JP4548742B2 - 誘電体微粒子濃縮装置 - Google Patents

誘電体微粒子濃縮装置 Download PDF

Info

Publication number
JP4548742B2
JP4548742B2 JP2009517837A JP2009517837A JP4548742B2 JP 4548742 B2 JP4548742 B2 JP 4548742B2 JP 2009517837 A JP2009517837 A JP 2009517837A JP 2009517837 A JP2009517837 A JP 2009517837A JP 4548742 B2 JP4548742 B2 JP 4548742B2
Authority
JP
Japan
Prior art keywords
flow path
liquid
dielectric fine
cell
liquid holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009517837A
Other languages
English (en)
Other versions
JPWO2008149797A1 (ja
Inventor
隆治 円城寺
諭 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2008149797A1 publication Critical patent/JPWO2008149797A1/ja
Application granted granted Critical
Publication of JP4548742B2 publication Critical patent/JP4548742B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C5/00Separating dispersed particles from liquids by electrostatic effect
    • B03C5/02Separators
    • B03C5/022Non-uniform field separators
    • B03C5/026Non-uniform field separators using open-gradient differential dielectric separation, i.e. using electrodes of special shapes for non-uniform field creation, e.g. Fluid Integrated Circuit [FIC]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/02Separating microorganisms from the culture medium; Concentration of biomass
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502753Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/40Concentrating samples
    • G01N2001/4038Concentrating samples electric methods, e.g. electromigration, electrophoresis, ionisation

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Electrostatic Separation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

本発明は、試料液中の誘電体微粒子を誘電泳動力によって捕集し、捕集された誘電体微粒子の定量測定・分析、回収を容易にするとともに、回収後の装置内洗浄も容易に行うことができる誘電体微粒子濃縮装置に関する。
近年、サルモネラ菌、ブドウ球菌、ボツリヌス菌、病原性大腸菌O−157といった微生物に起因する食中毒の被害が問題になっており、関係企業では、これらの微生物に対する予防・衛生にかかわる講習会や啓蒙活動などを行う一方で、高額な設備投資を通じて事故拡散を未然に防ごうとしている。
微生物の検出は、培養した後に種類の同定や定量をすることが一般的である。すなわち、前培養→増菌培養→分離培養といった培養操作を伴うことから、その培養操作に起因して検査結果が出るまで数日程度の期間を要し、かつ、専門の測定技術者を必要とする。この長期間の測定は、迅速性が要求される生鮮食品など、食料品への微生物検査の必要性が生じた場合に非常に問題となる。
このようなことから、微生物を簡易かつ迅速に検出する様々な試薬や装置が提案されている。例えば、誘電泳動力によって微生物を捕集する電極を有し、かかる電極間のインピーダンスを測定することで微生物数を定量的に算出する装置がある(特許文献1)。また、特許文献1と同様に、誘電泳動力によって捕集した微生物を定量分析した後に、試料液を自動的に排水して、測定チャンバー内を洗浄することができる装置がある(特許文献2)。
特開2003−24350(請求項1) 特開2003−224(請求項5、請求項6)
上記特許文献1及び2のいずれも、捕集した微生物を定量分析することを目的としたものであり、捕集した微生物を回収することを意図したものとはなっていない。すなわち、定量分析後の微生物は排出洗浄されるだけで、更なる活用方法が示唆されているものではなかった。
これに関連し、近年は、微生物などのタンパク質を含む標的菌を効率良く濃縮して、かかる濃縮液を分析することが求められ、如何にして標的菌を効率良く濃縮するかが課題となっている。かかる濃縮技術の提供は、飲料水、食肉、惣菜、加工食品等の飲料・食品分野において、製薬、製剤、薬品、化粧品等の製薬・化粧品分野において、エイズ、結核菌、鳥インフルエンザ等の臨床・医療分野において、DNA・RNA、たんぱく質、核酸等のバイオ産業分野において、温泉、水処理、下水処理等の環境測定分野において、船舶バラスト、湾岸管理、海洋汚染等の海洋測定分野において、など様々な分野で活躍することが期待される。
本発明は以上の点に鑑みてなされたものであり、その目的は、試料液中の誘電体微粒子(例えば、微生物)を誘電泳動力によって捕集し、捕集された誘電体微粒子の定量測定・分析後に、誘電体微粒子を濃縮して回収することができる誘電体微粒子濃縮装置を提供することにある。
以上のような課題を解決するために、本発明は、誘電体微粒子を含む試料液を誘電泳動電極に捕集し、誘電泳動電極にリリース液を貫流して、誘電泳動電極によって捕集された誘電体微粒子を濃縮して回収することを特徴とする。
より具体的には、本発明は、以下のものを提供する。
(1) 検査対象となる誘電体微粒子を含む試料液を保持する試料液保持部と、前記誘電体微粒子を誘電泳動力によって捕集する誘電泳動電極を備えるセルと、前記誘電泳動電極に貫流するリリース液を保持するリリース液保持部と、前記リリース液保持部から供給されるリリース液を前記誘電泳動電極に貫流して、当該誘電泳動電極によって捕集された誘電体微粒子を回収する回収部と、を有することを特徴とする誘電体微粒子濃縮装置。
上記構成を有する本発明によれば、試料液保持部から供給された誘電体微粒子が印加されたセルを通過する際に、誘電泳動電極上に誘電泳動力によって誘電体微粒子が捕集される。この捕集された誘電体微粒子を、印加を停止して誘電泳動力から開放し、かつ、リリース液保持部から供給されるリリース液を誘電泳動電極に貫流することで、放出させて、回収部に回収することができる。これにより、濃縮された誘電体微粒子を標的菌として回収することが容易にできる。
また、誘電泳動電極上に捕集された誘電体微粒子は、CCDカメラ、光学顕微鏡等によるリアルタイム観察が可能であり、誘電体微粒子の代謝活性状態をリアルタイムで観察することができる。さらに、捕集された誘電体微粒子が電極間にパールチェーンを形成することで電極間に微弱な電流が流れる現象を利用し、誘電泳動電極間のインピーダンス変化を計測する(DEPIM)ことによって、誘電体微粒子の定量測定が可能となる。
(2) 前記誘電泳動電極によって捕集された誘電体微粒子に対して標識化物質を作用させるための染色液を保持する染色液保持部を有することを特徴とする誘電体微粒子濃縮装置。
上記構成を有する本発明によれば、染色液保持部から供給された染色液がセルを通過する際に、誘電泳動電極によって捕集された誘電体微粒子に対して標識化物質を作用することができることから、蛍光強度を測定する器具を接続することによって、染色された誘電体微粒子を蛍光分光光度計による蛍光観察や蛍光顕微鏡による観察によって定量測定をリアルタイムで行うことができる。具体的には、標識化物質を含む誘電体微粒子は、光源より発せられた紫外線励起光によって蛍光を発し、集光レンズを備える検出器においてこれを受光することで、電気信号を取り出す。この電気信号を測定・分析することによって、誘電体微粒子を光学的に検出することができる。
(3) 前記リリース液保持部から供給されるリリース液を前記誘電泳動電極に貫流する際に、リリース液内に気泡を混入することを特徴とする誘電体微粒子濃縮装置。
上記構成を有する本発明によれば、気泡が混入されたリリース液を誘電泳動電極に貫流することによって、誘電泳動電極によって捕集されている誘電体微粒子のリリースを容易に行うことができ、回収部への誘電体微粒子の回収が容易になる。
(4) 前記誘導泳動電極は、タンパク質の吸着を防止する被膜で被覆されていることを特徴とする誘電体微粒子濃縮装置。
上記構成を有する本発明によれば、誘導泳動電極に誘電体微粒子が吸着することを防止することができるので、誘電泳動電極によって捕集されている誘電体微粒子のリリースを容易に行うことができ、回収部への誘電体微粒子の回収が容易になる。
(5) 前記試料液は、導電率に影響する電解物質を予め分離したことを特徴とする誘電体微粒子濃縮装置。
上記構成を有する本発明によれば、導電率に影響する電解物質を除去して検査対象となる誘電体微粒子の濃度が高い試料液を誘電体微粒子濃縮装置にかけることができるので、濃縮された誘電体微粒子を標的菌として回収することがさらに容易にできる。
すなわち、誘電泳動電極によって誘電体微粒子を捕集する場合に、あるレベル以上の導電率媒質に誘電体微粒子を懸濁させた試料液を用いると、正のDEP(電極に向って働く引力)が作用しにくくなることが知られている。従って、海水や食品サンプルから誘電体微粒子を分離回収する場合、高導電率媒質に対して有効に菌濃縮が行える機構を構築する必要がある。これらの処理については、一般的に、遠心分離法及びろ過法が有効であるが、前者は,処理中に発生する対象物(細胞,微生物)の損傷や回収率低下の問題があり、後者は一般的であるが、使用するろ過膜の目詰まりによって、対象物の回収に時間を要するという問題がある。
そこで有効な手段の一つが、クロスフロー方式と呼ばれる膜ろ過法である。原料を分離膜に対して垂直に加圧して分離する通常のろ過方法に対し、原料を分離膜に対し水平に流しながら加圧・ろ過する方式のことをいう。ろ過後の膜上の残渣を回収する場合や、固形物が多く分離膜が目詰まりしやすい原料をろ過する場合に適している。この原理を利用することによって,高効率で導電率に影響する電解物質を媒質から分離することができる。
この手法を、誘電体微粒子濃縮装置の前処理機構として併用することにより、高導電媒質サンプルからの誘電体微粒子の回収を可能とする。
本発明によれば、誘電体微粒子を含む試料液を誘電泳動電極に捕集し、誘電泳動電極にリリース液を貫流して、誘電泳動電極によって捕集された誘電体微粒子を濃縮して回収することができる。また、誘電体微粒子を濃縮して回収する前に、誘電泳動電極によって捕集された誘電体微粒子に対して標識化物質を作用させるための染色液を施して、誘電体微粒子を染色することによって、回収後に誘電体微粒子を測定する際の染色工程が不要となり、染色された誘電体微粒子を標的菌として測定装置に提供することが可能となる。
以下、本発明を実施するための最良の形態について、図面に基づいて説明する。
[概略]
図1は、本発明の実施の形態に係る誘電体微粒子濃縮装置1の概略図である。
図1に示す誘電体微粒子濃縮装置1は、試料液保持部10と、セル11と、リリース液保持部12と、回収部13と、から主に構成されており、その他、流路系統には、流路系への流量を制御可能な送液ポンプP、流路系の方向及び流量を制御可能な電磁弁V,V,Vが設けられ、誘電体微粒子濃縮装置1には、送液ポンプP及び電磁弁を制御するコントロールユニット14、セル11の誘電泳動電極に電圧を印加する精密電圧発生装置15、電圧測定装置16が接続されている。
試料液保持部10は、検査対象となる誘電体微粒子としての微生物を含む試料液を保持するものであり、試料液をセル11の誘電泳動電極11a〜11cに貫流するために試料液を流入出する。なお、試料液は、予め濾過することによって粗大コンタミを除去することが好ましく、また、イオン交換樹脂等を介した脱イオン処理を施すことによって、高導電率を有する物質を除去することが好ましい。なお、誘電体微粒子としては、微生物の他に、ナノウィルス、カビ、ナノパーティクル等も含まれる。
リリース液保持部12は、誘電泳動電極に貫流させて、誘電泳動電極によって捕集された微生物をリリースするためのリリース液を保持している。リリース液は、りん酸緩衝液など、誘電泳動電極に捕集されている微生物をそのままの状態で回収することができるものを使用する。
回収部13は、誘電泳動電極によって捕集された微生物を回収するものであり、回収された微生物をさらに別の分析装置に利用するなど、様々な用途が可能である。試料液保持部に保持された試料液から微生物のみを回収することができるので、例えば試料液100ccに含まれる微生物を1ccの溶液に濃縮して回収することができる。
[セル]
図2は、セル11の概略図、図3は、セル11内の誘電泳動電極のパターン図である。
セル11は、基板(a)に流入口(h)と流出口(i)とが設けられ、流路(d)を図面上右から左に試料液が流れるように構成されている。流路(d)を構成する流路カバー(b)の材質は、ガラス、アクリル、軟性ポリジメチルシロキサン(PDMS)等であって、限定されない。また、セル11には、誘電泳動電極部(f)がその流路(d)中に設けられている。
誘電泳動電極部(f)は、図3に示すように、10本の電極を等間隔に並列配置しており、同形の電極10本を対面から交互に組み合わせることによって、櫛形の電極群(捕集部(e))を構成してなる。例えば、1本の電極は幅100μmであって、電極の間隔は10μmとすることができる。また、電極には、微生物や細胞などの非特異的反応を抑制して、その吸着を防止する界面親和剤(主成分:りん脂質)を被膜として被覆している。
なお、誘電泳動電極部(f)は、石英ガラス基板上にクロム、金、チタン等の誘電泳動力が働く材質を蒸着して作製しているが、基板は絶縁体であれば限定されない。
[流路系]
図4は、本発明の実施の形態に係る誘電体微粒子濃縮装置1の流路系概略図である。
本発明の実施の形態に係る誘電体微粒子濃縮装置1は、試料液保持部10と、セル11と、リリース液保持部12と、回収部13と、染色液保持部17と、洗浄液保持部18と、から主に構成されており、その他、流路系統には、流路系への流量を制御可能な送液ポンプP、電磁弁V,V,V,V,Vが設けられている。
なお、電磁弁Vはセル11への流入方向を制御可能な流入方向制御手段、電磁弁Vはセル11からの流出方向を制御可能な流出方向制御手段として機能する。また、電磁弁Vは流入方向制御手段と接続された第1方向制御手段、電磁弁V及びVは、それぞれT字継手19を介して第1方向制御手段と接続された第2方向制御手段及び第3方向制御手段として機能する。それぞれの方向制御手段は、流出方向の制御のほかに流量の制御も可能である。
染色液保持部17は、誘電泳動電極によって捕集された微生物に対して標識化物質を作用させるための染色液を保持するものである。染色液は、6−カルボキシルフルオレセイン・ジアセテートをアセトンで希釈したCFDAアセトン溶液等を用いることができる。
洗浄液保持部18は、誘電体微粒子濃縮装置1の流路系を洗浄するための洗浄液を保持するもので、誘電泳動電極によって捕集された微生物をリリースする前に流路系を洗浄したり、使用後の誘電体微粒子濃縮装置1の流路系を洗浄したりする際に用いる。
リリース液保持部12と接続される電磁弁Vの一端は、断続的に開放されることでリリース液内に気泡を断続的に混入することができる。また、気泡を混入するために、図示しない気泡を流入する装置を接続して、電磁弁Vの開閉動作によって断続的な気泡の混入も可能である。
試料液保持部10とセル11とは流路F,Fで接続され、流路F−F間には電磁弁Vが設けられている。また、セル11と試料液保持部10とは流路F,Fで接続され、流路F−F間には電磁弁Vが設けられている。なお、流路Fには送液ポンプPが設けられ、ポンプの正転動作によって図面右向き、逆転動作によって図面左向きに流水される。
セル11と回収部13とは流路F,Fで接続され、流路 −F 間には電磁弁V5が設けられている。
続いて、流路Fを通してセル11に流入される染色液、リリース液、洗浄液の流路系について説明する。
染色液、リリース液、洗浄液は、いずれかが択一的にセル11に流入されることから、流路Fを主路として、流路F7−F間には電磁弁Vが設けられている。
染色液は、染色液保持部17に接続された流路Fから供給され、電磁弁V2によって流路F−Fが開通されることでセル11に流入することが可能となる。
リリース液は、リリース液保持部12に接続された流路F10から供給され、電磁弁V4によって流路F10−F9が開通され、さらに、電磁弁V2によって流路F8−Fが開通されることでセル11に流入することが可能となる。なお、流路F−F間にはT字継手19が設けられているが、流路F−Fは常時開通している。
洗浄液は、洗浄液保持部18に接続された流路F12から供給され、電磁弁Vによって流路F12−F11が開通され、電磁弁V2によって流路F8−Fが開通されることでセル11に流入することが可能となる。なお、流路F−F11間にはT字継手19が設けられているが、流路F−F11は常時開通している。
以上の流路系を確保するために使用される電磁弁のうち、V,V,V,Vは3方向からの接続を確保するために三方電磁弁を使用するが、3方向からの接続を確保できるものであれば、その種類を問わず、例えば、四方電磁弁のうち1方向を遮断することによって、実質的に三方電磁弁と同じ機能を有するものも含まれる。また、Vは二方電磁弁を使用するが、2方向からの接続を確保できるものであれば、その種類を問わず、例えば、三方電磁弁のうち1方向を遮断することによって、実質的に二方電磁弁と同じ機能を有するものも含まれる。
また、電磁弁Vは、流路F−Fと流路F−Fとを形成するように、Fが共通ポートに接続される。電磁弁Vは、流路F6−F7と流路F8−F7とを形成するように、F7が共通ポートに接続される。電磁弁V3は、流路F11−F12を形成するように接続される。電磁弁V4は、流路F10−F9を形成し、気泡を流路Fに断続的に混入させるために、F9が共通ポートに接続される。電磁弁V5は、流路F3−F5と流路F−Fとを形成するように、Fが共通ポートに接続される。
なお、電磁弁Vは、流出側にセル11が、流入側に試料液保持部10と電磁弁V乃至Vを介した染色液保持部17,リリース液保持部12,洗浄液保持部18が接続され、共通ポートとして接続されたセル11に、試料液保持部10からの試料液を流入するか、或いは、染色液保持部17からの染色液,リリース液保持部12からのリリース液,洗浄液保持部18からの洗浄液のいずれかを流入するかを制御するものである。また、電磁弁Vは、流入側にセル11が、流側に試料液保持部10又は廃液保持部20と回収部13が接続され、共通ポートとして接続されたセル11から流出される試料液又は廃液を試料液保持部10又は廃液保持部20に流入するか、捕集された微生物を濃縮液として回収部13に流入するか、のいずれかを制御するものである。
[捕集工程]
図5は、本発明の実施の形態に係る誘電体微粒子濃縮装置1を使用して微生物を捕集する捕集工程を説明するための流路系概略図である。
微生物を捕集する捕集工程においては、試料液保持部10から供給される試料液をセル11内の誘電泳動電極に貫流して、セル11から流出する試料液を試料液保持部10に戻す。これを何度も繰り返すことで、試料液をセル11内に循環させ、試料液に含まれる微生物の捕集を確実にする。この際、誘電泳動電極には正弦波電圧を印加することで、電極間の電極ギャップ部分に誘電体である微生物を捕集することができる。
流路系は、試料液保持部10から試料液を流出する流路Fと試料液保持部10に試料液を流入(還流)する流路Fとを確保するために、電磁弁Vによって流路F−Fを開通し、電磁弁Vによって流路F3−F5を開通することで、流路F−F−F−Fが形成される。換言すれば、微生物を捕集する捕集工程においては、本発明は微生物の濃縮を主目的としていることから、試料液保持部10とセル11との流路系統を確保し、試料液自体が回収部13に回収されないように回収部13との流路系統を断ち、また、リリース液保持部12,染色液保持部17,洗浄液保持部18との流路系統を断つように流路が形成される。また、試料液保持部10とセル11とを循環する閉ループ流路を形成して、試料液をセル11内に循環させ、試料液に含まれる微生物の捕集を確実にする。
[染色工程]
図6は、本発明の実施の形態に係る誘電体微粒子濃縮装置1を使用して捕集した微生物を染色する染色工程を説明するための流路系概略図である。
微生物を染色する染色工程においては、染色液保持部17から供給される染色液をセル11内の誘電泳動電極に貫流して、セル11から流出する染色液を廃液保持部20に戻す。この際、誘電泳動電極には正弦波電圧を印加しておき、捕集された微生物が染色液とともに剥離されて流出しないようにする。なお、廃液保持部20は、試料液保持部10と兼用することとしてもよい。
流路系は、染色液保持部17から染色液を流出する流路F6とセル11に染色液を貫流するための流路Fとを確保するために、電磁弁V2によって流路F6−F7を開通し、電磁弁V1によって流路F7−F2を開通する。さらに、セル11から染色液(染色廃液)を流出して廃液保持部20に流入するための流路F−Fを電磁弁Vによって形成する。これにより、流路F6−F7−F2−F3−Fが形成される。換言すれば、微生物を染色する染色工程においては、染色液保持部17とセル11と廃液保持部20との流路系統を確保し、染色液自体が回収部13に回収されないように回収部13との流路系統を断ち、また、リリース液保持部12,洗浄液保持部18との流路系統を断つように流路が形成される。また、染色液保持部17とセル11と廃液保持部20との開ループ流路を形成して、染色液保持部17にセル11からの染色廃液が流入されることのないようにする。
[リリース前洗浄工程]
図7は、本発明の実施の形態に係る誘電体微粒子濃縮装置1を使用して捕集した微生物をリリースする前のリリース前洗浄工程を説明するための流路系概略図である。
リリース前洗浄工程は、セル11の誘電泳動電極によって捕集された微生物を回収する前に、染色工程によって染色液が流れた流路F6−F7−F2−F3−F5と、リリース工程によって微生物を回収する流路F10−F−F−F−F−F−Fとのうち、染色工程によって残存する染色液がリリース液と混入して回収部13に回収されることのないように、両工程に共通する流路のうち、特にリリース液に染色液が混入する可能性が高い流路F,F,Fとそれらに接続されるセル11や送ポンプPを洗浄することを目的とするものである。
リリース前洗浄工程においては、洗浄液保持部18から供給される洗浄液をセル11内の誘電泳動電極に貫流して、セル11から流出する洗浄液(洗浄廃液)を廃液保持部20に戻す。この際、誘電泳動電極には正弦波電圧を印加しておき、捕集された微生物が洗浄液とともに剥離されて流出しないようにする。なお、廃液保持部20は、試料液保持部10と兼用することとしてもよい。
流路系は、洗浄液保持部18から洗浄液を流出する流路F12とセル11に洗浄液を貫流するための流路Fとを確保するために、電磁弁 によって流路F12−F11を開通し、電磁弁V2によって流路F8−F7を開通し、電磁弁V1によって流路F7−F2を開通する。さらに、セル11から洗浄廃液を流出して廃液保持部20に流入するための流路F−Fを電磁弁Vによって形成する。なお、流路F11−Fは、T字継手19によって常時形成されている。これにより、流路F12−F11−F8−F7−F2−F−Fが形成される。換言すれば、リリース前洗浄工程においては、洗浄液保持部18とセル11と廃液保持部20との流路系統を確保し、洗浄液自体が回収部13に回収されないように回収部13との流路系統を断ち、また、染色液保持部17,リリース液保持部12との流路系統を断つように流路が形成される。また、洗浄液保持部18とセル11と廃液保持部20との開ループ流路を形成して、洗浄液保持部18に洗浄廃液が流入されることのないようにする。
なお、T字継手19を用いることによって、洗浄液が流路Fに残存することとなり、リリース工程の際に残存する洗浄液とリリース液とが混ざる可能性がある。これが許されない場合は、T字継手を三方弁にする。この場合は、流路F−Fと流路F11−Fを形成する必要があることから、Fを共通ポートに接続する。
[リリース工程]
図8は、本発明の実施の形態に係る誘電体微粒子濃縮装置1を使用して捕集した微生物をリリースするリリース工程を説明するための流路系概略図である。
リリース工程においては、リリース液保持部12から供給されるリリース液をセル11内の誘電泳動電極に貫流して、誘電泳動電極に捕集されている微生物を剥離させ、リリース液とともに濃縮液として回収部13に回収する。この際、誘電泳動電極への電圧印加は停止しておき、捕集された微生物がリリース液とともに剥離されて流出するようにする。リリース液供給の際に、気泡を断続的に混入することで、誘電泳動電極に捕集されている微生物をより容易に剥離させることができる。なお、断続的としたのは、電磁弁Vの機能上、流路F10−Fを形成するか、気泡混入のために開放された側とFとの流路を形成するかの択一的な選択しかできないために、リリース液か気泡かを択一的に供給することとなるからである。
また、リリース工程において供給するリリース液は試料液よりも少量とすることで、微生物を濃縮して回収することができる。
流路系は、リリース液保持部12からリリース液を流出する流路F10とセル11にリリース液を貫流するための流路Fとを確保するために、電磁弁V4によって流路F10−F9を開通し、電磁弁V2によって流路F8−F7を開通し、電磁弁V1によって流路F7−F2を開通する。さらに、セル11からリリース液を含む微生物を流出して回収部13に流入するための流路F−F4を電磁弁Vによって形成する。なお、流路F9−Fは、T字継手19によって常時形成されている。これにより、流路F10−F9−F8−F7−F2−F−F4が形成される。換言すれば、リリース工程においては、リリース液保持部12とセル11と回収部13との流路系統を確保するように流路が形成される。また、リリース液保持部12とセル11と回収部13との開ループ流路を形成して、微生物を濃縮して回収する。
[洗浄工程]
図9、図10は、本発明の実施の形態に係る誘電体微粒子濃縮装置1の流路系を洗浄する洗浄工程を説明するための流路系概略図である。
図9においては、濃縮液回収後に回収部13を廃液保持部20に替えて、洗浄液保持部18とセル11と廃液保持部20との流路系統を確保する。すなわち、電磁弁Vによって流路F12−F11を開通し、電磁弁Vによって流路F−Fを開通し、電磁弁Vによって流路F−Fを開通し、電磁弁Vによって流路F−Fを開通することで、流路F12−F11−F8−F7−F2−F−F4が形成されるので、かかる流路の洗浄が可能となる。
図10においては、流路Fを洗浄するために、洗浄液保持部18を流路Fに接続し、廃液保持部20を流路Fに接続する。すなわち、電磁弁Vによって流路F−Fを開通し、電磁弁Vによって流路F−Fを開通することで、流路F−F2−F−Fが形成されるので、かかる流路の洗浄が可能となる。
[クロスフロー]
図11は、本発明の実施の形態に係る誘電体微粒子濃縮装置1の前処理機構であるクロスフロー装置2の流路系概略図である。
クロスフロー装置2は、導入部30と、濃縮サンプル部31と、ろ液回収部32と、クロスフロー部33と、から主に構成されており、その他流路系統には送液ポンプP、適宜にバルブが設けられている。
導入部30は、クロスフロー前のサンプル液又は洗浄液が保持してクロスフロー装置2内にいずれかの液が導入される。準備工程及び濃縮工程においてはサンプル液が、洗浄工程においては洗浄液が導入される。導入部30は流路F30によって接続されている。
濃縮サンプル部31は、クロスフロー部33で分離された誘電体微粒子(微生物)を含む溶液を回収するもので、流入路F31と流出路F33とによって接続されている。なお、誘電体微粒子濃縮装置1とクロスフロー装置2とを組み合わせて使用する場合は、濃縮サンプル部31を試料液保持部10と同一に又は連結して構成することも可能である。
ろ液回収部32は、クロスフロー部33で分離された電解物質を含む溶液を回収するもので、流入路F34によって接続されている。
クロスフロー部33は、電解物質を分離するために、電解物質を透過可能で誘電体微粒子(微生物)を透過し難い中空糸膜を有し、流入路F33と流出路F32及びF34によって接続されている。
上記構成を有するクロスフロー装置2を使用して電解物質を分離する工程について説明すると、まず、流路F30−F31−F33−F32を形成して、換言すれば、導入部30と濃縮サンプル部31とクロスフロー部33とを連通させて、導入部30からクロスフロー前のサンプル液が上記形成された流路に充填される(準備工程)。
次に、流路F30−F31−F33−F32,F34を形成して、換言すれば、導入部30と濃縮サンプル部31とろ液回収部32とクロスフロー部33とを連通させて、クロスフロー部33によって電解物質を分離する(濃縮工程)。具体的には、送液ポンプPからの圧力により中空糸膜の孔径より小さい成分である電解物質は透過してろ液回収部32に回収される。一方、中空糸膜の孔径より大きい成分である誘電体微粒子(微生物)は透過せずに中空糸膜上に残る。また、ろ液としてろ液回収部32に回収された液量に相当する量のクロスフロー前のサンプル液が導入部30から導入される。この濃縮工程は、導入部30のサンプル液がなくなるまで続ける。
導入部30のサンプル液がなくなると、流路F30−F31−F33−F32,F34を形成したまま、導入部30を洗浄液(純水)に変えて、洗浄液を導入する(洗浄工程)。中空糸膜上や流路中に残った誘電体微粒子(微生物)を濃縮サンプル部31に流し込む。
最後に、流路F30とF34を断ち、流路F33−F32−F31によって、流路中に残留している濃縮サンプルを別に導入する少量の洗浄液で洗い出して濃縮サンプル部31に流し込む(回収工程)。
このようにして、濃縮サンプル部31に導電率を低減させた試料液が貯留される。なお、濃縮量は、準備工程で濃縮サンプル部31に充填したクロスフロー前のサンプル液と洗い出しに用いた洗浄液量とから決定することができる。
図12は、クロスフローによる媒質の導電率低減を示す図であり、人工海水を使用して実験を行った結果、クロスフロー回数が増えるに従って媒質の導電率が低減していることがわかる。
本発明に係る誘電体微粒子濃縮装置は、微生物を含む多量の試料液から、微生物を濃縮した濃縮液として標的菌を回収することができるので、高迅速・高効率の捕集技術が求められる際に、標的菌を短時間で濃縮し得るものとして有用である。
また、微生物を濃縮して回収する前に染色液を施すことで染色された微生物を標的菌として測定装置に提供することが可能となる。これは、別に提供される測定装置において、染色液が装置各部に付着することによる測定精度の劣化等を防止するとともに、装置各部の劣化を防止するものとして有用である。
本発明の実施の形態に係る誘電体微粒子濃縮装置の概略図。 セルの概略図。 セル内の誘電泳動電極のパターン図。 本発明の実施の形態に係る誘電体微粒子濃縮装置の流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置を使用して微生物を捕集する捕集工程を説明するための流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置を使用して捕集した微生物を染色する染色工程を説明するための流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置を使用して捕集した微生物をリリースする前のリリース前洗浄工程を説明するための流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置を使用して捕集した微生物をリリースするリリース工程を説明するための流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置の流路系を洗浄する洗浄工程を説明するための流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置の流路系を洗浄する洗浄工程を説明するための流路系概略図。 本発明の実施の形態に係る誘電体微粒子濃縮装置の前処理機構であるクロスフロー装置の流路系概略図。 クロスフローによる媒質の導電率低減を示す図。
符号の説明
1 誘電体微粒子濃縮装置
2 クロスフロー装置
10 試料液保持部
11 セル
12 リリース液保持部
13 回収部
14 コントロールユニット
17 染色液保持部
18 洗浄液保持部
19 T字継手
20 廃液保持部
30 導入部
31 濃縮サンプル部
32 ろ液回収部
33 クロスフロー部
P 送ポンプ
電磁弁
流路

Claims (5)

  1. 検査対象となる誘電体微粒子を含む試料液を保持する試料液保持部と、
    前記誘電体微粒子を誘電泳動力によって捕集する誘電泳動電極を備えるセルと、
    前記誘電泳動電極に貫流するリリース液を保持するリリース液保持部と、
    前記誘電泳動電極によって捕集された誘電体微粒子に対して標識化物質を作用させるための染色液を保持する染色液保持部と、
    流路系を洗浄するための洗浄液を保持する洗浄液保持部と、
    前記リリース液保持部から供給されるリリース液を前記誘電泳動電極に貫流して、当該誘電泳動電極によって捕集された誘電体微粒子を回収する回収部と、
    を有し、
    前記試料液保持部、前記染色液保持部、前記リリース液保持部又は前記洗浄液保持部からの各液を前記セルに択一的に貫流させる第1流路と、前記セルから排出された各液を前記回収部に回収させるか否かの分岐を有する第2流路と、前記リリース液保持部又は前記洗浄液保持部からの各液を流す流路を含み前記染色液保持部、前記リリース液保持部又は前記洗浄液保持部からの各液を前記第1流路に流す第3流路と、を形成し、
    誘電体微粒子を捕集する際には、前記試料液保持部と前記セルとで前記第1流路及び前記第2流路を含む閉ループ流路を形成して、試料液を循環させ、
    誘電体微粒子を染色する際には、前記染色液保持部と前記セルとで前記第1流路を含む流路を形成するとともに、前記セルから排出された染色液を前記回収部に回収させない第2流路を含む流路を形成して、染色液を前記セル内に貫流させ、
    誘電体微粒子をリリースして回収する際には、前記リリース液保持部と前記セルと前記回収部とで前記第1流路、前記第2流路及び前記第3流路を含む流路を形成して、リリース液を前記セル内に貫流させるものであって、
    前記セルに捕集された誘電体微粒子に対して標識化物質を作用させた後、標識化物質を作用させた誘電体微粒子を回収する前に、染色液が流れる流路とリリース液が流れる流路とに共通する前記第1流路、前記第2流路及び前記第3流路に前記洗浄液保持部から洗浄液を流すことを特徴とする誘電体微粒子濃縮装置。
  2. 前記セルに捕集された誘電体微粒子を回収した後、前記第1流路、前記第2流路及び前記第3流路に前記洗浄液保持部から洗浄液を流すことを特徴とする請求項1記載の誘電体微粒子濃縮装置。
  3. 前記リリース液保持部から供給されるリリース液を前記誘電泳動電極に貫流する際に、リリース液内に気泡を混入することを特徴とする請求項1記載の誘電体微粒子濃縮装置。
  4. 前記誘導泳動電極は、タンパク質の吸着を防止する被膜で被覆されていることを特徴とする請求項1記載の誘電体微粒子濃縮装置。
  5. 前記試料液は、導電率に影響する電解物質を予め分離したことを特徴とする請求項1記載の誘電体微粒子濃縮装置。
JP2009517837A 2007-06-01 2008-05-30 誘電体微粒子濃縮装置 Expired - Fee Related JP4548742B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007147503 2007-06-01
JP2007147503 2007-06-01
PCT/JP2008/060001 WO2008149797A1 (ja) 2007-06-01 2008-05-30 誘電体微粒子濃縮装置

Publications (2)

Publication Number Publication Date
JPWO2008149797A1 JPWO2008149797A1 (ja) 2010-08-26
JP4548742B2 true JP4548742B2 (ja) 2010-09-22

Family

ID=40093615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009517837A Expired - Fee Related JP4548742B2 (ja) 2007-06-01 2008-05-30 誘電体微粒子濃縮装置

Country Status (4)

Country Link
US (1) US20100193361A1 (ja)
JP (1) JP4548742B2 (ja)
CN (1) CN101730843A (ja)
WO (1) WO2008149797A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5471228B2 (ja) * 2009-09-17 2014-04-16 パナソニック株式会社 微生物濃度調整装置
CN101912732B (zh) * 2010-08-09 2012-02-01 天津富金环境技术研究有限公司 介电电泳法无污染回收贵重金属的高效连续工艺
JP5801410B2 (ja) 2010-11-10 2015-10-28 コンスティテューション・メディカル・インコーポレイテッドConstitution Medical, Inc. 検査用に生物試料を準備するための自動化されたシステムおよび方法
JP6455916B2 (ja) * 2014-09-22 2019-01-23 学校法人立命館 粒子の分離方法
US10274492B2 (en) * 2015-04-10 2019-04-30 The Curators Of The University Of Missouri High sensitivity impedance sensor
EP3361231B1 (en) * 2015-10-07 2021-02-17 AFI Corporation Inspection device, inspection system, and inspection method
CN113233556A (zh) * 2021-05-20 2021-08-10 大连海事大学 一种船舶压载水微生物浓缩装置及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177064A (ja) * 1987-01-19 1988-07-21 Toshiba Corp 自動化学分析装置
JP2002323416A (ja) * 2001-02-20 2002-11-08 Hitachi Ltd 検査容器
WO2004022774A1 (ja) * 2002-09-05 2004-03-18 Fuji Electric Systems Co.,Ltd. 微生物または細胞の検出方法
JP2005214890A (ja) * 2004-01-30 2005-08-11 Shimadzu Corp 光学測定装置
JP2006217808A (ja) * 2005-02-08 2006-08-24 Seiko Instruments Inc 観察用基板及び液滴供給装置
JP2006262825A (ja) * 2005-03-25 2006-10-05 Tadashi Matsunaga 微生物分離装置
WO2007046485A1 (ja) * 2005-10-19 2007-04-26 Sharp Kabushiki Kaisha 誘電泳動チップおよび誘電泳動装置並びに誘電泳動システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177064A (ja) * 1987-01-19 1988-07-21 Toshiba Corp 自動化学分析装置
JP2002323416A (ja) * 2001-02-20 2002-11-08 Hitachi Ltd 検査容器
WO2004022774A1 (ja) * 2002-09-05 2004-03-18 Fuji Electric Systems Co.,Ltd. 微生物または細胞の検出方法
JP2005214890A (ja) * 2004-01-30 2005-08-11 Shimadzu Corp 光学測定装置
JP2006217808A (ja) * 2005-02-08 2006-08-24 Seiko Instruments Inc 観察用基板及び液滴供給装置
JP2006262825A (ja) * 2005-03-25 2006-10-05 Tadashi Matsunaga 微生物分離装置
WO2007046485A1 (ja) * 2005-10-19 2007-04-26 Sharp Kabushiki Kaisha 誘電泳動チップおよび誘電泳動装置並びに誘電泳動システム

Also Published As

Publication number Publication date
WO2008149797A1 (ja) 2008-12-11
US20100193361A1 (en) 2010-08-05
CN101730843A (zh) 2010-06-09
JPWO2008149797A1 (ja) 2010-08-26

Similar Documents

Publication Publication Date Title
JP4548742B2 (ja) 誘電体微粒子濃縮装置
JP6982327B2 (ja) マイクロ流体アッセイのための方法、組成物およびシステム
US20210187417A1 (en) Method and Apparatus for Processing and Analyzing Particles Extracted From Tangential Filtering
JP5323933B2 (ja) 増幅動電流体のポンプ供給切り換えおよび脱塩
JP5712396B2 (ja) イメージングセルソーター
JP5807004B2 (ja) 細胞分析装置
JP6746619B2 (ja) マイクロ流体デバイス
JP6991192B2 (ja) 誘電泳動(dep)を用いた標的細胞濃度の改善
JP4234486B2 (ja) Dna或いは電荷をもつ線状の分子のトラップ・リリース装置とその方法
JP2007240304A (ja) 分画装置
SG174567A1 (en) Apparatus and method for detection of organisms
US20180319681A1 (en) Contactless Ion Concentration Method & Apparatus Using Nanoporous Membrane with Applied Potential
CA3122054A1 (en) Microfluidic device
CN111566482A (zh) 微流体装置中的细胞捕获
CN115382589A (zh) 基于尺寸筛选的外泌体切向分离与富集微流控芯片装置
Pires et al. A counter-flow refinery concentration technique for monitoring waterborne protozoa in large volumes of environmental water
Heller et al. A Novel Mobile Monitoring System for Fast and Automated Bacteria Detection in Water.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20100519

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20100601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100701

R150 Certificate of patent or registration of utility model

Ref document number: 4548742

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees