JP4576069B2 - Multi-hole machining method - Google Patents

Multi-hole machining method Download PDF

Info

Publication number
JP4576069B2
JP4576069B2 JP2001121382A JP2001121382A JP4576069B2 JP 4576069 B2 JP4576069 B2 JP 4576069B2 JP 2001121382 A JP2001121382 A JP 2001121382A JP 2001121382 A JP2001121382 A JP 2001121382A JP 4576069 B2 JP4576069 B2 JP 4576069B2
Authority
JP
Japan
Prior art keywords
finishing
tool
holes
hole
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001121382A
Other languages
Japanese (ja)
Other versions
JP2002307216A (en
Inventor
亮一 高見
辰美 加藤
勝紀 下之薗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Toyota Motor Corp
Original Assignee
JTEKT Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp, Toyota Motor Corp filed Critical JTEKT Corp
Priority to JP2001121382A priority Critical patent/JP4576069B2/en
Publication of JP2002307216A publication Critical patent/JP2002307216A/en
Application granted granted Critical
Publication of JP4576069B2 publication Critical patent/JP4576069B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling And Boring (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば内燃機関のシリンダブロックのシリンダボアのように同一ピッチで整列して配置された複数個の穴を加工する方法と、この加工方法を実施するのに使用する中ぐり加工装置に関する。
【0002】
【従来の技術】
例えば直列4気筒の内燃機関のシリンダブロックのシリンダボアを加工する場合には、従来は図1および図2に示すような中ぐり加工装置を使用して、図8に示すような動作サイクルにより加工を行っていた。先ずこの従来技術の説明をする。この中ぐり加工装置はトランスファマシンの一つの加工ステーションを構成するもので、ベース10上に起立固定されたコラム11の前面に固定したヘッドベース12には主軸ヘッド13が昇降自在に案内支持されて、送り機構15を介してサーボモータ14により昇降されるようになっている。主軸ヘッド13には互いに平行で垂直な1対の工具主軸17A,17Bが、シリンダブロック(ワーク)Wのシリンダボァ(穴)Wa1〜Wa4のピッチの2倍のピッチで、図2の紙面と平行な方向に配置され、主軸ヘッド13に設けたギヤボックス13aを介して主軸モータ18により回転駆動されるようになっている。支持桁21を介してベース10に支持された治具ユニット20の治具テーブル23上には、シリンダブロックWが前の加工ステーションから図2の紙面と平行に延びるトランスファバー25により搬入されてクランプされる。治具テーブル23は図2の紙面と平行な水平方向に移動可能である。
【0003】
この従来技術では、各工具主軸17A,17Bの下端に装着されてシリンダブロックWのシリンダボァWa1〜Wa4を加工するクイルは中仕上げ刃具と精仕上げ刃具を備えている。精仕上げ刃具はその刃先の回転半径が所定の精仕上げ加工回転半径とそれより小さい回転半径の間で変化するように半径方向に進退するように構成されているが、精仕上げ刃具より軸線方向で前側となる位置においてクイルに固定された中仕上げ刃具の刃先の回転半径は、精仕上げ刃具の精仕上げ加工回転半径と減少された回転半径の間となる一定値である。
【0004】
次にその作用を図8により説明する。先ず図8の工程kにおいて、加工済みのシリンダブロックWを搬出し未加工のシリンダブロックWを搬入して治具テーブル23にクランプした状態で、治具テーブル23を水平方向に移動してシリンダブロックWをその第1および第3ボアWa1,Wa3が各クイル30A,30Bと同軸的となる位置に割り出し、精仕上げ刃具を半径方向に後退させてその刃先の回転半径を中仕上げ加工回転半径より小として、各工具主軸17A,17Bを主軸モータ18により回転駆動する。この状態でサーボモータ14を作動させて主軸ヘッド13を下降させ、各クイル30A,30Bを装着した各工具主軸17A,17Bを先ず早送りでシリンダブロックWに接近させた後、所定の下降速度でシリンダブロックWに向かって前進(下降)させて、各中仕上げ刃具により第1および第3ボアWa1,Wa3の中仕上げ加工を行う(工程l参照)。次いで精仕上げ刃具を半径方向に前進させてその刃先の回転半径を精仕上げ加工回転半径とし(工程m参照)、各工具主軸17A,17Bを後退させて精仕上げ刃具により第1および第3ボアWa1,Wa3の精仕上げ加工を行う(工程n参照)。
【0005】
この精仕上げ加工の後、各工具主軸17A,17Bを所定位置まで早戻し後退させてから、前述した工程kと同様にして治具テーブル23を移動してシリンダブロックWの第2および第4ボアWa2,Wa4を各クイル30A,30Bと同軸的となる位置に割り出し、精仕上げ刃具を半径方向に後退させてから(工程o参照)、各工具主軸17A,17Bを早送りでシリンダブロックWに接近させ、次いで所定の下降速度で前進させて、各中仕上げ刃具により第2および第4ボアWa2,Wa4の中仕上げ加工を行う(工程p参照)。次いで前述した工程mと同様にして精仕上げ刃具を半径方向に前進させてから(工程q参照)、各工具主軸17A,17Bを後退させて精仕上げ刃具により第2および第4ボアWa2,Wa4の精仕上げ加工を行う(工程r参照)。そして各工具主軸17A,17Bを所定位置まで早戻し後退させて、最初の工程kに戻す。
【0006】
上述した例では、各ボァWa1〜Wa4は予め荒仕上げされたものであるが、各クイル30A,30Bに刃先の回転半径が中仕上げ加工回転半径より小さくかつ中仕上げ刃具より前進方向前側に位置する荒仕上げ刃具をさらに設けて、中仕上げ加工と同時に荒仕上げ加工を行うようにしてもよい。
【0007】
【発明が解決しようとする課題】
上述した従来技術の加工方法によれば、剛性のあるシリンダブロックWの場合は特に問題なく加工できる。しかし最近は軽量化などのためにシリンダブロックを薄肉化したりあるいはボアライナを鋳ぐるんだアルミダイキャスト製シリンダブロックの採用が行われており、これによりシリンダボア回りの剛性が低下するため、上述した加工方法では加工精度を確保できないという問題が生じている。
すなわち、第1および第3ボアWa1,Wa3は、中仕上げ加工および精仕上げ加工により一旦は所定の精度に仕上げ加工されるが、これに続く第2および第4ボアWa2,Wa4の中仕上げ加工および精仕上げ加工、特に切り込み量の大きい中仕上げ加工により生じる残留歪みにより第1および第3ボアWa1,Wa3の仕上げ精度が低下するという問題がある。本発明はこのような問題を解決することを目的とする。
【0008】
【課題を解決するための手段】
このために、本発明による複数穴の加工方法は、請求項1に記載のように、
1つのワークに互いに平行に同一ピッチで並んだ複数個の穴を加工する方法であって、穴の個数の整数分の一の本数でかつ穴のピッチの整数倍のピッチで互いに平行に並んだ回転軸線を中心として一緒に回転する中仕上げ刃具および精仕上げ刃具を回転軸線方向に移動して、その刃具では未加工の穴に順次挿入して加工する複数穴の加工方法において、
各穴の中仕上げ加工は、中仕上げ刃具の刃先を所定の中仕上げ加工回転半径とし、かつ精仕上げ刃具の刃先の回転半径を中仕上げ加工回転半径より小として、各刃具を中仕上げ刃具では未加工の穴に順次前進挿入する複数の中仕上げ工程により行い、
最後を除く中仕上げ工程の直後には各刃具は各刃先の回転半径を中仕上げ加工回転半径より小として軸線方向に後退させ、
各穴の精仕上げ加工は、最後の中仕上げ工程の終了直後に精仕上げ刃具の刃先の回転半径を中仕上げ加工回転半径より大きい所定の精仕上げ加工回転半径として各刃具を軸線方向に後退させる最初の精仕上げ工程により先ず最後に中仕上げ加工された穴について行い、最後を除く中仕上げ工程で中仕上げ加工された各穴については各刃具の各刃先の回転半径を中仕上げ加工回転半径より小として各穴に前進挿入してから精仕上げ刃具の刃先の回転半径を精仕上げ加工回転半径として軸線方向に後退させる精仕上げ工程により行う
ことを特徴とするものである。
【0009】
請求項1に記載の複数穴の加工方法は、請求項2に記載のように、ワークは内燃機関のシリンダブロックであり、複数個の穴は整列して配置された4個以上の偶数個のシリンダボアであることが好ましい。
【0010】
請求項1または請求項2に記載の複数穴の加工方法は、請求項3に記載のように、最後を除く中仕上げ工程の直後に行う各刃具の後退は早戻しにより行い、最後を除く中仕上げ工程で中仕上げされた各穴についての精仕上げ工程に先立つ各刃具の挿入は早送りにより行うことが好ましい。
【0011】
請求項1〜請求項3の何れか1項に記載の複数穴の加工方法は、請求項4に記載のように、各回転軸線を中心として各刃具と一緒に回転し刃先の回転半径が中仕上げ加工回転半径より小さくかつ中仕上げ刃具より前進方向前側に位置する荒仕上げ刃具により、中仕上げ工程において穴の荒仕上げ加工をも行うことが好ましい。
【0012】
請求項1〜請求項4の何れか1項に記載の複数穴の加工方法は、請求項5に記載のように、回転軸線のピッチは複数個の穴のピッチの2倍であり、回転軸線の本数は複数個の穴の個数の半分であることが好ましい。
【0018】
また本発明による複数穴の加工方法は、請求項11に記載のように、
1つのワークに互いに平行に並んだ複数個の穴を加工する方法であって、1本の回転軸線を中心として一緒に回転する中仕上げ刃具および精仕上げ刃具を回転軸線方向に移動して、その刃具では未加工の穴に順次挿入して加工する複数穴の加工方法において、
各穴の中仕上げ加工は、中仕上げ刃具の刃先を所定の中仕上げ加工回転半径とし、かつ精仕上げ刃具の刃先の回転半径を中仕上げ加工回転半径より小として、各刃具を中仕上げ刃具では未加工の穴に順次前進挿入する複数の中仕上げ工程により行い、
最後を除く中仕上げ工程の直後には各刃具は各刃先の回転半径を中仕上げ加工回転半径より小として軸線方向に後退させ、
各穴の精仕上げ加工は、最後の中仕上げ工程の終了直後に精仕上げ刃具の刃先の回転半径を中仕上げ加工回転半径より大きい所定の精仕上げ加工回転半径として各刃具を軸線方向に後退させる最初の精仕上げ工程により先ず最後に中仕上げ加工された穴について行い、最後を除く中仕上げ工程で中仕上げ加工された各穴については各刃具の各刃先の回転半径を中仕上げ加工回転半径より小として各穴に前進挿入してから精仕上げ刃具の刃先の回転半径を精仕上げ加工回転半径として軸線方向に後退させる精仕上げ工程により行う
ようにしてもよい。
【0020】
以下に図1〜図7に示す実施の形態により、本発明による複数穴の加工方法の説明をする。この実施の形態は、本発明を直列4気筒の内燃機関のシリンダブロックのシリンダボアの加工に適用したものである。
【0021】
先ずこの実施形態に使用する中ぐり加工装置の説明をする。の中ぐり加工装置は、クイル30A,30Bおよび刃具41,46を作動させる装置を除き、前述した従来技術で説明したものと実質的に同じであり、ベース10とコラム11とヘッドベース12と、ヘッドベース12に昇降自在に案内支持されて送り機構15を介してサーボモータ14により垂直に昇降される主軸ヘッド13を備えている。主軸ヘッド13には互いに平行で垂直な回転軸線を有する1対の工具主軸17A,17Bが、シリンダブロック(ワーク)Wのシリンダボァ(穴)Wa1〜Wa4のピッチの2倍のピッチで、図2の紙面と平行な方向に間を隔てて配置され、主軸ヘッド13に設けたギヤボックス13aを介して主軸モータ18により回転駆動されるようになっている。各工具主軸17A,17Bには、後述する作動軸50を挿通する内孔17a(図6参照)が同軸的に形成されている。支持桁21を介してベース10に支持された治具ユニット20には、図2の紙面と平行な水平方向に移動可能に治具テーブル23が支持され、前の加工ステーションから図2の紙面と平行に延びるトランスファバー25により搬入されたシリンダブロックWは治具テーブル23上にクランプされる。
【0022】
各工具主軸17A,17Bの下端には、シリンダブロックWの各シリンダボァWa1〜Wa4を加工する荒仕上げ刃具36と中仕上げ刃具41と精仕上げ刃具46がそれぞれ設けられた第1クイル30Aおよび第2クイル30Bがそれぞれ同軸的に装着されている。この各クイル30A,30Bは同一であるので、第1クイル30Aを図3〜図5により説明する。第1クイル30Aは同軸的に貫通する内孔30aが形成された円筒状で、その先端は丸いブロック30bにより閉じられている。第1クイル30Aの先端付近の外周面には、クイル30Aの回転軸線と平行に、各1つの第1取付面31aおよび第3取付面31cと2つの第2取付面31bが90度おきに線対称的に形成されている。各取付面31a〜31cの断面形状は何れも同一のL字形であり、第1取付面31aと第3取付面31cは180度おきに形成され、この両取付面31a,31cの間に各第2取付面31bが形成されている。
【0023】
第1取付面31aの工具主軸17A側には剛性のある角棒状の荒仕上げ刃具ホルダ35の一端がボルト37により固定され、ブロック30b側に延びる先端部には荒仕上げ刃具36が固着されている(図3および図4参照)。同様に、各第2取付面31bおよび第3取付面31cには、それぞれ角棒状の中仕上げ刃具ホルダ40および精仕上げ刃具ホルダ45の一端がボルト44,49により固定され、各刃具ホルダ40,45のブロック30b側先端部には、それぞれ中仕上げ刃具41および精仕上げ刃具46が固着されている。この中仕上げ刃具ホルダ40と精仕上げ刃具ホルダ45には、ボルト44,49による固定部と各刃具41,46の取付部分との間に、取付面31b,31c側から切込みを設けることにより、各刃具41,46を設けた先端部が半径方向外向きに弾性的に撓むのを可能とする可撓部40a,45aが形成されている。従って荒仕上げ刃具36の刃先の回転半径は一定であるが、中仕上げ刃具41および精仕上げ刃具46の各刃先の回転半径は可変である。また精仕上げ刃具46と中仕上げ刃具41と荒仕上げ刃具36の各刃先は、この順に第1クイル30Aの先端側(シリンダブロックWに向かう側)となるように配置されている。
【0024】
主軸ヘッド13の後側(上側)から工具主軸17Aに挿入した作動軸50は、軸線方向に案内溝51を形成した先端部が第1クイル30Aの内孔30a内に軸線方向摺動自在に嵌合され、荒仕上げ刃具ホルダ35と軸線方向に並んだ第1クイル30Aに設けたピン32の先端を案内溝51に挿入することにより、第1クイル30Aに対する回動は阻止されている。作動軸50の先端部には、各刃具ホルダ40,45と対応する角度位置に長手方向に沿ったテーパ溝52a,52bが形成され、各中仕上げ刃具ホルダ40と対応する各第1テーパ溝52aは作動軸50の先端に進むにつれて深さが深くなり、精仕上げ刃具ホルダ45と対応する第2テーパ溝52bは作動軸50の先端に進むにつれて深さが浅くなっている。各テーパ溝52a,52b内に摺動自在に設けたL形のスライド片43,48は、その突部43a,48aが第1クイル30Aの先端とブロック30bの間に半径方向摺動自在に保持されている。
【0025】
また第1クイル30Aには、長手方向では各刃具ホルダ40,45の各可撓部40a,45aより先端側で、角度方向では各テーパ溝52a,52bと対応する各位置に、それぞれ半径方向に貫通する第1ガイド穴33および第2ガイド穴34が形成されている。この各ガイド穴33,34に摺動自在に挿入された各可動ピン42,47の両端は、それぞれスライド片43,48と刃具ホルダ40,45の各可撓部40a,45aより先端側に当接されている。
【0026】
特に、本実施の形態においては、図5に示すように、中仕上げ刃具ホルダ40に整合する第1ガイド穴33は段付穴として形成され、可動ピン42は大径頭付きのプラグ状に形成されている。図5の半部断面のように作動軸50が後退して刃具ホルダ40を径方向内方に後退させた状態では、可動ピン42の頭部は第1ガイド穴33の大径部底面に着座して径方向内方へのそれ以上の引っ込みが阻止され、回転遠心力により可動ピン42の内端部に当接するスライド片43と作動軸50のテーパ面間に隙間Cが形成されるようになっている。一方、図5の左半部断面のように、作動軸50が前進して刃具ホルダ40を径方向外方に張り出した状態では、作動軸50のテーパ溝52aの底面がスライド片43および可動ピン42を径方向外方へ押し出し、可動ピン42の頭部が第1ガイド穴33の大径部底面への着座位置から離れるようにしてある。
【0027】
すなわち、精仕上げ加工のために作動軸50が後退された状態では、作動軸50は径方向に対向する一対のテーパ溝52aの溝底がスライド片43の底面との間に隙間Cを持つこととなり、これにより精仕上げ加工中においては、中仕上げ刃具ホルダ40の径方向内方へ向かう弾性力が可動ピン42およびスライド片43を介して作動軸50に作用することを阻止し、精仕上げ刃具46の位置変動を防止するように構成されている。
【0028】
以上の構成により、作動軸50が第1クイル30Aに対しブロック30b側に向かって前進すれば、各第1テーパ溝52a内の各スライド片43は半径方向外向きに移動し、この移動は各可動ピン42により各中仕上げ刃具ホルダ40に伝達されて中仕上げ刃具41をその刃先の回転半径が増大するように半径方向に前進させ、これと同時に各第2テーパ溝52b内の各スライド片48は半径方向内向きに移動し、この移動は各可動ピン42により各精仕上げ刃具ホルダ45に伝達されて精仕上げ刃具46をその刃先の回転半径が減少するように半径方向に後退させる。これと逆に作動軸50を第1クイル30Aに対し後退すれば、中仕上げ刃具41は半径方向に後退してその刃先の回転半径は減少し、精仕上げ刃具46は半径方向に前進してその刃先の回転半径は増大する。これらの半径方向の前進後退により、中仕上げ刃具41の刃先の回転半径は所定の中仕上げ加工回転半径とそれより小さい回転半径の間で変化し、精仕上げ刃具46のの刃先の回転半径は、中仕上げ加工回転半径より大きい所定の精仕上げ加工回転半径と中仕上げ加工回転半径より小さい回転半径の間で変化する。荒仕上げ刃具36の刃先の回転半径は、中仕上げ加工回転半径より小である。
【0029】
図6に示すように、工具主軸17Aに対し作動軸50を軸線方向に移動させる作動装置60は、主軸ヘッド13の後端部に支持部材68を介して取り付けられたハウジング61を有している。ハウジング61には工具主軸17Aの回転軸線と平行となるように筒状体62が摺動自在に案内支持され、軸受を介して作動軸50の後部に回転のみ自在に連結されたブラケット63は筒状体62の下端に固定されている。筒状体62と同軸的となるように、軸受を介してハウジング61に回転のみ自在に支持された送りねじ65の下半部は、筒状体62に固定したナット64に螺合され、送りねじ65の上端部は、ハウジング61に取り付けたサーボモータ66に継ぎ手67を介して連結されている。サーボモータ66を作動させれば送りねじ65が回転して筒状体62を軸線方向に移動させ、ブラケット63を介して作動軸50は工具主軸17Aに対し軸線方向に移動される。
【0030】
次に上述した複数穴用中ぐり加工装置の作動を、図7に示す工程図により説明する。図7の工程aの開始時には、治具テーブル23は載置されるシリンダブロックWの第1および第3ボアWa1,Wa3が各クイル30A,30Bと同軸的となる位置に割り出されており、各工具主軸17A,17Bは主軸モータ18により回転駆動されている。工程aにおいて、先ず加工済みのシリンダブロックWを搬出し未加工のシリンダブロックWを搬入して治具テーブル23にクランプした状態で、作動装置60により作動軸50を前進させ、精仕上げ刃具46を後退させてその刃先の回転半径を中仕上げ加工回転半径よりも小とし、中仕上げ刃具41を前進させてその刃先の回転半径を所定の中仕上げ加工回転半径とする(工程a参照)。この状態でサーボモータ14により主軸ヘッド13を下降させて工具主軸17A,17BをシリンダブロックWに向けて前進させ、各クイル30A,30Bを先ず早送りでシリンダブロックWに接近させた後、所定の加工速度で各中仕上げ刃具41が第1および第3ボアWa1,Wa3を通り抜ける位置まで前進させる(工程b参照)。これにより、第1および第3ボアWa1,Wa3は先ず荒仕上げ刃具36により荒仕上げ加工され、引き続いて各中仕上げ刃具41により中仕上げ加工される。次いで作動装置60により作動軸50を多少後退させ、中仕上げ刃具41を微少量後退させてその刃先の回転半径を微少量小さくし(工程c参照)、各刃具36,41,46の刃先の何れもが中仕上げ加工された第1および第3ボアWa1,Wa3の内面と接触しないようにした状態で、サーボモータ14により主軸ヘッド13を所定の位置まで早戻しして、各クイル30A,30Bを第1および第3ボアWa1,Wa3から抜き出す。
【0031】
次いで治具テーブル23を水平方向に移動してシリンダブロックWをその第2および第4ボアWa2,Wa4が各クイル30A,30Bと同軸的となる位置に割り出し、作動軸50を多少前進させ中仕上げ刃具41を工程aと同じ位置まで前進させてその刃先の回転半径を所定の中仕上げ加工回転半径とする(工程d参照)。この状態で、前述と同様、サーボモータ14を作動させて工具主軸17A,17BをシリンダブロックWに向けて前進させ、各クイル30A,30Bを先ず早送りでシリンダブロックWに接近させた後、所定の加工速度で各中仕上げ刃具41が第2および第4ボアWa2,Wa4を通り抜ける位置まで前進させて、第2および第4ボアWa2,Wa4を荒仕上げ刃具36により荒仕上げ加工し、各中仕上げ刃具41により中仕上げ加工する(工程e参照)。
【0032】
次いで作動装置60により作動軸50を後退させ、中仕上げ刃具41を後退させてその刃先の回転半径を中仕上げ加工回転半径よりも小とし、精仕上げ刃具46を前進させてその刃先の回転半径を所定の精仕上げ加工回転半径とする(工程f参照)。そしてサーボモータ14により工具主軸17A,17Bを後退させて各クイル30A,30Bの精仕上げ刃具46により第2および第4ボアWa2,Wa4の精仕上げ加工を行い(工程g参照)、引き続き主軸ヘッド13を所定の位置まで早戻しして、各クイル30A,30Bを第1および第3ボアWa1,Wa3から抜き出す。
【0033】
次いで治具テーブル23を水平方向に移動してシリンダブロックWをその第1および第3ボアWa1,Wa3が各クイル30A,30Bと同軸的となる位置に割り出してから、作動軸50を多少前進させ、精仕上げ刃具46を微少量後退させてその刃先の回転半径を微少量小さくし(工程h参照)、各刃具36,41,46の刃先の何れもが中仕上げ加工されている第1および第3ボアWa1,Wa3の内面と接触しないようにした状態で、サーボモータ14により工具主軸17A,17Bを早送り下降して、各精仕上げ刃具46が第1および第3ボアWa1,Wa3を通り抜ける位置まで各クイル30A,30Bを挿入する。
【0034】
次いで作動軸50を多少後退させ、精仕上げ刃具46を工程fと同じ位置まで前進させてその刃先の回転半径を所定の精仕上げ加工回転半径とする(工程i参照)。この状態で工程gと同様、サーボモータ14により工具主軸17A,17Bを後退させて各クイル30A,30Bの精仕上げ刃具46により第1および第3ボアWa1,Wa3の精仕上げ加工を行い(工程j参照)、引き続き主軸ヘッド13を所定の位置まで早戻しして、各クイル30A,30Bを第1および第3ボアWa1,Wa3から抜き出す。これによりシリンダブロックWの4個のシリンダボァWa1〜Wa4の加工の1サイクルが完了して、最初の工程aに戻る。
【0035】
上述した実施の形態によれば、全てのシリンダボァWa1〜Wa4について中仕上げ加工がなされた後に各シリンダボァWa1〜Wa4の精仕上げ加工がなされるので、シリンダブロックWの剛性が低い場合でも、精仕上げ加工済みの各シリンダボァWa1〜Wa4がその後に行われる切り込み量の大きい荒仕上げ加工または中仕上げ加工により生じる残留歪みの影響を受けることはなく、従って精仕上げ加工されたシリンダボァWa1〜Wa4を所定の精度に維持することができる。
【0036】
前述した従来技術の複数穴用中ぐり加工装置でも、この実施の形態と同じようにして全てのシリンダボァWa1〜Wa4について中仕上げ加工がなされた後に各シリンダボァWa1〜Wa4の精仕上げ加工を行うことは可能である。しかしながら従来技術の複数穴用中ぐり加工装置では中仕上げ刃具はクイルに固定されているので、工程cと工程dの間の工具主軸17A,17Bの早戻しと、工程hと工程iの間の工具主軸17A,17Bの早送り挿入の際に、中仕上げ刃具の刃先が中仕上げ加工された第1および第3ボアWa1,Wa3の内面と接触して中仕上げ刃具の寿命を低下させるという問題が生じる。しかしながらこの実施の形態によれば、工程cと工程dの間の工具主軸17A,17Bの早戻しと、工程hと工程iの間の工具主軸17A,17Bの早送り挿入の際には、各刃具36,41,46の刃先の何れもが第1および第3ボアWa1,Wa3の内面と接触することはないので、これらの早戻しと早送り挿入の際に各刃先がシリンダボァWa1,Wa3の内面と接触して各刃具36,41,46の寿命を低下させることがない。
【0037】
2回目に中仕上げ加工されたシリンダボアWa2,Wa4については、中仕上げ加工直後に行われる工具主軸17A,17Bの後退により精仕上げ加工を行っており、これにより加工を行わないストロークは1回目に中仕上げ加工されたシリンダボァWa1,Wa3についてだけとなるので、加工時間の増大を少なくして生産性の低下を少なくすることができる。さらにこの実施の形態では、工程cと工程dの間および工程hと工程iの間の加工がなされないストロークを、それぞれストローク速度が大きい早戻しおよび早送りとしているので、生産性の低下は一層少なくなる。
【0038】
またこの実施の形態では、中仕上げ加工回転半径は作動装置60のサーボモータ66により、工程aおよび工程dの際の作動軸50の軸線方向位置を変えることにより調整することができ、これにより精仕上げ刃具46による取り代を調整することも容易である。
【0039】
この実施の形態では、クイル30A,30Bに荒仕上げ刃具36を設けて中仕上げ工程において荒仕上げ加工をも行うようにしており、このようにすれば予め行う荒仕上げ加工工程が不要となるので、加工時間を全体として減少させて生産性を向上させることができる。しかしながら本発明は、各ボァWa1〜Wa4を予め荒仕上げしておき、クイル30A,30Bに荒仕上げ刃具を設けないようにして実施することも可能である。
【0040】
また上記実施の形態では、工具主軸17A,17BのピッチはシリンダボァWa1〜Wa4のピッチの2倍とし、工具主軸17A,17Bの本数は2本として、本発明を直列4気筒の内燃機関のシリンダブロックのシリンダボアの加工に適用ししており、このようにすれば全ストローク6回に対し加工を行わないストロークは各1回の戻しストロークおよび挿入ストロークだけとなり、加工時間全体に対する加工を行わないストローク時間の比率が最も小さくなるので、生産性の低下を最も少なくすることができる。これと同じ効果は、直列6気筒の内燃機関のシリンダブロックのシリンダボアを加工するのに、工具主軸17A,17BのピッチはシリンダボァWaのピッチの2倍とし、工具主軸17A,17Bの本数は3本として本発明を適用するなど、工具主軸17A,17BのピッチはシリンダボァWaのピッチの2倍とし、工具主軸17A,17Bの本数はシリンダボァWa数の半分として本発明を適用しても得ることができる。
【0041】
また上記実施の形態では、各クイル30A,30B内を軸線方向に進退動して各刃具41,46を半径方向に進退させる1本の作動軸50を備え、中仕上げ刃具41と精仕上げ刃具46は作動軸50の進退動に応じて互いに逆向きに半径方向に進退するよう構成したので、各中仕上げ工程、各精仕上げ工程、最後を除く中仕上げ工程の直後に行う各刃具の後退およびこの中仕上げ工程で中仕上げされた各穴についての精仕上げ工程に先立つ各刃具の挿入の際に必要な各刃具の刃先の回転半径の調整を、1本の作動軸50の進退動により行うことができ、これにより複数穴用中ぐり加工装置の構造を簡略化させることができる。
【0042】
なお直列6気筒の内燃機関のシリンダブロックのシリンダボアの場合は、工具主軸17A,17BのピッチはシリンダボァWaのピッチの3倍とし、工具主軸17A,17Bの本数は2本として本発明を適用することもできる。この場合は工程b〜工程dを2回繰り返した後に工程e〜工程gを行い、さらに工程h〜工程jを2回繰り返すことになり、全ストローク10回に対し加工を行わないストロークは各2回の戻しストロークおよび挿入ストロークの4回となる。同様に、直列8気筒の内燃機関のシリンダブロックのシリンダボアの場合は、工具主軸17A,17BのピッチはシリンダボァWaのピッチの4倍とし、工具主軸17A,17Bの本数は2本として本発明を適用することもでき、この場合は工程b〜工程dを3回繰り返した後に工程e〜工程gを行い、さらに工程h〜工程jを3回繰り返すことになり、全ストローク14回に対し加工を行わないストロークは各3回の戻しストロークおよび挿入ストロークの6回となる。
【0043】
すなわち一般的には、最後を除く中仕上げ工程の直後には各刃具41,46の各刃先の回転半径を中仕上げ加工回転半径より小としてクイル30A,30Bを後退させ、最後の中仕上げ工程の終了直後に精仕上げ刃具46の刃先を精仕上げ加工回転半径としてクイル30A,30Bを後退させて最初の精仕上げ工程を行い、最後を除く中仕上げ工程で中仕上げ加工された各シリンダボァWaについては各刃具41,46の各刃先の回転半径を中仕上げ加工回転半径より小としてクイル30A,30Bを各シリンダボァWaに前進挿入してから精仕上げ刃具46の刃先の回転半径を精仕上げ加工回転半径として後退させる精仕上げ工程により行う。
【0044】
上述した実施の形態は、本発明をシリンダブロックWのシリンダボァWaの加工に適用した場合について説明したが、本発明はこれに限らず、1つのワークWに互いに平行に同一ピッチで並んだ複数個の穴Waを加工する場合に適用することができる。
【0045】
また上述した各実施の形態は、複数の工具主軸にそれぞれクイルを装着して工具主軸と同数の穴を同時に加工する場合について説明したが、本発明はこれに限らず、1本の工具主軸にクイルを装着して穴を1つずつ加工する場合に適用することもでき、この場合にも前述と同様、ワークの剛性が低い場合でも精仕上げ加工された穴を所定の精度に維持することができる、加工を行わない軸線方向後退と挿入の際に各刃先が穴の内面と接触して各刃具の寿命を低下させることがない、加工を行わないストロークが減少するので加工時間の増大を少なくして生産性の低下を少なくすることができるという各効果を得ることができる。
【0046】
なお、刃具およびこれを取り付けるクイルの軸線方向移動はワークに対する相対的移動であり、上述した実施の形態のように工具主軸を移動させて刃具およびクイルをワークに対し移動させるだけでなく、ワークWを支持する治具テーブル23を移動させて刃具およびクイルをワークに対し移動させるものも本発明の技術的思想に含まれることは勿論である。
【0047】
【発明の効果】
請求項1および請求項の複数穴の加工方法によれば、全ての穴について中仕上げ加工がなされた後に各穴の精仕上げ加工がなされるので、精仕上げ加工済みの穴がその後に行われる切り込み量の大きい中仕上げ加工により生じる残留歪みの影響を受けるようなことはなくなり、従ってワークの剛性が低い場合でも精仕上げ加工された穴を所定の精度に維持することができる。また最後を除く中仕上げ工程の直後に行う各刃具の軸線方向後退と、この中仕上げ工程で中仕上げされた各穴についての精仕上げ工程に先立つ各刃具の挿入は、各刃具の刃先の回転半径を中仕上げ加工回転半径より小として行っているので、これらの軸線方向後退と挿入の際に各刃先が穴の内面と接触して各刃具の寿命を低下させることがない。また最後に中仕上げ加工された穴については、中仕上げ加工直後に行われる各刃具の軸線方向後退により精仕上げ加工を行っており、これにより加工を行わないストロークが減少するので、加工時間の増大を少なくして生産性の低下を少なくすることができる。
【0048】
請求項2の複数穴の加工方法によれば、内燃機関のシリンダブロックの剛性が低い場合でも、精仕上げ加工されたシリンダボアを所定の精度に維持することができ、各刃具の刃先が穴の内面と接触して各刃具の寿命を低下させることがなく、また加工時間の増大を少なくして生産性の低下を少なくすることができる。
【0049】
請求項3の複数穴の加工方法によれば、加工を行わないときのストローク速度が増大されるので、加工時間の増大をさらに少なくして生産性の低下を一層少なくすることができる。
【0050】
請求項4の複数穴の加工方法によれば、中仕上げ工程において荒仕上げ加工を行うことにより、予め行う荒仕上げ加工工程が不要となるので、加工時間を全体として減少させて生産性を向上させることができる。
【0051】
請求項5の複数穴の加工方法によれば、加工を行わないストロークは各1回の戻しストロークおよび挿入ストロークだけとなり、加工時間全体に対する加工を行わないストローク時間の比率が最も小さくなるので、生産性の低下を最も少なくすることができる。
【図面の簡単な説明】
【図1】 本発明による複数穴の加工方法の一実施形態に使用する複数穴用中ぐり加工装置の全体構造を示す側面図である。
【図2】図1に示す複数穴用中ぐり加工装置の下半部を示す正面図である。
【図3】図2の3−3線に沿った拡大断面図である。
【図4】図3の4−4断面図である。
【図5】図3の5−5断面図である。
【図6】図1に示す複数穴用中ぐり加工装置の各刃具を半径方向に進退させる作動軸の作動装置である。
【図7】本発明による複数穴の加工方法を示す工程図である。
【図8】従来技術による複数穴の加工方法を示す工程図である。
【符号の説明】
17A,17B…工具主軸、20…治具ユニット、30A,30B…クイル、36…荒仕上げ刃具、41…中仕上げ刃具、46…精仕上げ刃具、50…作動軸、W…ワーク(シリンダブロック)、Wa1〜Wa4…穴(シリンダボァ)。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of machining a plurality of holes arranged at the same pitch, such as a cylinder bore of a cylinder block of an internal combustion engine, for example, and a boring apparatus used for carrying out this machining method.
[0002]
[Prior art]
For example, when machining a cylinder bore of a cylinder block of an in-line 4-cylinder internal combustion engine, conventionally, a boring machine as shown in FIGS. 1 and 2 is used, and machining is performed according to an operation cycle as shown in FIG. I was going. First, this prior art will be described. This boring apparatus constitutes one processing station of a transfer machine. A spindle head 13 is guided and supported by a head base 12 fixed to the front surface of a column 11 standing and fixed on a base 10 so as to be movable up and down. The servo motor 14 is moved up and down via the feed mechanism 15. A pair of tool spindles 17A, 17B parallel to and perpendicular to the spindle head 13 is parallel to the paper surface of FIG. 2 at a pitch twice that of the cylinder bores (holes) Wa1 to Wa4 of the cylinder block (workpiece) W. It is arranged in the direction and is driven to rotate by the spindle motor 18 through a gear box 13 a provided in the spindle head 13. On the jig table 23 of the jig unit 20 supported by the base 10 via the support beam 21, the cylinder block W is carried from the previous processing station by the transfer bar 25 extending in parallel with the paper surface of FIG. Is done. The jig table 23 is movable in a horizontal direction parallel to the paper surface of FIG.
[0003]
In this prior art, a quill mounted on the lower ends of the respective tool spindles 17A and 17B and machining the cylinder bores Wa1 to Wa4 of the cylinder block W includes an intermediate finishing blade and a fine finishing blade. The precision finishing tool is configured to advance and retract in the radial direction so that the turning radius of the cutting edge changes between a predetermined precision finishing turning radius and a smaller turning radius. The turning radius of the cutting edge of the semi-finished cutting tool fixed to the quill at the front side position is a constant value that is between the fine finishing turning radius of the fine finishing tool and the reduced turning radius.
[0004]
Next, the operation will be described with reference to FIG. First, in step k of FIG. 8, the processed cylinder block W is unloaded, the unprocessed cylinder block W is loaded and clamped to the jig table 23, and the jig table 23 is moved in the horizontal direction to move the cylinder block. W is indexed to the position where the first and third bores Wa1, Wa3 are coaxial with the quills 30A, 30B, and the precision finishing blade is retracted in the radial direction so that the turning radius of the cutting edge is smaller than the turning radius of the intermediate finishing machining. Each of the tool spindles 17A and 17B is rotationally driven by the spindle motor 18. In this state, the servo motor 14 is actuated to lower the spindle head 13, and the tool spindles 17A, 17B equipped with the quills 30A, 30B are first fast-forwarded to approach the cylinder block W, and then cylinders are moved at a predetermined lowering speed. Advancing (lowering) toward the block W, and intermediate finishing of the first and third bores Wa1, Wa3 is performed by each of the intermediate finishing tools (see step l). Next, the precision finishing blade is advanced in the radial direction to set the rotational radius of the blade edge to the precision finishing processing rotation radius (see step m), and the tool spindles 17A and 17B are moved backward to make the first and third bores Wa1 by the precision finishing blade. , Wa3 is precisely finished (see step n).
[0005]
After this fine finishing, the tool spindles 17A and 17B are quickly returned and retracted to predetermined positions, and then the jig table 23 is moved in the same manner as in step k described above to move the second and fourth bores of the cylinder block W. Wa2 and Wa4 are indexed to positions that are coaxial with the quills 30A and 30B, and the precision finishing blade is retracted in the radial direction (see step o), and then the tool spindles 17A and 17B are brought close to the cylinder block W by rapid traverse. Then, it is advanced at a predetermined lowering speed, and the intermediate finishing of the second and fourth bores Wa2 and Wa4 is performed by each of the intermediate finishing tools (see step p). Next, the precision finishing blade is advanced in the radial direction in the same manner as in step m described above (see step q), and then the tool spindles 17A and 17B are retracted and the second and fourth bores Wa2 and Wa4 are moved by the precision finishing blade. Fine finishing is performed (see step r). Then, each tool spindle 17A, 17B is quickly returned to a predetermined position and returned to the first step k.
[0006]
In the above-described example, each of the bores Wa1 to Wa4 is rough-finished in advance, but each quill 30A, 30B has a rotational radius of the blade edge smaller than the intermediate finishing processing rotational radius and is positioned forward of the intermediate finishing tool in the forward direction. A rough finish cutting tool may be further provided, and the rough finish processing may be performed simultaneously with the intermediate finish processing.
[0007]
[Problems to be solved by the invention]
According to the above-described conventional processing method, the rigid cylinder block W can be processed without any particular problem. Recently, however, the use of aluminum die-cast cylinder blocks with thinner cylinder blocks or cast bore liners has been adopted for weight reduction, etc., which reduces the rigidity around the cylinder bores. There is a problem that the processing accuracy cannot be ensured by this method.
In other words, the first and third bores Wa1 and Wa3 are once finished to a predetermined accuracy by intermediate finishing and fine finishing, but the subsequent intermediate finishing and second and fourth bores Wa2 and Wa4 and There is a problem that the finishing accuracy of the first and third bores Wa1 and Wa3 is lowered due to the residual distortion caused by the fine finishing, particularly the intermediate finishing with a large depth of cut. The present invention aims to solve such problems.
[0008]
[Means for Solving the Problems]
To this end, the method for processing a plurality of holes according to the present invention is as described in claim 1,
A method of machining a plurality of holes arranged in parallel with each other at the same pitch on a single work, and arranged in parallel with each other at an integer number of the number of holes and an integer multiple of the hole pitch. In a multi-hole machining method in which a semi-finished blade and a finely-finished blade that rotate together around a rotation axis are moved in the direction of the rotation axis, and the blade is sequentially inserted into a non-machined hole.
In the semi-finishing of each hole, the cutting edge of the semi-finishing tool is set to a predetermined turning radius and the turning radius of the fine finishing tool is set to be smaller than the turning radius of the finishing tool. Performed by multiple semi-finishing processes that sequentially advance into the processing hole,
Immediately after the semi-finishing process except the last, each cutting tool is retracted in the axial direction by setting the turning radius of each cutting edge to be smaller than the turning radius of the finishing work,
The fine finishing of each hole is performed by setting the turning radius of the cutting edge of the fine finishing tool to a predetermined fine finishing turning radius that is larger than that of the intermediate finishing turning radius immediately after the end of the final finishing process. In the fine finishing process, first, the hole that was finally finished in the middle finish process was performed, and for each hole that was finished in the middle finishing process except the last, the turning radius of each cutting edge of each cutting tool was made smaller than the turning radius of the finishing work. Performed by a fine finishing process in which the turning radius of the cutting edge of the precision finishing tool is retracted in the axial direction as the precision turning rotational radius after being advanced into each hole.
It is characterized by this.
[0009]
According to a first aspect of the present invention, the workpiece is a cylinder block of an internal combustion engine, and the plurality of holes is an even number of four or more evenly arranged. A cylinder bore is preferred.
[0010]
In the processing method for a plurality of holes according to claim 1 or 2, the cutting tool is retracted immediately after the intermediate finishing process except the last, as in claim 3, and the cutting is performed by fast reverse, and the last is excluded. It is preferable to insert each cutting tool prior to the fine finishing step for each hole that has been semi-finished in the finishing step by rapid feed.
[0011]
The method for processing a plurality of holes according to any one of claims 1 to 3 is such that, as described in claim 4, the multi-hole machining method rotates together with each cutting tool about each rotation axis, and the turning radius of the cutting edge is medium. It is preferable that rough finishing of a hole is also performed in the intermediate finishing step by using a rough finishing blade that is smaller than the finishing turning radius and is located forward of the intermediate finishing blade in the forward direction.
[0012]
The method for machining a plurality of holes according to any one of claims 1 to 4, wherein the pitch of the rotation axis is twice the pitch of the plurality of holes, as in claim 5. The number of holes is preferably half the number of holes.
[0018]
Further, according to the method for processing a plurality of holes according to the present invention, as described in claim 11,
A method of machining a plurality of holes aligned in parallel with each other in a workpiece, wherein a semi-finished blade and a fine-finished blade that rotate together around one rotation axis are moved in the direction of the rotation axis. In the cutting method of multiple holes that insert and process sequentially into unprocessed holes in the cutting tool,
In the semi-finishing of each hole, the cutting edge of the semi-finishing tool is set to a predetermined turning radius and the turning radius of the fine finishing tool is set to be smaller than the turning radius of the finishing tool. Performed by multiple semi-finishing processes that sequentially advance into the processing hole,
Immediately after the semi-finishing process except the last, each cutting tool is retracted in the axial direction by setting the turning radius of each cutting edge to be smaller than the turning radius of the finishing work,
The fine finishing of each hole is performed by setting the turning radius of the cutting edge of the fine finishing tool to a predetermined fine finishing turning radius that is larger than that of the intermediate finishing turning radius immediately after the end of the final finishing process. In the fine finishing process, first, the hole that was finally finished in the middle finish process was performed, and for each hole that was finished in the middle finishing process except the last, the turning radius of each cutting edge of each cutting tool was made smaller than the turning radius of the finishing work. Performed by a fine finishing process in which the turning radius of the cutting edge of the precision finishing tool is retracted in the axial direction as the precision turning rotational radius after being advanced into each hole.
You may do it.
[0020]
The method of machining a plurality of holes according to the present invention according to the embodiment shown in FIGS. Legal Explain. In this embodiment, the present invention is applied to machining of a cylinder bore of a cylinder block of an in-line four-cylinder internal combustion engine.
[0021]
First, the boring apparatus used in this embodiment will be described. This in The boring apparatus is substantially the same as that described in the above-described prior art except for devices for operating the quills 30A and 30B and the cutting tools 41 and 46, and the base 10, the column 11, the head base 12, and the head base. A spindle head 13 is provided that is guided and supported by 12 and is vertically moved by a servo motor 14 via a feed mechanism 15. A pair of tool spindles 17A, 17B having a rotation axis parallel and perpendicular to each other in the spindle head 13 has a pitch twice the pitch of the cylinder bores (holes) Wa1 to Wa4 of the cylinder block (workpiece) W. The main shaft motor 18 is rotationally driven via a gear box 13 a provided in the main shaft head 13 with a space in the direction parallel to the paper surface. Each tool spindle 17A, 17B is coaxially formed with an inner hole 17a (see FIG. 6) through which an operating shaft 50 described later is inserted. The jig unit 20 supported by the base 10 via the support beam 21 supports a jig table 23 so as to be movable in a horizontal direction parallel to the paper surface of FIG. 2, and from the previous processing station, the paper surface of FIG. The cylinder block W carried in by the transfer bar 25 extending in parallel is clamped on the jig table 23.
[0022]
A first quill 30A and a second quill are provided at the lower ends of the respective tool spindles 17A, 17B with rough finishing blades 36, intermediate finishing blades 41 and fine finishing blades 46 for machining the cylinder bores Wa1 to Wa4 of the cylinder block W, respectively. 30B is mounted coaxially. Since the quills 30A and 30B are the same, the first quill 30A will be described with reference to FIGS. The first quill 30A has a cylindrical shape in which an inner hole 30a penetrating coaxially is formed, and its tip is closed by a round block 30b. On the outer peripheral surface near the tip of the first quill 30A, each one first mounting surface 31a, third mounting surface 31c, and two second mounting surfaces 31b are arranged every 90 degrees in parallel with the rotational axis of the quill 30A. It is formed symmetrically. The cross-sectional shapes of the mounting surfaces 31a to 31c are all the same L-shape, and the first mounting surface 31a and the third mounting surface 31c are formed every 180 degrees, and the first mounting surface 31a and the third mounting surface 31c are formed between the mounting surfaces 31a and 31c. Two attachment surfaces 31b are formed.
[0023]
One end of a rigid square rod-shaped rough finish cutting tool holder 35 is fixed to the first mounting surface 31a on the tool spindle 17A side by a bolt 37, and a rough finish cutting tool 36 is fixed to a tip portion extending to the block 30b side. (See FIGS. 3 and 4). Similarly, one end of a square-finished medium-finishing blade holder 40 and a fine-finishing blade holder 45 are fixed to the second mounting surface 31b and the third mounting surface 31c by bolts 44 and 49, respectively. The intermediate finishing blade 41 and the fine finishing blade 46 are fixed to the front end of the block 30b. The intermediate finishing blade holder 40 and the fine finishing blade holder 45 are provided with notches from the mounting surfaces 31b and 31c between the fixing portions of the bolts 44 and 49 and the mounting portions of the cutting tools 41 and 46, respectively. Flexible portions 40a and 45a are formed that enable the tip portions provided with the cutting tools 41 and 46 to bend elastically outward in the radial direction. Accordingly, the rotational radius of the cutting edge of the rough finishing blade 36 is constant, but the rotational radius of each cutting edge of the intermediate finishing blade 41 and the fine finishing blade 46 is variable. In addition, the cutting edges of the fine finishing tool 46, the intermediate finishing tool 41, and the rough finishing tool 36 are arranged in this order so as to be on the distal end side (side toward the cylinder block W) of the first quill 30A.
[0024]
The operating shaft 50 inserted into the tool spindle 17A from the rear side (upper side) of the spindle head 13 has a tip end portion in which a guide groove 51 is formed in the axial direction and is slidably fitted in the inner hole 30a of the first quill 30A. The rotation with respect to the first quill 30A is prevented by inserting the tip of the pin 32 provided in the first quill 30A aligned in the axial direction with the rough finishing blade holder 35 into the guide groove 51. Tapered grooves 52a and 52b along the longitudinal direction are formed at the distal end portion of the operating shaft 50 at angular positions corresponding to the respective blade holders 40 and 45, and the respective first tapered grooves 52a corresponding to the respective intermediate finish blade holders 40. The depth of the second taper groove 52b corresponding to the fine finishing blade holder 45 becomes shallower as the tip of the working shaft 50 is advanced. The L-shaped slide pieces 43 and 48 slidably provided in the respective taper grooves 52a and 52b have their projections 43a and 48a slidably held in the radial direction between the tip of the first quill 30A and the block 30b. Has been.
[0025]
Also, the first quill 30A has a radial direction in the longitudinal direction, at the distal end side of the flexible portions 40a, 45a of the blade holders 40, 45, in the angular direction, at positions corresponding to the tapered grooves 52a, 52b, respectively. A first guide hole 33 and a second guide hole 34 penetrating therethrough are formed. Both ends of each of the movable pins 42 and 47 slidably inserted into the respective guide holes 33 and 34 are brought into contact with the distal end side from the respective flexible portions 40a and 45a of the slide pieces 43 and 48 and the blade holders 40 and 45, respectively. It is touched.
[0026]
In particular, in the present embodiment, as shown in FIG. 5, the first guide hole 33 aligned with the semi-finished blade holder 40 is formed as a stepped hole, and the movable pin 42 is formed in a plug shape with a large diameter head. Has been. Of FIG. right In a state where the operating shaft 50 is retracted and the blade holder 40 is retracted radially inward as in the half section, the head of the movable pin 42 is seated on the bottom surface of the large diameter portion of the first guide hole 33 and has a diameter. Further retracting inward in the direction is prevented, and a gap C is formed between the slide piece 43 that contacts the inner end portion of the movable pin 42 and the taper surface of the operating shaft 50 by rotational centrifugal force. . On the other hand, as shown in the left half section of FIG. 5, when the operating shaft 50 moves forward and the blade holder 40 protrudes radially outward, the bottom surface of the tapered groove 52a of the operating shaft 50 is the slide piece 43 and the movable pin. 42 is pushed outward in the radial direction so that the head of the movable pin 42 is separated from the seating position on the bottom surface of the large diameter portion of the first guide hole 33.
[0027]
In other words, in a state where the operating shaft 50 is retracted for precision finishing, the operating shaft 50 has a gap C between the bottom of the slide piece 43 and the bottom of the pair of tapered grooves 52a opposed in the radial direction. As a result, during the fine finishing process, the elastic force directed radially inward of the intermediate finishing blade holder 40 is prevented from acting on the operating shaft 50 via the movable pin 42 and the slide piece 43. 46 is configured to prevent position fluctuations.
[0028]
With the above configuration, when the operating shaft 50 advances toward the block 30b with respect to the first quill 30A, each slide piece 43 in each first tapered groove 52a moves outward in the radial direction. Each of the semi-finished cutting tool holders 40 is transmitted by the movable pin 42 to advance the intermediate finishing tool 41 in the radial direction so that the rotational radius of the cutting edge increases, and at the same time, each slide piece 48 in each second tapered groove 52b. Is moved inward in the radial direction, and this movement is transmitted to each precision finishing blade holder 45 by each movable pin 42 to retract the precision finishing blade 46 in the radial direction so that the turning radius of the cutting edge is reduced. On the contrary, if the operating shaft 50 is retracted with respect to the first quill 30A, the intermediate finishing blade 41 is retracted in the radial direction and the rotational radius of the cutting edge is reduced, and the fine finishing blade 46 is advanced in the radial direction and The turning radius of the cutting edge increases. By these forward and backward movements in the radial direction, the turning radius of the cutting edge of the semi-finished cutting tool 41 changes between a predetermined turning radius and a smaller turning radius, and the turning radius of the cutting edge of the fine finishing tool 46 is It varies between a predetermined precision finishing turning radius larger than the intermediate finishing turning radius and a turning radius smaller than the intermediate finishing turning radius. The radius of rotation of the cutting edge of the rough finish cutting tool 36 is smaller than the radius of rotation for intermediate finishing.
[0029]
As shown in FIG. 6, the operating device 60 that moves the operating shaft 50 in the axial direction with respect to the tool spindle 17 </ b> A has a housing 61 attached to the rear end portion of the spindle head 13 via a support member 68. . A cylindrical body 62 is slidably guided and supported on the housing 61 so as to be parallel to the rotational axis of the tool spindle 17A, and a bracket 63 that is rotatably connected to the rear portion of the operating shaft 50 via a bearing is a cylinder. It is fixed to the lower end of the shaped body 62. The lower half portion of the feed screw 65 supported only rotatably on the housing 61 via a bearing so as to be coaxial with the cylindrical body 62 is screwed into a nut 64 fixed to the cylindrical body 62, and the feed An upper end portion of the screw 65 is connected to a servo motor 66 attached to the housing 61 via a joint 67. When the servo motor 66 is operated, the feed screw 65 rotates to move the cylindrical body 62 in the axial direction, and the operating shaft 50 is moved in the axial direction with respect to the tool spindle 17A via the bracket 63.
[0030]
Next, the operation of the above-described boring apparatus for a plurality of holes will be described with reference to a process diagram shown in FIG. At the start of step a in FIG. 7, the jig table 23 is indexed to a position where the first and third bores Wa1, Wa3 of the cylinder block W to be placed are coaxial with the quills 30A, 30B. Each tool spindle 17A, 17B is rotationally driven by a spindle motor 18. In step a, in the state where the processed cylinder block W is first unloaded and the unprocessed cylinder block W is loaded and clamped to the jig table 23, the operating shaft 50 is advanced by the operating device 60, and the fine finishing blade 46 is moved. The cutting edge is moved backward so that the turning radius of the cutting edge is smaller than the turning radius of the intermediate finishing, and the cutting edge 41 is advanced to set the turning radius of the cutting edge to a predetermined turning radius of the finishing work (see step a). In this state, the spindle head 13 is lowered by the servo motor 14 to advance the tool spindles 17A and 17B toward the cylinder block W, and the quills 30A and 30B are first fast-forwarded to approach the cylinder block W, followed by predetermined processing. Each intermediate finishing tool 41 is advanced at a speed to a position where it passes through the first and third bores Wa1, Wa3 (see step b). As a result, the first and third bores Wa1 and Wa3 are first subjected to rough finishing by the rough finishing blade 36, and subsequently subjected to intermediate finishing by the respective intermediate finishing blades 41. Next, the operating shaft 50 is slightly retracted by the operating device 60, the intermediate finishing blade 41 is slightly retracted to slightly decrease the rotational radius of the blade edge (see step c), and any of the blade edges of the blade tools 36, 41, 46 is selected. The spindle head 13 is quickly returned to a predetermined position by the servo motor 14 in a state where it does not come into contact with the inner surfaces of the first and third bores Wa1 and Wa3 that have been subjected to intermediate finishing, and the quills 30A and 30B are returned to the predetermined positions. Extracted from the first and third bores Wa1, Wa3.
[0031]
Next, the jig table 23 is moved in the horizontal direction so that the cylinder block W is indexed to a position where the second and fourth bores Wa2 and Wa4 are coaxial with the quills 30A and 30B, and the working shaft 50 is slightly advanced to finish the cylinder. The cutting tool 41 is advanced to the same position as in step a, and the rotation radius of the cutting edge is set to a predetermined intermediate finishing rotation radius (see step d). In this state, the servo motor 14 is operated to advance the tool spindles 17A and 17B toward the cylinder block W in the same manner as described above, and the quills 30A and 30B are first brought close to the cylinder block W by rapid feed, Each semi-finished cutting tool 41 is advanced to a position where it passes through the second and fourth bores Wa2 and Wa4 at a machining speed, and the second and fourth bores Wa2 and Wa4 are rough-finished by the rough-finishing tool 36, and each of the semi-finished cutting tools. A semi-finishing process is performed by 41 (see step e).
[0032]
Next, the operating shaft 50 is retracted by the operating device 60, the intermediate finishing blade 41 is retracted to make the rotational radius of the blade edge smaller than the rotational radius of the intermediate finishing machining, and the precision finishing blade 46 is advanced to increase the rotational radius of the blade edge. A predetermined precision finishing rotation radius is set (see step f). Then, the tool spindles 17A, 17B are retracted by the servo motor 14, and the fine finishing blades 46 of the quills 30A, 30B are used to finely finish the second and fourth bores Wa2, Wa4 (see step g). Is quickly returned to a predetermined position, and the quills 30A and 30B are extracted from the first and third bores Wa1 and Wa3.
[0033]
Next, the jig table 23 is moved in the horizontal direction so that the cylinder block W is indexed to a position where the first and third bores Wa1, Wa3 are coaxial with the quills 30A, 30B, and then the operating shaft 50 is moved forward a little. Then, the fine finishing blade 46 is retracted by a small amount to reduce the rotational radius of the blade edge by a small amount (see step h), and all of the cutting edges of each of the blade tools 36, 41, 46 are subjected to intermediate finishing. The tool spindles 17A and 17B are fast-forwarded and lowered by the servo motor 14 in a state where they are not in contact with the inner surfaces of the three bores Wa1 and Wa3, until the fine finishing blades 46 pass through the first and third bores Wa1 and Wa3. Each quill 30A, 30B is inserted.
[0034]
Next, the operating shaft 50 is slightly retracted, and the fine finishing blade 46 is advanced to the same position as in step f, and the rotation radius of the cutting edge is set to a predetermined fine finishing rotation radius (see step i). In this state, similarly to the step g, the tool spindles 17A and 17B are moved backward by the servo motor 14 and the first and third bores Wa1 and Wa3 are finely finished by the fine finishing blades 46 of the quills 30A and 30B (step j). Next, the spindle head 13 is rapidly returned to a predetermined position, and the quills 30A and 30B are extracted from the first and third bores Wa1 and Wa3. Thereby, one cycle of processing of the four cylinder bores Wa1 to Wa4 of the cylinder block W is completed, and the process returns to the first step a.
[0035]
According to the above-described embodiment, since the fine finishing of each of the cylinder bores Wa1 to Wa4 is performed after all the cylinder bores Wa1 to Wa4 are finished, the fine finishing is performed even when the rigidity of the cylinder block W is low. The cylinder bores Wa1 to Wa4 that have already been processed are not affected by the residual distortion caused by rough finishing or intermediate finishing with a large depth of cut, so that the precisely finished cylinder bores Wa1 to Wa4 have a predetermined accuracy. Can be maintained.
[0036]
Even in the above-described conventional boring device for a plurality of holes, it is possible to perform the fine finishing of each of the cylinder bores Wa1 to Wa4 after all the cylinder bores Wa1 to Wa4 are finished in the same manner as in this embodiment. Is possible. However, in the boring apparatus for a plurality of holes in the prior art, the semi-finished cutting tool is fixed to the quill, so that the tool spindles 17A and 17B between the process c and the process d are quickly returned and the process between the process h and the process i is performed. During rapid feed insertion of the tool spindles 17A and 17B, there arises a problem that the cutting edge of the semi-finished cutting tool comes into contact with the inner surfaces of the first and third bores Wa1 and Wa3 that have been subjected to the semi-finishing process to reduce the life of the semi-finishing cutting tool . However, according to this embodiment, the tool spindles 17A and 17B between the process c and the process d are quickly returned and the tool spindles 17A and 17B are inserted between the process h and the process i at a rapid feed time. None of the cutting edges of 36, 41, and 46 come into contact with the inner surfaces of the first and third bores Wa1, Wa3, so that the cutting edges are connected to the inner surfaces of the cylinder bores Wa1, Wa3 at the time of quick return and fast feed insertion. The life of each blade 36, 41, 46 is not reduced by contact.
[0037]
The cylinder bores Wa2 and Wa4 that have been subjected to intermediate finishing for the second time are subjected to precision finishing by retreating the tool spindles 17A and 17B that is performed immediately after the intermediate finishing, so that the stroke that is not processed is intermediate to the first time. Since only the finished cylinder bores Wa1 and Wa3 are provided, an increase in machining time can be reduced, and a decrease in productivity can be reduced. Furthermore, in this embodiment, strokes that are not processed between step c and step d and between step h and step i are fast rewind and fast feed, respectively, where the stroke speed is high, so that the productivity is further reduced. Become.
[0038]
Further, in this embodiment, the semi-finishing turning radius can be adjusted by changing the position of the working shaft 50 in the axial direction during the steps a and d by the servo motor 66 of the actuating device 60. It is also easy to adjust the machining allowance with the finishing blade 46.
[0039]
In this embodiment, the rough finish cutting tool 36 is provided in the quills 30A and 30B so that rough finishing is also performed in the intermediate finishing process. In this way, a rough finishing process that is performed in advance is unnecessary. Productivity can be improved by reducing the processing time as a whole. However, the present invention can also be implemented by rough-finishing each of the bores Wa1 to Wa4 in advance and not providing a rough finish cutting tool on the quills 30A and 30B.
[0040]
In the above embodiment, the pitch of the tool spindles 17A and 17B is twice the pitch of the cylinder bores Wa1 to Wa4, the number of the tool spindles 17A and 17B is two, and the present invention is a cylinder block of an in-line four-cylinder internal combustion engine. In this way, the stroke that does not perform machining for all six strokes is only one return stroke and insertion stroke for each stroke, and the stroke time that does not perform machining for the entire machining time. Therefore, the productivity can be minimized. The same effect is obtained when machining the cylinder bore of the cylinder block of the in-line 6-cylinder internal combustion engine, the pitch of the tool spindles 17A and 17B is twice the pitch of the cylinder bore Wa, and the number of tool spindles 17A and 17B is three. The pitch of the tool spindles 17A and 17B is twice the pitch of the cylinder bore Wa, and the present invention can be applied with the number of tool spindles 17A and 17B being half the number of cylinder bores Wa. .
[0041]
In the above embodiment, the quills 30A and 30B are moved forward and backward in the axial direction to provide the single working shaft 50 for moving the blades 41 and 46 in the radial direction, and the intermediate finishing blade 41 and the fine finishing blade 46 are provided. Is configured to advance and retract in the radial direction opposite to each other in accordance with the advancement and retraction of the operating shaft 50, so that each cutting tool is moved back and forth immediately after each intermediate finishing step, each fine finishing step, and the intermediate finishing step except the last. Adjustment of the radius of rotation of the cutting edge of each cutting tool necessary for insertion of each cutting tool prior to the fine finishing process for each hole that has been semi-finished in the intermediate finishing process can be performed by advancing and retreating one operating shaft 50. This makes it possible to simplify the structure of the boring apparatus for plural holes.
[0042]
In the case of a cylinder bore of a cylinder block of an in-line 6-cylinder internal combustion engine, the pitch of the tool spindles 17A and 17B is three times the pitch of the cylinder bore Wa, and the number of tool spindles 17A and 17B is two. You can also. In this case, after repeating step b to step d twice, step e to step g are performed, and further step h to step j are repeated twice. The return stroke and the insertion stroke are 4 times. Similarly, in the case of a cylinder bore of a cylinder block of an inline 8-cylinder internal combustion engine, the pitch of the tool spindles 17A and 17B is four times the pitch of the cylinder bore Wa, and the number of tool spindles 17A and 17B is two, and the present invention is applied. In this case, step e to step g are performed after step b to step d are repeated three times, and step h to step j are further repeated three times, and processing is performed for 14 strokes. The non-existing strokes are 6 return strokes and 6 insertion strokes.
[0043]
That is, generally, immediately after the semi-finishing process except the last, the turning radius of each cutting edge of each cutting tool 41, 46 is made smaller than the semi-finishing turning radius, and the quills 30A, 30B are retracted, and the final finishing process is completed. Immediately after the end, the first fine finishing process is performed by retracting the quills 30A and 30B with the cutting edge of the precision finishing blade 46 as the precision finishing machining radius, and each cylinder bore Wa subjected to the intermediate finishing process in the intermediate finishing process excluding the last is processed for each cylinder bore Wa. The rotational radius of each cutting edge of the cutting tools 41 and 46 is made smaller than the turning radius of the intermediate finishing machining, and the quills 30A and 30B are advanced and inserted into the cylinder bores Wa, and then the rotational radius of the cutting edge of the precision finishing cutting tool 46 is set back as the fine finishing processing rotation radius. This is done by a fine finishing process.
[0044]
In the above-described embodiment, the case where the present invention is applied to the machining of the cylinder bore Wa of the cylinder block W has been described. However, the present invention is not limited to this, and a plurality of the workpieces W arranged in parallel at the same pitch. This can be applied to the case of machining the hole Wa.
[0045]
Moreover, although each embodiment mentioned above demonstrated the case where a quill was attached to each of a plurality of tool spindles and the same number of holes as the tool spindle were machined simultaneously, the present invention is not limited to this, and one tool spindle is used. It can also be applied to processing holes one by one with a quill attached. In this case as well, it is possible to maintain precisely finished holes with a predetermined accuracy even when the rigidity of the workpiece is low. It is possible to reduce the increase in machining time because the cutting edge does not reduce the life of each cutting tool because the cutting edge does not contact the inner surface of the hole during the axial retreat and insertion without machining. Thus, it is possible to obtain each effect that the decrease in productivity can be reduced.
[0046]
Note that the axial movement of the blade and the quill to which the blade is attached is relative to the workpiece. In addition to moving the tool spindle and moving the blade and quill relative to the workpiece as in the above-described embodiment, the workpiece W Needless to say, the technical idea of the present invention includes moving the cutting tool and the quill relative to the workpiece by moving the jig table 23 that supports the workpiece.
[0047]
【The invention's effect】
Claim 1 and claim 6 According to the multi-hole machining method, each hole is finely finished after all the holes have been semifinished. Therefore, even if the rigidity of the workpiece is low, the precisely finished hole can be maintained at a predetermined accuracy. In addition, the retraction in the axial direction of each cutting tool performed immediately after the semi-finishing process except the last, and the insertion of each cutting tool prior to the fine finishing process for each hole semi-finished in this semi-finishing process, the turning radius of the cutting edge of each cutting tool Therefore, the cutting edge does not come into contact with the inner surface of the hole during the retreating and insertion in the axial direction, thereby reducing the life of each cutting tool. In addition, for the holes that have been semi-finished at the end, precise finishing is performed by retreating the axial direction of each cutting tool immediately after the semi-finishing, and this reduces the stroke that is not processed, thus increasing the machining time. It is possible to reduce the decrease in productivity by reducing the amount.
[0048]
According to the method for machining a plurality of holes according to claim 2, even when the cylinder block of the internal combustion engine has low rigidity, the precisely finished cylinder bore can be maintained at a predetermined accuracy, and the cutting edge of each cutting tool is formed on the inner surface of the hole. The life of each cutting tool is not reduced by contact with the blade, and the increase in processing time can be reduced to reduce the decrease in productivity.
[0049]
According to the method for machining a plurality of holes according to claim 3, since the stroke speed when machining is not performed is increased, the increase in machining time can be further reduced to further reduce the productivity.
[0050]
According to the method for machining a plurality of holes according to claim 4, since rough finishing is performed in the intermediate finishing process, a rough finishing process that is performed in advance is not required, so that the processing time is reduced as a whole and productivity is improved. be able to.
[0051]
According to the method for machining a plurality of holes according to claim 5, the strokes that are not machined are only one return stroke and the insertion stroke, and the ratio of the stroke time that is not machined to the whole machining time is the smallest. The decrease in sex can be minimized.
[Brief description of the drawings]
FIG. 1 Multiple holes according to the present invention Processing method One embodiment Boring machine for multiple holes It is a side view which shows the whole structure.
FIG. 2 is a front view showing a lower half portion of the boring apparatus for a plurality of holes shown in FIG. 1;
3 is an enlarged cross-sectional view taken along line 3-3 in FIG.
4 is a cross-sectional view taken along line 4-4 of FIG.
5 is a cross-sectional view taken along line 5-5 of FIG.
6 is an actuating device for an actuating shaft for advancing and retracting each cutting tool of the boring device for a plurality of holes shown in FIG. 1 in the radial direction;
FIG. 7 is a process diagram showing a method for processing a plurality of holes according to the present invention.
FIG. 8 is a process diagram showing a processing method for a plurality of holes according to the prior art.
[Explanation of symbols]
17A, 17B ... Tool spindle, 20 ... Jig unit, 30A, 30B ... Quill, 36 ... Rough finish cutting tool, 41 ... Medium finishing tool, 46 ... Fine finishing tool, 50 ... Working shaft, W ... Workpiece (cylinder block), Wa1-Wa4 ... holes (cylinder bores).

Claims (6)

1つのワークに互いに平行に同一ピッチで並んだ複数個の穴を加工する方法であって、前記穴の個数の整数分の一の本数でかつ前記穴のピッチの整数倍のピッチで互いに平行に並んだ回転軸線を中心として一緒に回転する中仕上げ刃具および精仕上げ刃具を前記回転軸線方向に移動して、その刃具では未加工の前記穴に順次挿入して加工する複数穴の加工方法において、
前記各穴の中仕上げ加工は、前記中仕上げ刃具の刃先を所定の中仕上げ加工回転半径とし、かつ前記精仕上げ刃具の刃先の回転半径を前記中仕上げ加工回転半径より小として、前記各刃具を前記中仕上げ刃具では未加工の前記穴に順次前進挿入する複数の中仕上げ工程により行い、
最後を除く前記中仕上げ工程の直後には前記各刃具は各刃先の回転半径を前記中仕上げ加工回転半径より小として軸線方向に後退させ、
前記各穴の精仕上げ加工は、最後の前記中仕上げ工程の終了直後に前記精仕上げ刃具の刃先の回転半径を前記中仕上げ加工回転半径より大きい所定の精仕上げ加工回転半径として各刃具を軸線方向に後退させる最初の精仕上げ工程により先ず最後に中仕上げ加工された穴について行い、最後を除く前記中仕上げ工程で中仕上げ加工された各穴については前記各刃具の各刃先の回転半径を前記中仕上げ加工回転半径より小として各穴に前進挿入してから前記精仕上げ刃具の刃先の回転半径を前記精仕上げ加工回転半径として軸線方向に後退させる精仕上げ工程により行う
ことを特徴とする複数穴の加工方法。
A method of machining a plurality of holes arranged in parallel with each other at the same pitch on a single workpiece, the number of holes being an integral number of the number of holes, and parallel to each other at a pitch that is an integral multiple of the pitch of the holes. In a machining method for a plurality of holes, in which a semi-finished cutting tool and a precision finishing tool that rotate together around a rotational axis lined up are moved in the direction of the rotational axis, and the blade tool is sequentially inserted into the unprocessed hole and processed.
In the semi-finishing of each hole, the cutting edge of the semi-finishing tool is set to a predetermined semi-finishing turning radius, and the turning radius of the cutting edge of the fine finishing tool is set smaller than the turning radius of the finishing touch. In the semi-finished cutting tool, it is performed by a plurality of semi-finishing processes that sequentially advance and insert into the unprocessed holes,
Immediately after the intermediate finishing step except for the last, each cutting tool retracts in the axial direction with the rotational radius of each cutting edge being smaller than the intermediate finishing rotational radius,
In the fine finishing of each hole, immediately after the end of the last semi-finishing step, each cutting tool is set in the axial direction by setting the turning radius of the cutting edge of the fine finishing tool to a predetermined precision finishing turning radius larger than the intermediate finishing turning radius. In the first fine finishing step for retreating to the first, the hole that was finally finished in the middle finishing process is performed first, and for each hole that was finished in the middle finishing process except the last, the turning radius of each cutting edge of each cutting tool is set to the middle A plurality of holes are formed by performing a fine finishing step in which the rotational radius of the cutting edge of the fine finishing tool is retreated in the axial direction as the fine finishing rotational radius after being advanced and inserted into each hole as being smaller than the finishing rotational radius. Processing method.
請求項1に記載の複数穴の加工方法において、前記ワークは内燃機関のシリンダブロックであり、前記複数個の穴は整列して配置された4個以上の偶数個のシリンダボアである複数穴の加工方法。  The multi-hole machining method according to claim 1, wherein the workpiece is a cylinder block of an internal combustion engine, and the plurality of holes are four or more even-numbered cylinder bores arranged in alignment. Method. 請求項1または請求項2に記載の複数穴の加工方法において、前記最後を除く中仕上げ工程の直後に行う前記各刃具の後退は早戻しにより行い、前記最後を除く中仕上げ工程で中仕上げされた各穴についての前記精仕上げ工程に先立つ前記各刃具の挿入は早送りにより行うことを特徴とする複数穴の加工方法。  3. The multi-hole machining method according to claim 1, wherein the cutting of each cutting tool performed immediately after the intermediate finishing step except the last is performed by rapid return, and the intermediate finishing is performed in the intermediate finishing step except the last. A method for processing a plurality of holes, wherein the insertion of each cutting tool prior to the fine finishing step for each hole is performed by rapid feed. 請求項1〜請求項3の何れか1項に記載の複数穴の加工方法において、前記各回転軸線を中心として前記各刃具と一緒に回転し刃先の回転半径が前記中仕上げ加工回転半径より小さくかつ前記中仕上げ刃具より前進方向前側に位置する荒仕上げ刃具により、前記中仕上げ工程において前記穴の荒仕上げ加工をも行うことを特徴とする複数穴の加工方法。  4. The multi-hole machining method according to claim 1, wherein the rotation radius of the cutting edge is smaller than the rotation radius of the intermediate finish machining by rotating together with the blades around the rotation axis. 5. A method for machining a plurality of holes, wherein rough finishing of the hole is also performed in the intermediate finishing step by using a rough finishing blade positioned forward of the intermediate finishing tool in the forward direction. 請求項1〜請求項4の何れか1項に記載の複数穴の加工方法において、前記回転軸線のピッチは前記複数個の穴のピッチの2倍であり、前記回転軸線の本数は前記複数個の穴の個数の半分であることを特徴とする複数穴の加工方法。  5. The multi-hole machining method according to claim 1, wherein a pitch of the rotation axis is twice a pitch of the plurality of holes, and the number of the rotation axes is the plurality. A method for machining a plurality of holes, characterized in that the number of holes is half of the number of holes. 1つのワークに互いに平行に並んだ複数個の穴を加工する方法であって、1本の回転軸線を中心として一緒に回転する中仕上げ刃具および精仕上げ刃具を前記回転軸線方向に移動して、その刃具では未加工の前記穴に順次挿入して加工する複数穴の加工方法において、
前記各穴の中仕上げ加工は、前記中仕上げ刃具の刃先を所定の中仕上げ加工回転半径とし、かつ前記精仕上げ刃具の刃先の回転半径を前記中仕上げ加工回転半径より小として、前記各刃具を前記中仕上げ刃具では未加工の前記穴に順次前進挿入する複数の中仕上げ工程により行い、
最後を除く前記中仕上げ工程の直後には前記各刃具は各刃先の回転半径を前記中仕上げ加工回転半径より小として軸線方向に後退させ、
前記各穴の精仕上げ加工は、最後の前記中仕上げ工程の終了直後に前記精仕上げ刃具の刃先の回転半径を前記中仕上げ加工回転半径より大きい所定の精仕上げ加工回転半径として各刃具を軸線方向に後退させる最初の精仕上げ工程により先ず最後に中仕上げ加工された穴について行い、最後を除く前記中仕上げ工程で中仕上げ加工された各穴については前記各刃具の各刃先の回転半径を前記中仕上げ加工回転半径より小として各穴に前進挿入してから前記精仕上げ刃具の刃先の回転半径を前記精仕上げ加工回転半径として軸線方向に後退させる精仕上げ工程により行う
ことを特徴とする複数穴の加工方法。
A method of machining a plurality of holes aligned in parallel with each other in a workpiece, wherein a semi-finishing blade and a fine-finishing blade that rotate together around one rotation axis are moved in the direction of the rotation axis, In the cutting method of a plurality of holes that are sequentially inserted into the holes that are not processed by the cutting tool and processed,
In the semi-finishing of each hole, the cutting edge of the semi-finishing tool is set to a predetermined semi-finishing turning radius, and the turning radius of the cutting edge of the fine finishing tool is set smaller than the turning radius of the finishing touch. In the semi-finished cutting tool, it is performed by a plurality of semi-finishing processes that sequentially advance and insert into the unprocessed holes,
Immediately after the intermediate finishing step except for the last, each cutting tool retracts in the axial direction with the rotational radius of each cutting edge being smaller than the intermediate finishing rotational radius,
In the fine finishing of each hole, immediately after the end of the last semi-finishing step, each cutting tool is set in the axial direction by setting the turning radius of the cutting edge of the fine finishing tool to a predetermined precision finishing turning radius larger than the intermediate finishing turning radius. In the first fine finishing step for retreating to the first, the hole that was finally finished in the middle finishing process is performed first, and for each hole that was finished in the middle finishing process except the last, the turning radius of each cutting edge of each cutting tool is set to the middle A plurality of holes are formed by performing a fine finishing step in which the rotational radius of the cutting edge of the fine finishing tool is retreated in the axial direction as the fine finishing rotational radius after being advanced and inserted into each hole as being smaller than the finishing rotational radius. Processing method.
JP2001121382A 2001-04-19 2001-04-19 Multi-hole machining method Expired - Fee Related JP4576069B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001121382A JP4576069B2 (en) 2001-04-19 2001-04-19 Multi-hole machining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001121382A JP4576069B2 (en) 2001-04-19 2001-04-19 Multi-hole machining method

Publications (2)

Publication Number Publication Date
JP2002307216A JP2002307216A (en) 2002-10-23
JP4576069B2 true JP4576069B2 (en) 2010-11-04

Family

ID=18971269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001121382A Expired - Fee Related JP4576069B2 (en) 2001-04-19 2001-04-19 Multi-hole machining method

Country Status (1)

Country Link
JP (1) JP4576069B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061659A (en) * 2014-02-14 2016-10-26 雷诺股份公司 Rotary boring tool with detachable cutting inserts and method for machining a cylinder bore of a combustion engine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6846136B2 (en) * 2002-08-06 2005-01-25 Velenite Inc. Rotatable cutting tool
JP2006130588A (en) * 2004-11-04 2006-05-25 Fuji Seiko Ltd Holder of cutting tool for finishing inner diameter and holder of cutting tool for machining inner diameter
JP2006263828A (en) * 2005-03-22 2006-10-05 Mitsubishi Materials Corp Cutting tool
JP2006263829A (en) * 2005-03-22 2006-10-05 Mitsubishi Materials Corp Cutting tool
US8469639B2 (en) 2007-05-31 2013-06-25 Valenite, Llc Actuated material removal tool
WO2009005804A1 (en) * 2007-07-05 2009-01-08 Valenite, Llc Actuated material removal tool
WO2010009226A1 (en) 2008-07-18 2010-01-21 Valenite Llc Backbore tool with coolant actuation
JP5378748B2 (en) * 2008-10-16 2013-12-25 富士精工株式会社 Boring tool and boring method
JP5208669B2 (en) * 2008-10-22 2013-06-12 株式会社ジェイテクト Boring machine and hole machining method
JP2012106314A (en) * 2010-11-17 2012-06-07 Mitsubishi Heavy Ind Ltd Device and method for drilling hole
JP5866272B2 (en) * 2012-11-30 2016-02-17 本田技研工業株式会社 Boring method and boring apparatus
CN112775622A (en) * 2020-12-24 2021-05-11 昆山施宝得精密模具有限公司 High-precision processing technology for hole positions of porous plates

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151603U (en) * 1983-03-31 1984-10-11 株式会社小松製作所 Tools in variable tool diameter spindle devices
JPH0454604U (en) * 1990-09-17 1992-05-11
JPH04304913A (en) * 1991-03-29 1992-10-28 Toyoda Mach Works Ltd Hole machining method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59151603U (en) * 1983-03-31 1984-10-11 株式会社小松製作所 Tools in variable tool diameter spindle devices
JPH0454604U (en) * 1990-09-17 1992-05-11
JPH04304913A (en) * 1991-03-29 1992-10-28 Toyoda Mach Works Ltd Hole machining method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106061659A (en) * 2014-02-14 2016-10-26 雷诺股份公司 Rotary boring tool with detachable cutting inserts and method for machining a cylinder bore of a combustion engine

Also Published As

Publication number Publication date
JP2002307216A (en) 2002-10-23

Similar Documents

Publication Publication Date Title
KR940005906B1 (en) Headstock reciprocating-type automatic lathe and machining method using the same
JP4576069B2 (en) Multi-hole machining method
US8925198B2 (en) Method and machining installation for the finishing of a crankshaft bearing bore
DE69228796T2 (en) Cam axis machining method and device
US10335860B2 (en) Machine tool
JPH05200601A (en) Machine tool
CA2040101C (en) Valve seat bushing machining apparatus
US20120152069A1 (en) CNC MACHINES, ADJUSTABLE TOOLS FOR CNC MACHINES, AND METHODS of OPERATING AN ADJUSTABLE TOOL ON A CNC MACHINE
CN110508832A (en) Multitool high efficiency synchronous dynamic balancing turnery processing lathe and processing method
JPS6034204A (en) Machine tool
US4305689A (en) Crankshaft milling machine
DE29918517U1 (en) Machine tool
JP4381542B2 (en) Crankshaft complex processing equipment
JPH0418726Y2 (en)
JP3415833B2 (en) Edge processing machine
US3869946A (en) Reproduction lathe
CN220921624U (en) Clamp for mechanical manufacturing
CN112171213A (en) Turning and hobbing integrated equipment for gear shaft machining and gear shaft machining process
EP2937164A1 (en) Bore-machining attachment for machine tool
CN114029710B (en) Beam support machining tool and process
JP5346630B2 (en) Internal grinding tool
CN116252003B (en) Processing method for processing spiral groove on cylindrical workpiece
CN220971680U (en) Shaft hub drilling device
CN208680564U (en) A kind of aligning push pin device
JP2002103115A (en) Machine tool for composite machining

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060228

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100823

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4576069

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130827

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees