素濃度、フッ素回収率を比較した。実験結果を表1に示す。晶析反応槽は実施例と共通の仕様のものを用い、比較例1では、沈殿部の水平断面積500cmのものを用い、比較例2では、沈殿部の水平断面積2000cmのものを用いた。
(Comparative Examples 1 and 2)
Using an experimental apparatus in which the crystallization reaction tank and the precipitation part as shown in FIG. 4 are integrated, the experiment is performed by changing the specifications of the precipitation part under the conditions shown in Table 1, and the fluorine concentration of the treated water and the fluorine recovery rate Compared. The experimental results are shown in Table 1. The crystallization reaction tank has the same specifications as those of the Examples. In Comparative Example 1, a precipitation section having a horizontal sectional area of 500 cm 2 is used. In Comparative Example 2, a precipitation section having a horizontal sectional area of 2000 cm 2 is used. Using.

Figure 2009226232
Figure 2009226232

このように、実施例1〜4では、比較例1,2に比べて処理水のフッ素濃度が低下し、フッ素回収率が向上した。また、固液分離槽の底部から結晶を晶析反応槽へ返送した実施例1,3に比べて、固液分離槽の中間部の界面付近から結晶を晶析反応槽へ返送した実施例2,4では、さらに処理水のフッ素濃度が低下し、フッ素回収率が向上した。   As described above, in Examples 1 to 4, the fluorine concentration of the treated water was reduced as compared with Comparative Examples 1 and 2, and the fluorine recovery rate was improved. Further, in comparison with Examples 1 and 3 in which crystals were returned to the crystallization reaction tank from the bottom of the solid-liquid separation tank, Example 2 in which crystals were returned to the crystallization reaction tank from the vicinity of the interface in the middle part of the solid-liquid separation tank. , 4, the fluorine concentration of the treated water further decreased and the fluorine recovery rate improved.

本発明の実施形態に係る晶析反応装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the crystallization reaction apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る晶析反応装置における晶析反応槽の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the crystallization reaction tank in the crystallization reaction apparatus which concerns on embodiment of this invention. 従来の流動床型の晶析反応装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional fluidized bed type crystallization reaction apparatus. 従来の撹拌式の晶析反応装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the conventional stirring type crystallization reaction apparatus.

符号の説明Explanation of symbols

1,100 晶析反応装置、10,102 晶析反応槽、12 固液分離槽、14 原水添加配管、16 晶析剤添加配管、18 pH調整剤添加配管、20 反応液送液配管、22 処理水排出配管、24,26,48 返送配管、28,52,54 引抜配管、30,104 撹拌装置、32,108 撹拌翼、34,106 ドラフトチューブ、36 pHメータ、38 ポンプ、40,42,44,46,56 バルブ、50 配管、110 沈殿部、112 界面。   1,100 crystallization reaction apparatus, 10,102 crystallization reaction tank, 12 solid-liquid separation tank, 14 raw water addition pipe, 16 crystallization agent addition pipe, 18 pH adjuster addition pipe, 20 reaction liquid feed pipe, 22 treatment Water discharge pipe, 24, 26, 48 Return pipe, 28, 52, 54 Pull-out pipe, 30, 104 Stirrer, 32, 108 Stirrer blade, 34, 106 Draft tube, 36 pH meter, 38 Pump, 40, 42, 44 46,56 Valve, 50 piping, 110 sedimentation section, 112 interface.

Claims (3)

晶析対象物質を含む原水に晶析剤を添加して難溶性塩の結晶を生成させる晶析反応装置であって、
前記原水に前記晶析剤を添加して難溶性塩の結晶を生成させるための晶析反応槽と、
上向流を形成して、前記晶析反応槽から送液された反応液を流動させながら固液分離するための固液分離槽と、
前記晶析反応槽から前記固液分離槽へ前記反応液を送液する反応液送液手段と、
前記固液分離槽から前記晶析反応槽へ前記固液分離した難溶性塩の結晶の少なくとも一部を返送する返送手段と、
を備えることを特徴とする晶析反応装置。
A crystallization reaction apparatus that generates a crystal of a hardly soluble salt by adding a crystallization agent to raw water containing a substance to be crystallized,
A crystallization reaction tank for adding the crystallization agent to the raw water to form crystals of a hardly soluble salt;
A solid-liquid separation tank for forming an upward flow and separating the liquid and liquid while flowing the reaction liquid sent from the crystallization reaction tank;
A reaction liquid feeding means for feeding the reaction liquid from the crystallization reaction tank to the solid-liquid separation tank;
A return means for returning at least a part of the solid-liquid separated crystals of the hardly soluble salt from the solid-liquid separation tank to the crystallization reaction tank;
A crystallization reaction apparatus comprising:
請求項1に記載の晶析反応装置であって、
前記反応液送液手段は、前記晶析反応槽の上部から前記固液分離槽の下部へ前記反応液を送液することを特徴とする晶析反応装置。
The crystallization reaction apparatus according to claim 1,
The crystallization reaction apparatus, wherein the reaction solution feeding means sends the reaction solution from an upper part of the crystallization reaction tank to a lower part of the solid-liquid separation tank.
請求項1または2に記載の晶析反応装置であって、
前記返送手段は、前記固液分離槽の下部および中間部のうち少なくとも1つから前記晶析反応槽へ前記固液分離した難溶性塩の結晶の少なくとも一部を返送することを特徴とする晶析反応装置。
The crystallization reaction apparatus according to claim 1 or 2,
The return means returns at least a part of the crystals of the hardly soluble salt separated into the solid-liquid separation from at least one of the lower part and the intermediate part of the solid-liquid separation tank to the crystallization reaction tank. Analysis reaction equipment.
JP2008070963A 2008-03-19 2008-03-19 Crystallization reactor Active JP5222596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070963A JP5222596B2 (en) 2008-03-19 2008-03-19 Crystallization reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008070963A JP5222596B2 (en) 2008-03-19 2008-03-19 Crystallization reactor

Publications (2)

Publication Number Publication Date
JP2009226232A true JP2009226232A (en) 2009-10-08
JP5222596B2 JP5222596B2 (en) 2013-06-26

Family

ID=41242301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070963A Active JP5222596B2 (en) 2008-03-19 2008-03-19 Crystallization reactor

Country Status (1)

Country Link
JP (1) JP5222596B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220386A (en) * 2012-04-17 2013-10-28 Japan Organo Co Ltd Crystallization reaction apparatus and crystallization reaction method
WO2023053780A1 (en) * 2021-09-28 2023-04-06 月島機械株式会社 Crystallization method and crystallization apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326089A (en) * 2001-05-08 2002-11-12 Ebara Corp Method and apparatus for removing phosphorus
JP2002370094A (en) * 2001-06-15 2002-12-24 Ebara Corp Phosphorus removing method and apparatus therefor
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP2005074248A (en) * 2003-08-28 2005-03-24 Ebara Corp Method and device for collecting and transferring crystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002326089A (en) * 2001-05-08 2002-11-12 Ebara Corp Method and apparatus for removing phosphorus
JP2002370094A (en) * 2001-06-15 2002-12-24 Ebara Corp Phosphorus removing method and apparatus therefor
WO2004067139A1 (en) * 2003-01-31 2004-08-12 Ebara Corporation Method and apparatus for removing ion in fluid by crystallization
JP2005074248A (en) * 2003-08-28 2005-03-24 Ebara Corp Method and device for collecting and transferring crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220386A (en) * 2012-04-17 2013-10-28 Japan Organo Co Ltd Crystallization reaction apparatus and crystallization reaction method
WO2023053780A1 (en) * 2021-09-28 2023-04-06 月島機械株式会社 Crystallization method and crystallization apparatus

Also Published As

Publication number Publication date
JP5222596B2 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
JP4748584B2 (en) Method and apparatus for removing ions in liquid by crystallization method
JP4519485B2 (en) Phosphorus recovery method and apparatus
JP5058129B2 (en) Crystallization reaction method
JP4647640B2 (en) Crystallization reactor and crystallization reaction method
JP2010207755A (en) Apparatus for treating fluorine-containing water
JP5414169B2 (en) Crystallization reactor and crystallization reaction method
JP5222596B2 (en) Crystallization reactor
JP3977757B2 (en) Dephosphorization method of waste water
JP2007244995A (en) Treatment equipment of digestion sludge
JP2009119382A (en) Crystallization reactor and crystallization reaction method
JP5941329B2 (en) Crystallization reactor and crystallization reaction method
JP5162210B2 (en) Crystallization reactor and crystallization reaction method
JP5421528B2 (en) Crystallization reactor and crystallization reaction method
JP5650164B2 (en) Crystallization reactor and crystallization reaction method
JP2008183562A (en) Dephosphorization apparatus
JP4104874B2 (en) Crystallization method using calcium hydroxide
JP5139376B2 (en) Crystallization reaction method, crystallization reaction apparatus and calcium agent
JP5917917B2 (en) Crystallization reactor
JP2002292202A (en) Crystallization reaction apparatus provided with means for recovering crystallization-reactive component
WO2014207837A1 (en) Crystallization reactor
JP4601644B2 (en) Crystallization reactor and crystallization reaction method
JP5276898B2 (en) Fluorine and ammonia recovery device and recovery method
JP4369083B2 (en) Crystallization reactor management method
JPH1110166A (en) Dephosphorization device
TWI566827B (en) Crystallization reaction device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130311

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5222596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250