JP4554778B2 - Machine difference verification method and plasma display panel manufacturing method - Google Patents

Machine difference verification method and plasma display panel manufacturing method Download PDF

Info

Publication number
JP4554778B2
JP4554778B2 JP2000217298A JP2000217298A JP4554778B2 JP 4554778 B2 JP4554778 B2 JP 4554778B2 JP 2000217298 A JP2000217298 A JP 2000217298A JP 2000217298 A JP2000217298 A JP 2000217298A JP 4554778 B2 JP4554778 B2 JP 4554778B2
Authority
JP
Japan
Prior art keywords
length measuring
substrate
measuring device
length
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000217298A
Other languages
Japanese (ja)
Other versions
JP2002031524A (en
Inventor
豪 守屋
雄一朗 井口
雄吉 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2000217298A priority Critical patent/JP4554778B2/en
Publication of JP2002031524A publication Critical patent/JP2002031524A/en
Application granted granted Critical
Publication of JP4554778B2 publication Critical patent/JP4554778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、大型フォトマスクやプラズマディスプレイパネル(PDP)用基板などの大型基板用測長機の校正用標準板、および機差検定方法、ならびに該方法により検定された測長機を用いたプラズマディスプレイパネル(PDP)の製造方法に関する。
【0002】
【従来の技術】
近年、大型ディスプレイとしてPDPが注目されている。
【0003】
代表的な方式であるAC型PDPは、前面ガラス基板と背面ガラス基板との間に備えられた放電空間内で、電極間にプラズマ放電を生じさせ、上記放電空間内に封入されているガスから発生した紫外線を、放電空間内に設けた蛍光体にあてることにより表示を行うものである。
【0004】
図2にPDPの構造例を示す。PDPは前面板1と背面板2をはり合わせて構成されている。前面板1は、ガラス基板3上にイットリウムや酸化錫からなる透明電極4が形成されている。該透明電極4は、帯状に複数本形成されており、隣り合う透明電極4間に通常10kHz〜数10kHzのパルス状AC電圧を印加し、表示用の放電を得るが、透明電極4のシート抵抗は数10Ω/cm2 と高いために、電極抵抗が数10kΩ程度になり、印加電圧パルスが十分に立ち上がらず、駆動が困難になる。そこで、透明電極4上に通常金属製のバス電極5を形成して抵抗値を下げる。
【0005】
次に、これら電極を透明誘電体層6によって被覆する。この透明誘電体層6には低融点ガラスを用いる。その後、保護膜層7として、MgOを電子ビーム蒸着法によって形成する。前面板1に形成される透明誘電体層6は、放電のための電荷を蓄積するコンデンサーとしての役割をする。
【0006】
上記したPDPの前面板1、背面板2は、例えば次の方法で製造される。
【0007】
前面板1は基板3上に、ITOをスパッタ法で形成後、レジスト塗布し、露光・現像処理、エッチング処理によって透明電極4を形成する。この上に、黒色金属粉末と有機バインダーからなるペーストを用いて、フォトリソグラフィ法やパターン印刷法によりバス電極5を形成する。さらに、電極形成した前面板1上に透明誘電体ペーストを印刷法やコーター法で塗布し、焼成を行って透明誘電体層6を形成し、さらに、形成した透明電極4、黒色バス電極5、透明誘電体層6を一様に被覆するように電子ビーム蒸着機を用いて、保護膜層(MgO膜)7を形成して製造する。
【0008】
背面板2は、ガラス基板3上に、表示データを書き込む書き込み電極(銀)8を感光性銀ペーストを用いて作製し、この電極8を誘電体層9で被覆する。その上に放電空間の確保と電極間距離の規定および誤放電防止の役割を果たすストライプ状や格子状などの隔壁10を形成する。次に、隔壁側面と底部にスクリーン印刷法により、赤、緑、青の各色に発光する蛍光体を塗布後、乾燥、焼成を行って蛍光体層11を形成する。
【0009】
上記の背面板2と前面板1をマトリクス駆動が可能になるように合わせ、シールガラスで封着した後、排気し、He、Ne、Xe等の不活性気体の混合ガスを充填し、駆動回路を実装してPDPは製造される。
【0010】
このような構造を有するPDPにおいては、隣り合う透明電極4の間にパルス状の交流電圧を印加するとガス放電が生じプラズマが形成される。ここで生じた紫外線が蛍光体11を励起して可視光を発光し、前面板1を通して表示発光を得る。放電を生じる透明電極4は走査電極と維持電極からなっている。実際のパネル駆動において、放電電極である透明電極4には維持放電パルスが印加されており、放電を生じさせるときには、背面板2上の書き込み電極8との間に電圧を印加して対向放電を生じさせ、この放電が維持パルスによって放電電極間で維持される。
【0011】
【発明が解決しようとする課題】
上記のPDPにおいて、各パターンの位置精度の向上は正確な放電を行う上で重要な課題となっている。具体的には、背面板上の隔壁と書込電極の相対位置精度が悪く、相互に重なる場合は、各セルの放電電圧が不均一となり、電圧マージンがとれない問題がある。また、隔壁がワッフル形状や格子形状の場合は前面板電極の放電部と隔壁で囲まれた放電空間との相対位置精度を確保することが、正確な駆動を行い、輝度を確保する上で重要である。今後の高精細化、駆動電圧の安定化による駆動回路の簡略化のためには、パターンの形成位置精度は約±15μm以下が望まれている。
【0012】
しかし、以下の現象によってパターン位置精度向上は困難な課題となっている。 第1に焼成毎にガラス基板が収縮することによって、パターンのトータルピッチが設計より小さくなる問題がある。これに関しては、特開平9−171770号公報で焼成毎のガラス基板の収縮量を見込んで、予めパターンを大きく形成しておく方法が提案されている。
【0013】
第2は、パターン寸法を測る測長機の精度に起因する問題である。PDPのパターンはフォトリソグラフィで形成される場合が多く、この場合フォトマスクが用いられるが、通常フォトマスクはマスクメーカーで作製される。この際、マスクメーカーの測長機とPDPメーカーの測長機に機差があったり、測定温度(室温)が異なることで基板の熱寸法変化が生じると、マスクメーカーでは設計寸法通りに作製したつもりでも、該マスクをPDPメーカーで用いる際、所望の寸法になっておらず、PDP用基板のパターン精度が得られない問題があった。また、PDPメーカー内でも、前面板と背面板がそれぞれ別の製造、検査ラインで、それぞれ異なる測長機を用いている場合も、機差や温度差のために前面板と背面板の各パターン寸法が設計値と異なり、パターンが整合しない問題があった。
【0014】
特開平10−82630号公報では測長装置の精度確認方法として以下の方法が提案されている。国家標準にトレーサビリティがとれている標準器を使用して絶対精度の校正作業をした後、測長機ステージに設けたターゲットの座標値を読みとり、記憶し、これを繰り返して、繰り返し精度が許容範囲を越えるか否かを判断する方法である。この方法では、装置単体の絶対精度と繰り返し精度が確保されるが、絶対精度を確保するための大型標準器が高価である、測定温度差による基板熱寸法変化分の誤差が解消できないなどの問題があった。
【0015】
そこで本発明は、PDP用基板およびフォトマスクを測長する測長機の校正用標準板、および機差検定方法と該方法で検定された測長機を用いることで、精度良くパターン形成され、高い歩留まりで製造することが可能なプラズマディスプレイパネルの製造方法を提供することをその目的とする。
【0016】
【課題を解決するための手段】
上記の本発明の目的は、以下の構成を採用することによって達成される。すなわち、
[1]ステージ、および基板観察手段を備えた基板測長機の機差検定方法であって、2枚の基板a、および基板bそれぞれの熱膨張係数が−8×10 -7 〜8×10 -7 /℃、および70×10 -7 /℃以上であり、それぞれの基板には、ある温度T(℃)で互いに同一のマーク間距離をもつマークが形成されており、基板aのマーク間距離を第一の測長機および第二の測長機で測長した値をa1、a2、基板bのマーク間距離を第一の測長機および第二の測長機2で測長した値をb1、b2(T(℃)でa1=b1)とした場合、第一の測長機、第二の測長機の機差Xと第一の測長機、第二の測長機2の測定温度差による寸法変化Yを、次式(2)および(3)により求めることを特徴とする測長機差検定方法。
【0019】
(a1−a2)/a1=X・・・(2)
(b1−b2)/b1−X=Y・・・(3)
]前記[]記載の方法で校正された測長機を用いることを特徴とするプラズマディスプレイパネル用基板の測長方法。
【0020】
]前記[]記載の方法で校正された測長機を用いることを特徴とするプラズマディスプレイパネル用フォトマスクの測長方法。
【0021】
]前記[]記載の測長方法で測長された基板を用いることを特徴とするプラズマディスプレイパネルの製造方法。
【0022】
]前記[]記載の測長方法で測長されたフォトマスクを用いることを特徴とするプラズマディスプレイパネルの製造方法。
【0023】
【発明の実施の形態】
本発明は、熱膨張係数が−8×10-7〜8×10-7/℃の材料からなり、複数の測長用マークを備えた標準板aを用い、該標準板aのマーク間距離を複数の測長機で測長し、各測長機での測長値差から、正確に機差を求め得ることを見いだした。これは、標準板aの熱膨張係数が十分小さく、測定温度による寸法変化がないためである。さらに、上記標準板aと同一マーク間距離でマークを形成した熱膨張係数が70×10-7/℃以上の基板bについて同様に測長し、該測長値を標準板aの測長値と比較することで、測長値差に占める熱寸法変化分と機差分を分離する方法を見いだしたものである。
【0024】
以下、本発明をさらに詳しく説明する。
【0025】
標準板aの材料としては、室温付近での熱膨張係数が−8×10-7〜8×10-7/℃以下であることが、測定温度差による熱寸法変化分を無視するために重要である。熱膨張係数は−5×10-7〜5×10-7/℃以下であるとより好ましく、さらに好ましくは−3×10-7〜3×10-7/℃以下である。
【0026】
熱膨張係数は示差熱膨張計を用いて測定を行い、30〜400℃の範囲について求めた値である。
【0027】
測長機を設置する室温は約20〜25℃が一般的であり、この場合、最大約5度の温度差が考えられるが、熱膨張係数が−8×10-7〜8×10-7/℃の材料を用いた、長手寸法1mの基板では、5℃の温度上昇で4μmの寸法変化であり、これはPDPのパターン寸法を測長する上で無視できる十分小さい誤差である。これによって、異なる室温に設置された測長機であっても、正確に固有の機差を検定できる。具体的な標準板の材料としては、窒化珪素、チタン酸アルミニウム、石英ガラスなどが挙げられるが、種々の低膨張結晶化ガラスが安価で加工しやすい点から好ましい。
【0028】
標準板aの作製は、基板の成型、切断、研磨工程およびマーク形成工程からなる。マークの形成方法としては、感光性ペースト法やパターン印刷法などで金属ペーストのマークを形成した後、これを焼成してを焼き付ける方法や、基板にレーザー描画する方法がある。マーク形状は測長機に備えた観察手段で観察できるマークであればいかなるものでも良いが、マークの座標を精度よく特定するには、+形状が好ましく、線幅は10〜200μm程度のものが好ましい。
【0029】
本発明で用いられる測長機としては、例えば基板を載置するステージと、基板を観察するための観察手段と、上記ステージと平行な平面内で上記観察手段と上記ステージとを相対的に移動させる手段とを備え、観察手段により被測定物の測定対象となる2点のマークの座標値を測定し、その時の相対移動量により被測定物の長さを求める方式のものが適用できる。観察手段としては、被測定物上の微細マークを観察することができるものであり、具体的にはCCDカメラなどが好ましい。他にも、微細マークを拡大投影する投影機や画像のエッジ部分を検出することのできるセンサ、タッチプローブなどを使用することもできる。
【0030】
本発明の測長機差検定方法は、上記の熱膨張係数が−8×10-7〜8×10-7/℃の材料からなる同一標準板のマーク間距離を複数の測長機で測長し、該測長値の差から機差を求める方法である。標準板aを第一の測長機および第二の測長機で測長した際の測長値をそれぞれa1(m)、a2(m)とすると機差Xは次式(1)で定義される。
【0031】
X=(a1−a2)/a1 ・・・(1)
ここで、Xは測長長さ1mあたりに生じる機差(m)である。
【0032】
プラズマディスプレイパネルやフォトマスクなど、熱膨張係数が70×10-7/℃を越える材料からなる基板を複数の測長機で測長する際は、測定温度差によって生じる基板寸法変化と機差とを明確に分離する必要があり、本発明は以下の方法を見いだした。2枚の基板a、およびbそれぞれの熱膨張係数が−8×10-7〜8×10-7/℃、および70×10-7/℃以上であり、それぞれの基板には、ある温度T(℃)で互いに同一のマーク間距離をもつマークが形成されており、aのマーク間距離を第一の測長機および第二の測長機で測長した値をa1、a2、bのマーク間距離を第一の測長機および第二の測長機で測長した値をb1、b2(T(℃)でa1=b1)とした場合、第一の測長機、第二の測長機の機差Xと第一の測長機および第二の測長機の測定温度差による寸法変化Yは、次式(2)および(3)により求められる。
【0033】
(a1−a2)/a1=X ・・・(2)
(b1−b2)/b1−X=Y ・・・(3)
YもXと同様、測長長さ1mあたりに生じる基板寸法変化(m)である。
【0034】
次に、本発明のプラズマディスプレイパネルを製造する好ましい方法を以下に順を追って説明する。
【0035】
本発明のプラズマディスプレイパネルの製造方法は、従来技術と同様に、前面板、背面板の製造と該基板の封着、排気、不活性混合ガスの充填、駆動回路の実装工程からなる。
【0036】
前面板、および背面板に用いるガラス基板はソーダライムガラス、PD200(旭硝子製)などの高歪み点ガラスいずれでも良い。これらの熱膨張係数は70×10-7/℃〜90×10-7/℃の範囲であることが好ましく、前面板と背面板との熱膨張係数差は10×10-7/℃以下であることが重要である。前面板と背面板との熱膨張係数差が10×10-7/℃を越えると、封着の際、応力が発生し基板が割れることがあるので好ましくない。より好ましくは、前面板、背面板が互いに同じ材料であると、封着時の基板の破損を防ぐのに有効である。
【0037】
前面板は基板上に、ITOをスパッタ法で形成後、レジスト塗布し、露光・現像処理、エッチング処理によって透明電極を形成する。この上に、黒色金属粉末と有機バインダーからなるペーストを用いて、フォトリソグラフィ法またはパターン印刷法によりバス電極を形成する。さらに、電極形成した前面板上に透明誘電体ペーストを印刷法やコーター法で塗布し、焼成を行って透明誘電体操を形成し、さらに、形成した透明電極、黒色電極、誘電体層を一様に被覆するように電子ビーム蒸着機を用いて、MgO膜を形成して製造する。
【0038】
背面板は、ガラス基板上に、表示データを書き込む書き込み電極を感光性銀ペーストを用いてフォトリソグラフィ法で作製し、この電極を誘電体層で被覆する。その上に放電空間の確保と電極間距離の規定および誤放電防止の役割を果たすストライプ状や格子状などの隔壁をパターン印刷法、サンドブラスト法、感光性ペースト法によって形成する。次に、隔壁側面と底部にスクリーン印刷法や感光性ペースト法により、赤、緑、青の各色に発光する蛍光体を塗布後、乾燥、焼成を行って蛍光体層を形成する。
【0039】
前面板、および背面板作製工程のうち、前面板の透明電極、バス電極、背面板の書き込み電極、隔壁はフォトリソグラフィ法で形成されることが好ましく、このときフォトマスクが用いられる。
【0040】
PDP用フォトマスクはソーダライムガラスの支持基板にマスクパターンが描画された膜が形成されており、膜にはエマルジョン、クロムがある。エマルジョンマスクの製法は基板上にエマルジョン(写真乳剤)を塗布した後、塗布膜にCADで作成されたパターンデータをフォトプロッターもしくはEB描画装置で描画、写真現像して形成される。クロムマスクの場合は、基板上へのクロム蒸着、フォトレジスト膜形成、露光、現像、エッチング、レジスト剥離を経て作製される。フォトマスクを作製する際、フォトマスクを測長する測長機と、前、背面板製造ラインの測長機の間に機差があると、フォトマスクのパターン寸法が所望通りに作製されないため、測長機の機差を明確にし、パターンデータの補正値を求める必要がある。
【0041】
また、作製された前面板、背面板も、それぞれを測長する測長機の機差を定量し、各測長機の測長値に補正をかけることが重要である。補正をかけない場合、見かけ上設計通りの寸法であっても、実際は設計値よりずれており、封着の際、前面板と背面板のパターンズレを起こす場合がある。以下に、フォトマスクおよび前面板、背面板の測長値補正方法を示す。
【0042】
前面板、背面板およびフォトマスクの製造ラインをそれぞれ0、1、2としたとき、各ラインの測長機をS0、S1、S2、測長温度(℃)をT0、T1、T2とする。本発明の標準板をa、前面板、背面板、フォトマスクと同じく、熱膨張係数が80〜90×10-7/℃のガラスからなる基板をbとし、標準板a、基板bはある温度T(℃)で同一のマーク間距離をもつ2点のマークが形成されている。
標準板aのマーク間距離を測長機S0、S1およびS2で測長した値をa0、a1、a2、基板bのマーク間距離を測長機S0、S1およびS2で測長した値をb0、b1、b2(T(℃)でa0=b0)とした場合、S0とS1の機差X01、S0とS2の機差X02およびS1とS2の機差X12は前記(2)式に従い、次式(4)(5)(6)により求められる。
【0043】
(a0−a1)/a0=X01 ・・・(4)
(a0−a2)/a0=X02 ・・・(5)
(a1−a2)/a1=X12 ・・・(6)
測定温度差による基板の寸法変化Yは、次式(7)〜(9)により求められる。
【0044】
(b0−b1)/b0−X01=Y01 ・・・(7)
(b0−b2)/b0−X02=Y02 ・・・(8)
(b1−b2)/b1−X12=Y12 ・・・(9)
ここで、PDPのパターンのある部分の設計寸法をC(m)とし、測長機の基準機をS0としたとき、S1、S2でCを測長する際は、次式(10)(11)により求められる補正された値C1、C2で表現される。
【0045】
C1=C(1−X01−Y01) ・・・(10)
C2=C(1−X02−Y02)=C1(1−X12−Y12) ・・・(11)
したがって、フォトマスクを設計、描画する際は、(11)式に従って補正をかける。また、背面板を測長する際は、(10)式に従って測長値を補正する。
また、前面板、背面板の封着がT0、T1、T2以外の温度Txで行われる場合は、Txを基準として、S0、S1、S2でCを測定した値は次式(12)〜(15)で求められる補正された値C0、C1、C2で表される。
【0046】
C0=C/{(1+α(Tx−T0)} ・・・(12)
C1=C{1−X01−Y01(Tx−T0)/(T0−T1)} ・・・(13)
C2=C{1−X02−Y02(Tx−T0)/(T0−T2)} ・・・(14)
=C〔1−X12−Y12(Tx−T1)/(T1−T2)〕 ・・・(15)
ここで、αは前面板の熱膨張係数を示す。フォトマスク補正は(14)、(15)式に従って行い、前面板、背面板の測長値の補正はそれぞれ(12)、(13)によって行う。
【0047】
このように補正されたフォトマスクを用い作製された前、背面板を機差を補正した測長機で測長し、設計寸法通りに作製されているかどうかをチェックする。
寸法のズレは±20μm以下、好ましくは±15μm以下であると、正確な電圧駆動を行うことができる。
【0048】
上記の背面板と前面板をマトリクス駆動が可能になるように合わせ、シールガラスで封着した後、排気し、He、Ne、Xe等の不活性気体の混合ガスを充填し、駆動回路を実装してPDPは製造される。
【0049】
【実施例】
以下に、本発明を実施例を用いて、具体的に説明する。ただし、本発明はこれに限定はされない。
【0050】
<実施例1>
(1)測長機校正用標準板の作製
以下の2種の基板を用いた。
【0051】

Figure 0004554778
各基板には、全面に感光性銀ペースト(デュポン社製「フォーデルDC202」をにスクリーン印刷した後、フォトマスク露光、現像、焼成を行って図1に示すイ〜ニの位置に+パターンを形成した。露光時の基板温度は22℃であった。
(2)基板の測長および測長値の補正
標準板A、Bについて第一の測長機、第二の測長機で測長を行った。ここで第一の測長機、第二の測長機はいずれも図3に示す構造のものである。それぞれの設置温度は第一の測長機が22℃、第二の測長機が25℃であった。架台34上に載置された測長機のステージ32と、CCDカメラ35は平行な平面内において相対的にXY移動させることができ(Y方向はレール33上を移動)、駆動はモータ駆動である。観察へッド36をもつCCDカメラ35は、焦点合わせのため、Z方向に移動可能である。ディスプレイ37には、被観察物の拡大像とカメラ中心位置(+マーク)が表示されており、基板31マーク中心とカメラ中心を目視合わせを行い、このときの座標値を読みとった。座標はXY座標によって示され、各座標値から基板マーク間距離を求めた。
標準板A、Bのイ−ロ間距離を第一の測長機および第二の測長機で測長した際の測長値をそれぞれA1、B1、A2、B2(単位:m)、とすると機差X12、基板寸法変化Y12を次式で求めた。
【0052】
X12=(A1−A2)/A1
Y12=(B1−B2)/B1−X12
ここで、X12、Y12は測長長さ1mあたりに生じる機差、寸法変化(m)である。第二の測長機の第一の測長機に対する誤差を補正するため、補正係数βを以下の通りとした。
【0053】
β=1−X12−Y12
C2=γ×C1
C1、C2は第一の測長機、第二の測長機の測長値である。
表1に第一の測長機、第二の測長機の測定温度、A1、B1、A2、B2、X12、Y12、γの値を示した。
(3)PDP用基板の測長
次に、基板上に電極、誘電体、隔壁を形成した背面板について、電極と隔壁のトータルピッチを測定した。測長機1の実測値にβを乗じた値と、測長機2の実測値は良い一致を示し、補正が正しく行われていることを示した。結果を表1に示す。
【0054】
【表1】
Figure 0004554778
【0055】
<実施例2>
実施例1で補正した第一の測長機、第二の測長機を用いて、PDPの製造を行った。前面板、背面板作製工程のうち、前面板の透明電極、バス電極、背面板の書込電極、隔壁はフォトリソグラフィ法で形成するため、フォトマスクを作製した。この際、マスクパターン寸法は第一の測長機を基準に設計した。フォトマスクはソーダライムガラスの支持基板上にエマルジョン(写真乳剤)を塗布した後、塗布膜にCADで作成されたパターンデータをEB描画/測長兼用機で描画した後、写真現像して形成し、最後にEB描画/測長兼用機で寸法確認を行った。
前面板用フォトマスクは、第三のマスクメーカーで作製し、背面板用フォトマスクは第四のマスクメーカーで作製した。第三のマスクメーカーの描画/第三の測長機の描画/測定温度は20℃、第四のマスクメーカーの描画/第四の測長機の描画/測定温度は23℃であった。描画/測長機は実施例1と同様、標準板A、Bを用いて補正を行った。標準板A、Bのイ−ロ間距離を描画/第三の測長機、第四の測長機で測長した値をそれぞれA3、A4、B3、B4、第一の測長機との機差をX13、X14、基板寸法変化Y13、Y14、補正係数をγ、Δとした。各値を表1に示す。また、計算方法を以下に示す。
【0056】
X13=(A1−A3)/A1
Y12=(B1−B3)/B1−X13
γ=1−X13−Y13
C3=γ×C1
Δ=1−X13−Y13
C4=Δ×C1
C1はマスクパターンの設計値、C3、C4は描画/測長機の補正値である。
【0057】
作製したフォトマスクを用いて、以下の手順でPDPを作製した。
【0058】
まず、1250×750×2.8mmサイズのガラス基板(旭硝子社製 PD200)上に書き込み電極として感光性銀ペースト(デュポン社製 フォーデルDC202)を用いてフォトリソグラフィ法により、ピッチ300μm、線幅180μm、焼成後厚み4μmのストライプ状電極を形成した。この基板に誘電体ペースト(ノリタケカンパニーリミテド社製 NP−7858)を塗布した後、550℃で焼成して厚み10μmの誘電体層を形成した。誘電体上には感光性ペーストをスクリーン印刷によって厚膜塗布し、この膜を露光、現像、焼成し、ピッチ300μm、高さ120μm、幅80μmのストライプ状隔壁を形成した。
光学顕微鏡にて形成パターンを確認したところ、電極、隔壁の重なりなどのパターンズレはなく、精度は良好であった。
【0059】
このように形成された隔壁に、赤、青、緑に発光する蛍光体ペーストをスクリーン印刷法を用いて塗布し、これらを焼成(500℃、30分)して隔壁の側面および底部に蛍光体層を形成した。
【0060】
次に、前面板を以下の工程によって作製した。先ず、背面板と同じガラス基板上に、ITOをスパッタ法で形成後、レジスト塗布し、露光・現像処理、エッチング処理によって焼成厚み0.1μm、線幅200μmの透明電極を形成した。
また、黒色銀粉末からなる感光性銀ペーストを用いて、フォトリソグラフィ法により、焼成後厚み10μmのバス電極を形成した。電極はピッチ300μm、線幅60μmのものを作製した。
【0061】
さらに、電極形成した前面板上に透明誘電体ペーストを20μm塗布し、430℃で20分間保持して焼き付けた。次に、形成した透明電極、黒色電極、誘電体層を一様に被覆するように電子ビーム蒸着機を用いて、厚みは0.5μmのMgO膜を形成して前面板を完成させた。
【0062】
得られた前面ガラス基板を、前記の背面ガラス基板と張り合わせ封着した。封着用のアライメントマーク(マーク間距離1230mm)で前、背面板パターンのズレを確認したところ、10μm以下であった。
【0063】
<比較例>
第一の測長機、第二の測長機、EB描画/第三の測長機、第四の測長機の補正を行わなかった以外は、実施例2と同様にPDPの製造を行った。前面板、背面板の封着の際、封着用アライメントマークで前、背面板のズレを確認したところ、前面板に対して背面板が106μm小さく形成されていた。
【0064】
【発明の効果】
基板上に測長基準となる複数のマークを設けた測長機校正用標準板であって、標準板材料の熱膨張係数が−8×10-7〜8×10-7/℃のものからなる測長機校正用標準板と、該標準板のマーク間距離を複数の測長機で測長し、該測長値の差から機差を求めることで各測長機差を検定する方法および該方法で検定された測長機を用いてPDPの製造を行うことで、パターン加工精度を向上し、歩留まりを上げることが可能となる。
【図面の簡単な説明】
【図1】実施例1、実施例2に用いる標準板のマーク位置を示す平面図である。
【図2】PDPの断面図である。
【図3】本発明に適用する測長機の一例を示す概略図である。
【符号の説明】
1:前面板
2:背面板
3:基板
4:透明電極
5:バス電極
6:透明誘電体層
7:保護膜層(MgO膜)
8:書き込み電極
9:誘電体層
10:隔壁
11:蛍光体層
31:基板
32:ステージ
33:レール
34:架台
35:CCDカメラ
36:観察へッド
37:ディスプレイ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a calibration standard plate for a length measuring device for a large substrate such as a large photomask or a plasma display panel (PDP) substrate, a machine difference verification method, and a plasma using a length measuring device verified by the method. The present invention relates to a method for manufacturing a display panel (PDP).
[0002]
[Prior art]
In recent years, PDP has attracted attention as a large display.
[0003]
AC type PDP, which is a typical method, generates plasma discharge between electrodes in a discharge space provided between a front glass substrate and a back glass substrate, and from a gas sealed in the discharge space. Display is performed by applying the generated ultraviolet light to a phosphor provided in the discharge space.
[0004]
FIG. 2 shows an example of the structure of the PDP. The PDP is configured by bonding a front plate 1 and a back plate 2 together. The front plate 1 has a transparent electrode 4 made of yttrium or tin oxide formed on a glass substrate 3. The transparent electrode 4 is formed in a plurality of strips, and a pulsed AC voltage of 10 kHz to several tens of kHz is usually applied between adjacent transparent electrodes 4 to obtain a display discharge. Is several tens of ohms / cm2Therefore, the electrode resistance becomes about several tens of kΩ, the applied voltage pulse does not rise sufficiently, and driving becomes difficult. Therefore, the resistance value is lowered by forming a normal metal bus electrode 5 on the transparent electrode 4.
[0005]
Next, these electrodes are covered with a transparent dielectric layer 6. The transparent dielectric layer 6 is made of low melting point glass. Thereafter, MgO is formed as the protective film layer 7 by an electron beam evaporation method. The transparent dielectric layer 6 formed on the front plate 1 serves as a capacitor that accumulates electric charges for discharge.
[0006]
The front plate 1 and the back plate 2 of the above-described PDP are manufactured, for example, by the following method.
[0007]
The front plate 1 is formed by forming ITO on the substrate 3 by sputtering, applying a resist, and forming the transparent electrode 4 by exposure / development processing and etching processing. On this, the bus electrode 5 is formed by a photolithography method or a pattern printing method using a paste made of black metal powder and an organic binder. Further, a transparent dielectric paste is applied to the electrode-formed front plate 1 by a printing method or a coater method, and baked to form a transparent dielectric layer 6. Further, the formed transparent electrode 4, black bus electrode 5, A protective film layer (MgO film) 7 is formed and manufactured using an electron beam vapor deposition machine so as to uniformly coat the transparent dielectric layer 6.
[0008]
For the back plate 2, a write electrode (silver) 8 for writing display data is produced on a glass substrate 3 using a photosensitive silver paste, and this electrode 8 is covered with a dielectric layer 9. A barrier rib 10 having a stripe shape or a lattice shape is formed thereon, which secures a discharge space, defines a distance between electrodes, and prevents erroneous discharge. Next, the phosphor layer 11 is formed by applying phosphors that emit light of red, green, and blue colors to each side and bottom of the partition walls by screen printing, followed by drying and firing.
[0009]
The back plate 2 and the front plate 1 are aligned so that matrix driving is possible, sealed with sealing glass, exhausted, and filled with an inert gas mixture such as He, Ne, Xe, etc. PDP is manufactured by mounting.
[0010]
In a PDP having such a structure, when a pulsed alternating voltage is applied between adjacent transparent electrodes 4, gas discharge occurs and plasma is formed. The generated ultraviolet rays excite the phosphor 11 to emit visible light, and display emission is obtained through the front plate 1. The transparent electrode 4 that generates discharge includes a scan electrode and a sustain electrode. In actual panel driving, a sustain discharge pulse is applied to the transparent electrode 4 which is a discharge electrode. When a discharge is generated, a voltage is applied between the writing electrode 8 on the back plate 2 and a counter discharge is performed. This discharge is maintained between the discharge electrodes by the sustain pulse.
[0011]
[Problems to be solved by the invention]
In the above PDP, improvement of the positional accuracy of each pattern is an important issue in performing accurate discharge. Specifically, when the relative position accuracy of the barrier rib and the write electrode on the back plate is poor and they overlap each other, there is a problem that the discharge voltage of each cell becomes non-uniform and the voltage margin cannot be taken. In addition, when the barrier ribs are in a waffle shape or a lattice shape, it is important to ensure the relative position accuracy between the discharge part of the front plate electrode and the discharge space surrounded by the barrier ribs to ensure accurate driving and ensure brightness. It is. In order to simplify the drive circuit by increasing the definition and stabilizing the drive voltage in the future, the pattern formation position accuracy is desired to be about ± 15 μm or less.
[0012]
However, improvement of pattern position accuracy is a difficult problem due to the following phenomenon. First, there is a problem that the total pitch of the pattern becomes smaller than the design because the glass substrate shrinks at every firing. Regarding this, Japanese Patent Application Laid-Open No. 9-171770 has proposed a method in which a large pattern is formed in advance in consideration of the shrinkage amount of the glass substrate for each firing.
[0013]
The second problem is caused by the accuracy of the length measuring instrument that measures the pattern dimension. The PDP pattern is often formed by photolithography. In this case, a photomask is used, but the photomask is usually manufactured by a mask manufacturer. At this time, if there is a difference between the length measuring machine of the mask manufacturer and the measuring machine of the PDP manufacturer, or if the thermal dimensional change of the substrate occurs due to the difference in the measurement temperature (room temperature), the mask manufacturer manufactured it according to the design dimensions. Even when the mask is used by a PDP manufacturer, there is a problem that the desired dimensions are not obtained and the pattern accuracy of the PDP substrate cannot be obtained. Even within the PDP manufacturer, the front plate and the back plate have different manufacturing and inspection lines, and different length measuring machines are used. There was a problem that the pattern did not match because the dimensions were different from the design values.
[0014]
Japanese Patent Laid-Open No. 10-82630 proposes the following method as a method for confirming the accuracy of the length measuring device. After calibrating the absolute accuracy using a standard that is traceable to the national standard, read and store the coordinate value of the target set on the measuring machine stage, and repeat this to allow the repeatability to be within the allowable range. This is a method for determining whether or not the value exceeds. In this method, the absolute accuracy and repeatability of the device itself are ensured, but there are problems such as large standard devices for ensuring absolute accuracy are expensive, and errors due to substrate thermal dimensional changes due to measurement temperature differences cannot be resolved. was there.
[0015]
Therefore, the present invention uses a standard plate for calibration of a length measuring machine for measuring a PDP substrate and a photomask, and a machine difference verification method and a length measuring machine verified by the method, so that a pattern is formed with high accuracy. It is an object of the present invention to provide a method of manufacturing a plasma display panel that can be manufactured with a high yield.
[0016]
[Means for Solving the Problems]
  The object of the present invention is achieved by adopting the following configuration. That is,
  [1]A method for verifying a difference between a substrate length measuring machine including a stage and a substrate observing means, wherein the thermal expansion coefficients of the two substrates a and b are −8 × 10 -7 ~ 8x10 -7 / ° C and 70 × 10 -7 Each substrate is formed with marks having the same mark-to-mark distance at a certain temperature T (° C.), and the distance between the marks on the substrate a is set to the first length measuring machine and the second length measuring machine. The lengths measured by the length measuring machine are a1 and a2, the distance between the marks on the substrate b is measured by the first length measuring machine and the second length measuring machine 2, and b1 and b2 (T (° C.)). In the case of a1 = b1), the dimensional change Y due to the temperature difference between the first length measuring machine and the second length measuring machine and the measured temperature difference between the first length measuring machine and the second length measuring machine 2, A length measuring machine difference test method characterized by being obtained by the following equations (2) and (3).
[0019]
  (A1-a2) / a1 = X (2)
  (B1-b2) / b1-X = Y (3)
  [2] Said [1] A length measuring method for a plasma display panel substrate, characterized by using a length measuring machine calibrated by the method described above.
[0020]
  [3] Said [1] A length measuring method for a photomask for a plasma display panel, wherein a length measuring machine calibrated by the method described above is used.
[0021]
  [4] Said [2] A method for producing a plasma display panel, comprising using a substrate measured by the length measuring method described above.
[0022]
  [5] Said [3A method of manufacturing a plasma display panel, comprising using a photomask measured by the length measuring method described in the above.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has a coefficient of thermal expansion of −8 × 10-7~ 8x10-7A standard plate a made of a material at / ° C and provided with a plurality of length measurement marks, the distance between the marks on the standard plate a is measured with a plurality of length measuring devices, and a length measurement value at each length measuring device From the difference, it was found that the machine difference can be obtained accurately. This is because the thermal expansion coefficient of the standard plate a is sufficiently small and there is no dimensional change due to the measurement temperature. Furthermore, the thermal expansion coefficient in which the mark is formed at the same mark distance as the standard plate a is 70 × 10-7Measure the length of the substrate b at / ° C or higher in the same way, and compare the measured value with the measured value of the standard plate a to find a method for separating the thermal dimensional change and machine difference in the measured value difference. It is a thing.
[0024]
Hereinafter, the present invention will be described in more detail.
[0025]
As the material of the standard plate a, the coefficient of thermal expansion near room temperature is −8 × 10-7~ 8x10-7It is important for ignoring the change in the thermal dimension due to the measurement temperature difference to be less than / ° C. The coefficient of thermal expansion is -5 × 10-7~ 5x10-7/ ° C. or less, more preferably −3 × 10-7~ 3x10-7/ ° C or less.
[0026]
The coefficient of thermal expansion is a value obtained by measuring using a differential thermal dilatometer and determining a range of 30 to 400 ° C.
[0027]
The room temperature where the length measuring machine is installed is generally about 20 to 25 ° C. In this case, a maximum temperature difference of about 5 degrees is considered, but the coefficient of thermal expansion is −8 × 10-7~ 8x10-7A substrate having a longitudinal dimension of 1 m using a material of / ° C. has a dimensional change of 4 μm with a temperature increase of 5 ° C., which is a sufficiently small error that can be ignored in measuring the pattern dimension of the PDP. As a result, even a length measuring machine installed at a different room temperature can accurately test a specific machine difference. Specific examples of the material for the standard plate include silicon nitride, aluminum titanate, and quartz glass. Various low expansion crystallized glasses are preferable because they are inexpensive and easy to process.
[0028]
The production of the standard plate “a” includes a substrate molding, cutting, polishing process, and mark forming process. As a method for forming the mark, there are a method in which a metal paste mark is formed by a photosensitive paste method, a pattern printing method, or the like, and then baked and printed, or a method of laser drawing on a substrate. The mark shape may be any mark as long as it can be observed by the observation means provided in the length measuring machine. However, in order to accurately identify the coordinates of the mark, the + shape is preferable, and the line width is about 10 to 200 μm. preferable.
[0029]
As a length measuring instrument used in the present invention, for example, a stage on which a substrate is placed, an observation means for observing the substrate, and the observation means and the stage are relatively moved in a plane parallel to the stage. And a means for measuring the coordinate values of the two marks to be measured on the object to be measured by the observing means and obtaining the length of the object to be measured based on the relative movement amount at that time. As the observation means, a fine mark on the object to be measured can be observed. Specifically, a CCD camera or the like is preferable. In addition, a projector that magnifies and projects a fine mark, a sensor that can detect an edge portion of an image, a touch probe, and the like can be used.
[0030]
In the length measuring instrument difference verification method of the present invention, the thermal expansion coefficient is −8 × 10.-7~ 8x10-7This is a method in which the distance between marks of the same standard plate made of a material at / ° C. is measured by a plurality of length measuring machines, and the machine difference is obtained from the difference between the length measurement values. The machine difference X is defined by the following equation (1) when the length measurement values when the standard plate a is measured with the first length measuring device and the second length measuring device are a1 (m) and a2 (m), respectively. Is done.
[0031]
X = (a1-a2) / a1 (1)
Here, X is a machine difference (m) generated per 1 m of measurement length.
[0032]
The thermal expansion coefficient of plasma display panels and photomasks is 70 × 10-7When measuring a substrate made of a material exceeding / ° C with a plurality of length measuring machines, it is necessary to clearly separate the substrate dimensional change caused by the measurement temperature difference and the machine difference. The present invention has found the following method. It was. The thermal expansion coefficient of each of the two substrates a and b is −8 × 10-7~ 8x10-7/ ° C and 70 × 10-7Each of the substrates is formed with marks having the same mark-to-mark distance at a certain temperature T (° C.). The distance between the marks a is set to the first length measuring machine and the second length measuring machine. The values measured by the length measuring device are the distances between the marks a1, a2, and b, and the values measured by the first length measuring device and the second length measuring device are b1, b2 (a1 = b1 at T (° C.)) ), The dimensional change Y due to the temperature difference between the first length measuring device and the second length measuring device and the measured temperature difference between the first length measuring device and the second length measuring device is expressed by the following equation (2). ) And (3).
[0033]
(A1-a2) / a1 = X (2)
(B1-b2) / b1-X = Y (3)
Similarly to X, Y is a substrate dimension change (m) that occurs per 1 m of measurement length.
[0034]
Next, a preferred method for manufacturing the plasma display panel of the present invention will be described in order.
[0035]
The manufacturing method of the plasma display panel of the present invention comprises the steps of manufacturing a front plate and a back plate, sealing the substrate, exhausting, filling with an inert mixed gas, and mounting a drive circuit, as in the prior art.
[0036]
The glass substrate used for the front plate and the back plate may be soda lime glass or high strain point glass such as PD200 (manufactured by Asahi Glass). Their coefficient of thermal expansion is 70 × 10-7/ ° C. to 90 × 10-7/ C is preferable, and the thermal expansion coefficient difference between the front plate and the back plate is 10 × 10.-7It is important that the temperature is not higher than / ° C. The thermal expansion coefficient difference between the front plate and the back plate is 10 × 10-7If the temperature exceeds / ° C., stress is generated during sealing and the substrate may be cracked, which is not preferable. More preferably, when the front plate and the back plate are made of the same material, it is effective to prevent damage to the substrate during sealing.
[0037]
The front plate is formed by sputtering ITO on the substrate, applying a resist, and forming a transparent electrode by exposure / development processing and etching processing. On this, a bus electrode is formed by a photolithography method or a pattern printing method using a paste made of black metal powder and an organic binder. Furthermore, a transparent dielectric paste is applied on the electrode-formed front plate by a printing method or a coater method, and baked to form a transparent dielectric material. Further, the formed transparent electrode, black electrode, and dielectric layer are uniformly formed. An MgO film is formed and manufactured using an electron beam evaporation machine so as to cover the film.
[0038]
For the back plate, a writing electrode for writing display data is formed on a glass substrate by a photolithography method using a photosensitive silver paste, and this electrode is covered with a dielectric layer. On top of this, barrier ribs such as stripes and grids, which serve to secure discharge space, define the distance between electrodes, and prevent erroneous discharge, are formed by a pattern printing method, a sand blast method, and a photosensitive paste method. Next, a phosphor layer is formed by applying phosphors that emit red, green, and blue colors to the side walls and bottom of the partition wall by screen printing or photosensitive paste, followed by drying and firing.
[0039]
Of the front plate and back plate manufacturing steps, the transparent electrode on the front plate, the bus electrode, the write electrode on the back plate, and the partition walls are preferably formed by photolithography, and a photomask is used at this time.
[0040]
A photomask for PDP is formed with a film in which a mask pattern is drawn on a support substrate of soda lime glass, and the film includes emulsion and chromium. The emulsion mask is formed by coating an emulsion (photographic emulsion) on a substrate, drawing pattern data created by CAD on the coating film with a photo plotter or EB drawing apparatus, and developing the pattern. In the case of a chromium mask, it is manufactured through chromium deposition on a substrate, formation of a photoresist film, exposure, development, etching, and resist stripping. When making a photomask, if there is a machine difference between the length measuring machine that measures the photomask and the length measuring machine on the front and back plate production line, the pattern size of the photomask will not be produced as desired, It is necessary to clarify the difference between the length measuring instruments and to obtain the correction value of the pattern data.
[0041]
In addition, it is important that the manufactured front plate and back plate are also quantified to measure the difference between the length measuring machines that measure the length, and the length measurement value of each length measuring machine is corrected. When correction is not applied, even if the dimensions are apparently designed, they are actually deviated from the design values, and patterning between the front plate and the back plate may occur during sealing. The length measurement value correction method for the photomask, front plate, and back plate will be described below.
[0042]
When the production lines for the front plate, the back plate and the photomask are 0, 1, and 2, respectively, the length measuring devices for each line are S0, S1, S2, and the length measuring temperature (° C.) is T0, T1, T2. The standard plate of the present invention has a coefficient of thermal expansion of 80 to 90 × 10, like a, front plate, back plate and photomask.-7A substrate made of glass at / ° C. is b, and the standard plate a and the substrate b are formed with two marks having the same distance between marks at a certain temperature T (° C.).
Values obtained by measuring the distance between the marks on the standard plate a with the length measuring devices S0, S1 and S2 are a0, a1 and a2, and values obtained by measuring the distance between the marks on the substrate b with the length measuring devices S0, S1 and S2 are b0. , B1, b2 (a0 = b0 at T (° C.)), the machine difference X01 between S0 and S1, the machine difference X02 between S0 and S2, and the machine difference X12 between S1 and S2 are expressed by the following equation (2). It calculates | requires by Formula (4) (5) (6).
[0043]
(A0−a1) / a0 = X01 (4)
(A0-a2) / a0 = X02 (5)
(A1-a2) / a1 = X12 (6)
The dimensional change Y of the substrate due to the measurement temperature difference is obtained by the following equations (7) to (9).
[0044]
(B0−b1) / b0−X01 = Y01 (7)
(B0-b2) / b0-X02 = Y02 (8)
(B1-b2) / b1-X12 = Y12 (9)
Here, when the design dimension of a part having a PDP pattern is C (m) and the reference device of the length measuring device is S0, when measuring C in S1 and S2, the following equations (10) (11 ) Is expressed by corrected values C1 and C2 obtained by
[0045]
C1 = C (1-X01-Y01) (10)
C2 = C (1-X02-Y02) = C1 (1-X12-Y12) (11)
Therefore, when designing and drawing a photomask, correction is applied according to equation (11). When measuring the length of the back plate, the length measurement value is corrected according to equation (10).
When the front plate and the rear plate are sealed at a temperature Tx other than T0, T1, and T2, the values obtained by measuring C at S0, S1, and S2 with respect to Tx are expressed by the following equations (12) to (12): It is represented by corrected values C0, C1, C2 obtained in 15).
[0046]
C0 = C / {(1 + α (Tx−T0)} (12)
C1 = C {1-X01-Y01 (Tx-T0) / (T0-T1)} (13)
C2 = C {1-X02-Y02 (Tx-T0) / (T0-T2)} (14)
= C [1-X12-Y12 (Tx-T1) / (T1-T2)] (15)
Here, α represents the thermal expansion coefficient of the front plate. Photomask correction is performed according to equations (14) and (15), and the length measurement values of the front and back plates are corrected according to (12) and (13), respectively.
[0047]
Before the photomask having been corrected in this way is manufactured, the back plate is measured with a length measuring machine that corrects the machine difference, and it is checked whether it is manufactured according to the design dimensions.
When the dimensional deviation is ± 20 μm or less, preferably ± 15 μm or less, accurate voltage driving can be performed.
[0048]
Match the above back plate and front plate so that matrix drive is possible, seal with seal glass, exhaust, fill with inert gas mixture such as He, Ne, Xe, etc. and mount the drive circuit Thus, the PDP is manufactured.
[0049]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to this.
[0050]
<Example 1>
(1) Preparation of standard plates for calibration of length measuring machines
The following two types of substrates were used.
[0051]
Figure 0004554778
Each substrate is screen-printed with photosensitive silver paste (“Fodel DC202” manufactured by DuPont) on the entire surface, and then a photomask exposure, development, and baking are performed to form a + pattern at positions a to i shown in FIG. The substrate temperature during exposure was 22 ° C.
(2) Measurement of board length and correction of measurement value
The standard plates A and B were measured with the first length measuring machine and the second length measuring machine. Here, both the first length measuring device and the second length measuring device have the structure shown in FIG. Each installation temperature was 22 degreeC with the 1st length measuring machine, and 25 degreeC with the 2nd length measuring machine. The stage 32 of the length measuring device placed on the gantry 34 and the CCD camera 35 can be moved relative to each other in the parallel plane in the XY direction (the Y direction moves on the rail 33). is there. The CCD camera 35 having the observation head 36 is movable in the Z direction for focusing. An enlarged image of the object to be observed and the camera center position (+ mark) are displayed on the display 37. The substrate 31 mark center and the camera center were visually aligned, and the coordinate values at this time were read. The coordinates are indicated by XY coordinates, and the distance between the substrate marks was obtained from each coordinate value.
A1, B1, A2, and B2 (unit: m) are measured length values when the distance between the reference plates A and B is measured with the first length measuring device and the second length measuring device, respectively. Then, the machine difference X12 and the substrate dimension change Y12 were obtained by the following equations.
[0052]
X12 = (A1-A2) / A1
Y12 = (B1-B2) / B1-X12
Here, X12 and Y12 are machine difference and dimensional change (m) generated per 1 m of measurement length. In order to correct the error of the second length measuring device with respect to the first length measuring device, the correction coefficient β was set as follows.
[0053]
β = 1−X12−Y12
C2 = γ × C1
C1 and C2 are length measurement values of the first length measuring device and the second length measuring device.
Table 1 shows measured temperatures of the first length measuring device and the second length measuring device, and values of A1, B1, A2, B2, X12, Y12, and γ.
(3) PDP substrate length measurement
Next, the total pitch of the electrode and the partition was measured for the back plate having the electrode, dielectric, and partition formed on the substrate. The value obtained by multiplying the actually measured value of the length measuring machine 1 by β and the actually measured value of the length measuring machine 2 showed good agreement, indicating that the correction was performed correctly. The results are shown in Table 1.
[0054]
[Table 1]
Figure 0004554778
[0055]
<Example 2>
A PDP was manufactured using the first length measuring machine and the second length measuring machine corrected in Example 1. Among the front plate and back plate manufacturing steps, a transparent electrode on the front plate, a bus electrode, a write electrode on the back plate, and a partition wall were formed by a photolithography method, and thus a photomask was manufactured. At this time, the mask pattern dimension was designed based on the first length measuring machine. The photomask is formed by coating an emulsion (photographic emulsion) on a support substrate of soda lime glass, drawing pattern data created by CAD on the coating film with an EB drawing / length measuring machine, and then developing the photo. Finally, the dimensions were checked with an EB drawing / length measuring machine.
The photomask for the front plate was produced by a third mask maker, and the photomask for the back plate was produced by a fourth mask maker. Drawing of the third mask maker / drawing / measurement temperature of the third length measuring machine was 20 ° C., drawing of the fourth mask maker / drawing / measurement temperature of the fourth length measuring machine was 23 ° C. The drawing / length measuring machine was corrected using the standard plates A and B as in Example 1. Drawing the distances between the reference plates A and B, and the values measured with the third length measuring machine and the fourth length measuring machine with the A3, A4, B3, B4 and the first length measuring machine, respectively. The machine differences were X13 and X14, substrate dimension changes Y13 and Y14, and correction factors were γ and Δ. Each value is shown in Table 1. The calculation method is shown below.
[0056]
X13 = (A1-A3) / A1
Y12 = (B1-B3) / B1-X13
γ = 1−X13−Y13
C3 = γ × C1
Δ = 1−X13−Y13
C4 = Δ × C1
C1 is a mask pattern design value, and C3 and C4 are drawing / length measuring device correction values.
[0057]
A PDP was produced by the following procedure using the produced photomask.
[0058]
First, a photolithography method using a photosensitive silver paste (DuPont Fordell DC202) as a writing electrode on a glass substrate of 1250 × 750 × 2.8 mm size (PD200 manufactured by Asahi Glass Co., Ltd.), a pitch of 300 μm, a line width of 180 μm, After firing, a striped electrode having a thickness of 4 μm was formed. A dielectric paste (NP-7858 manufactured by Noritake Co., Ltd.) was applied to the substrate and then baked at 550 ° C. to form a dielectric layer having a thickness of 10 μm. On the dielectric, a photosensitive paste was applied in a thick film by screen printing, and this film was exposed, developed, and baked to form a stripe-shaped partition having a pitch of 300 μm, a height of 120 μm, and a width of 80 μm.
When the formation pattern was confirmed with an optical microscope, there was no pattern deviation such as overlapping of electrodes and partition walls, and the accuracy was good.
[0059]
A phosphor paste that emits red, blue, and green light is applied to the barrier ribs formed in this way using a screen printing method, and these are fired (500 ° C., 30 minutes) to phosphor on the side and bottom of the barrier ribs. A layer was formed.
[0060]
Next, the front plate was produced by the following steps. First, ITO was formed on the same glass substrate as the back plate by sputtering, and then a resist was applied, and a transparent electrode having a fired thickness of 0.1 μm and a line width of 200 μm was formed by exposure / development processing and etching processing.
A bus electrode having a thickness of 10 μm after firing was formed by photolithography using a photosensitive silver paste made of black silver powder. The electrodes were prepared with a pitch of 300 μm and a line width of 60 μm.
[0061]
Furthermore, 20 μm of a transparent dielectric paste was applied on the electrode-formed front plate, and baked by holding at 430 ° C. for 20 minutes. Next, an MgO film having a thickness of 0.5 μm was formed using an electron beam vapor deposition device so as to uniformly cover the formed transparent electrode, black electrode, and dielectric layer, thereby completing the front plate.
[0062]
The obtained front glass substrate was bonded and sealed to the rear glass substrate. When the displacement of the back plate pattern was confirmed with the sealing alignment mark (distance between marks: 1230 mm), it was 10 μm or less.
[0063]
<Comparative example>
A PDP was manufactured in the same manner as in Example 2 except that the first length measuring device, the second length measuring device, the EB drawing / third length measuring device, and the fourth length measuring device were not corrected. It was. When the front plate and the back plate were sealed, the displacement of the back plate was confirmed with the sealing alignment mark. As a result, the back plate was 106 μm smaller than the front plate.
[0064]
【The invention's effect】
A standard plate for calibration of a length measuring machine in which a plurality of marks serving as length measurement standards are provided on a substrate, and the coefficient of thermal expansion of the standard plate material is −8 × 10-7~ 8x10-7Each measuring instrument by measuring the distance between the standard plates for calibration of measuring instruments made of / ° C and the distance between the marks on the standard board using a plurality of measuring instruments, and obtaining the instrumental difference from the difference between the measured values. By manufacturing a PDP using a method for verifying a difference and a length measuring device verified by the method, pattern processing accuracy can be improved and a yield can be increased.
[Brief description of the drawings]
FIG. 1 is a plan view showing mark positions of a standard plate used in Example 1 and Example 2. FIG.
FIG. 2 is a cross-sectional view of a PDP.
FIG. 3 is a schematic diagram showing an example of a length measuring device applied to the present invention.
[Explanation of symbols]
1: Front plate
2: Back plate
3: Substrate
4: Transparent electrode
5: Bus electrode
6: Transparent dielectric layer
7: Protective film layer (MgO film)
8: Write electrode
9: Dielectric layer
10: Bulkhead
11: Phosphor layer
31: Substrate
32: Stage
33: Rail
34: Mount
35: CCD camera
36: Observation head
37: Display

Claims (5)

ステージ、および基板観察手段を備えた基板測長機の機差検定方法であって、2枚の基板a、および基板bそれぞれの熱膨張係数が−8×10-7〜8×10-7/℃、および70×10-7/℃以上であり、それぞれの基板には、ある温度T(℃)で互いに同一のマーク間距離をもつマークが形成されており、基板aのマーク間距離を第一の測長機および第二の測長機で測長した値をa1、a2、基板bのマーク間距離を第一の測長機および第二の測長機2で測長した値をb1、b2(T(℃)でa1=b1)とした場合、第一の測長機、第二の測長機の機差Xと第一の測長機、第二の測長機2の測定温度差による寸法変化Yを、次式(2)および(3)により求めることを特徴とする測長機差検定方法。
(a1−a2)/a1=X・・・(2)
(b1−b2)/b1−X=Y・・・(3)
A machine difference verification method for a substrate length measuring machine provided with a stage and substrate observation means, wherein the thermal expansion coefficients of two substrates a and b are -8 × 10 −7 to 8 × 10 −7 / ° C., and is a 70 × 10 -7 / ℃ above, each of the substrate, a certain temperature T (° C.) is formed with a mark having the same inter-mark distance from each other in the inter-mark distance between the substrate a first The values measured by the first length measuring device and the second length measuring device are a1 and a2, and the distance between the marks on the substrate b is measured by the first length measuring device and the second length measuring device 2, and b1 , B2 (T1 (° C.) a1 = b1), the difference X between the first length measuring device and the second length measuring device and the measurement of the first length measuring device 2 and the second length measuring device 2 A length-measuring machine difference test method characterized in that a dimensional change Y due to a temperature difference is obtained by the following equations (2) and (3).
(A1-a2) / a1 = X (2)
(B1-b2) / b1-X = Y (3)
請求項記載の方法で校正された測長機を用いることを特徴とするプラズマディスプレイパネル用基板の測長方法。A method for measuring a length of a substrate for a plasma display panel, wherein the length measuring device calibrated by the method according to claim 1 is used. 請求項記載の方法で校正された測長機を用いることを特徴とするプラズマディスプレイパネル用フォトマスクの測長方法。A method for measuring a photomask for a plasma display panel, comprising using a length measuring device calibrated by the method according to claim 1 . 請求項記載の測長方法で測長された基板を用いることを特徴とするプラズマディスプレイパネルの製造方法。A method of manufacturing a plasma display panel, wherein a substrate measured by the length measuring method according to claim 2 is used. 請求項記載の測長方法で測長されたフォトマスクを用いることを特徴とするプラズマディスプレイパネルの製造方法。A method of manufacturing a plasma display panel, wherein a photomask measured by the length measuring method according to claim 3 is used.
JP2000217298A 2000-07-18 2000-07-18 Machine difference verification method and plasma display panel manufacturing method Expired - Fee Related JP4554778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000217298A JP4554778B2 (en) 2000-07-18 2000-07-18 Machine difference verification method and plasma display panel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000217298A JP4554778B2 (en) 2000-07-18 2000-07-18 Machine difference verification method and plasma display panel manufacturing method

Publications (2)

Publication Number Publication Date
JP2002031524A JP2002031524A (en) 2002-01-31
JP4554778B2 true JP4554778B2 (en) 2010-09-29

Family

ID=18712428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000217298A Expired - Fee Related JP4554778B2 (en) 2000-07-18 2000-07-18 Machine difference verification method and plasma display panel manufacturing method

Country Status (1)

Country Link
JP (1) JP4554778B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281680A (en) * 2005-04-04 2006-10-19 Micro-Tec Co Ltd Printing machine
JP4791786B2 (en) * 2005-09-09 2011-10-12 石塚硝子株式会社 Reference substrate for thin film evaluation and thin film evaluation method
JP2007294395A (en) * 2006-03-29 2007-11-08 Nippon Electric Glass Co Ltd Display panel
JP4780238B2 (en) * 2006-03-29 2011-09-28 日本電気硝子株式会社 Display panel

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175201A (en) * 1981-04-22 1982-10-28 Hoya Corp Length measuring original device and blank for said device
JPH07208902A (en) * 1993-12-21 1995-08-11 Rosfer Eng Sas Di Critelli Antonio & Co Dimension measuring method and reference sample for executing method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104501A (en) * 1982-12-08 1984-06-16 Toray Ind Inc Reference device for precise length
JPH068721B2 (en) * 1983-07-28 1994-02-02 京セラ株式会社 Ceramic gauge
JPH0425601Y2 (en) * 1988-10-20 1992-06-19
JPH02251701A (en) * 1989-03-25 1990-10-09 Mitsutoyo Corp Block gage
JP3464355B2 (en) * 1996-09-06 2003-11-10 大日本スクリーン製造株式会社 Length measuring device and method for checking accuracy of length measuring device
JP2685048B2 (en) * 1997-01-06 1997-12-03 富士通株式会社 Method for manufacturing substrate assembly for plasma display panel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57175201A (en) * 1981-04-22 1982-10-28 Hoya Corp Length measuring original device and blank for said device
JPH07208902A (en) * 1993-12-21 1995-08-11 Rosfer Eng Sas Di Critelli Antonio & Co Dimension measuring method and reference sample for executing method thereof

Also Published As

Publication number Publication date
JP2002031524A (en) 2002-01-31

Similar Documents

Publication Publication Date Title
JP4554778B2 (en) Machine difference verification method and plasma display panel manufacturing method
KR20030029697A (en) Align mark and plasma display panel using the same
KR100300232B1 (en) Manufacturing method for rear panel of plasma display panel
KR100726631B1 (en) Manufacturing Method of Plasma Display Panel
US8318392B2 (en) Alignment method and method for manufacturing flat panel display
US20070007891A1 (en) Plasma display panel
KR100726630B1 (en) Manufacturing Method of Plasma Display Panel
US20050156523A1 (en) Plasma display panel having align marks, and method and apparatus for forming align marks through offset process
JP2011081183A (en) Method for manufacturing photomask and method for manufacturing plasma display panel
KR100322082B1 (en) Masking apparatus for PDP and PDP manufacturing method thereof
JP2001281876A (en) Method for manufacturing substrate for plasma display panel
US20090167175A1 (en) Plasma display panel
JP2001250475A (en) Rear plate for plasma display panel, its manufacturing method, plasma display panel and its device
JP2013084407A (en) Plasma display panel
KR100823514B1 (en) Plasma display panel
WO2009133589A1 (en) Manufacturing method of plasma display panel
KR20060019340A (en) Method for manufacturing plasma display panel
JP2010118300A (en) Glass substrate for flat panel display, and plasma display panel using the same
JP2010118299A (en) Method of manufacturing flat panel display
JP2011181472A (en) Flat panel display and manufacturing method for the same
JP2000215810A (en) Manufacture of plasma display panel substrate, plasma display panel substrate, plasma display panel and plasma display device
JP2006147585A (en) Plasma display panel
JP2006253058A (en) Manufacturing method of plasma display panel
KR20060129917A (en) The apparatus of ito pattern mask, the apparatus of align mark display for plasma display panel
WO2010026618A1 (en) Plasma display panel and method of manufacturing plasma display panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100713

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees