JP4545454B2 - 熱交換器破損検知装置 - Google Patents

熱交換器破損検知装置 Download PDF

Info

Publication number
JP4545454B2
JP4545454B2 JP2004050901A JP2004050901A JP4545454B2 JP 4545454 B2 JP4545454 B2 JP 4545454B2 JP 2004050901 A JP2004050901 A JP 2004050901A JP 2004050901 A JP2004050901 A JP 2004050901A JP 4545454 B2 JP4545454 B2 JP 4545454B2
Authority
JP
Japan
Prior art keywords
heat medium
heat
flow path
heat exchanger
hot water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004050901A
Other languages
English (en)
Other versions
JP2005241119A (ja
Inventor
康人 橋詰
愛隆 谷村
達朗 荒井
伸 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Noritz Corp
Original Assignee
Osaka Gas Co Ltd
Noritz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Noritz Corp filed Critical Osaka Gas Co Ltd
Priority to JP2004050901A priority Critical patent/JP4545454B2/ja
Publication of JP2005241119A publication Critical patent/JP2005241119A/ja
Application granted granted Critical
Publication of JP4545454B2 publication Critical patent/JP4545454B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)

Description

本発明は、給湯装置やコージェネレーションシステムなどの加熱装置に好適に用いることのできる熱交換器の破損検知装置に関する。
近時、給湯機能に暖房機能を付加した給湯装置が開発されている。また、このような給湯装置に更に発電装置を併設し、発電装置で電力を生成すると共に発電によって生じた排熱を給湯装置で利用するコージェネレーションシステムが開発されている。
図6は、このようなコージェネレーションシステムの構成例を示す流路系統図である。図6に示すコージェネレーションシステム100は、給湯装置101に発電装置102を併設して構成され、発電装置102で発電した電力を外部の電気機器へ供給すると共に、発電装置102で生じた排熱を給湯装置101で利用して給湯や暖房を行うシステムである。
発電装置102は、ガスエンジン76で発電機77を回転駆動して発電を行い、発生した起電力を外部電気機器へ供給すると共に、ガスエンジン76で生じた排熱を排熱循環流路L2を循環する熱媒体に熱交換して給湯装置101側へ伝達する機能を有する。排熱循環流路L2は、ガスエンジン76から給湯装置101側の排熱熱交換器61に至る循環往路L2aと、排熱熱交換器61からガスエンジン76に戻る循環復路L2bで形成され、ガスエンジン76の排熱によって加熱された熱媒体を循環ポンプ78で排熱熱交換器61へ循環させて給湯装置101側へ排熱を伝達する。
給湯装置101は、熱源循環流路Lと暖房循環流路L1を備えると共に、給水流路50,51,52および給湯流路53,54を備えて構成される。
熱源循環流路Lは、循環ポンプ60と排熱熱交換器61と補助燃焼機62とを備えて形成される熱源流路Hの両端に、暖房熱交換器64と湯水を貯留する貯留タンク57とを並列に接続して形成される循環流路である。熱源循環流路Lは、排熱熱交換器61または補助燃焼機62の少なくともいずれかで加熱された熱媒体(湯水)を暖房熱交換器64または貯留タンク57のいずれかに選択的に循環可能な流路である。
給水流路50,51は貯留タンク57の下部に接続され、給湯流路53,54は貯留タンク57の上部に接続されている。また、暖房循環流路L1は、暖房熱交換器64から延びる循環往路L1aおよび循環復路L1bの端部に床暖房やファンコンベクタなどの暖房端末68を接続して形成される循環流路である。
給湯装置101は、貯留タンク57に湯水を貯留する貯留運転、給湯栓56から湯水を供給する給湯運転、および、暖房端末68へ熱媒体を循環させる暖房運転を行うことが可能である。貯留運転時は、暖房熱交換器64の下流側の暖房熱交電磁弁66を閉成すると共に、貯留タンク57の上部配管58に接続される貯留制御弁63を開成し、熱源流路Hに上部配管58および下部配管59を介して貯留タンク57を接続して熱源循環流路Lを形成する。そして、ガスエンジン76を起動して発電を行うと共に、循環ポンプ78を駆動して排熱循環流路L2に加熱された熱媒体を流動させ、下部配管59から熱源流路Hへ流出する湯水を排熱熱交換器61で加熱しつつ貯留タンク57の上部側から加熱された湯水を流入させる貯留運転を行う。
給湯運転時は、暖房熱交電磁弁66および貯留制御弁63を閉成し、給湯栓56の開栓に応じて、給水流路50,51から貯留タンク57の下部に常温水を流入させ、貯留タンク57に貯留された湯水を上部配管58から給湯流路53へ排出する。そして、給湯流路53の湯水と給水流路52から供給される水とを混合弁55で混合して目的とする給湯設定温度に調節しつつ給湯流路54から排出する。また、貯留タンク57に加熱された湯水が貯留されていない場合は、貯留制御弁63を開成し、給水流路50,51を介して供給される常温水を貯留タンク57の下部配管59から熱源流路Hに迂回させ、補助燃焼機62で加熱した湯水を給湯流路53側へ排出する運転を行う。
また、暖房運転時は、暖房熱交換器64の下流側の暖房熱交電磁弁66を開成すると共に、貯留タンク57の上部配管58に接続される貯留制御弁63を閉成し、熱源流路Hに暖房熱交換器64を接続して熱源循環流路Lを形成する。同時に、ガスエンジン76を起動して発電を行うと共に、循環ポンプ78を駆動して排熱循環流路L2に熱媒体を循環させる。更に、循環ポンプ67を駆動して暖房循環流路L1に加熱された熱媒体を循環させる。そして、熱源循環流路Lを循環する湯水を排熱熱交換器61で加熱し、加熱された湯水の熱を暖房熱交換器64を介して暖房循環流路L1を循環する熱媒体へ伝達して暖房端末68へ加熱された熱媒体を流動させる制御を行う。
ところで、図6に示したコージェネレーションシステム100では、発電装置102で生じた排熱を給湯装置101側へ回収するための排熱熱交換器61と、熱源循環流路Lを循環する熱媒体(湯水)の熱を暖房循環流路L1を循環する熱媒体へ伝達するための暖房熱交換器64の二つの熱交換器が用いられている。
これらの熱交換器61,64は、熱源循環流路L,暖房循環流路L1および排熱循環流路L2を流動する湯水や熱媒体によって繰り返し温度変動や圧力変動を受ける。ところが、これらの熱交換器61,64は、熱伝達率の向上を図るために隔壁は比較的薄い素材を用いて形成されている。このため、温度変動や圧力変動が長期間に渡って繰り返されると、熱応力や機械応力が繰り返し隔壁に印加されて破損し、一次側と二次側とが連通する不具合が生じ易い。
例えば、図6のシステム100において、排熱熱交換器61の内部隔壁が破損して一次側と二次側が連通すると、給水圧が印加された熱源循環流路Lの熱媒体(湯水)が破損部位を介して排熱循環流路L2側へ流出する。このため、排熱循環流路L2に設けた補給手段80から熱媒体が溢れ出すこととなる。
また、暖房熱交換器64の内部隔壁が破損して一次側と二次側が連通すると、給水圧が印加された熱源循環流路Lの熱媒体が破損部位を介して暖房循環流路L1側へ流出し、補給手段70から熱媒体が溢れ出す不具合が生じる。
更に、図6のシステム100において、排熱熱交換器61や暖房熱交換器64が破損した状態で、システム100に対して地上高度の低い位置に設置された給湯栓56を断水中に開栓すると、熱源循環流路L側が大気圧に対して負圧となる。このため、給水中とは逆に、排熱循環流路L2や暖房循環流路L1を循環する熱媒体が熱源循環流路L側へ混入する虞が生じる。これらの熱媒体には、エチレングリコールやプロピレングリコールなどの不凍液またはこれらを水で希釈したものが一般に使用されるため、熱源循環流路Lを流動する湯水にこれらの不凍液が混入する不具合を防止するべく、熱交換器の破損を直ちに検知する必要がある。
このような熱交換器61,64の破損に伴う不具合は、図6に示したコージェネレーションシステム100に限らず、発電装置102を備えていない単独の給湯装置101についても同様に生じていた。そこで、熱交換器61,64の破損検知装置が提案された。
特許文献1には、このような熱交換器の破損を検知可能な液体加熱装置が開示されている。特許文献1に開示された液体加熱装置は、熱交換器61,64の破損に伴って補給手段70,80からオーバーフローする熱媒体の流量を検出し、検出した流量が所定値を超えたときに熱交換器の破損を判別するものである。
また、別の検知装置として、図6に示す様に、補給手段からオーバーフローする熱媒体を回収容器91で回収し、当該回収容器91に回収された熱媒体の滞留量を滞留量検知センサ92で検知して、検知レベルが所定値を超えたときに熱交換器の破損と判別する熱交換器破損検知装置90も提案されている。
前記特許文献1に記載された検知装置や、図6に示した検知装置90を採用することにより、熱交換器の破損を直ちに判別して異常報知することができ、飲用に供される給湯水に不凍液などが混入することを阻止することが可能である。
特開2002−174458号公報
ところが、特許文献1に開示された検知装置や、図6に示した検知装置90には問題点があった。則ち、図6に示したコージェネレーションシステム100を敷設する際は、通常、熱媒体が不足しないように補給手段70,80にオーバーフローレベルを超えるまで過剰に熱媒体が補給される。従って、システムの稼働に伴って熱媒体が加熱されて膨張し、一時的に大量の熱媒体がオーバーフローする。このため、特許文献1に開示された検知方法では、熱交換器が破損していないにも拘わらず、稼働初期にオーバーフローする熱媒体を検知して破損の誤判別が行われ易い不具合があった。
また、図6に示した検知装置90では、同様に、補給手段70,80への熱媒体の過剰補給によりシステムの稼働に伴ってオーバーフローした熱媒体が回収容器91に滞留し、誤判別が生じる虞があった。
また、図6に示した検知装置90では、熱媒体として使用されるエチレングリコールやプロピレングリコールなどの不凍液の飽和蒸気圧が水に比べて著しく低い。エチレングリコールの飽和蒸気圧は20℃において水の略1/330倍であり、プロピレングリコールの飽和蒸気圧は20℃において水の略1/220倍である。このため、一旦回収容器91に不凍液が滞留すると長期間蒸発せずに滞留したままとなり、不凍液が蒸発するまで正常な検知を行うことができなかった。
本発明は、前記事情に鑑みて提案されるもので、給湯装置やコージェネレーションシステムなどの加熱装置に内蔵される熱交換器の破損を的確に判別可能な熱交換器破損検知装置を提供することを目的とする。
前記目的を達成するために提案される請求項1に記載の発明は、流路上に熱媒体を補給する補給手段を有し熱媒体を循環させる少なくとも一以上の一次循環流路と、当該一次循環流路よりも高圧力状態で熱媒体を流動させる二次流路とを熱交換器を介して熱的に接続して形成される加熱装置に用いる熱交換器破損検知装置であって、前記補給手段は補給タンクを有し、補給タンク内の熱媒体の滞留量が低下すると当該補給タンクに熱媒体が補給されるものであって、前記一次循環流路の補給手段からオーバーフローした熱媒体を回収する熱媒体回収部を有し、当該熱媒体回収部は、前記補給手段から流入する熱媒体を所定流量を上限として外部へ排出する熱媒体排出部たる開口と、貫通孔と、当該熱媒体回収部における熱媒体の滞留量を検知する滞留量検知センサとを備え、前記貫通孔は、前記開口よりも位置が高く、熱媒体回収部に継続して熱媒体が流入する場合に熱媒体を外部に排出するオーバーフロー機能を有するものであって、前記滞留量検知センサが所定の破損検知レベル以上の熱媒体の滞留を検知したときに熱交換器の破損と判別し、前記加熱装置は給湯装置であり、前記二次流路は給湯流路および給水流路へ接続され、前記給水流路を介して供給される水を当該二次流路に設けた熱源部または前記一次循環流路との間に設けた熱交換器の少なくともいずれかで加熱しつつ給湯流路側へ排出すると共に、前記一次循環流路の補給手段は大気開放型であり、前記滞留量検知センサによる熱媒体回収部の熱媒体の滞留量の検知は、給湯が停止される期間に行う構成とされている。
ここで、一次循環流路に配された補給手段から本発明の熱交換器破損検知装置の熱媒体回収部へ熱媒体や水が流入する要因について考察する。
第1の要因としては、補給手段の周囲が高温多湿の環境下にあると共に外気温が低いときに、補給手段と熱媒体回収部とを繋ぐオーバーフロー配管内に凝結水が多量に付着し、これらの凝結水が熱媒体回収部へ流入する場合が挙げられる。
第2の要因としては、補給手段にオーバーフローレベル近傍まで過剰に熱媒体が補給された状態で一次循環流路の熱媒体の加熱循環が開始され、膨張した熱媒体が補給手段からオーバーフローして熱媒体回収部へ流動する場合が挙げられる。
また、第3の要因としては、熱交換器の内部隔壁が破損して一次循環流路と二次流路とが連通し、高圧力である二次流路の熱媒体が熱交換器の破損部位を介して一次循環流路側へ流入して一次循環流路に配された補給手段から熱媒体がオーバーフローし、熱媒体回収部へ流入する場合が挙げられる。
熱媒体回収部へ熱媒体や水が流入するこれらの要因の内、凝結水(第1の要因)の流入は、継続する場合もあるが流入量は微少である。また、熱媒体の過剰補給(第2の要因)による加熱初期の熱媒体の流入は、一時的に流入量が増大することもあるが長時間継続するものではない。しかし、熱交換器の隔壁破損(第3の要因)によって生じる熱媒体の流入は、流入量が多く長時間継続する。
本発明によれば、熱媒体回収部に熱媒体排出部を設けるので、凝結水の発生(第1の要因)のように、水の流入量が微少で熱媒体排出部の上限流量よりも少ない場合は、水は熱媒体回収部の内部に滞留せずにそのまま排出される。また、熱媒体の過剰補給(第2の要因)のように、熱媒体の流入量が熱媒体排出部の上限流量よりも一時的に増加する場合は、上限流量を超える熱媒体が一時的に熱媒体回収部の内部に滞留する。しかし、流入量の低下に伴って滞留した熱媒体は直ちに外部へ排出される。
一方、熱交換器の隔壁破損(第3の要因)のように、熱媒体の流入量が熱媒体排出部の上限流量よりも多く長時間継続する場合は、熱媒体排出部の上限流量を超える熱媒体が継続して滞留し、熱媒体回収部における熱媒体の滞留量は時間の経過と共に増大する。
従って、本発明によれば、熱交換器の隔壁破損(第3の要因)によって熱媒体回収部へ流入する熱媒体の流量が熱媒体排出部の上限流量よりも大きく、且つ、補給手段への熱媒体の過剰補給(第2の要因)によって熱媒体回収部へ流入する熱媒体の滞留量が破損検知レベルよりも小さくなるように、熱媒体排出部の上限流量および滞留量検知センサの破損検知レベルを設定することにより、熱交換器の破損のみを的確に判別することが可能となる。また、本発明によれば、熱交換器破損検知装置を設ける加熱装置に応じて、熱媒体排出部の上限流量や滞留量検知センサの破損検知レベルを個別に設定することができ、設計の自由度が高い。
本発明において、滞留量検知センサには液面センサなどを用いることができる。則ち、熱媒体回収部を箱形や有底円筒形などの容器とすると、熱媒体回収部における熱媒体の滞留量は滞留深さに比例する。従って、当該熱媒体回収部に滞留する熱媒体の液面を液面センサで検知することにより、等価的に滞留量を検知することが可能である。
熱媒体が導電性を有する場合は、液面センサとして汎用の電極式液面センサなどを用いることができ、製造コストを削減することが可能である。また、熱媒体が導電性を有しない場合は、反射型や透過型の光学式液面センサを用いて熱媒体の滞留量を的確に検知することが可能である。
また、本発明において、熱媒体排出部は、熱媒体回収部の底部に上下方向へ貫通する排出管を設け、熱媒体回収部の底面近傍における排出管の周壁部に開口を設けた構成を採ることができる。この構成によれば、開口の面積を調整することにより、熱媒体排出部の上限流量を適宜に設定することができる。また、この構成によれば、熱媒体回収部の底面から排出管上端までの高さを破損検知レベルよりも高く設定することにより、熱交換器の隔壁破損(第3の要因)によって熱媒体回収部へ流入する熱媒体の滞留量を破損検知レベルよりも高レベルに維持しつつ、排出管の上端を超えて滞留する熱媒体を外部に排出させることができる。これにより、隔壁破損に伴って熱媒体回収部へ流入する熱媒体が溢れ出すことを防止しつつ隔壁破損を的確に検知することが可能となる。
熱媒体排出部は、上記構成の他にも、通常の円管あるいは方形管などを用いた排出管や内部に流量制限オリフィスを設けた排出管などを用いて構成することができ、当該排出管を熱媒体回収部の底部に設けて熱交換器破損検知装置を構成することができる。
また、本発明において、熱交換器の破損が検知されたときは、異常表示やアラームの鳴動などの異常報知、あるいは、これらの異常報知に加えて加熱装置の運転停止などを行うことが可能である。
また、本発明によれば、加熱装置は、給水流路および給湯流路に接続された二次流路を備え、給水流路を介して供給される水を二次流路に流入させて熱源部または一次循環流路との間に設けた熱交換器の少なくともいずれかで加熱し、加熱した湯水を給湯流路へ排出する給湯装置として機能する。
また、本発明によれば、一次循環流路の補給手段は大気開放型である。また、二次流路は給水流路と接続されるので、給湯停止中は勿論、給湯中であっても二次流路を流動する湯水には給水圧が印加され、二次流路を流動する湯水は一次循環流路を流動する熱媒体に対して高圧となる。これにより、加熱装置としての給湯装置に本発明の熱交換器破損検知装置を設けることによって熱交換器の破損を的確に検知することが可能となる。
本発明において、一次循環流路は、例えば、給湯装置に併設された発電装置などで生じる排熱を循環させる排熱循環流路とすることができる。この構成によれば、発電装置などで生じる排熱を熱媒体に熱交換して排熱循環流路を循環させ、当該排熱循環流路を流動する熱媒体の熱や別の熱源部によって二次流路を流動する湯水を加熱する給湯装置やコージェネレーションシステムを構築でき、本発明の熱交換器破損検知装置を採用して熱交換器の破損を検知可能である。
ここで、給湯中は、給水流路の給水圧によって給湯栓の開栓状態に応じた湯水が給湯流路から排出される。従って、給湯中は、二次流路を流動する湯水の圧力は給水圧に比べて低下する。一方、給湯停止中は、給水流路の給水圧がそのまま二次流路の湯水に印加される。則ち、給湯中に比べて給湯停止中は二次流路の湯水に印加される圧力は高い。このため、熱交換器に破損が生じると、給湯中に比べて給湯停止中は、補給手段からオーバーフローして熱媒体回収部へ流入する熱媒体の流入量が増大する。
本発明によれば、給湯停止中に熱媒体回収部における熱媒体の滞留量を検知する。則ち、二次流路の圧力が高いときに熱媒体回収部における熱媒体の滞留量を検知する。これにより、給湯中の検知に比べて、二次流路の高圧力によって破損部位を介して一次循環流路側へ大量の湯水を流入させることができ、隔壁の破損状態が軽微な場合であっても破損判別を行うことが可能となる。また、隔壁の破損状態が同一の場合は、給湯中に比べて短時間に破損判別を行うことが可能となる。
本発明において、給湯が停止される期間は、給湯流路の湯水の流動が停止されている状態を直接検知して設定することができる。また、給湯流路の湯水の流動を直接検知するのではなく、給湯が行われないであろうと思われる深夜などに固定的に設定しても良い。また、過去の給湯実績をデータとして記憶し、当該データに基づいて給湯が行われなかった期間に設定することも可能である。
また請求項2に記載の発明は、流路上に熱媒体を補給する補給手段を有し熱媒体を循環させる少なくとも一以上の一次循環流路と、当該一次循環流路よりも高圧力状態で熱媒体を流動させる二次流路とを熱交換器を介して熱的に接続して形成される加熱装置に用いる熱交換器破損検知装置であって、前記補給手段は補給タンクを有し、補給タンク内の熱媒体の滞留量が低下すると当該補給タンクに熱媒体が補給されるものであって、前記一次循環流路の補給手段からオーバーフローした熱媒体を回収する熱媒体回収部を有し、当該熱媒体回収部は、前記補給手段から流入する熱媒体を所定流量を上限として外部へ排出する熱媒体排出部たる開口と、貫通孔と、当該熱媒体回収部における熱媒体の滞留量を検知する滞留量検知センサとを備え、前記貫通孔は、前記開口よりも位置が高く、熱媒体回収部に継続して熱媒体が流入する場合に熱媒体を外部に排出するオーバーフロー機能を有するものであって、前記滞留量検知センサが所定の破損検知レベル以上の熱媒体の滞留を検知したときに熱交換器の破損と判別し、前記加熱装置は給湯装置であり、前記二次流路は給湯流路および給水流路へ接続され、前記給水流路を介して供給される水を当該二次流路に設けた熱源部または前記一次循環流路との間に設けた熱交換器の少なくともいずれかで加熱しつつ給湯流路側へ排出すると共に、前記一次循環流路の補給手段は大気開放型であり、前記滞留量検知センサが熱媒体回収部の破損検知レベル以上の熱媒体の滞留を検知したときの給湯の有無に応じて熱交換器の破損状況を含む破損の判別を行う構成とされている。
前記したように、給湯中に比べて給湯停止中は二次流路の湯水に印加される圧力は高い。ところで、熱交換器の破損状況が少ない場合、則ち、熱交換器に生じた隔壁の破損開口が小さいときは、二次流路の圧力が低下する給湯中は一次循環流路側へ流入する湯水の量は少なく、二次流路の圧力が増大する給湯停止中は一次循環流路側へ流入する湯水の量は増加する。則ち、熱交換器の隔壁破損が軽微な場合は、給湯中と給湯停止中とにおいて熱媒体回収部への熱媒体の流入量、則ち、熱媒体回収部の熱媒体の滞留量に大きな差が生じる。従って、熱媒体排出部の上限流量を適宜に設定することにより、滞留量検知センサが破損レベルを検知したときに給湯停止中であれば、熱交換器の隔壁破損が軽微であると判別することができる。
一方、熱交換器の破損が進行して隔壁の破損開口が拡大すると、二次流路の圧力が低下する給湯中であっても一次循環流路側へ流入する湯水の量は増大する。このため、給湯中と給湯停止中とにおいて熱媒体回収部への熱媒体の流入量、則ち、熱媒体回収部の熱媒体の滞留量の差が減少する。従って、熱媒体排出部の上限流量を適宜に設定することにより、滞留量検知センサが所定滞留量を検知したときに給湯中であれば、熱交換器の隔壁破損が大きいと判別することができる。
請求項に記載の発明は、請求項1または2に記載の熱交換器破損検知装置において、滞留量検知センサが破損検知レベル以上の熱媒体の滞留を所定時間継続して検知したときに熱交換器の破損と判別する構成とされている。
熱交換器を備えた加熱装置によっては、補給手段への熱媒体の過剰補給(第2の要因)によって熱媒体回収部へ流入する熱媒体の滞留量が滞留量検知センサの破損検知レベルを超える場合が生じる。この場合、熱媒体の過剰補給(第2の要因)による検知を排除するために、破損検知レベルを第2の要因による熱媒体の滞留量よりも高く設定する必要がある。このため、熱交換器破損検知装置を設ける加熱装置毎に、滞留量検知センサの取り付け位置を調整する必要が生じる。
本発明によれば、滞留量検知センサの破損検知レベルを固定的に設定した場合でも、破損検知レベルを超える滞留量が継続して検知される時間を適宜に設定することにより、補給手段への熱媒体の過剰補給(第2の要因)のような一時的な滞留要因に対する誤判別を排除することが可能となる。則ち、滞留量検知センサの破損検知レベルを固定的に設定した場合であっても、検知信号が継続する時間を適宜に設定することにより、短時間に解消される滞留要因を排除して、熱交換器の隔壁破損(第3の要因)のみを的確に抽出することが可能となる。
従って、本発明の熱交換器破損検知装置の滞留量検知センサに液面センサを用いる構成とする場合に、液面センサを熱媒体回収部へ取り付ける位置を変えることなく、検知信号の継続時間を変更設定することで対応でき、敷設作業を効率良く行うことができ調整作業も容易となる。
請求項に記載の発明は、請求項1乃至3のいずれか1項に記載の熱交換器破損検知装置において、熱媒体排出部は、毎分の排出量が50cc以上200cc未満である構成とされている。
熱媒体排出部の排出量は、熱交換器の隔壁破損(第3の要因)によって熱媒体回収部へ流入する熱媒体の流量に応じて適宜に設定可能である。しかし、熱媒体排出部の排出量が毎分50cc未満のときは、熱媒体に混入する塵埃などによって目詰まりを生じ易く、目詰まりを防止するための特殊な構造を採用する必要が生じてコストが増加する。
また、熱媒体排出部の排出量が200cc以上のときは、補給手段への熱媒体の過剰補給(第2の要因)や熱交換器の隔壁破損(第3の要因)で生じる熱媒体の流入量に対して排出量が過大となり、熱媒体回収部の熱媒体の滞留量が低下して滞留量検知センサによる検知が困難となる。熱媒体排出部の排出量は、毎分50cc以上200cc未満の範囲が良く、毎分100cc程度が最適である。
請求項5に記載の発明は、請求項1乃至4のいずれか1項に記載の熱交換器破損検知装置において、二次流路は循環流路を形成可能であり、少なくとも一次循環流路との間に設けた熱交換器で加熱した湯水を循環させつつ、加熱された湯水によって当該二次流路に別の熱交換器を介して接続された他の一次循環流路を循環する熱媒体を加熱する構成とされている。
本発明によれば、例えば、一次循環流路の一つを発電装置などで生じる排熱を熱媒体に熱交換して循環させる排熱循環流路とし、当該一次循環流路とは異なる他の一次循環流路を暖房端末へ熱媒体を循環させる暖房循環流路とすることができる。この構成によれば、排熱循環流路を循環する熱媒体の熱によって二次流路を循環する湯水を加熱し、更に、加熱されて二次流路を循環する湯水によって暖房循環流路を循環する熱媒体を加熱することができる。これにより、加熱装置として、給湯機能と暖房機能を備えた給湯装置やコージェネレーションシステムを構築可能であり、本発明の熱交換器破損検知装置を設けて熱交換器の破損を検知することが可能となる。
請求項6に記載の発明は、請求項1乃至5のいずれか1項に記載の熱交換器破損検知装置において、前記二次流路は熱負荷を含んだ循環流路を形成可能であり、少なくとも前記一次循環流路との間に設けた熱交換器で加熱した湯水を循環させて熱負荷へ熱供給する構成とされている。
本発明によれば、例えば、一次循環流路を発電装置などで生じる排熱を熱媒体に熱交換して循環させる排熱循環流路とし、湯水を貯留する貯留タンクを二次流路の熱負荷とする構成を採ることができる。この構成によれば、排熱循環流路を循環する熱媒体の熱によって二次流路を循環する湯水を加熱し、加熱されて二次流路を循環する湯水を貯留タンクに貯留することができる。これにより、加熱装置として、給湯用の湯水を貯留する貯留式給湯装置やコージェネレーションシステムを構築でき、本発明の熱交換器破損検知装置を設けて熱交換器の破損を検知することが可能となる。
本発明によれば、滞留量検知センサが破損検知レベルの熱媒体の滞留を検知したときの給湯の有無を参照することにより、前記した理由に基づいて熱交換器の破損状況を含む破損判別を的確に行うことが可能となる。
請求項1に記載の発明によれば、加熱装置の熱交換器の破損を的確に検知することのできる熱交換器破損検知装置を提供できる。さらに加熱装置としての給湯装置の熱交換器の破損を的確に検知することのできる熱交換器破損検知装置を提供できる。
請求項2に記載の発明によれば、加熱装置としての給湯装置の破損状況を的確に検知可能な熱交換器破損検知装置を提供することができる。
請求項に記載の発明によれば、加熱装置に応じて検知時間を変更設定するだけで熱交換器の破損を的確に検知できる熱交換器破損検知装置を提供できる。
請求項4に記載の発明によれば、熱媒体排出部の目詰まりを防止しつつ製造コストを削減した熱交換器破損検知装置を提供できる。
請求項5〜6に記載の発明によれば、加熱装置としての給湯装置の熱交換器の破損を的確に検知することのできる熱交換器破損検知装置を提供できる。
以下に、図面を参照して本発明の実施形態を説明する。
図1は本実施形態に係る熱交換器破損検知装置20を備えたコージェネレーションシステム(加熱装置)1の流路系統図である。図2(a)は図1の熱交換器破損検知装置20の詳細な構成を示す断面図、図2(b)は(a)の熱交換器破損検知装置20の熱媒体排出部の拡大斜視図、図2(c)は熱媒体排出部の変形例の部分拡大断面図である。図3は図1のコージェネレーションシステム1において熱交換器破損検知装置20の検知に伴う制御を示すフローチャートである。また、図4(a)は凝結水が滞留する例を示すグラフ、同図(b)は、補給手段への過剰補給に伴ってオーバーフローした熱媒体が滞留する例を示すグラフ、図5(a)は、熱交換器の隔壁破損が軽微な場合に補給手段からオーバーフローした熱媒体が滞留する例を示すグラフ、同図(b)は熱交換器の隔壁破損が大きい場合に補給手段からオーバーフローした熱媒体が滞留する例を示すグラフである。
尚、図1に示す構成のうち、コージェネレーションシステム1は、前記図6で示したシステム100と同一構成を有する。従って、同一構成部分には同一の符号を付して重複した説明を省略する。
コージェネレーションシステム1は、給湯装置10、発電装置11および制御装置12を備え、当該システム1に本発明の熱交換器破損検知装置20が付加された構成を有する。制御装置12は、給湯装置10および発電装置11に設けられた各センサや制御弁、循環ポンプなどに接続されて給湯運転や発電運転などの制御を統括する機能を有する。
給湯装置10の暖房循環流路L1は、循環復路L1b上に大気開放型の補給手段70を備えている。補給手段70は、オーバーフロー排出管73および電極式の液面センサ74を有する補給タンク71と、補給弁72を有する補給管75とを組み合わせて構成され、暖房循環流路L1を循環する熱媒体を補給する機能を有する。
則ち、補給手段70は、液面センサ74で常時補給タンク71に滞留する熱媒体量を監視しており、滞留する熱媒体が最低レベルまで低下すると、補給弁72を開成制御して補給管75から補給タンク71へ熱媒体を補給する。そして、補給によって補給タンク71の熱媒体の滞留量が最大レベルまで上昇すると、液面センサ74で検知して補給弁72を閉成制御する動作を行う。これにより、補給タンク71には、常時、最低レベルから最大レベルの範囲内の熱媒体を滞留させて、暖房循環流路L1を循環する熱媒体が低減することを防止している。
また、発電装置11の排熱循環流路L2は、暖房循環流路L1に設けられた補給手段70と同一構成の補給手段80を備えている。補給手段80は、オーバーフロー排出管83および電極式の液面センサ84を有する補給タンク81と、補給弁82を有する補給管85とを組み合わせて構成され、前記した補給手段70と同様の動作によって排熱循環流路L2を循環する熱媒体を補給する機能を有する。
本実施形態では、暖房循環流路L1および排熱循環流路L2を循環する熱媒体に、エチレングリコールを水で希釈した不凍液を用いている。
本実施形態の熱交換器破損検知装置20は、図1の様に、暖房循環流路L1に設けた補給手段70から延びるオーバーフロー排出管73と、排熱循環流路L2に設けた補給手段80から延びるオーバーフロー排出管83とを一カ所に集めた部位に設けられる。
熱交換器破損検知装置20は、図1,図2(a)の様に、上面が大気に開放された箱形の熱媒体回収部21に電極式の液面センサ22を備えて構成され、熱媒体回収部21の底部21aには熱媒体排出部23が設けられている。熱媒体排出部23は、図2(b)の様に、熱媒体回収部21の底部21aに排出管24を貫通固定して形成される。排出管24は、内部に貫通孔24bを有する円管であり、周壁に円形の開口24aが開けられている。開口24aは、排出管24の周壁であって熱媒体回収部21の底面21bから上方へ高さHの位置に開口下端が位置するように設けられている。また、熱媒体回収部21の底面21bから排出管24の上端24cまでの高さは、液面センサ22の破損検知レベルよりも高くされている。尚、本実施形態では、排出管24に円管を用いているが、方形管を用いることも可能である。また、開口24aは、円形に限らず方形や他の形状を採ることができる。
排出管24に設けられた開口24aは、熱媒体回収部21に流入する熱媒体を所定流量を上限として貫通孔24bを介して外部へ排出する機能を有する。また、排出管24の貫通孔24bは、熱媒体回収部21に継続して熱媒体が流入する場合に、排出管24の上端24cを超えて滞留する熱媒体を外部に排出することにより、熱媒体が溢れ出すことを防止するオーバーフロー機能を有する。貫通孔24bの開口面積は、熱媒体回収部21へ流入する熱媒体の最大流量よりも大きい排出量となるように設定している。
ここで、熱媒体回収部21の内部にはゴミや埃等の異物が侵入する場合がある。熱媒体回収部21に異物が侵入して底面21bに溜まった状態で熱媒体が流入すると、異物が底面21bに沿って排出管24の開口24aへ向けて集中して流動し、開口24aに目詰まりを生じ易い。
本実施形態では前記したように、開口24aを、熱媒体回収部21の底面21bから高さHだけ上方の排出管24の周壁に設けている。従って、熱媒体が流入すると、底面21bに沿って開口24aへ向けて流動する異物は開口24aの下部に滞留し、一部が上方の開口24aへ分散して流入する。これにより、開口24aに異物が集中して流入することを回避して、目詰まりの発生を防止している。尚、開口24aを設ける高さHは、異物の滞留量に応じて適宜に設定可能である。
本実施形態では、排出管24に設ける開口24aの開口面積を調整することにより、熱媒体排出部23の排出流量を毎分100ccに設定している。これは、排出流量が毎分50cc未満になるような開口は開口面積が小さく、目詰まりが生じ易く、排出流量が毎分200ccを超えるような開口ではそれ以上の熱媒体流入流量がなければその破損を検出できないので、比較的大きな破損状態しか検出できなくなるためである。尚、熱媒体排出部23の排出量は、前記した範囲において熱媒体回収部21の容量などを考慮して適宜に設定することが可能である。
液面センサ22は、熱媒体回収部21に滞留する液面レベルを検知することによって熱媒体の滞留量を検出するもので、予め定められた破損検知レベル以上の液面レベルを検知したときに制御装置12へ検知信号を送出する動作を行う。
熱交換器破損検知装置20は、図1,図2(a)の様に、補給手段70から延びるオーバーフロー排出管73と補給手段80から延びるオーバーフロー排出管83とを一カ所に集めた部位に設けられる。則ち、オーバーフロー排出管73,83の先端部が熱交換器破損検知装置20の熱媒体回収部21の内部に位置するように取付固定される。
次に、コージェネレーションシステム1の動作および本実施形態の熱交換器破損検知装置20の動作を説明する。尚、図1に示したコージェネレーションシステム1は、給湯運転、暖房運転および貯留運転の各運転を単独または並行して行うことが可能であるが、暖房運転と並行して給湯運転が行なわれる場合を例に挙げて熱交換器破損検知装置20の動作を説明する。
暖房運転が開始されると、制御装置12は、給湯装置10の貯留制御弁63を閉成すると共に、暖房熱交電磁弁66を開成し、熱源流路Hに暖房熱交換器64を接続して熱源循環流路(二次流路)Lを形成する。そして、循環ポンプ60を駆動して熱源循環流路Lに湯水を循環させる。また、制御装置12は、循環ポンプ67を駆動して暖房循環流路L1に熱媒体を循環させる。更に、制御装置12は、発電装置11のガスエンジン76を起動して発電機77を駆動し、発生した電力は外部電気機器へ供給されると共に、循環ポンプ78を駆動して排熱循環流路L2に熱媒体を循環させる。
以上の制御によって暖房運転が開始されると、ガスエンジン76で生じた排熱は排熱循環流路L2を流動する熱媒体へ熱交換されて排熱循環流路L2を循環し、加熱された熱媒体の熱は排熱熱交換器61によって熱源循環流路Lを循環する湯水に伝達される。更に、排熱熱交換器61によって加熱されて熱源循環流路Lを循環する湯水の熱は、暖房熱交換器64によって暖房循環流路L1を循環する熱媒体に伝達される。これにより、加熱された熱媒体が暖房端末68へ循環して暖房運転が行われる。
ところで、給湯装置10に設けられた補給手段70や、発電装置11に設けられた補給手段80の周囲は、システムの稼働に伴って高温多湿となる。また、補給手段70,80から熱交換器破損検知装置20までオーバーフロー排出管73,83が延設されるので、外気温が低い場合には、オーバーフロー排出管73,83に凝結水が付着し易い。このため、付着した凝結水がオーバーフロー排出管73,83に沿って流動して熱交換器破損検知装置20の熱媒体回収部21へ流入する。しかし、熱媒体回収部21へ流入する凝結水の量は熱媒体排出部23の上限流量に比べて僅かである。従って、図4(a)の様に、熱媒体回収部21に流入した凝結水は殆ど滞留することなく外部に排出される。
また、図1に示すコージェネレーションシステム1の敷設時には、補給手段70,80に過剰に熱媒体が補給される場合が多い。このため、補給手段70,80からオーバーフローした熱媒体はオーバーフロー排出管73,83を介して熱媒体回収部21へ流入し、熱媒体排出部23から外部へ排出される。この状態では、各補給手段70,80には、オーバーフローレベルまで熱媒体が補給された状態にある。ところが、この状態で暖房運転が開始されると、排熱循環流路L2および暖房循環流路L1を循環する熱媒体が加熱されて膨張し、図4(b)の様に、オーバーフローした熱媒体がオーバーフロー排出管73,83を介して一時的に大量に熱媒体回収部21へ流入する。
熱媒体回収部21への熱媒体の流入量が熱媒体排出部23の排出量を超えると、図4(b)の様に、熱媒体回収部21の内部に熱媒体が滞留する。そして、図3ステップ200において滞留量が破損検知レベルに達すると、液面センサ22から制御装置12へ検知信号が送出される。制御装置12は、検知信号を受けると、図3ステップ202において給湯中か否かを判別する。そして、給湯停止中であればそのまま、また、給湯中であれば破損大フラグをオンにした後にタイマーを起動し、タイマーがタイムアップするまで液面センサ22が破損検知レベルを継続して検知するか否かを監視する(以上、図3ステップ200〜205,209,210、図4(b)参照)。
尚、破損大フラグとは、後述する熱交換器の破損状況を示すフラグであり、給湯中に液面センサ22によって破損検知レベル以上の熱媒体の滞留が検知されたときに制御装置12によってオンされるフラグである。また、タイマーのタイムアップ時間tは、補給手段70,80の熱媒体の過剰補給によって熱媒体回収部21の熱媒体の滞留量が一時的に破損検知レベルを超える時間よりも長く設定している。
制御装置12は、給湯停止中はステップ200〜203,205を循環しつつタイマーがタイムアップするまで破損検知レベルが継続するか否かを監視する。また、給湯中は、ステップ200〜202,209,203,205を循環しつつタイマーがタイムアップするまで破損検知レベルが継続するか否かを監視する。しかし、熱媒体の過剰補給によって補給手段70,80からオーバーフローする熱媒体は一時的なものであり、タイマーがタイムアップするまでに熱媒体回収部21に滞留する熱媒体は熱媒体排出部23から排出されて破損検知レベルの検知が解除される。これにより、液面センサ22から制御装置12への検知信号の送出が停止され、制御装置12は、タイマーをリセットすると共に破損大フラグをオフにして、液面センサ22からの検知信号の再到来を監視する(以上、図3ステップ200,212〜214、図4(b)参照)。
このように、暖房運転の開始に伴い補給手段70,80に過剰に供給された熱媒体が一時的にオーバーフローしても、熱交換器破損検知装置20によって誤って熱交換器の破損を検知することを防止する制御が行われる。また、一時的な熱媒体の流入が止まると、滞留していた熱媒体は全て熱媒体排出部23から外部に排出されて熱媒体回収部21に熱媒体が残留することがない。従って、熱媒体が残留して誤検知が生じることを未然に防止することが可能な構成とされている。
一方、暖房運転中に、例えば、図1の暖房熱交換器64の隔壁破損が生じると、給水流路50,51に接続されて熱源循環流路(二次流路)Lを流動する高圧力の湯水が、暖房熱交換器64の破損部位を介して暖房循環流路(一次循環流路)L1に流入する。このため、補給手段70から熱媒体が溢れ出し、オーバーフローした熱媒体がオーバーフロー排出管73を介して熱媒体回収部21へ流入する。暖房熱交換器64の隔壁破損による熱媒体の流入は継続するので、熱媒体回収部21の滞留量が増加して破損検知レベルを超えると、液面センサ22から制御装置12へ検知信号が送出される(以上、図3ステップ200,201参照)。
制御装置12は、検知信号が送出されると、給湯中か否かを判別する。そして、給湯停止中であればそのまま、また、給湯中であれば破損大フラグをオンにした後にタイマーを起動し、タイマーがタイムアップするまで液面センサ22が破損検知レベルを継続して検知するか否かを監視する(以上、図3ステップ200〜205,209,210参照)。
破損検知レベルが継続してタイマーがタイムアップすると、制御装置12は、破損大フラグを参照し、破損大フラグがオフであれば熱交換器64の破損状況が少ないと判別して異常報知を行う。また、破損大フラグがオンであれば、熱交換器64の破損状況が大きいものと判別して異常報知を行う(以上、図3ステップ205〜208,211参照)。異常報知は、異常表示やアラームの鳴動などの適宜の方法で行うことが可能である。
則ち、暖房熱交換器64の隔壁破損が軽微なときは、図5(a)の様に、熱源循環流路(二次流路)Lの圧力が低い給湯中には、熱媒体回収部21へ流入する熱媒体量が少ないために破損検知レベルまで熱媒体が滞留せず、給湯停止に伴って熱源循環流路(二次流路)Lの圧力が増加すると、熱媒体回収部21へ流入する熱媒体量が増大して破損検知レベルに至ると考えられる。これに基づいて、本実施形態の熱交換器破損検知装置20では、給湯停止中に熱媒体の滞留量が破損検知レベルに至った場合は、暖房熱交換器64の破損が軽微であると判別している。
一方、暖房熱交換器64の隔壁破損が大きくなると、図5(b)の様に、熱源循環流路(二次流路)Lの圧力が低い給湯中であっても、熱媒体回収部21へ流入する熱媒体量が多いために破損検知レベルまで熱媒体が滞留すると考えられる。これに基づいて、本実施形態の熱交換器破損検知装置20では、給湯中に熱媒体の滞留量が破損検知レベルに至った場合は、暖房熱交換器64の破損が大きいものと判別している。
尚、本実施形態の熱交換器破損検知装置20では、図2(b)の様に、熱媒体排出部23の排出管24にオーバーフロー機能を持たせた構成としている。これにより、図5(a),(b)の様に、隔壁破損に伴って熱媒体回収部21へ熱媒体の流入が継続する場合でも、排出管24の上端24cを超えて滞留する熱媒体は、排出管24の貫通孔24bを介して外部に排出され、熱媒体回収部21から溢れ出ることが防止される。
以上の説明では、暖房熱交換器64が破損した場合の熱交換器破損検知装置20の動作について述べたが、排熱熱交換器61が破損した場合でも同様の動作によって破損検知を行うことが可能である。
このように、本実施形態の熱交換器破損検知装置20によれば、極めて簡単な構成によって、補給手段70,80への熱媒体の過剰補給に伴うオーバーフローや凝結水による誤検知を排除しつつ、暖房熱交換器64の破損状況を含む破損を的確に検出することができる。これにより、断水が生じたような場合に、暖房循環流路L1や排熱循環流路L2を循環する熱媒体が熱源循環流路Lの湯水に混入するような不具合を未然に防止することが可能となる。また、熱交換器の破損を早期に検知してメンテナンスを施すことが可能となる。
尚、前記実施形態では、熱媒体排出部23として、熱媒体回収部21の底部に開口24aを有する排出管24を設けた構成を採用したが、本発明はこのような構成に限られるものではない。例えば、図2(c)に示す構成の熱媒体排出部23'を設けることも可能である。図2(c)の熱媒体排出部23'は、熱媒体回収部21の底部21aに下方へ向けて円筒状の排出管25を突出させて構成される。排出管25は、内周壁の一部を径方向内方へ向けて緩やかに突出させて流量制限オリフィス25aを形成したもので、熱媒体回収部21に滞留する熱媒体を所定流量を上限として外部に排出することが可能である。
また、図2(c)の熱媒体排出部23'において、流量制限オリフィス25aを設けない円管や方形管などを排出管25として用いることも可能である。
また、前記実施形態では、補給手段70,80から延びるオーバーフロー排出管73,83一カ所に集めて、オーバーフローする熱媒体を一つの熱交換器破損検知装置20に滞留させる構成としたが、補給手段70および補給手段80の各々の近傍に個別に熱交換器破損検知装置20を設けることも可能である。
また、前記実施形態では、貯留式の給湯装置10と発電装置を備えたコージェネレーションシステム1を例に挙げて説明したが、本発明はこのような構成に限られるものではない。例えば、貯留タンク57を備えずに、給湯機能および暖房機能を備えた給湯装置に本発明の熱交換器破損検知装置20を設けることも可能である。また、給湯装置10やコージェネレーションシステム1に限らず、熱交換器を介して二つの流路を熱的に接続し、一方の流路が他方の流路に比べて高圧の熱媒体を循環させる構成を有する加熱装置などに好適に採用することが可能である。
また、前記実施形態では、導電性を有する熱媒体を用い、熱交換器破損検知装置20に電極式の液面センサ22を設けて液面レベルを検知する構成としたが、熱媒体が導電性を有しない場合は、反射型や透過型の光学式液面センサを用いて液面レベルを検知することも可能である。
また、前記実施形態では、液面検知センサ22が破損検知レベル以上のレベルを所定時間tだけ継続して検知したときに熱交換器の破損と判別する構成を採用したが、補給手段70,80の熱媒体の過剰補給によるオーバーフロー滞留量を勘案して破損検知レベルを適宜に設定することにより、破損検知レベルを検知した時点で熱交換器の破損を判別する構成とすることも可能である。
本発明の実施形態に係る熱交換器破損検知装置を備えたコージェネレーションシステムの流路系統図である。 (a)は、図1に示す熱交換器破損検知装置の詳細な構成を示す断面図、(b)は(a)の熱交換器破損検知装置の熱媒体排出部を示す拡大斜視図、(c)は熱媒体排出部の変形例を示す拡大断面図である。 図1のコージェネレーションシステムにおいて、熱交換器破損検知装置の検知に伴う制御を示すフローチャートである。 (a)は、凝結水が滞留する例を示すグラフ、(b)は、補給手段への過剰補給に伴ってオーバーフローした熱媒体が滞留する例を示すグラフである。 (a)は、熱交換器の破損が軽微な場合に補給手段からオーバーフローした熱媒体が滞留する例を示すグラフ、(b)は、熱交換器の破損が大きい場合に補給手段からオーバーフローした熱媒体が滞留する例を示すグラフである。 従来の熱交換器破損検知装置を備えたコージェネレーションシステムの流路系統図である。
F 熱媒体
H 二次流路(熱源流路)
L1 一次循環流路(暖房循環流路)
L2 一次循環流路(排熱循環流路)
1 加熱装置(コージェネレーションシステム)
10 加熱装置(貯留式給湯装置)
20 熱交換器破損検知装置
21 熱媒体回収部
23 熱媒体排出部
22 滞留量検知センサ(液面検知センサ)
50,51 給水流路
53,54 給湯流路
57 熱負荷(貯留タンク)
62 熱源部(補助熱源部)
61 熱交換器(排熱熱交換器)
64 熱交換器(暖房熱交換器)
70,80 補給手段

Claims (6)

  1. 流路上に熱媒体を補給する補給手段を有し熱媒体を循環させる少なくとも一以上の一次循環流路と、当該一次循環流路よりも高圧力状態で熱媒体を流動させる二次流路とを熱交換器を介して熱的に接続して形成される加熱装置に用いる熱交換器破損検知装置であって、前記補給手段は補給タンクを有し、補給タンク内の熱媒体の滞留量が低下すると当該補給タンクに熱媒体が補給されるものであって、前記一次循環流路の補給手段からオーバーフローした熱媒体を回収する熱媒体回収部を有し、当該熱媒体回収部は、前記補給手段から流入する熱媒体を所定流量を上限として外部へ排出する熱媒体排出部たる開口と、貫通孔と、当該熱媒体回収部における熱媒体の滞留量を検知する滞留量検知センサとを備え、前記貫通孔は、前記開口よりも位置が高く、熱媒体回収部に継続して熱媒体が流入する場合に熱媒体を外部に排出するオーバーフロー機能を有するものであって、前記滞留量検知センサが所定の破損検知レベル以上の熱媒体の滞留を検知したときに熱交換器の破損と判別し、前記加熱装置は給湯装置であり、前記二次流路は給湯流路および給水流路へ接続され、前記給水流路を介して供給される水を当該二次流路に設けた熱源部または前記一次循環流路との間に設けた熱交換器の少なくともいずれかで加熱しつつ給湯流路側へ排出すると共に、前記一次循環流路の補給手段は大気開放型であり、前記滞留量検知センサによる熱媒体回収部の熱媒体の滞留量の検知は、給湯が停止される期間に行うことを特徴とする熱交換器破損検知装置。
  2. 流路上に熱媒体を補給する補給手段を有し熱媒体を循環させる少なくとも一以上の一次循環流路と、当該一次循環流路よりも高圧力状態で熱媒体を流動させる二次流路とを熱交換器を介して熱的に接続して形成される加熱装置に用いる熱交換器破損検知装置であって、前記補給手段は補給タンクを有し、補給タンク内の熱媒体の滞留量が低下すると当該補給タンクに熱媒体が補給されるものであって、前記一次循環流路の補給手段からオーバーフローした熱媒体を回収する熱媒体回収部を有し、当該熱媒体回収部は、前記補給手段から流入する熱媒体を所定流量を上限として外部へ排出する熱媒体排出部たる開口と、貫通孔と、当該熱媒体回収部における熱媒体の滞留量を検知する滞留量検知センサとを備え、前記貫通孔は、前記開口よりも位置が高く、熱媒体回収部に継続して熱媒体が流入する場合に熱媒体を外部に排出するオーバーフロー機能を有するものであって、前記滞留量検知センサが所定の破損検知レベル以上の熱媒体の滞留を検知したときに熱交換器の破損と判別し、前記加熱装置は給湯装置であり、前記二次流路は給湯流路および給水流路へ接続され、前記給水流路を介して供給される水を当該二次流路に設けた熱源部または前記一次循環流路との間に設けた熱交換器の少なくともいずれかで加熱しつつ給湯流路側へ排出すると共に、前記一次循環流路の補給手段は大気開放型であり、前記滞留量検知センサが熱媒体回収部の破損検知レベル以上の熱媒体の滞留を検知したときの給湯の有無に応じて熱交換器の破損状況を含む破損の判別を行うことを特徴とする熱交換器破損検知装置。
  3. 前記滞留量検知センサが前記破損検知レベル以上の熱媒体の滞留を所定時間継続して検知したときに熱交換器の破損と判別することを特徴とする請求項1または2に記載の熱交換器破損検知装置。
  4. 前記熱媒体排出部は、毎分の排出量が50cc以上200cc未満であることを特徴とする請求項1乃至3のいずれか1項に記載の熱交換器破損検知装置。
  5. 前記二次流路は循環流路を形成可能であり、少なくとも前記一次循環流路との間に設けた熱交換器で加熱した湯水を循環させつつ、加熱された湯水によって当該二次流路に別の熱交換器を介して接続された他の一次循環流路を循環する熱媒体を加熱することを特徴とする請求項1乃至4のいずれか1項に記載の熱交換器破損検知装置。
  6. 前記二次流路は熱負荷を含んだ循環流路を形成可能であり、少なくとも前記一次循環流路との間に設けた熱交換器で加熱した湯水を循環させて熱負荷へ熱供給することを特徴とする請求項1乃至5のいずれか1項に記載の熱交換器破損検知装置。
JP2004050901A 2004-02-26 2004-02-26 熱交換器破損検知装置 Expired - Fee Related JP4545454B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050901A JP4545454B2 (ja) 2004-02-26 2004-02-26 熱交換器破損検知装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050901A JP4545454B2 (ja) 2004-02-26 2004-02-26 熱交換器破損検知装置

Publications (2)

Publication Number Publication Date
JP2005241119A JP2005241119A (ja) 2005-09-08
JP4545454B2 true JP4545454B2 (ja) 2010-09-15

Family

ID=35023033

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050901A Expired - Fee Related JP4545454B2 (ja) 2004-02-26 2004-02-26 熱交換器破損検知装置

Country Status (1)

Country Link
JP (1) JP4545454B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5381340B2 (ja) * 2009-05-28 2014-01-08 株式会社ノーリツ 温水システム
JP2012207810A (ja) * 2011-03-29 2012-10-25 Noritz Corp 漏水検知システム
JP5741824B2 (ja) * 2011-03-29 2015-07-01 株式会社ノーリツ 漏水検知システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254034U (ja) * 1988-10-05 1990-04-19
JPH03233231A (ja) * 1990-02-07 1991-10-17 Gastar Corp 温水暖房装置における循環水の初期注入方法
JPH05118567A (ja) * 1991-10-30 1993-05-14 Sanyo Electric Co Ltd 温水暖房装置
JPH10132640A (ja) * 1996-10-31 1998-05-22 Kdk Corp 液面検出装置及び液面検出方法、並びに自動分析装置
JP2001296057A (ja) * 2000-04-12 2001-10-26 Osaka Gas Co Ltd 貯湯式の給湯熱源装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0254034U (ja) * 1988-10-05 1990-04-19
JPH03233231A (ja) * 1990-02-07 1991-10-17 Gastar Corp 温水暖房装置における循環水の初期注入方法
JPH05118567A (ja) * 1991-10-30 1993-05-14 Sanyo Electric Co Ltd 温水暖房装置
JPH10132640A (ja) * 1996-10-31 1998-05-22 Kdk Corp 液面検出装置及び液面検出方法、並びに自動分析装置
JP2001296057A (ja) * 2000-04-12 2001-10-26 Osaka Gas Co Ltd 貯湯式の給湯熱源装置

Also Published As

Publication number Publication date
JP2005241119A (ja) 2005-09-08

Similar Documents

Publication Publication Date Title
US7665325B2 (en) Multi-fluid cooling system and method with freeze protection for cooling an electronic device
JP7226112B2 (ja) 液浸システム
JP2007132612A (ja) コージェネレーションシステム及びその制御方法並びにプログラム
JP4700318B2 (ja) 熱源機のドレン排出装置
JP2007294186A (ja) 燃料電池システムの凍結防止装置
JP2008032321A (ja) 管路凍結防止方法及びコジェネレーションシステム
JP4545454B2 (ja) 熱交換器破損検知装置
KR102204693B1 (ko) 복수 개의 연료전지를 포함하는 연료전지 시스템
JP2006250394A (ja) 給湯装置
JP2007303719A (ja) 熱回収装置、並びに、コージェネレーションシステム
JP4974651B2 (ja) 給湯装置、そのドレン処理方法及びそのドレン処理プログラム
JP2006283994A (ja) 冷却システム
JP5032204B2 (ja) 貯湯式暖房装置
JP5480679B2 (ja) エンジン冷却装置
JP2008076022A (ja) 加熱装置及び加熱装置の熱交換器破損検出方法
JP4546850B2 (ja) 熱源装置のドレン排出方法及び熱源装置
JP2008107002A (ja) 給湯システムと、貯湯タンク内の温水の排水方法
JP5224115B2 (ja) 温水装置
JP3941544B2 (ja) 熱源機の凍結防止制御方法
JP2006292277A (ja) 熱源装置、その熱媒制御方法及び暖房装置
JP2008249302A (ja) 熱媒供給装置
WO2012053072A1 (ja) 貯湯式加熱ユニット
JP2019032137A (ja) 熱源機
JP4989300B2 (ja) 熱媒供給装置
JP4155404B2 (ja) 熱交換器ユニット

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100617

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130709

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4545454

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees