WO2009133589A1 - Manufacturing method of plasma display panel - Google Patents

Manufacturing method of plasma display panel Download PDF

Info

Publication number
WO2009133589A1
WO2009133589A1 PCT/JP2008/001126 JP2008001126W WO2009133589A1 WO 2009133589 A1 WO2009133589 A1 WO 2009133589A1 JP 2008001126 W JP2008001126 W JP 2008001126W WO 2009133589 A1 WO2009133589 A1 WO 2009133589A1
Authority
WO
WIPO (PCT)
Prior art keywords
alignment
substrate
distance
difference
coordinates
Prior art date
Application number
PCT/JP2008/001126
Other languages
French (fr)
Japanese (ja)
Inventor
金江達利
佐々木孝
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2008/001126 priority Critical patent/WO2009133589A1/en
Publication of WO2009133589A1 publication Critical patent/WO2009133589A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/14AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided only on one side of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/241Manufacture or joining of vessels, leading-in conductors or bases the vessel being for a flat panel display

Definitions

  • the present invention relates to a method for manufacturing a plasma display panel.
  • a plasma display panel is composed of two glass substrates (a front substrate and a back substrate) bonded together, and generates a discharge in a space (discharge space) formed between the glass substrates. Display an image.
  • the cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge.
  • One pixel is composed of three cells that generate visible light of red, green, and blue.
  • a three-electrode PDP displays an image by generating a sustain discharge between the X electrode and the Y electrode.
  • a cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
  • the X electrode and the Y electrode are disposed on the front substrate, and the address electrode is disposed on the rear substrate.
  • the rear substrate is provided with partition walls for partitioning the discharge space.
  • the front substrate and the rear substrate are disposed to face each other so that the relative positions of the electrodes (X electrode, Y electrode, etc.) of the front substrate and the partition walls of the rear substrate are in a correct positional relationship.
  • the alignment marks for aligning the positions of the front substrate and the rear substrate are the four corners of the front substrate and the rear substrate. Are provided respectively at the four corners (see, for example, Patent Document 1). JP 2005-216699 A
  • the alignment marks provided at the four corners of the front substrate do not fit within the alignment marks provided at the four corners of the back substrate.
  • the PDP may be assembled in a state where the relative positions of the electrodes on the front substrate and the partition walls on the rear substrate are shifted from the correct positional relationship. In a configuration in which the relative positions of the electrodes on the front substrate and the partition walls on the rear substrate are shifted, it is difficult to generate the discharge correctly.
  • An object of the present invention is to improve the alignment accuracy when aligning the positions of the front substrate and the rear substrate.
  • the plasma display panel has a first substrate and a second substrate that face each other through a discharge space.
  • a plurality of first alignment marks are provided on the first substrate.
  • the second substrate is provided with a plurality of second alignment marks at positions corresponding to the first alignment marks.
  • the PDP is assembled through a virtual alignment coordinate calculation process, a positioning process, and a sealing process.
  • the difference between the distance between the first alignment marks and the distance between the second alignment marks when the first and second substrates are bonded together is determined by bonding the first and second substrates to each other. It is calculated as the difference between the expansion and contraction amounts of the first and second substrates generated in the process before the alignment. And the virtual alignment coordinate in a 1st board
  • substrate is calculated based on the difference of expansion-contraction amount and the coordinate of a 1st alignment mark.
  • the positions of the first substrate and the second substrate are aligned with each other by aligning the virtual alignment coordinates and the second alignment mark.
  • the sealing step the first and second substrates whose positions are aligned are bonded to each other.
  • FIG. 1 shows an outline of a PDP in an embodiment of the present invention.
  • An arrow D1 in the figure indicates the first direction D1
  • an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface 16.
  • the plasma display panel 10 (hereinafter also referred to as “PDP”) has a front substrate portion 12 (first substrate) and a rear substrate portion 14 (second substrate) having a square plate shape.
  • the front substrate portion 12 and the rear substrate portion 14 are arranged to face each other via the discharge space DS, and are bonded to each other by a seal (not shown). That is, the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the recess of the rear substrate portion 14).
  • the front substrate unit 12 has a plurality of first alignment marks MK1 for aligning the positions of the front substrate unit 12 and the back substrate unit 14 when the front substrate unit 12 and the back substrate unit 14 are bonded to each other.
  • the first alignment mark MK1 is provided at each of the three corners of a region where the front substrate portion 12 and the rear substrate portion 14 overlap each other (region surrounded by a broken line in the drawing).
  • the virtual alignment coordinate AC shown on the front substrate portion 12 is the position of the virtual alignment mark calculated based on the first alignment mark MK1 and the second alignment mark MK2. Therefore, in this embodiment, the virtual alignment coordinate AC is not actually formed on the front substrate portion 12. Details of the method of calculating the virtual alignment coordinate AC will be described with reference to FIG.
  • the rear substrate portion 14 includes partition walls BR for partitioning the discharge space DS, exhaust holes EH penetrating from the exhaust space ES to the outer surface of the rear substrate portion 14 (the lower side in the figure), and first alignment marks MK1 corresponding to the first alignment marks MK1. 2 alignment mark MK2.
  • the front substrate portion 12 and the rear substrate portion 14 are arranged to face each other via the discharge space DS so that the virtual alignment coordinate AC and the second alignment mark MK2 overlap each other. That is, in this embodiment, the positions of the front substrate portion 12 and the rear substrate portion 14 are aligned with each other by matching the virtual alignment coordinate AC and the second alignment mark MK2.
  • the front substrate portion 12 and the back substrate portion 14 can be improved.
  • FIG. 2 shows details of the main part of the PDP 10 shown in FIG.
  • the meanings of the arrows in the figure are the same as those in FIG.
  • the front substrate portion 12 is provided extending in the first direction D1 on the surface of the glass substrate FS that faces the glass substrate RS (the lower side in the figure), and a plurality of Xs arranged at intervals from each other.
  • a bus electrode Xb and a Y bus electrode Yb are provided.
  • the X bus electrode Xb is connected with an X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb.
  • a Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb.
  • the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X transparent electrode Xt and the Y transparent electrode Yt are transparent that transmit visible light formed of an ITO film or the like.
  • the X electrode XE (sustain electrode) is composed of the X bus electrode Xb and the X transparent electrode Xt
  • the Y electrode YE scanning electrode
  • a discharge is repeatedly generated between the X electrode XE and the Y electrode YE that are paired with each other.
  • the transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS. Further, an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt by the same material (metal material or the like) as the bus electrodes Xb and Yb.
  • the electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL.
  • a plurality of address electrodes AE extending in a direction orthogonal to the bus electrodes Xb and Yb (second direction D2) are provided on the dielectric layer DL (lower side in the figure).
  • the front substrate part 12 has a plurality of electrodes XE, YE extending in the first direction D1 and a plurality of address electrodes AE extending in the second direction D2.
  • the address electrode AE and the dielectric layer DL are covered with a protective layer PL.
  • the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
  • the rear substrate portion 14 is formed in parallel with each other on the glass substrate RS (on the surface facing the glass substrate FS) and extends in a direction (second direction D2) perpendicular to the bus electrodes Xb and Yb ( Barrier rib) BR is included.
  • the discharge space DS is formed between the adjacent barrier ribs BR.
  • the discharge space DS is formed by directly carving the glass substrate RS by a sandblast method or the like.
  • the side wall of the cell is constituted by the partition wall BR. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
  • One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light.
  • one cell (one color pixel) is formed, for example, in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR.
  • the PDP 10 is configured by arranging cells in a matrix to display a color image and alternately arranging a plurality of types of cells that generate light of different colors.
  • a display line is constituted by cells formed along the bus electrodes Xb and Yb.
  • the PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS.
  • a discharge gas such as Ne or Xe
  • the discharge gas is enclosed in the discharge space DS of the assembled PDP through the exhaust hole EH and the exhaust space ES shown in FIG.
  • FIG. 3 shows an example of a manufacturing method of the PDP shown in FIG.
  • the steps 100-140 for manufacturing the front substrate portion 12 and the steps 200-220 for manufacturing the rear substrate portion 14 are performed independently of each other.
  • the transparent electrodes Xt and Yt are formed on the glass substrate FS.
  • the transparent electrodes Xt and Yt are formed in the patterns of the transparent electrodes Xt and Yt, respectively, by using an etching process after forming an ITO film on the surface of the glass substrate FS by sputtering or the like.
  • bus electrodes Xb and Yb are formed on the glass substrate FS and the transparent electrodes Xt and Yt.
  • the bus electrodes Xb and Yb are formed by depositing metal fine particles on the surfaces of the glass substrate FS and the transparent electrodes Xt and Yt by sputtering or the like (for example, stacking chromium, copper and chromium in this order) and then using an etching process. It is formed in the pattern of bus electrodes Xb and Yb, respectively.
  • the first alignment marks MK1 are formed at the three corners of the glass substrate FS with the same material as the bus electrodes Xb and Yb.
  • the first alignment marks MK1 may be formed at the three corners of the glass substrate FS with the same material as the transparent electrodes Xt and Yt when forming the transparent electrodes Xt and Yt (step 100).
  • a dielectric layer DL covering the electrodes Xb, Xt, Yb, Yt is formed on the glass substrate FS.
  • the dielectric layer DL is formed by applying paste-like low-melting glass on the glass substrate FS and then baking it. When the low melting point glass is baked, thermal shrinkage occurs in the glass substrate FS.
  • the position of the first alignment mark MK1 after firing is the position of the first alignment mark MK1 before firing due to the heat shrinkage of the glass substrate FS (design value when the first alignment mark MK1 is provided on the glass substrate FS). Deviate.
  • an address electrode AE is formed on the dielectric layer DL.
  • the address electrode AE is formed in the pattern of the address electrode AE using an etching process after metal fine particles are adhered to the surface of the dielectric layer DL by sputtering or the like (for example, chromium, copper and chromium are stacked in this order).
  • a protective layer PL covering the address electrode AE is formed on the dielectric layer DL.
  • the protective layer PL is formed by depositing MgO on the surfaces of the dielectric layer DL and the address electrode AE by vapor deposition or the like.
  • the partition wall BR is formed on the glass substrate RS.
  • a photoresist having a pattern of the barrier ribs BR is formed on the glass substrate RS.
  • a portion of the glass substrate RS that is not covered with the photoresist is removed by sandblasting or the like. Thereafter, the photoresist is removed, and the barrier ribs BR are formed.
  • the partition wall BR is formed integrally with the glass substrate RS by selectively removing the glass substrate RS. Moreover, in this embodiment, since the baking process for forming the partition BR is not required, heat shrinkage does not occur in the glass substrate RS.
  • the second alignment mark MK2 is formed at the three corners of the glass substrate RS when the partition wall BR is formed.
  • the photoresist having the pattern of the barrier ribs BR is formed on the glass substrate RS, only the pattern of the second alignment mark MK2 is not covered with the photoresist in the outer peripheral portion covered with the photoresist. Exposure and development with a photomask for the purpose. Then, a portion of the glass substrate RS that is not covered with the photoresist (the region where the discharge space DS is formed and the second alignment mark MK2) is removed by sandblasting or the like. Thereafter, the photoresist is removed, and the barrier ribs BR are formed. At the same time, the second alignment mark MK2 is formed by removing the glass substrate at that portion. Thus, the second alignment mark MK2 is formed simultaneously with the partition wall BR.
  • phosphors PHr, PHg, and PHb are formed between the barrier ribs BR (on the glass substrate RS between the side surfaces of the barrier ribs BR and the barrier ribs BR adjacent to each other).
  • the phosphor materials PHr, PHg, and PHb are formed by applying a paste-like phosphor material by printing or the like between the barrier ribs BR and drying the applied phosphor material.
  • a seal for bonding the back substrate portion 12 and the front substrate portion 14 to each other is formed on the outer peripheral portion of the glass base RS.
  • a seal is formed by applying a sealing material such as low melting point glass to the outer peripheral portion of the glass substrate RS and drying the applied sealing material. Then, the phosphors PHr, PHg, PHb formed in step 210 and the seal are fired simultaneously.
  • step 220 since the firing temperature is low, thermal shrinkage hardly occurs in the glass substrate RS.
  • step 220 even when heat shrinkage occurs in the glass substrate RS due to firing, the firing temperature is lower than firing in step 120 (manufacturing step of the dielectric layer DL of the front substrate portion 12).
  • the amount of heat shrinkage of the material RS is very small compared to the amount of heat shrinkage of the glass substrate FS generated in step 120. Therefore, the position of the second alignment mark MK2 after step 220 (after baking) is the same as the position of the second alignment mark MK2 before step 220 (before baking) (when the second alignment mark MK2 is provided on the glass substrate RS). Almost no deviation from the design value.
  • the front substrate portion 12 formed through the steps 100-140 and the back substrate portion 14 formed through the steps 200-220 have an amount of expansion / contraction (thermal contraction amount) of the glass base materials FS and RS.
  • a difference occurs.
  • the position of the first alignment mark MK1 when the front substrate portion 12 and the rear substrate portion 14 are arranged to face each other is shifted from the position of the second alignment mark MK2. Therefore, in this embodiment, when the positions of the front substrate portion 12 and the rear substrate portion 14 are aligned with each other (step 400 described later), the relative positional deviation of the first alignment mark MK1 with respect to the second alignment mark MK2 is changed.
  • the corrected virtual alignment coordinate AC is used.
  • step 300 the virtual alignment coordinate AC in the front substrate portion 12 is calculated.
  • the difference between the distance between the first alignment marks MK1 and the distance between the second alignment marks MK2 is the expansion / contraction of the front substrate portion 12 and the back substrate portion 14 formed through the steps 100-140 and 200-220, respectively. Calculated as the difference in quantity.
  • the difference between the distance between the first alignment marks MK1 and the distance between the second alignment marks MK2 when the front substrate portion 12 and the back substrate portion 14 are bonded together causes the front substrate portion 12 and the back substrate portion 14 to adhere to each other. It is calculated as a difference in expansion / contraction amount between the front substrate portion 12 and the back substrate portion 14 generated in the step before the bonding. Then, based on the calculated difference in expansion / contraction amount and the coordinates of the first alignment mark MK, the virtual alignment coordinate AC in the front substrate portion 12 is calculated. As described above, the relative positional shift between the first alignment mark MK1 and the second alignment mark MK2 due to the difference in expansion / contraction between the front substrate portion 12 and the back substrate portion 14 is corrected by the virtual alignment coordinate AC.
  • step 400 alignment step
  • the positions of the front substrate portion 12 and the back substrate portion 14 are aligned with each other by aligning the virtual alignment coordinate AC and the second alignment mark MK.
  • step 500 the front substrate portion 12 and the rear substrate portion 14 that are aligned with each other are bonded to each other.
  • the PDP 10 in which the positions of the front substrate portion 12 and the rear substrate portion 14 are accurately aligned can be assembled.
  • the margin of the voltage applied to each electrode in order to generate discharge can be expanded, and the PDP 10 can be driven stably.
  • a discharge for displaying an image can be generated correctly, and the display quality of the PDP 10 can be improved.
  • a discharge gas such as Ne or Xe is sealed in the discharge space DS.
  • evacuation for making the discharge space DS into a vacuum state is performed through the exhaust hole EH and the exhaust space ES shown in FIG.
  • a discharge gas such as Ne or Xe is sealed in the discharge space DS. Note that sealing (step 500) and evacuation may proceed simultaneously.
  • FIG. 4 and 5 show an example of the virtual alignment coordinate calculation step and the alignment step shown in FIG.
  • FIG. 4 shows processing performed in the virtual alignment coordinate calculation step and the alignment step.
  • the processes 310 to 410 shown in FIG. 4 are performed by a positioning apparatus that aligns the positions of two substrates with each other according to a program that controls the operation of the apparatus.
  • the processing 310 to 350 is performed in the step 300 shown in FIG. 3 described above, and the processing 410 is performed in the step 400.
  • the value calculated by each process is memorize
  • FIG. 5 shows the state of the alignment marks MK1 and MK2 and the position of the virtual alignment coordinate AC viewed from the image display surface side (upper side in FIG. 1).
  • the meanings of the arrows in the figure are the same as those in FIG.
  • the front substrate unit 12 and the rear substrate unit 14 in FIG. 5 are set in an alignment device or the like.
  • the processes of the virtual alignment coordinate calculation step and the alignment step will be described with reference to FIG.
  • the first distance DT1 and the second distance DT2 between the first alignment marks MK1 are respectively calculated.
  • the first distance DT1 is a distance between the first alignment marks MK1 along the side extending in the first direction D1 of the front substrate portion 12, as shown in FIG.
  • the second distance DT2 is a distance between the first alignment marks MK1 along the side extending in the second direction D2 of the front substrate portion 12, as shown in FIG.
  • the alignment apparatus in which the front substrate portion 12 and the rear substrate portion 14 are set has the actual coordinates of each first alignment mark MK1 (for example, each of the front substrate portions 12 after the process 140 shown in FIG.
  • the coordinates of the first alignment mark MK1 are detected, and the distances DT1 and DT2 are calculated based on the detected coordinates.
  • a third distance DT3 and a fourth distance DT4 between the second alignment marks MK2 are calculated.
  • the third distance DT3 is a distance between the second alignment marks MK2 corresponding to the first distance DT1, and extends, for example, in the first direction D1 of the back substrate portion 14 as shown in FIG. This is the distance between the second alignment marks MK2 along the existing side.
  • the fourth distance DT4 is a distance between the second alignment marks MK2 corresponding to the second distance DT2.
  • the fourth distance DT4 extends in the second direction D2 of the back substrate portion 14. This is the distance between the second alignment marks MK2 along the side to be moved.
  • the alignment apparatus detects the actual coordinates of each second alignment mark MK2 (for example, the coordinates of each second alignment mark MK2 in the back substrate part 14 after step 220 shown in FIG. 3), and the detected coordinates. Based on the above, distances DT3 and DT4 are calculated.
  • the position of the second alignment mark MK2 when the front substrate portion 12 and the rear substrate portion 14 are bonded to each other is the same as that of the second alignment mark MK2. 14 is not substantially deviated from the design value at the time of being provided.
  • the distance between the design values between the second alignment marks MK2 is calculated as the distances DT3 and DT4 (the virtual alignment coordinate AC is calculated when calculating the difference between the expansion amounts of the front substrate portion 12 and the rear substrate portion 14. May be used as the distances DT3 and DT4). That is, in this embodiment, the distances DT3 and DT4 are calculated based on design values when the second alignment mark MK2 is provided on the back substrate part 14 without using the actual coordinates of the second alignment mark MK2. May be.
  • the first difference DF1 which is the difference between the first distance DT1 and the third distance DT3 (the absolute value of (DT3-DT1)), and the difference between the second distance DT2 and the fourth distance DT4 ((DT4-DT2)
  • the second difference DF2 that is an absolute value is calculated.
  • the coordinates of the first direction D1 of the virtual alignment coordinates AC on the front substrate portion 12 are calculated.
  • the shrinkage amount of the front substrate portion 12 in the first direction D1 is larger than the shrinkage amount of the back substrate portion 14 in the first direction D1. Therefore, in this embodiment, for example, as shown in FIG. 5B, the coordinate in the first direction D1 of the virtual alignment coordinate AC is equal to the first difference DF1 with respect to the actual coordinate of the first alignment mark MK1.
  • the coordinates of the second direction D2 of the virtual alignment coordinates AC are calculated.
  • the coordinates of the virtual alignment coordinate AC in the second direction D2 are such that the contraction amount in the second direction D2 of the front substrate portion 12 is the second direction D2 of the rear substrate portion 14. Larger than the amount of shrinkage. Therefore, in this embodiment, for example, as shown in FIG. 5B, the coordinate in the second direction D2 of the virtual alignment coordinate AC is the second difference DF2 with respect to the actual coordinate of the first alignment mark MK1.
  • the distance DT6 along the second direction D2 between the virtual alignment coordinates AC is set to be the same as the distance DT4.
  • the virtual alignment coordinate AC on the front substrate unit 12 is half the first difference DF1 (DF1 / 2) in the first direction D1 and the second direction D2 from the actual coordinates of the first alignment mark MK1.
  • distances DT5 and DT6 along the first direction D1 and the second direction D2 between the virtual alignment coordinates AC are respectively the same as the distances DT3 and DT4 at positions shifted by half (DF2 / 2) of the second difference DF2 It is set to a position that becomes a distance.
  • the positions of the front substrate portion 12 and the rear substrate portion 14 are aligned with each other.
  • the position of the front substrate unit 12 is adjusted so that the virtual alignment coordinate AC matches the coordinate of the second alignment mark MK2, and the front substrate unit 12 and the rear substrate unit 14 are aligned.
  • the positions are aligned with each other.
  • the alignment apparatus can detect the relative angular deviation between the front substrate unit 12 and the rear substrate unit 14 as viewed from the image display surface 16 side based on the virtual alignment coordinates AC and the coordinates of the second alignment mark MK.
  • a displacement amount of the position in the first direction D1 and the second direction D2 is calculated.
  • the alignment apparatus adjusts the position of the front substrate portion 12 based on the calculated angular deviation amount and the positional deviation amounts in the directions D1 and D2.
  • the alignment apparatus may adjust the virtual alignment coordinate AC and the coordinate of the second alignment mark MK to each other by adjusting the position of the back substrate portion 14.
  • the virtual alignment coordinate AC and the coordinate of the second alignment mark MK may be aligned with each other by adjusting the positions of the front substrate portion 12 and the rear substrate portion 14 with each other.
  • the calculation of the coordinates in the first direction D1 and the calculation of the coordinates in the second direction D2 of the virtual alignment coordinates AC are performed by independent processes (processes 340 and 350), respectively. Therefore, in this embodiment, for example, even when the thermal contraction rate of the front substrate portion 12 is anisotropic (when the thermal contraction rate is different between the first direction D1 and the second direction D2), the virtual alignment coordinate AC By aligning the coordinates of the second alignment mark MK with each other, it is possible to improve the alignment accuracy when the front substrate portion 12 and the rear substrate portion 14 are bonded to each other.
  • FIG. 6 shows an example of a plasma display device configured using the PDP 10 shown in FIG.
  • a plasma display device (hereinafter also referred to as a PDP device) is disposed on a PDP 10 having a square plate shape, an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, and an image display surface 16 side of the PDP 10.
  • the front housing 30, the rear housing 40 and the base chassis 50 disposed on the back surface 18 side of the PDP 10, the circuit unit 60 for driving the PDP 10, and the PDP 10 attached to the rear housing 40 side of the base chassis 50
  • a double-sided adhesive sheet 70 for attaching to the base chassis 50 is provided. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure.
  • the optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30.
  • the optical filter 20 may have a function of shielding electromagnetic waves.
  • the optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
  • the virtual alignment coordinate AC in the front substrate portion 12 and the second alignment mark MK2 provided on the rear substrate portion 14 are aligned with each other, whereby the front substrate portion 12 and the rear substrate portion 14 are mutually aligned. Adjust the position.
  • the virtual alignment coordinates AC in which the displacement of the relative position of the first alignment mark MK1 with respect to the second alignment mark MK2 is corrected is used, the positions of the front substrate portion 12 and the rear substrate portion 14 are accurately determined. Can be matched well.
  • one pixel includes three cells (red (R), green (G), and blue (B)) has been described.
  • the present invention is not limited to such an embodiment.
  • one pixel may be composed of four or more cells.
  • one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
  • the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ⁇ 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
  • the alignment marks MK1 and MK2 are provided at the three corners of the front substrate portion 12 and the rear substrate portion 14 .
  • the present invention is not limited to such an embodiment.
  • the alignment marks MK1 and MK2 may be provided at the four corners of the front substrate portion 12 and the rear substrate portion 14, respectively. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the example in which the partition wall BR extending in the second direction D2 is provided on the glass substrate RS has been described.
  • the present invention is not limited to such an embodiment.
  • a grid-like partition wall including partition walls extending in the first direction D1 and partition walls BR extending in the second direction D2 may be provided on the glass substrate RS.
  • the relative positions of the electrodes provided on the front substrate portion 12 and the grid-like partition walls provided on the rear substrate portion 14 can be accurately matched, and the discharge for displaying an image is possible. Can be generated correctly. Therefore, also in this case, the same effect as that of the above-described embodiment can be obtained.
  • the barrier ribs BR2 may be provided on the dielectric layer DL2 provided on the glass substrate RS.
  • the barrier ribs BR2 are formed by applying a paste-like barrier rib material, followed by drying, sandblasting, and baking processes.
  • the partition wall BR2 may be formed by printing.
  • the plurality of address electrodes AE extending in the second direction D2 are provided on the glass base RS of the back substrate portion 14 and are covered with the dielectric layer DL2.
  • a partition wall BR2 is formed on the dielectric layer DL2. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the second alignment mark MK2 is formed at the three corners of the glass base RS with the same material as the address electrode AE.
  • thermal contraction occurs in the back substrate part 14 (glass substrate RS or the like).
  • the position of the second alignment mark MK2 after baking is the position of the second alignment mark MK2 before baking (design value when the second alignment mark MK2 is provided on the glass substrate RS) due to the thermal contraction of the back substrate portion 14.
  • the dielectric layer DL2 may be omitted from the configuration of FIG. 7 and the partition wall BR2 may be provided directly on the glass substrate RS.
  • the barrier ribs BR2 are formed by applying a paste-like barrier rib material, followed by drying, sandblasting, and baking processes.
  • the partition wall BR2 may be formed by printing.
  • the plurality of address electrodes AE extending in the second direction D2 are provided on the glass base RS of the back substrate portion 14, and the partition wall BR2 is directly formed thereon. Also in this case, the same effect as the above-described embodiment can be obtained.
  • the second alignment mark MK2 is formed at the three corners of the glass base RS with the same material as the address electrode AE.
  • thermal shrinkage occurs in the back substrate portion 14 (glass base RS or the like) in the firing step for forming the partition wall BR2.
  • the position of the second alignment mark MK2 after baking is the position of the second alignment mark MK2 before baking (design value when the second alignment mark MK2 is provided on the glass substrate RS) due to the thermal contraction of the back substrate portion 14.
  • the processing 340 processing for calculating the coordinates of the virtual alignment coordinate AC in the first direction D1
  • the processing 350 shown in FIG. 4
  • the process shown in FIG. 8 is performed.
  • the magnitude relationship between the first distance DT1 and the third distance DT3 is compared.
  • the coordinate in the first direction D1 of the virtual alignment coordinate AC in the front substrate portion 12 is the first alignment mark MK1. It is set at the same position as the coordinate in one direction D1.
  • the coordinates in the first direction D1 of the virtual alignment coordinate AC are the actual coordinates of the first alignment mark MK1.
  • the coordinates in the first direction D1 of the virtual alignment coordinate AC are the actual coordinates of the first alignment mark MK1.
  • the magnitude relationship between the second distance DT2 and the fourth distance DT4 is compared.
  • the coordinate in the second direction D2 of the virtual alignment coordinate AC is the coordinate in the second direction D2 of the first alignment mark MK1.
  • the coordinate in the second direction D2 of the virtual alignment coordinate AC is the actual coordinate of the first alignment mark MK1.
  • the coordinates in the second direction D2 of the virtual alignment coordinate AC are the actual coordinates of the first alignment mark MK1.
  • the virtual alignment coordinate AC in the front substrate portion 12 is half of the first difference DF1 in the first direction D1 and the second direction D2 from the actual coordinate of the first alignment mark MK1.
  • the distances DT5 and DT6 along the first direction D1 and the second direction D2 between the virtual alignment coordinates AC at positions shifted by (DF1 / 2) and half of the second difference DF2 (DF2 / 2) are distances DT3.
  • DT4 are set at the same distance.
  • the present invention can be applied to a method for manufacturing a plasma display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

A plasma display panel (PDP) includes first and second substrates facing to each other. For example, the PDP is assembled through a virtual alignment coordinate calculation process, an alignment process and a sealing process. In the virtual alignment coordinate calculation process, a difference between a distance between first alignment marks provided on the first substrate and a distance between second alignment marks provided on the second substrate is calculated as a difference between quantities of expansion/contraction of the first and second substrates that have occurred during a process before the alignment process. A virtual alignment coordinate is then calculated for the first substrate based on the difference between the quantities of expansion/contraction and coordinates of the first alignment marks. In the alignment process, by aligning the first alignment coordinate and the second alignment marks, positions of the first and second substrates are aligned to each other. As a result, accuracy in the alignment between the first and second substrates may be improved.

Description

プラズマディスプレイパネルの製造方法Method for manufacturing plasma display panel
 本発明は、プラズマディスプレイパネルの製造方法に関する。 The present invention relates to a method for manufacturing a plasma display panel.
 プラズマディスプレイパネル(PDP)は、2枚のガラス基板(前面基板および背面基板)を互いに貼り合わせて構成されており、ガラス基板の間に形成される空間(放電空間)に放電を発生させることで画像を表示する。画像における画素に対応するセルは、自発光型であり、放電により発生する紫外線を受けて赤、緑、青の可視光を発生する蛍光体が塗布されている。そして、1画素は、これらの赤、緑、青の可視光を発生する3つのセルにより構成されている。 A plasma display panel (PDP) is composed of two glass substrates (a front substrate and a back substrate) bonded together, and generates a discharge in a space (discharge space) formed between the glass substrates. Display an image. The cells corresponding to the pixels in the image are self-luminous, and are coated with phosphors that generate red, green, and blue visible light in response to ultraviolet rays generated by discharge. One pixel is composed of three cells that generate visible light of red, green, and blue.
 例えば、3電極構造のPDPは、X電極およびY電極間でサステイン放電を発生させることで、画像を表示する。サステイン放電を発生させるセル(点灯させるセル)は、例えば、Y電極およびアドレス電極間で選択的にアドレス放電を発生させることにより、選択される。 For example, a three-electrode PDP displays an image by generating a sustain discharge between the X electrode and the Y electrode. A cell that generates a sustain discharge (a cell to be lit) is selected by, for example, selectively generating an address discharge between the Y electrode and the address electrode.
 一般的なPDPでは、X電極およびY電極は前面基板に配置され、アドレス電極は背面基板に配置されている。また、背面基板には、放電空間を仕切るための隔壁が設けられている。そして、前面基板および背面基板は、例えば、前面基板の電極(X電極、Y電極等)と背面基板の隔壁との相対的な位置が正しい位置関係になるように、互いに対向して配置される。例えば、前面基板の電極と背面基板の隔壁との位置関係を正しい状態にしてPDPを組み立てるために、前面基板および背面基板の位置を互いに合わせるためのアライメントマークが、前面基板の4隅と背面基板の4隅とにそれぞれ設けられている(例えば、特許文献1参照)。
特開2005-216699号公報
In a general PDP, the X electrode and the Y electrode are disposed on the front substrate, and the address electrode is disposed on the rear substrate. In addition, the rear substrate is provided with partition walls for partitioning the discharge space. For example, the front substrate and the rear substrate are disposed to face each other so that the relative positions of the electrodes (X electrode, Y electrode, etc.) of the front substrate and the partition walls of the rear substrate are in a correct positional relationship. . For example, in order to assemble the PDP with the positional relationship between the electrodes of the front substrate and the partition walls of the rear substrate being correct, the alignment marks for aligning the positions of the front substrate and the rear substrate are the four corners of the front substrate and the rear substrate. Are provided respectively at the four corners (see, for example, Patent Document 1).
JP 2005-216699 A
 特許文献1のPDPの製造方法では、カメラを用いて一視野内で画像認識しながら、背面基板に設けられたアライメントマーク内に前面基板に設けられたアライメントマークが収まるように位置合わせを行う。一般的なPDPでは、前面基板および背面基板は、互いに異なる焼成工程を経て、互いに貼り合わせられる。このため、焼成工程による熱収縮の量が前面基板と背面基板とで異なり、焼成工程の前後におけるアライメントマークの位置のずれ量が、前面基板と背面基板とで異なる。 In the PDP manufacturing method of Patent Document 1, alignment is performed so that the alignment mark provided on the front substrate fits within the alignment mark provided on the rear substrate while recognizing an image within one field of view using a camera. In a general PDP, a front substrate and a back substrate are bonded to each other through different baking processes. For this reason, the amount of thermal shrinkage due to the firing process differs between the front substrate and the back substrate, and the amount of misalignment between the alignment marks before and after the firing process differs between the front substrate and the back substrate.
 例えば、特許文献1のPDPの製造方法では、焼成工程による熱収縮の影響により、前面基板の4隅に設けられた各アライメントマークが背面基板の4隅に設けられた各アライメントマーク内に収まらない場合、前面基板および背面基板の互いの位置を精度よく合わせることは困難である。この場合、例えば、前面基板の電極と背面基板の隔壁との相対的な位置が正しい位置関係からずれた状態でPDPが組み立てられるおそれがある。前面基板の電極と背面基板の隔壁との相対的な位置がずれた構成では、放電を正しく発生させることは困難である。 For example, in the PDP manufacturing method of Patent Document 1, due to the influence of thermal shrinkage due to the baking process, the alignment marks provided at the four corners of the front substrate do not fit within the alignment marks provided at the four corners of the back substrate. In this case, it is difficult to accurately align the positions of the front substrate and the rear substrate. In this case, for example, the PDP may be assembled in a state where the relative positions of the electrodes on the front substrate and the partition walls on the rear substrate are shifted from the correct positional relationship. In a configuration in which the relative positions of the electrodes on the front substrate and the partition walls on the rear substrate are shifted, it is difficult to generate the discharge correctly.
 本発明の目的は、前面基板および背面基板の位置を互いに合わせる際の位置合わせ精度を向上させることである。 An object of the present invention is to improve the alignment accuracy when aligning the positions of the front substrate and the rear substrate.
 プラズマディスプレイパネル(PDP)は、放電空間を介して互いに対向する第1基板および第2基板を有している。第1基板には、複数の第1アライメントマークが設けられている。第2基板には、第1アライメントマークに対応する位置に複数の第2アライメントマークが設けられている。例えば、PDPは、仮想アライメント座標算出工程、位置合わせ工程および封着工程を経て組み立てられる。 The plasma display panel (PDP) has a first substrate and a second substrate that face each other through a discharge space. A plurality of first alignment marks are provided on the first substrate. The second substrate is provided with a plurality of second alignment marks at positions corresponding to the first alignment marks. For example, the PDP is assembled through a virtual alignment coordinate calculation process, a positioning process, and a sealing process.
 例えば、仮想アライメント座標算出工程では、第1および第2基板を互いに貼り合わせる際の第1アライメントマーク間の距離と第2アライメントマーク間の距離との差を、第1および第2基板を互いに貼り合わせる前の工程で発生した第1および第2基板の伸縮量の差として算出する。そして、第1基板における仮想アライメント座標を、伸縮量の差と第1アライメントマークの座標とに基づいて算出する。位置合わせ工程では、仮想アライメント座標と第2アライメントマークとを合わせることにより、第1基板と第2基板との位置を互いに合わせる。そして、封着工程では、互いの位置が合わせられた第1および第2基板を互いに貼り合わせる。 For example, in the virtual alignment coordinate calculation step, the difference between the distance between the first alignment marks and the distance between the second alignment marks when the first and second substrates are bonded together is determined by bonding the first and second substrates to each other. It is calculated as the difference between the expansion and contraction amounts of the first and second substrates generated in the process before the alignment. And the virtual alignment coordinate in a 1st board | substrate is calculated based on the difference of expansion-contraction amount and the coordinate of a 1st alignment mark. In the alignment step, the positions of the first substrate and the second substrate are aligned with each other by aligning the virtual alignment coordinates and the second alignment mark. In the sealing step, the first and second substrates whose positions are aligned are bonded to each other.
 本発明では、前面基板および背面基板の位置を互いに合わせる際の位置合わせ精度を向上できる。 In the present invention, it is possible to improve the alignment accuracy when aligning the positions of the front substrate and the rear substrate.
一実施形態におけるPDPの概要を示す図である。It is a figure which shows the outline | summary of PDP in one Embodiment. 図1に示したPDPの要部を示す図である。It is a figure which shows the principal part of PDP shown in FIG. 図1に示したPDPの製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of PDP shown in FIG. 図3に示した仮想アライメント座標算出工程および位置合わせ工程で実施される処理の一例を示す図である。It is a figure which shows an example of the process implemented at the virtual alignment coordinate calculation process and alignment process shown in FIG. 図3に示した仮想アライメント座標算出工程および位置合わせ工程の概要を示す図である。It is a figure which shows the outline | summary of the virtual alignment coordinate calculation process and alignment process shown in FIG. 図1に示したPDPを用いて構成されたプラズマディスプレイ装置の一例を示す図である。It is a figure which shows an example of the plasma display apparatus comprised using PDP shown in FIG. 図1に示したPDPの変形例を示す図である。It is a figure which shows the modification of PDP shown in FIG. 図7に示したPDPの製造方法における仮想アライメント座標算出工程で実施される処理の一例を示す図である。It is a figure which shows an example of the process implemented at the virtual alignment coordinate calculation process in the manufacturing method of PDP shown in FIG.
 以下、本発明の実施形態を図面を用いて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1は、本発明の一実施形態におけるPDPの概要を示している。図中の矢印D1は、第1方向D1を示し、矢印D2は、第1方向D1に画像表示面16に平行な面内で直交する第2方向D2を示している。プラズマディスプレイパネル10(以下、PDPとも称する)は、四角板形状を有する前面基板部12(第1基板)および背面基板部14(第2基板)を有している。前面基板部12および背面基板部14は、放電空間DSを介して互いに対向して配置され、図示しないシールにより、互いに貼り合わされている。すなわち、前面基板部12と背面基板部14の間(より詳細には、背面基板部14の凹部)に放電空間DSが形成される。 FIG. 1 shows an outline of a PDP in an embodiment of the present invention. An arrow D1 in the figure indicates the first direction D1, and an arrow D2 indicates the second direction D2 orthogonal to the first direction D1 in a plane parallel to the image display surface 16. The plasma display panel 10 (hereinafter also referred to as “PDP”) has a front substrate portion 12 (first substrate) and a rear substrate portion 14 (second substrate) having a square plate shape. The front substrate portion 12 and the rear substrate portion 14 are arranged to face each other via the discharge space DS, and are bonded to each other by a seal (not shown). That is, the discharge space DS is formed between the front substrate portion 12 and the rear substrate portion 14 (more specifically, the recess of the rear substrate portion 14).
 前面基板部12は、前面基板部12および背面基板部14を互いに貼り合わせる際に前面基板部12および背面基板部14の位置を互いに合わせるための複数の第1アライメントマークMK1を有している。例えば、第1アライメントマークMK1は、前面基板部12および背面基板部14が互いに重なる領域(図の破線で囲んだ領域)の3隅にそれぞれ設けられている。前面基板部12に図示した仮想アライメント座標ACは、第1アライメントマークMK1および第2アライメントマークMK2に基づいて算出される仮想のアライメントマークの位置である。したがって、この実施形態では、仮想アライメント座標ACは、実際には前面基板部12に形成されていない。なお、仮想アライメント座標ACの算出方法の詳細は、後述する図4で説明する。 The front substrate unit 12 has a plurality of first alignment marks MK1 for aligning the positions of the front substrate unit 12 and the back substrate unit 14 when the front substrate unit 12 and the back substrate unit 14 are bonded to each other. For example, the first alignment mark MK1 is provided at each of the three corners of a region where the front substrate portion 12 and the rear substrate portion 14 overlap each other (region surrounded by a broken line in the drawing). The virtual alignment coordinate AC shown on the front substrate portion 12 is the position of the virtual alignment mark calculated based on the first alignment mark MK1 and the second alignment mark MK2. Therefore, in this embodiment, the virtual alignment coordinate AC is not actually formed on the front substrate portion 12. Details of the method of calculating the virtual alignment coordinate AC will be described with reference to FIG.
 背面基板部14は、放電空間DSを仕切るための隔壁BRと、排気空間ESから背面基板部14の外面(図の下側)まで貫通する排気孔EHと、第1アライメントマークMK1に対応する第2アライメントマークMK2とを有している。そして、前面基板部12および背面基板部14は、仮想アライメント座標ACと第2アライメントマークMK2とが互いに重なるように、放電空間DSを介して互いに対向して配置されている。すなわち、この実施形態では、仮想アライメント座標ACと第2アライメントマークMK2とを合わせることにより、前面基板部12と背面基板部14との位置を互いに合わせる。これにより、この実施形態では、例えば、前面基板部12および背面基板部14を互いに貼り合わせる前の工程で前面基板部12および背面基板部14の伸縮量に差が発生した場合でも、前面基板部12および背面基板部14を互いに貼り合わせる際の位置合わせ精度を向上できる。 The rear substrate portion 14 includes partition walls BR for partitioning the discharge space DS, exhaust holes EH penetrating from the exhaust space ES to the outer surface of the rear substrate portion 14 (the lower side in the figure), and first alignment marks MK1 corresponding to the first alignment marks MK1. 2 alignment mark MK2. The front substrate portion 12 and the rear substrate portion 14 are arranged to face each other via the discharge space DS so that the virtual alignment coordinate AC and the second alignment mark MK2 overlap each other. That is, in this embodiment, the positions of the front substrate portion 12 and the rear substrate portion 14 are aligned with each other by matching the virtual alignment coordinate AC and the second alignment mark MK2. Thereby, in this embodiment, for example, even when a difference occurs in the amount of expansion / contraction between the front substrate portion 12 and the back substrate portion 14 in the step before the front substrate portion 12 and the back substrate portion 14 are bonded to each other, the front substrate portion The alignment accuracy when the 12 and the back substrate part 14 are bonded to each other can be improved.
 図2は、図1に示したPDP10の要部の詳細を示している。図中の矢印の意味は、上述した図1と同じである。 FIG. 2 shows details of the main part of the PDP 10 shown in FIG. The meanings of the arrows in the figure are the same as those in FIG.
 前面基板部12は、ガラス基材FSのガラス基材RSに対向する面上(図では下側)に第1方向D1に延在して設けられ、互いに間隔を置いて配置された複数のXバス電極XbおよびYバス電極Ybを有している。また、Xバス電極Xbには、Xバス電極XbからYバス電極Ybに向けて第2方向D2に延在するX透明電極Xtが接続されている。Yバス電極Ybには、Yバス電極YbからXバス電極Xbに向けて第2方向D2に延在するY透明電極Ytが接続されている。 The front substrate portion 12 is provided extending in the first direction D1 on the surface of the glass substrate FS that faces the glass substrate RS (the lower side in the figure), and a plurality of Xs arranged at intervals from each other. A bus electrode Xb and a Y bus electrode Yb are provided. The X bus electrode Xb is connected with an X transparent electrode Xt extending in the second direction D2 from the X bus electrode Xb to the Y bus electrode Yb. A Y transparent electrode Yt extending in the second direction D2 from the Y bus electrode Yb to the X bus electrode Xb is connected to the Y bus electrode Yb.
 例えば、Xバス電極XbおよびYバス電極Ybは、金属材料等で形成された不透明な電極であり、X透明電極XtおよびY透明電極Ytは、ITO膜等で形成された可視光を透過する透明電極である。そして、X電極XE(維持電極)は、Xバス電極XbおよびX透明電極Xtにより構成され、Y電極YE(走査電極)は、Yバス電極YbおよびY透明電極Ytにより構成され、X電極XEと対をなしている。そして、互いに対をなすX電極XEおよびY電極YE間で繰り返して放電を発生させる。 For example, the X bus electrode Xb and the Y bus electrode Yb are opaque electrodes formed of a metal material or the like, and the X transparent electrode Xt and the Y transparent electrode Yt are transparent that transmit visible light formed of an ITO film or the like. Electrode. The X electrode XE (sustain electrode) is composed of the X bus electrode Xb and the X transparent electrode Xt, and the Y electrode YE (scanning electrode) is composed of the Y bus electrode Yb and the Y transparent electrode Yt. Paired. Then, a discharge is repeatedly generated between the X electrode XE and the Y electrode YE that are paired with each other.
 なお、透明電極XtおよびYtは、それぞれが接続されるバス電極XbおよびYbとガラス基材FSとの間に全面に配置されてもよい。また、バス電極XbおよびYbと同じ材料(金属材料等)で、バス電極XbおよびYbと一体の電極が透明電極XtおよびYtの代わりに形成されてもよい。 The transparent electrodes Xt and Yt may be disposed on the entire surface between the bus electrodes Xb and Yb to which the transparent electrodes Xt and Yt are connected and the glass substrate FS. Further, an electrode integral with the bus electrodes Xb and Yb may be formed in place of the transparent electrodes Xt and Yt by the same material (metal material or the like) as the bus electrodes Xb and Yb.
 電極Xb、Xt、Yb、Ytは、誘電体層DLに覆われている。そして、誘電体層DL上(図では下側)には、バス電極Xb、Ybの直交方向(第2方向D2)に延在する複数のアドレス電極AEが設けられている。このように、前面基板部12は、第1方向D1に延在する複数の電極XE、YEおよび第2方向D2に延在する複数のアドレス電極AEを有している。 The electrodes Xb, Xt, Yb, Yt are covered with the dielectric layer DL. A plurality of address electrodes AE extending in a direction orthogonal to the bus electrodes Xb and Yb (second direction D2) are provided on the dielectric layer DL (lower side in the figure). Thus, the front substrate part 12 has a plurality of electrodes XE, YE extending in the first direction D1 and a plurality of address electrodes AE extending in the second direction D2.
 アドレス電極AEおよび誘電体層DLは、保護層PLに覆われている。例えば、保護層PLは、放電を容易に発生させるために、陽イオンの衝突による2次電子の放出特性の高いMgO膜で形成される。 The address electrode AE and the dielectric layer DL are covered with a protective layer PL. For example, the protective layer PL is formed of an MgO film having high secondary electron emission characteristics due to cation collision in order to easily generate discharge.
 背面基板部14は、ガラス基材RS上(ガラス基材FSに対向する面上)に互いに平行に形成され、バス電極Xb、Ybに直交する方向(第2方向D2)に延在する隔壁(バリアリブ)BRを有している。放電空間DSは、互いに隣接する隔壁BR間に形成される。例えば、放電空間DSは、サンドブラスト法等により、ガラス基材RSを直接彫り込んで形成される。 The rear substrate portion 14 is formed in parallel with each other on the glass substrate RS (on the surface facing the glass substrate FS) and extends in a direction (second direction D2) perpendicular to the bus electrodes Xb and Yb ( Barrier rib) BR is included. The discharge space DS is formed between the adjacent barrier ribs BR. For example, the discharge space DS is formed by directly carving the glass substrate RS by a sandblast method or the like.
 隔壁BRにより、セルの側壁が構成される。さらに、隔壁BRの側面と、互いに隣接する隔壁BRの間のガラス基材RS上とには、紫外線により励起されて赤(R)、緑(G)、青(B)の可視光を発生する蛍光体PHr、PHg、PHbが、それぞれ塗布されている。 The side wall of the cell is constituted by the partition wall BR. Further, visible light of red (R), green (G), and blue (B) is generated on the side surface of the partition wall BR and the glass substrate RS between the adjacent partition walls BR by being excited by ultraviolet rays. Phosphors PHr, PHg, and PHb are respectively applied.
 PDP10の1つの画素は、赤、緑および青の光を発生する3つのセルにより構成される。ここで、1つのセル(一色の画素)は、例えば、バス電極Xb、Ybと隔壁BRとで囲われる領域に形成される。このように、PDP10は、カラー画像を表示するためにセルをマトリックス状に配置し、かつ互いに異なる色の光を発生する複数種のセルを交互に配列して構成されている。特に図示していないが、バス電極Xb、Ybに沿って形成されたセルにより、表示ラインが構成される。 One pixel of the PDP 10 is composed of three cells that generate red, green, and blue light. Here, one cell (one color pixel) is formed, for example, in a region surrounded by the bus electrodes Xb and Yb and the partition wall BR. As described above, the PDP 10 is configured by arranging cells in a matrix to display a color image and alternately arranging a plurality of types of cells that generate light of different colors. Although not particularly illustrated, a display line is constituted by cells formed along the bus electrodes Xb and Yb.
 PDP10は、前面基板部12および背面基板部14を、保護層PLと隔壁BRが互いに接するように貼り合わせ、Ne、Xe等の放電ガスを放電空間DSに封入することで構成される。例えば、放電ガスは、上述した図1に示した排気孔EHおよび排気空間ESを介して、組み立てられたPDPの放電空間DSに封入される。 The PDP 10 is configured by bonding the front substrate portion 12 and the rear substrate portion 14 so that the protective layer PL and the partition wall BR are in contact with each other, and enclosing a discharge gas such as Ne or Xe in the discharge space DS. For example, the discharge gas is enclosed in the discharge space DS of the assembled PDP through the exhaust hole EH and the exhaust space ES shown in FIG.
 図3は、図1に示したPDPの製造方法の一例を示している。例えば、前面基板部12を製造するための工程100-140と、背面基板部14を製造するための工程200-220とは、互いに独立して実施される。 FIG. 3 shows an example of a manufacturing method of the PDP shown in FIG. For example, the steps 100-140 for manufacturing the front substrate portion 12 and the steps 200-220 for manufacturing the rear substrate portion 14 are performed independently of each other.
 前面基板部12を形成する工程では、まず、工程100において、透明電極Xt、Ytがガラス基材FS上に形成される。例えば、透明電極Xt、Ytは、スパッタ法等によりITO膜をガラス基材FSの表面に形成した後に、エッチング工程を用いて透明電極Xt、Ytのパターンにそれぞれ形成される。 In the step of forming the front substrate portion 12, first, in step 100, the transparent electrodes Xt and Yt are formed on the glass substrate FS. For example, the transparent electrodes Xt and Yt are formed in the patterns of the transparent electrodes Xt and Yt, respectively, by using an etching process after forming an ITO film on the surface of the glass substrate FS by sputtering or the like.
 工程110において、バス電極Xb、Ybがガラス基材FSおよび透明電極Xt、Yt上に形成される。例えば、バス電極Xb、Ybは、スパッタ法等により金属微粒子をガラス基材FSおよび透明電極Xt、Ytの表面に付着(例えば、クロム、銅およびクロムの順に積層)した後に、エッチング工程を用いてバス電極Xb、Ybのパターンにそれぞれ形成される。 In step 110, bus electrodes Xb and Yb are formed on the glass substrate FS and the transparent electrodes Xt and Yt. For example, the bus electrodes Xb and Yb are formed by depositing metal fine particles on the surfaces of the glass substrate FS and the transparent electrodes Xt and Yt by sputtering or the like (for example, stacking chromium, copper and chromium in this order) and then using an etching process. It is formed in the pattern of bus electrodes Xb and Yb, respectively.
 ここで、例えば、バス電極Xb、Ybを形成する際(工程110)に、第1アライメントマークMK1がバス電極Xb、Ybと同じ材料でガラス基材FSの3隅に形成される。なお、第1アライメントマークMK1は、透明電極Xt、Ytを形成する際(工程100)に、透明電極Xt、Ytと同じ材料でガラス基材FSの3隅に形成されてもよい。 Here, for example, when forming the bus electrodes Xb and Yb (step 110), the first alignment marks MK1 are formed at the three corners of the glass substrate FS with the same material as the bus electrodes Xb and Yb. The first alignment marks MK1 may be formed at the three corners of the glass substrate FS with the same material as the transparent electrodes Xt and Yt when forming the transparent electrodes Xt and Yt (step 100).
 工程120において、電極Xb、Xt、Yb、Ytを覆う誘電体層DLがガラス基材FS上に形成される。例えば、誘電体層DLは、ペースト状の低融点ガラスをガラス基材FS上に塗布した後、焼成して形成される。低融点ガラスを焼成した際に、ガラス基材FSに熱収縮が発生する。ガラス基材FSの熱収縮により、焼成後の第1アライメントマークMK1の位置が、焼成前の第1アライメントマークMK1の位置(第1アライメントマークMK1をガラス基材FS上に設ける際の設計値)からずれる。 In step 120, a dielectric layer DL covering the electrodes Xb, Xt, Yb, Yt is formed on the glass substrate FS. For example, the dielectric layer DL is formed by applying paste-like low-melting glass on the glass substrate FS and then baking it. When the low melting point glass is baked, thermal shrinkage occurs in the glass substrate FS. The position of the first alignment mark MK1 after firing is the position of the first alignment mark MK1 before firing due to the heat shrinkage of the glass substrate FS (design value when the first alignment mark MK1 is provided on the glass substrate FS). Deviate.
 工程130において、アドレス電極AEが誘電体層DL上に形成される。例えば、アドレス電極AEは、スパッタ法等により金属微粒子を誘電体層DLの表面に付着(例えば、クロム、銅およびクロムの順に積層)した後に、エッチング工程を用いてアドレス電極AEのパターンに形成される。 In step 130, an address electrode AE is formed on the dielectric layer DL. For example, the address electrode AE is formed in the pattern of the address electrode AE using an etching process after metal fine particles are adhered to the surface of the dielectric layer DL by sputtering or the like (for example, chromium, copper and chromium are stacked in this order). The
 工程140において、アドレス電極AEを覆う保護層PLが誘電体層DL上に形成される。例えば、保護層PLは、蒸着法等によりMgOを誘電体層DLおよびアドレス電極AEの表面に付着させることにより形成される。 In step 140, a protective layer PL covering the address electrode AE is formed on the dielectric layer DL. For example, the protective layer PL is formed by depositing MgO on the surfaces of the dielectric layer DL and the address electrode AE by vapor deposition or the like.
 背面基板部14を形成する工程では、まず、工程200において、隔壁BRがガラス基材RS上に形成される。例えば、隔壁BRのパターンを有するフォトレジストがガラス基材RS上に形成される。そして、ガラス基材RSのうち、フォトレジストで覆われていない部分(例えば、放電空間DSが形成される領域)が、サンドブラスト等により除去される。その後、フォトレジストが除去され、隔壁BRが形成される。 In the step of forming the back substrate part 14, first, in step 200, the partition wall BR is formed on the glass substrate RS. For example, a photoresist having a pattern of the barrier ribs BR is formed on the glass substrate RS. Then, a portion of the glass substrate RS that is not covered with the photoresist (for example, a region where the discharge space DS is formed) is removed by sandblasting or the like. Thereafter, the photoresist is removed, and the barrier ribs BR are formed.
 このように、この実施形態では、ガラス基材RSを選択的に除去することにより、隔壁BRがガラス基材RSと一体に形成される。また、この実施形態では、隔壁BRを形成するための焼成工程を必要としないため、ガラス基材RSに熱収縮は発生しない。ここで、例えば、第2アライメントマークMK2は、隔壁BRを形成する際に、ガラス基材RSの3隅に形成される。 Thus, in this embodiment, the partition wall BR is formed integrally with the glass substrate RS by selectively removing the glass substrate RS. Moreover, in this embodiment, since the baking process for forming the partition BR is not required, heat shrinkage does not occur in the glass substrate RS. Here, for example, the second alignment mark MK2 is formed at the three corners of the glass substrate RS when the partition wall BR is formed.
 例えば、隔壁BRのパターンを有するフォトレジストをガラス基材RS上に形成する際に、フォトレジストで覆われた外周部分のうち、第2アライメントマークMK2のパターンのみがフォトレジストで覆われないようにするためのフォトマスクで露光、現像する。そして、ガラス基材RSのうち、フォトレジストで覆われていない部分(放電空間DSが形成される領域と第2アライメントマークMK2)が、サンドブラスト等により除去される。その後、フォトレジストが除去され、隔壁BRが形成されるが、同時に、第2アライメントマークMK2がその部分のガラス基材が除去されることにより形成される。このように、第2アライメントマークMK2は隔壁BRと同時に形成される。 For example, when the photoresist having the pattern of the barrier ribs BR is formed on the glass substrate RS, only the pattern of the second alignment mark MK2 is not covered with the photoresist in the outer peripheral portion covered with the photoresist. Exposure and development with a photomask for the purpose. Then, a portion of the glass substrate RS that is not covered with the photoresist (the region where the discharge space DS is formed and the second alignment mark MK2) is removed by sandblasting or the like. Thereafter, the photoresist is removed, and the barrier ribs BR are formed. At the same time, the second alignment mark MK2 is formed by removing the glass substrate at that portion. Thus, the second alignment mark MK2 is formed simultaneously with the partition wall BR.
 工程210において、蛍光体PHr、PHg、PHbが、隔壁BR間(隔壁BRの側面と、互いに隣接する隔壁BRの間のガラス基材RS上)にそれぞれ形成される。例えば、ペースト状の蛍光体材料を隔壁BR間に印刷等により塗布し、塗布した蛍光体材料を乾燥させることにより、蛍光体PHr、PHg、PHbが形成される。 In step 210, phosphors PHr, PHg, and PHb are formed between the barrier ribs BR (on the glass substrate RS between the side surfaces of the barrier ribs BR and the barrier ribs BR adjacent to each other). For example, the phosphor materials PHr, PHg, and PHb are formed by applying a paste-like phosphor material by printing or the like between the barrier ribs BR and drying the applied phosphor material.
 工程220において、背面基板部12と前面基板部14とを互いに貼り合わせるためのシールが、ガラス基材RSの外周部に形成される。例えば、低融点ガラス等のシール材をガラス基材RSの外周部に塗布し、塗布したシール材を乾燥させることにより、シールが形成される。そして、工程210で形成した蛍光体PHr、PHg、PHbとシールとを同時に焼成する。 In step 220, a seal for bonding the back substrate portion 12 and the front substrate portion 14 to each other is formed on the outer peripheral portion of the glass base RS. For example, a seal is formed by applying a sealing material such as low melting point glass to the outer peripheral portion of the glass substrate RS and drying the applied sealing material. Then, the phosphors PHr, PHg, PHb formed in step 210 and the seal are fired simultaneously.
 なお、工程220の焼成では、焼成温度が低いため、ガラス基材RSに熱収縮は、ほとんど発生しない。例えば、工程220では、焼成によりガラス基材RSに熱収縮が発生した場合でも、工程120(前面基板部12の誘電体層DLの製造工程)の焼成に比べて焼成温度が低いため、ガラス基材RSの熱収縮の量は、工程120で発生したガラス基材FSの熱収縮の量に比べて、非常に小さい。したがって、工程220後(焼成後)の第2アライメントマークMK2の位置は、工程220前(焼成前)の第2アライメントマークMK2の位置(第2アライメントマークMK2をガラス基材RS上に設ける際の設計値)からほとんどずれない。 In the firing in step 220, since the firing temperature is low, thermal shrinkage hardly occurs in the glass substrate RS. For example, in step 220, even when heat shrinkage occurs in the glass substrate RS due to firing, the firing temperature is lower than firing in step 120 (manufacturing step of the dielectric layer DL of the front substrate portion 12). The amount of heat shrinkage of the material RS is very small compared to the amount of heat shrinkage of the glass substrate FS generated in step 120. Therefore, the position of the second alignment mark MK2 after step 220 (after baking) is the same as the position of the second alignment mark MK2 before step 220 (before baking) (when the second alignment mark MK2 is provided on the glass substrate RS). Almost no deviation from the design value.
 上述したように、工程100-140を経て形成された前面基板部12と工程200-220を経て形成された背面基板部14とでは、ガラス基材FS、RSの伸縮量(熱収縮量)に差が発生する。このため、例えば、前面基板部12および背面基板部14を互いに対向して配置した際の第1アライメントマークMK1の位置は、第2アライメントマークMK2の位置からずれる。したがって、この実施形態では、前面基板部12と背面基板部14との位置を互いに合わせる際(後述する工程400)に、第2アライメントマークMK2に対する第1アライメントマークMK1の相対的な位置のずれを補正した仮想アライメント座標ACが使用される。 As described above, the front substrate portion 12 formed through the steps 100-140 and the back substrate portion 14 formed through the steps 200-220 have an amount of expansion / contraction (thermal contraction amount) of the glass base materials FS and RS. A difference occurs. For this reason, for example, the position of the first alignment mark MK1 when the front substrate portion 12 and the rear substrate portion 14 are arranged to face each other is shifted from the position of the second alignment mark MK2. Therefore, in this embodiment, when the positions of the front substrate portion 12 and the rear substrate portion 14 are aligned with each other (step 400 described later), the relative positional deviation of the first alignment mark MK1 with respect to the second alignment mark MK2 is changed. The corrected virtual alignment coordinate AC is used.
 前面基板部12と背面基板部14とを組み立てる工程では、まず、工程300(仮想アライメント座標算出工程)において、前面基板部12における仮想アライメント座標ACが算出される。例えば、第1アライメントマークMK1間の距離と第2アライメントマークMK2間の距離との差が、工程100-140および工程200-220をそれぞれ経て形成された前面基板部12および背面基板部14の伸縮量の差として算出される。 In the step of assembling the front substrate portion 12 and the rear substrate portion 14, first, in step 300 (virtual alignment coordinate calculation step), the virtual alignment coordinate AC in the front substrate portion 12 is calculated. For example, the difference between the distance between the first alignment marks MK1 and the distance between the second alignment marks MK2 is the expansion / contraction of the front substrate portion 12 and the back substrate portion 14 formed through the steps 100-140 and 200-220, respectively. Calculated as the difference in quantity.
 すなわち、前面基板部12および背面基板部14を互いに貼り合わせる際の第1アライメントマークMK1間の距離と第2アライメントマークMK2間の距離との差が、前面基板部12および背面基板部14を互いに貼り合わせる前の工程で発生した前面基板部12および背面基板部14の伸縮量の差として算出される。そして、算出した伸縮量の差と第1アライメントマークMKの座標とに基づいて、前面基板部12における仮想アライメント座標ACが算出される。上述したように、前面基板部12および背面基板部14の伸縮量の差による第1アライメントマークMK1と第2アライメントマークMK2との相対的な位置のずれは、仮想アライメント座標ACにより補正される。 In other words, the difference between the distance between the first alignment marks MK1 and the distance between the second alignment marks MK2 when the front substrate portion 12 and the back substrate portion 14 are bonded together causes the front substrate portion 12 and the back substrate portion 14 to adhere to each other. It is calculated as a difference in expansion / contraction amount between the front substrate portion 12 and the back substrate portion 14 generated in the step before the bonding. Then, based on the calculated difference in expansion / contraction amount and the coordinates of the first alignment mark MK, the virtual alignment coordinate AC in the front substrate portion 12 is calculated. As described above, the relative positional shift between the first alignment mark MK1 and the second alignment mark MK2 due to the difference in expansion / contraction between the front substrate portion 12 and the back substrate portion 14 is corrected by the virtual alignment coordinate AC.
 工程400(位置合わせ工程)において、仮想アライメント座標ACと第2アライメントマークMKとを合わせることにより、前面基板部12と背面基板部14との位置が互いに合わせられる。これにより、この実施形態では、前面基板部12および背面基板部14を互いに貼り合わせる際の位置合わせ精度を向上でき、前面基板部12に設けられた電極と背面基板部14に設けられた隔壁との相対的な位置を精度よく合わせることができる。 In step 400 (alignment step), the positions of the front substrate portion 12 and the back substrate portion 14 are aligned with each other by aligning the virtual alignment coordinate AC and the second alignment mark MK. Thereby, in this embodiment, the alignment precision at the time of bonding the front substrate part 12 and the back substrate part 14 together can be improved, and the electrodes provided on the front substrate part 12 and the partition walls provided on the back substrate part 14 The relative position of can be accurately adjusted.
 工程500(封着工程)において、互いの位置が合わせられた前面基板部12および背面基板部14が互いに貼り合わせられる。これにより、この実施形態では、前面基板部12および背面基板部14の互いの位置が精度よく合わせられたPDP10を組み立てることができる。この結果、この実施形態では、例えば、放電を発生させるために各電極に印加される電圧のマージンを拡大でき、PDP10を安定して駆動できる。換言すれば、この実施形態では、画像を表示するための放電を正しく発生させることができ、PDP10の表示品質を向上できる。 In step 500 (sealing step), the front substrate portion 12 and the rear substrate portion 14 that are aligned with each other are bonded to each other. Thereby, in this embodiment, the PDP 10 in which the positions of the front substrate portion 12 and the rear substrate portion 14 are accurately aligned can be assembled. As a result, in this embodiment, for example, the margin of the voltage applied to each electrode in order to generate discharge can be expanded, and the PDP 10 can be driven stably. In other words, in this embodiment, a discharge for displaying an image can be generated correctly, and the display quality of the PDP 10 can be improved.
 工程600において、放電空間DSにNe、Xe等の放電ガスが封入される。例えば、上述した図1に示した排気孔EHおよび排気空間ESを介して、放電空間DSを真空状態にするための真空排気(真空引き)が実施される。そして、放電空間DSにNe、Xe等の放電ガスが封入される。なお、封着(工程500)と真空排気とを同時に進行させてもよい。 In step 600, a discharge gas such as Ne or Xe is sealed in the discharge space DS. For example, evacuation (evacuation) for making the discharge space DS into a vacuum state is performed through the exhaust hole EH and the exhaust space ES shown in FIG. Then, a discharge gas such as Ne or Xe is sealed in the discharge space DS. Note that sealing (step 500) and evacuation may proceed simultaneously.
 図4および図5は、図3に示した仮想アライメント座標算出工程および位置合わせ工程の一例を示している。なお、図4は、仮想アライメント座標算出工程および位置合わせ工程で実施される処理を示している。例えば、図4に示した処理310-410は、2枚の基板の位置を互いに合わせる位置合わせ装置等により、その装置の動作を制御するプログラムにしたがって実施される。なお、例えば、処理310-350は、上述した図3に示した工程300で実施され、処理410は、工程400で実施される。また、各処理で算出された値は、例えば、位置合わせ装置等のメモリに記憶される。 4 and 5 show an example of the virtual alignment coordinate calculation step and the alignment step shown in FIG. FIG. 4 shows processing performed in the virtual alignment coordinate calculation step and the alignment step. For example, the processes 310 to 410 shown in FIG. 4 are performed by a positioning apparatus that aligns the positions of two substrates with each other according to a program that controls the operation of the apparatus. For example, the processing 310 to 350 is performed in the step 300 shown in FIG. 3 described above, and the processing 410 is performed in the step 400. Moreover, the value calculated by each process is memorize | stored in memory, such as an alignment apparatus, for example.
 なお、図5は、画像表示面側(図1の上側)から見たアライメントマークMK1、MK2の状態および仮想アライメント座標ACの位置を示している。図中の矢印の意味は、上述した図1と同じである。例えば、図5の前面基板部12および背面基板部14は、位置合わせ装置等にセットされた状態である。以下、図4を中心に、仮想アライメント座標算出工程および位置合わせ工程の処理を説明する。 FIG. 5 shows the state of the alignment marks MK1 and MK2 and the position of the virtual alignment coordinate AC viewed from the image display surface side (upper side in FIG. 1). The meanings of the arrows in the figure are the same as those in FIG. For example, the front substrate unit 12 and the rear substrate unit 14 in FIG. 5 are set in an alignment device or the like. Hereinafter, the processes of the virtual alignment coordinate calculation step and the alignment step will be described with reference to FIG.
 仮想アライメント座標算出工程の処理310において、第1アライメントマークMK1間の第1距離DT1および第2距離DT2がそれぞれ算出される。ここで、第1距離DT1は、図5(a)に示すように、前面基板部12の第1方向D1に延在する辺に沿う第1アライメントマークMK1間の距離である。また、第2距離DT2は、図5(a)に示すように、前面基板部12の第2方向D2に延在する辺に沿う第1アライメントマークMK1間の距離である。例えば、前面基板部12および背面基板部14がセットされた位置合わせ装置は、各第1アライメントマークMK1の実際の座標(例えば、上述した図3に示した工程140後の前面基板部12における各第1アライメントマークMK1の座標)を検出し、検出した座標に基づいて距離DT1、DT2をそれぞれ算出する。 In the process 310 of the virtual alignment coordinate calculation step, the first distance DT1 and the second distance DT2 between the first alignment marks MK1 are respectively calculated. Here, the first distance DT1 is a distance between the first alignment marks MK1 along the side extending in the first direction D1 of the front substrate portion 12, as shown in FIG. The second distance DT2 is a distance between the first alignment marks MK1 along the side extending in the second direction D2 of the front substrate portion 12, as shown in FIG. For example, the alignment apparatus in which the front substrate portion 12 and the rear substrate portion 14 are set has the actual coordinates of each first alignment mark MK1 (for example, each of the front substrate portions 12 after the process 140 shown in FIG. The coordinates of the first alignment mark MK1) are detected, and the distances DT1 and DT2 are calculated based on the detected coordinates.
 処理320において、第2アライメントマークMK2間の第3距離DT3および第4距離DT4がそれぞれ算出される。ここで、第3距離DT3は、第1距離DT1に対応する第2アライメントマークMK2間の距離であり、例えば、図5(a)に示すように、背面基板部14の第1方向D1に延在する辺に沿う第2アライメントマークMK2間の距離である。また、第4距離DT4は、第2距離DT2に対応する第2アライメントマークMK2間の距離であり、例えば、図5(a)に示すように、背面基板部14の第2方向D2に延在する辺に沿う第2アライメントマークMK2間の距離である。 In process 320, a third distance DT3 and a fourth distance DT4 between the second alignment marks MK2 are calculated. Here, the third distance DT3 is a distance between the second alignment marks MK2 corresponding to the first distance DT1, and extends, for example, in the first direction D1 of the back substrate portion 14 as shown in FIG. This is the distance between the second alignment marks MK2 along the existing side. The fourth distance DT4 is a distance between the second alignment marks MK2 corresponding to the second distance DT2. For example, as shown in FIG. 5A, the fourth distance DT4 extends in the second direction D2 of the back substrate portion 14. This is the distance between the second alignment marks MK2 along the side to be moved.
 例えば、位置合わせ装置は、各第2アライメントマークMK2の実際の座標(例えば、図3に示した工程220後の背面基板部14における各第2アライメントマークMK2の座標)を検出し、検出した座標に基づいて距離DT3、DT4をそれぞれ算出する。なお、この実施形態では、上述した図3で説明したように、前面基板部12および背面基板部14を互いに貼り合わせる際の第2アライメントマークMK2の位置は、第2アライメントマークMK2を背面基板部14に設ける際の設計値からほとんどずれない。 For example, the alignment apparatus detects the actual coordinates of each second alignment mark MK2 (for example, the coordinates of each second alignment mark MK2 in the back substrate part 14 after step 220 shown in FIG. 3), and the detected coordinates. Based on the above, distances DT3 and DT4 are calculated. In this embodiment, as described above with reference to FIG. 3, the position of the second alignment mark MK2 when the front substrate portion 12 and the rear substrate portion 14 are bonded to each other is the same as that of the second alignment mark MK2. 14 is not substantially deviated from the design value at the time of being provided.
 したがって、この実施形態では、第2アライメントマークMK2間の設計値の距離を、前面基板部12および背面基板部14の伸縮量の差を算出する際の距離DT3、DT4(仮想アライメント座標ACを算出する際の距離DT3、DT4)として使用してもよい。すなわち、この実施形態では、距離DT3、DT4を、第2アライメントマークMK2の実際の座標を使用することなく、第2アライメントマークMK2が背面基板部14に設けられる際の設計値に基づいて算出してもよい。 Therefore, in this embodiment, the distance between the design values between the second alignment marks MK2 is calculated as the distances DT3 and DT4 (the virtual alignment coordinate AC is calculated when calculating the difference between the expansion amounts of the front substrate portion 12 and the rear substrate portion 14. May be used as the distances DT3 and DT4). That is, in this embodiment, the distances DT3 and DT4 are calculated based on design values when the second alignment mark MK2 is provided on the back substrate part 14 without using the actual coordinates of the second alignment mark MK2. May be.
 処理330において、第1距離DT1と第3距離DT3の差((DT3-DT1)の絶対値)である第1差分DF1および第2距離DT2と第4距離DT4の差((DT4-DT2)の絶対値)である第2差分DF2がそれぞれ算出される。 In the process 330, the first difference DF1, which is the difference between the first distance DT1 and the third distance DT3 (the absolute value of (DT3-DT1)), and the difference between the second distance DT2 and the fourth distance DT4 ((DT4-DT2) The second difference DF2 that is an absolute value is calculated.
 処理340において、前面基板部12における仮想アライメント座標ACの第1方向D1の座標が算出される。この実施形態では、上述した図3で説明したように、前面基板部12の第1方向D1の収縮量は、背面基板部14の第1方向D1の収縮量に比べて大きい。したがって、この実施形態では、例えば、図5(b)に示すように、仮想アライメント座標ACの第1方向D1の座標は、第1アライメントマークMK1の実際の座標に対して、第1差分DF1の半分(DF1/2=(DT3-DT1)/2)だけ第1方向D1に沿って外側の位置にそれぞれ設定される。これにより、仮想アライメント座標AC間の第1方向D1に沿う距離DT5は、距離DT3と同じに設定される。 In process 340, the coordinates of the first direction D1 of the virtual alignment coordinates AC on the front substrate portion 12 are calculated. In this embodiment, as described with reference to FIG. 3 described above, the shrinkage amount of the front substrate portion 12 in the first direction D1 is larger than the shrinkage amount of the back substrate portion 14 in the first direction D1. Therefore, in this embodiment, for example, as shown in FIG. 5B, the coordinate in the first direction D1 of the virtual alignment coordinate AC is equal to the first difference DF1 with respect to the actual coordinate of the first alignment mark MK1. A half (DF1 / 2 = (DT3-DT1) / 2) is set to the outer position along the first direction D1. Thereby, the distance DT5 along the first direction D1 between the virtual alignment coordinates AC is set to be the same as the distance DT3.
 処理350において、仮想アライメント座標ACの第2方向D2の座標が算出される。この実施形態では、上述した図3で説明したように、仮想アライメント座標ACの第2方向D2の座標は、前面基板部12の第2方向D2の収縮量が背面基板部14の第2方向D2の収縮量に比べて大きい。したがって、この実施形態では、例えば、図5(b)に示すように、仮想アライメント座標ACの第2方向D2の座標は、第1アライメントマークMK1の実際の座標に対して、第2差分DF2の半分(DF2/2=(DT4-DT2)/2)だけ第2方向D2に沿って外側の位置にそれぞれ設定される。これにより、仮想アライメント座標AC間の第2方向D2に沿う距離DT6は、距離DT4と同じに設定される。 In process 350, the coordinates of the second direction D2 of the virtual alignment coordinates AC are calculated. In this embodiment, as described above with reference to FIG. 3, the coordinates of the virtual alignment coordinate AC in the second direction D2 are such that the contraction amount in the second direction D2 of the front substrate portion 12 is the second direction D2 of the rear substrate portion 14. Larger than the amount of shrinkage. Therefore, in this embodiment, for example, as shown in FIG. 5B, the coordinate in the second direction D2 of the virtual alignment coordinate AC is the second difference DF2 with respect to the actual coordinate of the first alignment mark MK1. A half (DF2 / 2 = (DT4-DT2) / 2) is set to the outer position along the second direction D2. Thereby, the distance DT6 along the second direction D2 between the virtual alignment coordinates AC is set to be the same as the distance DT4.
 すなわち、処理340、350により、前面基板部12における仮想アライメント座標ACは、第1アライメントマークMK1の実際の座標から第1方向D1および第2方向D2に第1差分DF1の半分(DF1/2)および第2差分DF2の半分(DF2/2)それぞれずらした位置で、かつ、仮想アライメント座標AC間の第1方向D1および第2方向D2にそれぞれ沿う距離DT5、DT6が距離DT3、DT4とそれぞれ同じ距離になる位置に設定される。 That is, by the processes 340 and 350, the virtual alignment coordinate AC on the front substrate unit 12 is half the first difference DF1 (DF1 / 2) in the first direction D1 and the second direction D2 from the actual coordinates of the first alignment mark MK1. And distances DT5 and DT6 along the first direction D1 and the second direction D2 between the virtual alignment coordinates AC are respectively the same as the distances DT3 and DT4 at positions shifted by half (DF2 / 2) of the second difference DF2 It is set to a position that becomes a distance.
 処理410において、前面基板部12と背面基板部14との位置が互いに合わせられる。例えば、図5(c)に示すように、仮想アライメント座標ACが第2アライメントマークMK2の座標に合うように、前面基板部12の位置が調整され、前面基板部12と背面基板部14との位置が互いに合わせられる。例えば、位置合わせ装置は、仮想アライメント座標ACと第2アライメントマークMKの座標とに基づいて、画像表示面16側から見た前面基板部12および背面基板部14の相対的な角度のずれ量、第1方向D1および第2方向D2の位置のずれ量等を算出する。そして、位置合わせ装置は、算出した角度のずれ量および各方向D1、D2の位置のずれ量に基づいて、前面基板部12の位置を調整する。 In processing 410, the positions of the front substrate portion 12 and the rear substrate portion 14 are aligned with each other. For example, as shown in FIG. 5C, the position of the front substrate unit 12 is adjusted so that the virtual alignment coordinate AC matches the coordinate of the second alignment mark MK2, and the front substrate unit 12 and the rear substrate unit 14 are aligned. The positions are aligned with each other. For example, the alignment apparatus can detect the relative angular deviation between the front substrate unit 12 and the rear substrate unit 14 as viewed from the image display surface 16 side based on the virtual alignment coordinates AC and the coordinates of the second alignment mark MK. A displacement amount of the position in the first direction D1 and the second direction D2 is calculated. Then, the alignment apparatus adjusts the position of the front substrate portion 12 based on the calculated angular deviation amount and the positional deviation amounts in the directions D1 and D2.
 なお、例えば、位置合わせ装置は、背面基板部14の位置を調整することにより、仮想アライメント座標ACと第2アライメントマークMKの座標とを互いに合わせてもよい。あるいは、前面基板部12および背面基板部14の位置を互いに調整することにより、仮想アライメント座標ACと第2アライメントマークMKの座標とを互いに合わせてもよい。 Note that, for example, the alignment apparatus may adjust the virtual alignment coordinate AC and the coordinate of the second alignment mark MK to each other by adjusting the position of the back substrate portion 14. Alternatively, the virtual alignment coordinate AC and the coordinate of the second alignment mark MK may be aligned with each other by adjusting the positions of the front substrate portion 12 and the rear substrate portion 14 with each other.
 この実施形態では、仮想アライメント座標ACの第1方向D1の座標の算出および第2方向D2の座標の算出は、互いに独立した処理(処理340、350)によりそれぞれ実施される。したがって、この実施形態では、例えば、前面基板部12の熱収縮率に異方性がある場合(第1方向D1と第2方向D2とで熱収縮率が異なる場合)でも、仮想アライメント座標ACと第2アライメントマークMKの座標とを互いに合わせることにより、前面基板部12および背面基板部14を互いに貼り合わせる際の位置合わせ精度を向上できる。 In this embodiment, the calculation of the coordinates in the first direction D1 and the calculation of the coordinates in the second direction D2 of the virtual alignment coordinates AC are performed by independent processes (processes 340 and 350), respectively. Therefore, in this embodiment, for example, even when the thermal contraction rate of the front substrate portion 12 is anisotropic (when the thermal contraction rate is different between the first direction D1 and the second direction D2), the virtual alignment coordinate AC By aligning the coordinates of the second alignment mark MK with each other, it is possible to improve the alignment accuracy when the front substrate portion 12 and the rear substrate portion 14 are bonded to each other.
 図6は、図1に示したPDP10を用いて構成されたプラズマディスプレイ装置の一例を示している。プラズマディスプレイ装置(以下、PDP装置とも称する)は、四角板形状を有するPDP10、PDP10の画像表示面16側(光の出力側)に設けられる光学フィルタ20、PDP10の画像表示面16側に配置された前筐体30、PDP10の背面18側に配置された後筐体40およびベースシャーシ50、ベースシャーシ50の後筐体40側に取り付けられ、PDP10を駆動するための回路部60、およびPDP10をベースシャーシ50に貼り付けるための両面接着シート70を有している。回路部60は、複数の部品で構成されるため、図では、破線の箱で示している。光学フィルタ20は、前筐体30の開口部32に取り付けられる保護ガラス(図示せず)に貼付される。なお、光学フィルタ20は、電磁波を遮蔽する機能を有してもよい。また、光学フィルタ20は、保護ガラスではなく、PDP10の画像表示面16側に直接貼付されてもよい。 FIG. 6 shows an example of a plasma display device configured using the PDP 10 shown in FIG. A plasma display device (hereinafter also referred to as a PDP device) is disposed on a PDP 10 having a square plate shape, an optical filter 20 provided on the image display surface 16 side (light output side) of the PDP 10, and an image display surface 16 side of the PDP 10. The front housing 30, the rear housing 40 and the base chassis 50 disposed on the back surface 18 side of the PDP 10, the circuit unit 60 for driving the PDP 10, and the PDP 10 attached to the rear housing 40 side of the base chassis 50 A double-sided adhesive sheet 70 for attaching to the base chassis 50 is provided. Since the circuit unit 60 includes a plurality of components, the circuit unit 60 is indicated by a dashed box in the figure. The optical filter 20 is affixed to a protective glass (not shown) attached to the opening 32 of the front housing 30. The optical filter 20 may have a function of shielding electromagnetic waves. The optical filter 20 may be directly attached to the image display surface 16 side of the PDP 10 instead of the protective glass.
 以上、この実施形態では、前面基板部12における仮想アライメント座標ACと、背面基板部14に設けられた第2アライメントマークMK2とを互いに合わせることにより、前面基板部12および背面基板部14の互いの位置を合わせる。この実施形態では、第2アライメントマークMK2に対する第1アライメントマークMK1の相対的な位置のずれを補正した仮想アライメント座標ACを使用するため、前面基板部12および背面基板部14の互いの位置を精度よく合わせることができる。この結果、この実施形態では、前面基板部12および背面基板部14を互いに貼り合わせる際の位置合わせ精度を向上でき、画像を表示するための放電を正しく発生させることができる。 As described above, in the present embodiment, the virtual alignment coordinate AC in the front substrate portion 12 and the second alignment mark MK2 provided on the rear substrate portion 14 are aligned with each other, whereby the front substrate portion 12 and the rear substrate portion 14 are mutually aligned. Adjust the position. In this embodiment, since the virtual alignment coordinates AC in which the displacement of the relative position of the first alignment mark MK1 with respect to the second alignment mark MK2 is corrected is used, the positions of the front substrate portion 12 and the rear substrate portion 14 are accurately determined. Can be matched well. As a result, in this embodiment, it is possible to improve the alignment accuracy when the front substrate portion 12 and the back substrate portion 14 are bonded to each other, and to correctly generate a discharge for displaying an image.
 なお、上述した実施形態では、1つの画素が、3つのセル(赤(R)、緑(G)、青(B))により構成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、1つの画素を4つ以上のセルにより構成してもよい。あるいは、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルにより構成されてもよく、1つの画素が、赤(R)、緑(G)、青(B)以外の色を発生するセルを含んでもよい。 In the above-described embodiment, an example in which one pixel includes three cells (red (R), green (G), and blue (B)) has been described. The present invention is not limited to such an embodiment. For example, one pixel may be composed of four or more cells. Alternatively, one pixel may be composed of cells that generate colors other than red (R), green (G), and blue (B), and one pixel may be red (R), green (G), A cell that generates a color other than blue (B) may be included.
 上述した実施形態では、第2方向D2が、第1方向D1に直交する例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第2方向D2は、第1方向D1と、ほぼ直角方向(例えば、90度±5度)に交差してもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the second direction D2 is orthogonal to the first direction D1 has been described. The present invention is not limited to such an embodiment. For example, the second direction D2 may intersect the first direction D1 in a substantially perpendicular direction (for example, 90 ° ± 5 °). Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、アライメントマークMK1、MK2が前面基板部12および背面基板部14の3隅にそれぞれ設けられる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、アライメントマークMK1、MK2は、前面基板部12および背面基板部14の4隅にそれぞれ設けられてもよい。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the alignment marks MK1 and MK2 are provided at the three corners of the front substrate portion 12 and the rear substrate portion 14 has been described. The present invention is not limited to such an embodiment. For example, the alignment marks MK1 and MK2 may be provided at the four corners of the front substrate portion 12 and the rear substrate portion 14, respectively. Also in this case, the same effect as the above-described embodiment can be obtained.
 上述した実施形態では、第2方向D2に延在する隔壁BRが、ガラス基材RS上に設けられる例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、第1方向D1に延在する隔壁と第2方向D2に延在する隔壁BRとにより構成される格子状の隔壁が、ガラス基材RS上に設けられてもよい。上述した実施形態で説明したように、前面基板部12の熱収縮率に異方性がある場合でも、前面基板部12および背面基板部14の互いの位置は、精度よく貼り合わせられる。すなわち、この場合にも、前面基板部12に設けられた電極と背面基板部14に設けられた格子状の隔壁との相対的な位置を精度よく合わせることができ、画像を表示するための放電を正しく発生させることができる。したがって、この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the partition wall BR extending in the second direction D2 is provided on the glass substrate RS has been described. The present invention is not limited to such an embodiment. For example, a grid-like partition wall including partition walls extending in the first direction D1 and partition walls BR extending in the second direction D2 may be provided on the glass substrate RS. As described in the above-described embodiment, even when the thermal contraction rate of the front substrate portion 12 has anisotropy, the positions of the front substrate portion 12 and the back substrate portion 14 are bonded together with high accuracy. That is, also in this case, the relative positions of the electrodes provided on the front substrate portion 12 and the grid-like partition walls provided on the rear substrate portion 14 can be accurately matched, and the discharge for displaying an image is possible. Can be generated correctly. Therefore, also in this case, the same effect as that of the above-described embodiment can be obtained.
 上述した実施形態では、隔壁BRがガラス基材RSと一体に形成される例について述べた。本発明はかかる実施形態に限定されるものではない。例えば、図7に示すように、隔壁BR2は、ガラス基材RS上に設けられた誘電体層DL2上に設けられてもよい。例えば、隔壁BR2は、ペースト状の隔壁材料を塗布し、乾燥、サンドブラスト、焼成工程を経て形成される。なお、隔壁BR2は、印刷による積層で形成されてもよい。図7の構成では、第2方向D2に延在する複数のアドレス電極AEは、背面基板部14のガラス基材RS上に設けられ、誘電体層DL2に覆われている。そして、誘電体層DL2上には、隔壁BR2が形成されている。この場合にも、上述した実施形態と同様の効果を得ることができる。 In the above-described embodiment, the example in which the partition wall BR is formed integrally with the glass substrate RS has been described. The present invention is not limited to such an embodiment. For example, as shown in FIG. 7, the barrier ribs BR2 may be provided on the dielectric layer DL2 provided on the glass substrate RS. For example, the barrier ribs BR2 are formed by applying a paste-like barrier rib material, followed by drying, sandblasting, and baking processes. The partition wall BR2 may be formed by printing. In the configuration of FIG. 7, the plurality of address electrodes AE extending in the second direction D2 are provided on the glass base RS of the back substrate portion 14 and are covered with the dielectric layer DL2. A partition wall BR2 is formed on the dielectric layer DL2. Also in this case, the same effect as the above-described embodiment can be obtained.
 ここで、例えば、第2アライメントマークMK2は、アドレス電極AEを形成する際に、アドレス電極AEと同じ材料でガラス基材RSの3隅に形成される。なお、この場合、誘電体層DL2を形成するための焼成工程および隔壁BR2を形成するための焼成工程において、背面基板部14(ガラス基材RS等)に熱収縮が発生する。背面基板部14の熱収縮により、焼成後の第2アライメントマークMK2の位置が、焼成前の第2アライメントマークMK2の位置(第2アライメントマークMK2をガラス基材RS上に設ける際の設計値)からずれる。 Here, for example, when the address electrode AE is formed, the second alignment mark MK2 is formed at the three corners of the glass base RS with the same material as the address electrode AE. In this case, in the firing process for forming the dielectric layer DL2 and the firing process for forming the barrier ribs BR2, thermal contraction occurs in the back substrate part 14 (glass substrate RS or the like). The position of the second alignment mark MK2 after baking is the position of the second alignment mark MK2 before baking (design value when the second alignment mark MK2 is provided on the glass substrate RS) due to the thermal contraction of the back substrate portion 14. Deviate.
 また、図7の構成から誘電体層DL2を省いて、隔壁BR2をガラス基材RS上に直接設けてもよい。この場合でも、隔壁BR2は、ペースト状の隔壁材料を塗布し、乾燥、サンドブラスト、焼成工程を経て形成される。なお、隔壁BR2は、印刷による積層で形成されてもよい。この場合でも、第2方向D2に延在する複数のアドレス電極AEは、背面基板部14のガラス基材RS上に設けられており、その上に直接、隔壁BR2が形成されている。この場合にも、上述した実施形態と同様の効果を得ることができる。 Alternatively, the dielectric layer DL2 may be omitted from the configuration of FIG. 7 and the partition wall BR2 may be provided directly on the glass substrate RS. Even in this case, the barrier ribs BR2 are formed by applying a paste-like barrier rib material, followed by drying, sandblasting, and baking processes. The partition wall BR2 may be formed by printing. Even in this case, the plurality of address electrodes AE extending in the second direction D2 are provided on the glass base RS of the back substrate portion 14, and the partition wall BR2 is directly formed thereon. Also in this case, the same effect as the above-described embodiment can be obtained.
 ここで、例えば、第2アライメントマークMK2は、アドレス電極AEを形成する際に、アドレス電極AEと同じ材料でガラス基材RSの3隅に形成される。なお、この場合、隔壁BR2を形成するための焼成工程において、背面基板部14(ガラス基材RS等)に熱収縮が発生する。背面基板部14の熱収縮により、焼成後の第2アライメントマークMK2の位置が、焼成前の第2アライメントマークMK2の位置(第2アライメントマークMK2をガラス基材RS上に設ける際の設計値)からずれる。 Here, for example, when the address electrode AE is formed, the second alignment mark MK2 is formed at the three corners of the glass base RS with the same material as the address electrode AE. In this case, thermal shrinkage occurs in the back substrate portion 14 (glass base RS or the like) in the firing step for forming the partition wall BR2. The position of the second alignment mark MK2 after baking is the position of the second alignment mark MK2 before baking (design value when the second alignment mark MK2 is provided on the glass substrate RS) due to the thermal contraction of the back substrate portion 14. Deviate.
 この両方の場合(第2アライメントマークMK2の位置が設計値からずれる場合)、上述した図4に示した処理340(仮想アライメント座標ACの第1方向D1の座標を算出する処理)および処理350(仮想アライメント座標ACの第2方向D2の座標を算出する処理)では、例えば、図8に示す処理が実施される。 In both cases (when the position of the second alignment mark MK2 deviates from the design value), the processing 340 (processing for calculating the coordinates of the virtual alignment coordinate AC in the first direction D1) and the processing 350 (shown in FIG. 4). In the process of calculating the coordinate of the virtual alignment coordinate AC in the second direction D2, for example, the process shown in FIG. 8 is performed.
 前面基板部12における仮想アライメント座標ACの第1方向D1の座標を算出する処理では、まず、処理341および処理342において、第1距離DT1と第3距離DT3との大小関係が比較される。そして、第1距離DT1と第3距離DT3とが同じ場合(処理341のYes)、処理344において、前面基板部12における仮想アライメント座標ACの第1方向D1の座標が第1アライメントマークMK1の第1方向D1の座標と同じ位置にそれぞれ設定される。 In the process of calculating the coordinates in the first direction D1 of the virtual alignment coordinate AC in the front substrate part 12, first, in the process 341 and the process 342, the magnitude relationship between the first distance DT1 and the third distance DT3 is compared. When the first distance DT1 and the third distance DT3 are the same (Yes in process 341), in the process 344, the coordinate in the first direction D1 of the virtual alignment coordinate AC in the front substrate portion 12 is the first alignment mark MK1. It is set at the same position as the coordinate in one direction D1.
 第1距離DT1が第3距離DT3より小さい場合(処理341のNoおよび処理342のYes)、処理346において、仮想アライメント座標ACの第1方向D1の座標は、第1アライメントマークMK1の実際の座標に対して、第1差分DF1の半分(DF1/2=(DT3-DT1)/2)だけ第1方向D1に沿って外側の位置にそれぞれ設定される。 When the first distance DT1 is smaller than the third distance DT3 (No in the process 341 and Yes in the process 342), in the process 346, the coordinates in the first direction D1 of the virtual alignment coordinate AC are the actual coordinates of the first alignment mark MK1. On the other hand, half of the first difference DF1 (DF1 / 2 = (DT3−DT1) / 2) is set at the outer position along the first direction D1.
 第1距離DT1が第3距離DT3より大きい場合(処理341のNoおよび処理342のNo)、処理348において、仮想アライメント座標ACの第1方向D1の座標は、第1アライメントマークMK1の実際の座標に対して、第1差分DF1の半分(DF1/2=(DT1-DT3)/2)だけ第1方向D1に沿って内側の位置にそれぞれ設定される。上述の処理(処理341-348)により、仮想アライメント座標AC間の第1方向D1に沿う距離DT5は、距離DT3と同じに設定される。 When the first distance DT1 is larger than the third distance DT3 (No in the process 341 and No in the process 342), in the process 348, the coordinates in the first direction D1 of the virtual alignment coordinate AC are the actual coordinates of the first alignment mark MK1. On the other hand, half of the first difference DF1 (DF1 / 2 = (DT1−DT3) / 2) is set at an inner position along the first direction D1. Through the above-described processing (processing 341 to 348), the distance DT5 along the first direction D1 between the virtual alignment coordinates AC is set to be the same as the distance DT3.
 前面基板部12における仮想アライメント座標ACの第2方向D2の座標を算出する処理では、まず、処理351および処理352において、第2距離DT2と第4距離DT4との大小関係が比較される。そして、第2距離DT2と第4距離DT4とが同じ場合(処理351のYes)、処理354において、仮想アライメント座標ACの第2方向D2の座標が第1アライメントマークMK1の第2方向D2の座標と同じ位置にそれぞれ設定される。 In the process of calculating the coordinate in the second direction D2 of the virtual alignment coordinate AC in the front substrate part 12, first, in the process 351 and the process 352, the magnitude relationship between the second distance DT2 and the fourth distance DT4 is compared. When the second distance DT2 and the fourth distance DT4 are the same (Yes in process 351), in the process 354, the coordinate in the second direction D2 of the virtual alignment coordinate AC is the coordinate in the second direction D2 of the first alignment mark MK1. Are set to the same positions as
 第2距離DT2が第4距離DT4より小さい場合(処理351のNoおよび処理352のYes)、処理356において、仮想アライメント座標ACの第2方向D2の座標は、第1アライメントマークMK1の実際の座標に対して、第2差分DF2の半分(DF2/2=(DT4-DT2)/2)だけ第2方向D2に沿って外側の位置にそれぞれ設定される。 When the second distance DT2 is smaller than the fourth distance DT4 (No in process 351 and Yes in process 352), in process 356, the coordinate in the second direction D2 of the virtual alignment coordinate AC is the actual coordinate of the first alignment mark MK1. On the other hand, half of the second difference DF2 (DF2 / 2 = (DT4−DT2) / 2) is set to the outer position along the second direction D2.
 第2距離DT2が第4距離DT4より大きい場合(処理351のNoおよび処理352のNo)、処理358において、仮想アライメント座標ACの第2方向D2の座標は、第1アライメントマークMK1の実際の座標に対して、第2差分DF2の半分(DF2/2=(DT2-DT4)/2)だけ第2方向D2に沿って内側の位置にそれぞれ設定される。上述の処理(処理351-358)により、仮想アライメント座標AC間の第2方向D2に沿う距離DT6は、距離DT4と同じに設定される。 When the second distance DT2 is larger than the fourth distance DT4 (No in the process 351 and No in the process 352), in the process 358, the coordinates in the second direction D2 of the virtual alignment coordinate AC are the actual coordinates of the first alignment mark MK1. On the other hand, half of the second difference DF2 (DF2 / 2 = (DT2−DT4) / 2) is set to the inner position along the second direction D2. Through the above-described processing (processing 351 to 358), the distance DT6 along the second direction D2 between the virtual alignment coordinates AC is set to be the same as the distance DT4.
 すなわち、上述の処理(処理341-358)により、前面基板部12における仮想アライメント座標ACは、第1アライメントマークMK1の実際の座標から第1方向D1および第2方向D2に第1差分DF1の半分(DF1/2)および第2差分DF2の半分(DF2/2)それぞれずらした位置で、かつ、仮想アライメント座標AC間の第1方向D1および第2方向D2にそれぞれ沿う距離DT5、DT6が距離DT3、DT4とそれぞれ同じ距離になる位置に設定される。 That is, by the above-described processing (processing 341-358), the virtual alignment coordinate AC in the front substrate portion 12 is half of the first difference DF1 in the first direction D1 and the second direction D2 from the actual coordinate of the first alignment mark MK1. The distances DT5 and DT6 along the first direction D1 and the second direction D2 between the virtual alignment coordinates AC at positions shifted by (DF1 / 2) and half of the second difference DF2 (DF2 / 2) are distances DT3. , DT4 are set at the same distance.
 この場合にも、上述の処理(処理341-358)により、前面基板部12および背面基板部14の伸縮量の差による第1アライメントマークMK1と第2アライメントマークMK2との相対的な位置のずれは、仮想アライメント座標ACにより補正される。したがって、背面基板部14に設けられる隔壁BR2が焼成工程を経て形成される場合にも、上述した実施形態と同様の効果を得ることができる。 Also in this case, the relative position shift between the first alignment mark MK1 and the second alignment mark MK2 due to the difference in expansion / contraction between the front substrate portion 12 and the back substrate portion 14 by the above-described processing (processing 341-358). Is corrected by the virtual alignment coordinate AC. Therefore, even when the partition wall BR2 provided on the back substrate portion 14 is formed through the firing process, the same effect as that of the above-described embodiment can be obtained.
 以上、本発明について詳細に説明してきたが、上記の実施形態およびその変形例は発明の一例に過ぎず、本発明はこれに限定されるものではない。本発明を逸脱しない範囲で変形可能であることは明らかである。 As described above, the present invention has been described in detail. However, the above-described embodiment and its modification are merely examples of the present invention, and the present invention is not limited thereto. Obviously, modifications can be made without departing from the scope of the present invention.
 本発明は、プラズマディスプレイパネルの製造方法に適用できる。 The present invention can be applied to a method for manufacturing a plasma display panel.

Claims (4)

  1.  放電空間を介して互いに対向する第1基板および第2基板と、前記第1基板に設けられた複数の第1アライメントマークと、前記第2基板に前記第1アライメントマークに対応する位置に設けられた複数の第2アライメントマークとを備えたプラズマディスプレイパネルの製造方法であって、
     前記第1および第2基板を互いに貼り合わせる際の前記第1アライメントマーク間の距離と前記第2アライメントマーク間の距離との差を、前記第1および第2基板を互いに貼り合わせる前の工程で発生した前記第1および第2基板の伸縮量の差として算出し、前記伸縮量の差と前記第1アライメントマークの座標とに基づいて、前記第1基板における仮想アライメント座標を算出する仮想アライメント座標算出工程と、
     前記仮想アライメント座標と前記第2アライメントマークとを合わせることにより、前記第1基板と前記第2基板との位置を互いに合わせる位置合わせ工程と、
     互いの位置が合わせられた前記第1基板および前記第2基板を互いに貼り合わせる封着工程とを有することを特徴とするプラズマディスプレイパネルの製造方法。
    A first substrate and a second substrate facing each other through a discharge space; a plurality of first alignment marks provided on the first substrate; and a position corresponding to the first alignment mark on the second substrate. A method of manufacturing a plasma display panel comprising a plurality of second alignment marks,
    The difference between the distance between the first alignment marks and the distance between the second alignment marks when the first and second substrates are bonded to each other is determined in a step before the first and second substrates are bonded to each other. A virtual alignment coordinate that is calculated as a difference between the expansion amounts of the first and second substrates that are generated, and that calculates a virtual alignment coordinate on the first substrate based on the difference between the expansion amount and the coordinates of the first alignment mark. A calculation process;
    An alignment step of aligning the positions of the first substrate and the second substrate by aligning the virtual alignment coordinates and the second alignment mark;
    A method of manufacturing a plasma display panel, comprising: a sealing step of bonding the first substrate and the second substrate whose positions are aligned with each other.
  2.  請求項1記載のプラズマディスプレイパネルの製造方法において、
     前記第1および第2アライメントマークは、前記第1および第2基板の少なくとも3隅にそれぞれ設けられ、
     前記仮想アライメント座標算出工程では、
     前記第1基板の第1方向に延在する辺および前記第1方向と交差する第2方向に延在する辺にそれぞれ沿う前記第1アライメントマーク間の距離である第1および第2距離をそれぞれ算出し、
     前記第2アライメントマーク間の距離における前記第1および第2距離にそれぞれ対応する第3および第4距離をそれぞれ算出し、
     前記第1距離と前記第3距離の差である第1差分および前記第2距離と前記第4距離の差である第2差分をそれぞれ算出し、
     前記仮想アライメント座標を、前記第1アライメントマークの座標から前記第1方向および前記第2方向に前記第1差分の半分および前記第2差分の半分それぞれずらした位置で、かつ、前記仮想アライメント座標間の前記第1および第2方向にそれぞれ沿う距離が前記第3および第4距離とそれぞれ同じ距離になる位置に設定することを特徴とするプラズマディスプレイパネルの製造方法。
    In the manufacturing method of the plasma display panel of Claim 1,
    The first and second alignment marks are provided at at least three corners of the first and second substrates, respectively.
    In the virtual alignment coordinate calculation step,
    First and second distances, which are distances between the first alignment marks along the side extending in the first direction of the first substrate and the side extending in the second direction intersecting the first direction, respectively. Calculate
    Calculating third and fourth distances respectively corresponding to the first and second distances in the distance between the second alignment marks;
    Calculating a first difference that is a difference between the first distance and the third distance and a second difference that is a difference between the second distance and the fourth distance;
    The virtual alignment coordinates are shifted from the coordinates of the first alignment mark in the first direction and the second direction by a half of the first difference and a half of the second difference, respectively, and between the virtual alignment coordinates A method of manufacturing a plasma display panel, wherein the distances along the first and second directions are set to the same distance as the third and fourth distances, respectively.
  3.  請求項1記載のプラズマディスプレイパネルの製造方法において、
     維持電極、走査電極およびアドレス電極を前記第1基板に設け、
     放電空間を仕切るための隔壁を前記第2基板と一体に設けることを特徴とするプラズマディスプレイパネルの製造方法。
    In the manufacturing method of the plasma display panel of Claim 1,
    A sustain electrode, a scan electrode, and an address electrode are provided on the first substrate,
    A method of manufacturing a plasma display panel, wherein a partition wall for partitioning a discharge space is provided integrally with the second substrate.
  4.  請求項3記載のプラズマディスプレイパネルの製造方法において、
     前記仮想アライメント座標算出工程では、
     前記第1および第2基板を互いに貼り合わせる際の前記第1基板における前記第1アライメントマークの座標を検出し、検出した座標に基づいて、前記第1アライメントマーク間の距離を算出し、
     前記第2アライメントマーク間の距離を、前記第2アライメントマークの座標を検出することなく、前記第2アライメントマークが前記第2基板に設けられる際の設計値に基づいて算出することを特徴とするプラズマディスプレイパネルの製造方法。
     
    In the manufacturing method of the plasma display panel of Claim 3,
    In the virtual alignment coordinate calculation step,
    Detecting the coordinates of the first alignment marks on the first substrate when the first and second substrates are bonded together, and calculating a distance between the first alignment marks based on the detected coordinates;
    The distance between the second alignment marks is calculated based on a design value when the second alignment marks are provided on the second substrate without detecting coordinates of the second alignment marks. A method for manufacturing a plasma display panel.
PCT/JP2008/001126 2008-04-30 2008-04-30 Manufacturing method of plasma display panel WO2009133589A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001126 WO2009133589A1 (en) 2008-04-30 2008-04-30 Manufacturing method of plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001126 WO2009133589A1 (en) 2008-04-30 2008-04-30 Manufacturing method of plasma display panel

Publications (1)

Publication Number Publication Date
WO2009133589A1 true WO2009133589A1 (en) 2009-11-05

Family

ID=41254821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001126 WO2009133589A1 (en) 2008-04-30 2008-04-30 Manufacturing method of plasma display panel

Country Status (1)

Country Link
WO (1) WO2009133589A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285931A (en) * 1987-05-18 1988-11-22 Fujitsu Ltd Exposure device
JPH03192631A (en) * 1989-12-20 1991-08-22 Fujitsu Ltd Manufacture of gas discharge panel
JPH06251714A (en) * 1993-02-22 1994-09-09 Oki Electric Ind Co Ltd Display panel and manufacture thereof
JPH09281513A (en) * 1996-04-18 1997-10-31 Hitachi Ltd Substrate assembly method, substrate assembly device and substrate assembly system
JPH1055754A (en) * 1995-11-27 1998-02-24 Canon Inc Manufacture and device for image display device
JP2005215374A (en) * 2004-01-30 2005-08-11 Pioneer Plasma Display Corp Display device
JP2006324033A (en) * 2005-05-17 2006-11-30 Pioneer Electronic Corp Plasma display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63285931A (en) * 1987-05-18 1988-11-22 Fujitsu Ltd Exposure device
JPH03192631A (en) * 1989-12-20 1991-08-22 Fujitsu Ltd Manufacture of gas discharge panel
JPH06251714A (en) * 1993-02-22 1994-09-09 Oki Electric Ind Co Ltd Display panel and manufacture thereof
JPH1055754A (en) * 1995-11-27 1998-02-24 Canon Inc Manufacture and device for image display device
JPH09281513A (en) * 1996-04-18 1997-10-31 Hitachi Ltd Substrate assembly method, substrate assembly device and substrate assembly system
JP2005215374A (en) * 2004-01-30 2005-08-11 Pioneer Plasma Display Corp Display device
JP2006324033A (en) * 2005-05-17 2006-11-30 Pioneer Electronic Corp Plasma display panel

Similar Documents

Publication Publication Date Title
KR20060113130A (en) Plasma display module
JP2006173113A (en) Plasma display panel and its manufacturing method
WO2009133589A1 (en) Manufacturing method of plasma display panel
JP2008116992A (en) Plasma display apparatus
WO2010026618A1 (en) Plasma display panel and method of manufacturing plasma display panel
TWI236034B (en) Method for fabricating rear plate of plasma display panel and rear plate fabricated thereby
KR20030029697A (en) Align mark and plasma display panel using the same
JP4554778B2 (en) Machine difference verification method and plasma display panel manufacturing method
JP2007019023A (en) Plasma display panel
JP2007141655A (en) Manufacturing method of display panel
JPH1115395A (en) Method for positioning substrate
KR100251155B1 (en) plasma dlsplay panel
KR20030073681A (en) A Plasma Display Panel
JP5029786B2 (en) Alignment method and flat panel display manufacturing method
KR100669433B1 (en) Plasma display panel and fabricating methods therefor
JP2013084407A (en) Plasma display panel
KR100696642B1 (en) Plasma display panel
JP2004119217A (en) Method for manufacturing display panel, and display panel
KR100823514B1 (en) Plasma display panel
JP2005005030A (en) Plasma display panel
WO2009147696A1 (en) Plasma display panel and method for manufacturing plasma display panel
JP2003288842A (en) Manufacturing method of plasma display device
JP2002203483A (en) Ac type pdp having front plate h type barrier rib
WO2009133593A1 (en) Plasma dislay panel and method of manufacturing plasma display panel
WO2010041298A1 (en) Plasma display panel and method for manufacturing plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08751651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08751651

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP