JP4539521B2 - 回転検出装置 - Google Patents

回転検出装置 Download PDF

Info

Publication number
JP4539521B2
JP4539521B2 JP2005296622A JP2005296622A JP4539521B2 JP 4539521 B2 JP4539521 B2 JP 4539521B2 JP 2005296622 A JP2005296622 A JP 2005296622A JP 2005296622 A JP2005296622 A JP 2005296622A JP 4539521 B2 JP4539521 B2 JP 4539521B2
Authority
JP
Japan
Prior art keywords
magnet
magnetoresistive element
sensor chip
rotation detection
case body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005296622A
Other languages
English (en)
Other versions
JP2007107922A (ja
Inventor
和好 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2005296622A priority Critical patent/JP4539521B2/ja
Publication of JP2007107922A publication Critical patent/JP2007107922A/ja
Application granted granted Critical
Publication of JP4539521B2 publication Critical patent/JP4539521B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

この発明は、例えば車載されるエンジンの回転検出や一般機械における各種被検出回転体の回転検出に用いられる回転検出装置に関し、特に磁気抵抗素子の抵抗値変化を利用してそれら被検出回転体の回転情報を検出する回転検出装置に関する。
従来、このように磁気抵抗素子の抵抗値変化を利用して回転検出を行う回転検出装置としては、例えば特許文献1あるいは特許文献2に記載されている装置が知られている。図9に、これら特許文献1あるいは特許文献2に記載されている回転検出装置も含めて、例えばエンジンのクランク角センサ等の回転検出用として従来一般に用いられている回転検出装置の平面構造を示す。
同図9に示されるように、この回転検出装置では、磁気抵抗素子MRE1およびMRE2からなる磁気抵抗素子対1と磁気抵抗素子MRE3およびMRE4からなる磁気抵抗素子対2とを備えるセンサチップ101が、被検出対象であるロータRTと対向するように配設されている。上記センサチップ101はその処理回路とともに集積回路化され、モールド樹脂102にて一体にモールドされている。具体的には、上記センサチップ101は、上記モールド樹脂102の内部で図示しないリードフレームの一端に搭載され、その他端から給電端子T1、出力端子T2およびGND(接地)端子T3といった各端子がそれぞれ外部へと引き出される構造となっている。また、上記センサチップ101の近傍には、モールド樹脂102を囲繞するように、上記磁気抵抗素子対1および2にバイアス磁界を付与する磁石(バイアス磁石)30が配設されている。上記磁石30は、その長手方向に中空部31を有する中空円筒状に形成されており、その中空部31に、上記センサチップ101を内蔵するモールド樹脂102が挿入されるかたちとなる。
また、こうした構成からなる回転検出装置の実用に際しては一般に、上記センサチップ101等をモールドしたモールド樹脂102と磁石30とを適宜のケース部材に収容し、同装置全体を納めた状態でエンジン等に搭載される。図10に、このような構造を有してエンジン等に搭載される回転検出装置についてその一例を示す。なお、この図10において、先の図9に示した各要素と機能的に同一の要素については、便宜上、それぞれ同一の符号を付して示している。
図10に示されるように、この回転検出装置では、モールド樹脂102および磁石30が有底筒状のキャップ部材40に収容されるとともに、センサ本体となるハウジング樹脂120と一体に形成されている。このハウジング樹脂120は、例えばエンジン本体との接続に用いられるフランジ123を備えるとともに、このフランジ123から延設される部分には外部の電子制御装置等とのワイヤリングによる接続コネクタとして機能するコネクタ部124を備えている。また、上記各端子T1〜T3は、このハウジング樹脂120内に一体に設けられて上記コネクタとしての端子をも兼ねる金属ターミナル100a〜100cにそれぞれ電気的に接続されている。
次に、上記センサチップ101の上記処理回路をも含めた電気的な構成について、図11に示す等価回路を併せ参照して説明する。
この図11に示されるように、磁気抵抗素子対1および2は、電気的にはそれぞれ2つの磁気抵抗素子MRE1およびMRE2、あるいは磁気抵抗素子MRE3およびMRE4が各々直列接続されたハーフブリッジとして構成されている。そして、磁気抵抗素子MRE1およびMRE2の中点電位Vaが磁気抵抗素子対1の出力とされ、磁気抵抗素子MRE3およびMRE4の中点電位Vbが磁気抵抗素子対2の出力とされる。これら2つの出力は、それぞれ差動増幅器12aに入力され、上記中点電位Vaと中点電位Vbとの差動出力がさらに比較器12bに入力される。この比較器12bは、所定の閾値電圧Vthに基づいて上記差動増幅出力の2値化処理を行う部分であり、この2値化された信号(パルス信号)が出力端子T2から出力される。このように、上記回転検出装置では磁気抵抗素子対1および2の差動出力と、所定の閾値電圧Vthとの交点でセンサ出力の論理レベルが切り替わることに基づいて、ロータRTの回転角度等の検出が行われている。
一方、この回転検出装置では、先の図10にその詳細を示すように、上記キャップ部材40の内底面43に上記磁石30の先端面33が当接されており、この内底面43に形成された突起部45に上記センサチップ101が内蔵されたモールド樹脂102の先端部が当接されている。そして、これらの当接によって、磁気抵抗素子対1および2と磁石30との距離であるM(MRE)−M(Magnet)距離dが決定されている。すなわちこの回転検出装置においては、上記キャップ部材40の内底面43に設けられた上記突起部45の突出長を通じてロータRTとの関係も含めた上記磁気ベクトルの振れ角、換言すれば当該回転検出装置としてのセンシング感度の最適化が図られるようになっている。
特開2001−116815号公報 特許第3102268号公報
一般に、回転検出装置に用いられている上記磁気抵抗素子MRE1〜MRE4をはじめとする検出素子や、上記センサチップ101とともに集積化される各種処理回路等は、その電気的特性が温度依存性を有するものが多い。このため、例えば回転検出装置が高温環境下におかれて温度が上昇すると、磁気抵抗素子MRE1〜MRE4により感知される抵抗値変化は小さくなり、上述した差動増幅信号の出力の振幅も小さくなる。そしてこの場合、上述した差動増幅信号と閾値電圧Vthとの交点にばらつきが生じることとなり、ひいてはロータの回転角度等の検出感度の低下も避けられないものとなる。なお従来の回転検出装置では、上述のように磁気抵抗素子対1および2と磁石30との距離であるM(MRE)−M(Magnet)距離dを高精度に調整することにより、回転検出装置としてのセンシング感度の最適化が図られてはいる。しかしながら、こうしたM−M距離の調整は、それら磁石30とセンサチップ101が内蔵されたモールド樹脂102との組付け時、すなわち室温において行われるため、上述した温度変化に伴って生じる検出感度の低下が無視できない実情にある。
この発明は、こうした実情に鑑みてなされたものであり、たとえ温度変化を伴う環境におかれる場合であれ、そのセンシング感度を適正に維持することのできる回転検出装置を提供することを目的とする。
こうした目的を達成するため、請求項1に記載の回転検出装置では、磁気抵抗素子を有するセンサチップと、該センサチップの前記磁気抵抗素子にバイアス磁界を付与する磁石とを備え、前記センサチップの近傍にてロータが回転するときに前記磁石から付与されるバイアス磁界と協働して生じる磁気ベクトルの変化を前記磁気抵抗素子を通じて感知して前記ロータの回転態様を検出する回転検出装置として、前記センサチップはその給電端子および出力端子がリードフレームに接続された状態で非磁性体材料からなるケース本体の舌部に一体に配設されるとともに、前記磁石は筒状に形成されて前記センサチップ共々前記ケース本体の舌部を覆う態様で挿入され、有底筒状の非磁性体材料からなるキャップ部材が前記ケース本体の舌部導出面を塞ぐ態様で同キャップ部材の開口端が前記ケース本体に接合されることによって前記センサチップ共々前記舌部および前記磁石が外部雰囲気から保護される構造を有し、前記磁石の先端面は、温度の上昇に伴って前記磁気抵抗素子と磁石先端との相対距離が短縮される方向に同磁石の位置を調整する調整部材に接合される構造とした。
このように磁気抵抗素子を用いてロータの回転検出を行う回転検出装置では、磁気抵抗素子により感知される抵抗変化率が、上述したM−M距離に依存して2つの極大値(ピーク)を有するかたちで変化することが知られている(例えば特許文献2参照)。そして、回転検出装置のセンサとして検出可能な抵抗変化率は「0.2%」以上であり、同センサとしての検出感度を上げるためには、上記抵抗変化率がより極大値に近づくようにM−M距離を設定することが望ましい。一方、こうした抵抗変化率は、磁気抵抗素子とロータの歯との距離(エアギャップ)や磁石の形状等の諸条件によってその極大値(ピーク)の位置がシフトするため、上記望ましいM−M距離もこれら条件に応じて変化することとなる。しかしながら、これらを一般的に見た場合、エアギャップが「1.1mm」〜「3.1mm」の範囲では、上記M−M距離を抵抗変化率の極大値のひとつである「0mm」近傍の値に、換言すれば同M−M距離が短縮されるように調整することが望ましいといった結論に至る。すなわち、こうしたかたちでM−M距離の調整が図られることにより、結果的にほぼ全てのエアギャップ範囲において、確実に磁気抵抗素子の抵抗変化率が拡大されるようになる。
この点、回転検出装置としての上記構造によれば、例えば車載エンジンや一般機械等に搭載されて高温環境下におかれる場合であれ、温度上昇に伴う上記調整部材の寸法変化を利用して、該調整部材と接合される磁石と上記磁気抵抗素子との相対距離、すなわち上述したM−M距離を磁気抵抗素子の抵抗変化率が拡大される方向に変化させることができるようになる。そしてこれにより、回転検出装置としての検出感度も、温度変化による影響が抑制されるかたちで高く維持されるようになる。また、上記M−M距離の調整は、上記回転検出装置を構成するセンサチップ、ケース本体、磁石およびキャップ部材といった各部品が一体に組み付けられた状態でいわば自動的に行われるため、その実現も容易である。
またこの場合、前記調整部材は、前記ケース本体よりも線膨張係数の大きい非磁性体材料によって形成されることとすれば、上記調整部材としての材料選択の自由度、並びにその配設にかかる自由度が高められるようになる。
なお、この構造に関しては、前記磁気抵抗素子が前記磁石先端から突き出す態様で前記センサチップが前記ケース本体の舌部に配設されている前提のもとに、前記調整部材として前記キャップ部材そのものを用い、同キャップ部材の内底面の一部に前記磁石の先端面を接合する構造が有効である。
この構造は、磁気抵抗素子が磁石先端から突き出すかたちで配設される、いわば上記M−M距離が正の値をとる場合に有効な構造であり、特に上記構造では、上記調整部材であるキャップ部材と上記ケース本体との線膨張差により、温度が上昇したときにはキャップ部材の方がより大きく寸法変化して、上記M−M距離の短縮が図られるようになる。しかもこの場合、上記調整部材がキャップ部材そのものとして形成されることから、部品数の増加や各部品の組付け工数等の変更を伴うことなく、より容易に上記構造の実現を図ることが可能となる。
また、上記請求項に記載の構造において、請求項に記載の発明によるように、前記非磁性体材料としてポリアミド樹脂を用い、同樹脂に含まれるガラス繊維の含有率および形状および大きさおよびガラス繊維の種類の少なくとも1つを通じて前記線膨張係数を調整することとすれば、所望の線膨張係数を有する調整部材を容易に得ることができるようになる。
また、これら請求項1または2に記載の構造において、請求項に記載の発明によるように、前記ケース本体の舌部には前記センサチップによる検出信号を電気的に処理するとともに、調整用のデータを記憶する不揮発性メモリを有する処理回路チップを併せて配設することとし、この不揮発性メモリに記憶されている調整用のデータに基づいて前記センサチップによる検出信号の出力波形を調整する構成とすれば、当該回転検出装置による検出信号としてより適正に調整された出力波形に対して、上述したM−M距離の温度変化に伴う自動補正が施されることとなり、同回転検出装置としてのさらなるセンシング感度の向上が期待できるようになる。
(第1の比較例
以下、この発明にかかる回転検出装置の実施の形態の説明に先立ち、第1の比較例について、図1〜図4を参照して説明する。なお、先の図9〜図11に示した従来の回転検出装置の各要素と機能的に同一の要素については、便宜上、それぞれ同一の符号を付して示すこととする。
図1は、この比較例にかかる回転検出装置が、先の図10に例示した装置と同様、例えば車載エンジンのクランク角センサ等の回転検出用に用いられる回転検出装置に適用される場合について、その一部断面側面構造を模式的に示したものである。また、図2は図1のA−Aに沿った断面構造を模式的に示したものである。
これら図1および図2に併せ示すように、この比較例にかかる回転検出装置は、ベアチップからなるセンシングチップ10および磁石(バイアス磁石)30がケース本体20およびキャップ部材40により構成されるハウジング内に密閉されて外部雰囲気から保護される構造となっている。
このうち、上記センシングチップ10は、磁気抵抗素子対1および2を有するセンサチップ11と、集積回路化されてこれら磁気抵抗素子対1および2により検出される信号の各種処理を行う処理回路チップ12とから構成されている。
また、上記ケース本体20は、例えばPPS(ポリフェニレンスルフィド)樹脂等の非磁性体材料からなり、その側壁に例えばエンジン本体と締結されるフランジ23を備えるとともに、上記フランジ23から延設される部分には外部の電子制御装置などと接続されるコネクタ部24を備えている。また、このケース本体20は上記キャップ部材40の内方に突出する態様で延設される板状の舌部21を備えている。この舌部21には、リードフレーム13をはじめ、センサチップ11や処理回路チップ12の実装面が一体に鋳込まれている。そしてこの舌部21に、これらセンサチップ11および処理回路チップ12が上記リードフレーム13と電気的に接続されるかたちでそれぞれ実装(搭載)されている。具体的には、上記センサチップ11と処理回路チップ12とはボンディングワイヤW1によって、また上記処理回路チップ12とリードフレーム13の一端とはボンディングワイヤW2によってそれぞれ電気的に接続されている。なおこの比較例において、上記リードフレーム13は、上記コネクタ部24の端子をもかねる金属ターミナルの一部として形成されており、これら金属ターミナルがそれぞれ、センシングチップ10の給電端子T1、出力端子T2、およびGND(接地)端子T3となる。
一方、上記磁石30は、例えば円柱の長手方向内部に四角形状の中空部31を有する筒状に形成されており、上記センシングチップ10共々、ケース本体20の舌部21を覆う態様で挿入されている。この磁石30は、センサチップ11に組み込まれている上記磁気抵抗素子対1および2に対してバイアス磁界を付与するものであり、先の図9等に例示したロータの回転時にこのバイアス磁界と協働して生じる磁気ベクトルの変化が上記磁気抵抗素子対1および2の抵抗値変化として感知される。
また、上記キャップ部材40は有底筒状に形成されており、例えばPPS(ポリフェニレンスルフィド)樹脂等の非磁性体材料からなる。そして、このキャップ部材40は、上記ケース本体20の舌部21が導出される舌部導出面22を塞ぐ態様で同キャップ部材40の開口端41が上記ケース本体20に接合されて一体に組み付けられることで、上記センシングチップ10共々、舌部21および磁石30を外部雰囲気から保護する。
図3は、上記センシングチップ10の内部の等価回路の一例を示したものであり、以下、この図3を参照して、上記回転検出装置の電気的な構成、主に信号処理回路の構成について説明する。
図3に示されるように、そして上述のように、センシングチップ10はセンサチップ11とその処理回路である処理回路チップ12とを備えて構成される。このうち、センサチップ11は、上述のように磁気抵抗素子対1および2を備え、これら磁気抵抗素子対1および2は、電気的にはそれぞれ磁気抵抗素子MRE1およびMRE2、あるいは磁気抵抗素子MRE3およびMRE4が各々直列接続されたハーフブリッジとして構成されている。そして、磁気抵抗素子MRE1とMRE3との共通接続部には定電圧「+V」が印加され、磁気抵抗素子MRE2とMRE4の共通接続部は接地されている。
ここで、上記ブリッジ接続されている磁気抵抗素子対1の中点電位Vaと磁気抵抗素子対2の中点電位Vbとはそれぞれ処理回路チップ12内の差動増幅器12aに入力される。そして、この差動増幅器12aの出力である上記中点電位Vaと中点電位Vbとの差動増幅出力はさらに比較器12bを通じて2値化処理される。こうして2値化処理された2値化信号(パルス信号)が、当該回転検出装置による回転検出信号として上記出力端子T2を介してから出力される。なお、この比較器12bでは、上記定電圧「+V」の抵抗R1およびR2による分圧電圧である閾値電圧Vthを基準として上記差動増幅出力の2値化が行われる。
また、この比較例においては、上記処理回路チップ12は、例えばEPROM等の不揮発性メモリを内部に有して構成されるメモリ回路12cを備えている。このメモリ回路12cは、上記不揮発性メモリに記憶されている調整用のデータをD/A(デジタル/アナログ)変換、もしくはデコードした信号をここでは例えば上記差動増幅器12aに与えてそのオフセット調整等を行う回路である。ちなみに、この調整用のデータとしては、a.処理回路チップ12中に組み込まれる差動増幅器12aのオフセット調整のためのデータ。
b.処理回路チップ12中に組み込まれる比較器12bの閾値電圧Vthを調整するためのデータ。c.処理回路チップ12中に組み込まれる回路全体の温度補償を行うためのデータ。
等々があるが、図3では便宜上、上記b.や上記c.のデータに基づく調整に関してはそのための詳細な図示を割愛している。
なお、このメモリ回路12cでは、例えば図3に例示するようなクロックによる電圧変調信号が上記調整用のデータとしてデータ用端子T4(図3、図2)に印加されることにより、これをクロック成分とデータ成分とに復調してそのデータ内容(デジタル信号)を上記不揮発性メモリの該当するアドレスに書き込む。そして、この書き込んだデータを上述のようにD/A変換やデコードして生成した信号に基づき、上記差動増幅器12aのオフセット調整や比較器12bの閾値調整、温度補償等を行うこととなる。処理回路チップ12においてこのような調整や温度補償を行うことで、上記磁気抵抗素子MRE1〜MRE4と磁石30やロータ(図9、図10)との位置関係に応じて定まる検出精度が改善されるようになる。
一方、この比較例にかかる回転検出装置では、先の図1および図2に示されるように、磁石30の上記ケース本体20と対向する基端面32と、ケース本体20の上記舌部導出面22との間に調整部材50が介装されている。この調整部材50は、上記ケース本体20よりも線膨張係数の大きい例えばPA66(ポリアミド66)樹脂等の非磁性体材料からなる。具体的には、ケース本体20は上述のようにPPS(ポリフェニレンスルフィド)樹脂からなり、その線膨張係数は例えば「20×10−6/℃」であり、これに対し上記調整部材50としては、その線膨張係数が例えば「80×10−6/℃」であるポリアミド樹脂(PA66)を用いている。そして、これらケース本体20および調整部材50は、磁石30およびキャップ部材40共々、室温(例えば25℃)付近で一体に組付けられ、この組付け時に上記磁気抵抗素子対1および2と上記磁石30の先端との距離であるM−M距離dが設定されて、これら磁石30と磁気抵抗素子対1および2との相対位置が位置決めされる。
そして、この比較例にかかる回転検出装置では、上記磁気抵抗素子対1および2が上記磁石30の先端面33から突き出す態様で上記センサチップ11が上記ケース本体20の舌部21に搭載されており、上記M−M距離dが例えば「+0.5mm」に設定された状態で上述の調整等を通じた最適化が図られているとする。ここで、通常であれば、回転検出装置がその使用に際して高温環境下におかれ、装置全体の温度が例えば「150℃」まで上昇したとすると、上記磁気抵抗素子対1および2自体の温度特性によりその抵抗変化率が低下し、ひいては検出感度が低下する。しかしこの比較例にあっては、上記調整部材50と上記ケース本体20の舌部21との上述した線膨張差により、調整部材50は長さL1が舌部21の寸法変化に対しより大きく変化する。これにより、この調整部材50に接合されている磁石30がキャップ部材40の内底面43側に移動し、上記M−M距離dが短縮されるように、すなわち「0mm」に近づくように変化するようになる。
図4は、例えば先の特許文献2の記載をもとに、こうした回転検出装置におけるM−M距離と磁気抵抗素子の抵抗変化率との関係を示したものであり、一例としてエアギャップが「1.1mm」に設定される場合について示したものである。この図4に実線で示されるように、磁気抵抗素子により感知される抵抗変化率は、M−M距離に依存して2つの極大値(ピーク)を有するかたちで変化する。なお、上記ピーク間の抵抗変化率の小さい領域は、磁気抵抗素子としての抵抗値変化が不安定な領域であって、当該回転検出装置の使用に際しても信頼のおけない領域となっている。また一般に、こうした回転検出装置による回転検出には、磁気抵抗素子の抵抗変化率が「0.2%」以上である必要がある。そして、磁気抵抗素子のこうした抵抗変化率は温度の上昇に伴って低下(下方にシフト)し、例えば「150℃」における抵抗変化率は同図4に点線で示されるようになる。すなわち、室温付近におけるM−M距離が「+0.5mm」である場合には、抵抗変化率は室温では点aに対応する変化率であるのに対して、温度が上昇した「150℃」においては点bに対応する変化率まで低下するようになる。しかしこの比較例にあっては、温度の上昇に伴い上記調整部材50が上述の態様で寸法変化することによってM−M距離が「+0.3mm」となり、抵抗変化率も点cに対応する変化率に維持されるようになる。このように、温度の上昇に伴って、磁石30と磁気抵抗素子対1および2との相対位置(M−M距離d)がいわば自動調整されることで、磁気抵抗素子としての抵抗変化率が補償されるようになり、ひいては回転検出装置としてのセンシング感度も高く維持されるようになる。
なお、こうした抵抗変化率は、磁気抵抗素子とロータの歯との距離(エアギャップ)や磁石の形状等の諸条件によってその極大値(ピーク)の位置がシフトするため、上記望ましいM−M距離もこれら条件に応じて変化する。しかしながら、これらを一般的に見た場合、エアギャップが「1.1mm」〜「3.1mm」の範囲では、上記M−M距離を抵抗変化率の極大値のひとつである「0mm」近傍の値に、換言すれば同M−M距離が短縮されるように調整することが望ましい。すなわち、こうしたかたちでM−M距離の調整が図られることにより、結果的にほぼ全てのエアギャップ範囲において、確実に磁気抵抗素子の抵抗変化率が拡大(補償)されるようになる。
以上説明したように、この比較例にかかる回転検出装置によれば、以下に列記するような効果が得られるようになる。
(1)磁気抵抗素子対1および2が磁石30の先端面33から突き出す態様でセンサチップ11が上記ケース本体20の舌部21に搭載されるときに、調整部材50を上記ケース本体20の舌部導出面22と磁石30の基端面32との間に介装することとした。これにより、調整部材50とケース本体20との線膨張差により温度が上昇したときに上記調整部材50の方がより大きく寸法変化することで、上記M−M距離の短縮、すなわち磁気抵抗素子における抵抗変化率の拡大(補償)が図られるようになる。また、上記M−M距離の調整は、回転検出装置を構成するセンサチップ11、ケース本体20、磁石30およびキャップ部材40といった各部品が一体に組み付けられた状態でいわば自動的に行われるため、その実現も容易である。
(2)上記調整部材50として、ケース本体20よりも線膨張係数の大きい非磁性体材料であるポリアミド樹脂を用いることとした。これにより、上記調整部材50としての材料選択の自由度、並びにその配設にかかる自由度が高められるようになる。
(3)ケース本体20の舌部21には上記センサチップ11による検出信号を電気的に処理するとともに、調整用のデータを記憶するための不揮発性メモリを内蔵して構成されるメモリ回路12cを有する処理回路チップ12を併せて配設することとした。これにより、上記メモリ回路12cに記憶されている調整用のデータに基づいて上記センサチップ11による検出信号の出力波形が調整されるとともに、こうして適正に調整された出力波形に対して上述したM−M距離の温度変化に伴う自動補正が施されることとなり、同回転検出装置としてのさらなるセンシング感度の向上が期待できるようになる。
(4)センシングチップ10、特に上記センサチップ11が、上記ケース本体20の舌部21にいわゆるベアチップの状態で実装されることとした。このように、センサチップ11としてベアチップ構造を採用したことで、上記舌部21上での実装位置を高精度に位
置決めすることができる。また、従来の回転検出装置のように、このセンサチップ11を樹脂モールドした場合には、モールド時の内部応力による応力歪みも無視できない。この点、この比較例のように、同センサチップ11をベアチップとして舌部21上に実装するようにしたことで、このような応力歪みに起因するセンシング特性への影響も回避されるようになる。
(5)こうしてセンサチップ11をベアチップとして舌部21に実装しつつも、同センシングチップ10や磁石30は舌部21と共々、ケース本体20およびキャップ部材40により密閉された状態におかれるため、外部雰囲気との遮断性も好適に確保されるようになる。
(実施の形態)
次に、この発明にかかる回転検出装置の一実施の形態について、図5を参照して説明する。この実施の形態にかかる回転検出装置も、回転検出装置としての基本的な部分の構成は先の第1の比較例と同様であるが、この回転検出装置は、前記調整部材、並びにその配設態様が第1の比較例とは異なる装置として構成されている。
すなわち、第1の比較例では、磁石30の基端面32と、ケース本体20の舌部導出面22との間に調整部材が介装されることとしたが、この実施の形態では、図5に示すように、調整部材をキャップ部材40aそのものとして形成するようにしている。このキャップ部材40aも、先の第1の比較例にかかる装置と同様、有底筒状に形成されており、その内底面43が磁石30の先端面33と当接して、磁石30を覆うかたちで配設されている。そして、この実施の形態においては、上記キャップ部材40aの内底面43のうち、該磁石30と当接する部分が選択的に肉厚に形成されるとともに、この内底面43の中央には凹部44が形成されている。そして、キャップ部材40aは例えばPA66(ポリアミド66)樹脂等の上記ケース本体20よりも線膨張係数の大きい非磁性体材料からなっている。具体的には、ケース本体20は、先の第1の比較例と同様、PPS(ポリフェニレンスルフィド)樹脂からなり、その線膨張係数は例えば「20×10−6/℃」であり、これに対しキャップ部材40aとしては、その線膨張係数が例えば「80×10−6/℃」であるポリアミド樹脂(PA66)を用いている。そして、これらケース本体20およびキャップ部材40は、磁石30共々、室温(例えば25℃)付近で一体に組み付けられ、この組付け時に上記磁気抵抗素子対1および2と上記磁石30の先端との距離であるM−M距離dが設定されて、これら磁石30と磁気抵抗素子対1および2との相対位置が位置決めされる。
そして、この実施の形態にかかる回転検出装置でも、先の比較例と同様、上記磁気抵抗素子対1および2が上記磁石30の先端面33から突き出す態様で上記センサチップ11が上記ケース本体20の舌部21に搭載されており、上記M−M距離dが例えば「+0.5mm」に設定された状態でその最適化が図られているとする。すなわち、例えば上記ケース本体20とキャップ部材40aとの接合面から磁気抵抗素子対1および2までの長さ
L2が「20.0mm」に、また上記接合面から磁石30の先端と接合するキャップ部材40aの内底面43までの長さL3が「19.5mm」にそれぞれ設定されている。ここで、回転検出装置がその使用に際して高温環境下におかれ、装置全体の温度が例えば「150℃」まで上昇したとすると、上記キャップ部材40aと上記ケース本体20の舌部21との線膨張差により、キャップ部材40aは舌部21の寸法変化に対しより大きく変化する。具体的には、上記長さL3が「19.695mm」と変化するのに対して、上記長さL2は「20.05mm」と変化し、このキャップ部材40aに接合されている磁石30がキャップ部材40の内底面43側に移動し、上記M−M距離dは「+0.355mm」に変化するようになる。このような構造によっても、温度の上昇に伴って、上記M−M距離dが短縮されるように、すなわち「0mm」に近づくように自動調整されることで、磁気抵抗素子としての抵抗変化率が補償されるようになり、ひいては回転検出装置としてのセンシング感度も高く維持されるようになる。
以上説明したように、この実施の形態にかかる回転検出装置によっても、先の第1の比較例による前記(1)〜(5)の効果と同様、もしくはそれに準じた効果が得られるとともに、さらに以下のような効果が得られるようになる。
(6)調整部材としてキャップ部材40aそのものを用い、同キャップ部材40aの内底面43の一部を磁石30の先端面33を接合することとした。これにより、部品数の増加や上記回転検出装置にかかる各部品の組付け工数等の大きな変更を伴うことなく、容易にその実現を図ることが可能となる。
(第比較例
次に、こうした回転検出装置の第比較例について、図6を参照して説明する。この比較例にかかる回転検出装置も、回転検出装置としての基本的な部分の構成は先の比較例、実施の形態と同様であるが、この回転検出装置も、前記調整部材の形状、並びに配設態様が上記比較例、実施の形態とは異なる装置として構成されている。
すなわち、第1の比較例では、磁石30の基端面32と、ケース本体20の舌部導出面22との間に調整部材が介装されることとしたが、この第比較例では、図6に示すように、調整部材60を上記キャップ部材40の内底面43と上記磁石30の先端面33との間に介装するようにしている。そして、この調整部材60は上記ケース本体20およびキャップ部材40よりも線膨張係数の大きい材料からなる。具体的には、ケース本体20およびキャップ部材40は、先の第1の比較例と同様、PPS(ポリフェニレンスルフィド)樹脂からなり、その線膨張係数は例えば「20×10−6/℃」であるのに対し、調整部材60としては、その線膨張係数が例えば「80×10−6/℃」であるポリアミド樹脂(PA66)を用いている。そして、これらケース本体20、キャップ部材40および調整部材60は、磁石30共々、室温(例えば25℃)付近で一体に組付けられ、この組付け時に上記磁気抵抗素子対1および2と上記磁石30の先端との距離であるM−M距離dが設定されて、これら磁石30と磁気抵抗素子対1および2との相対位置が位置決め
される。
そして、この比較例にかかる回転検出装置では、上記磁気抵抗素子対1および2が上記磁石30の先端面33の内側に収まる態様で上記センサチップ11が上記ケース本体20の舌部21に配設されており、このM−M距離dが例えば「−0.5mm」に設定された状態でその最適化が図られているとする。ここで、回転検出装置がその使用に際して高温環境下におかれ、装置全体の温度が例えば「150℃」まで上昇したとすると、上記調整部材60と上記ケース本体20の舌部21との線膨張差、および上記調整部材60と上記キャップ部材40との線膨張差により、調整部材60の長さL4が舌部21の寸法変化に対しより大きく変化する。これにより、この調整部材60に接合されている磁石30がケース本体20側に移動し、上記M−M距離dが短縮されるように、すなわち「0mm」に近づくように変化するようになる。このような構造によっても、温度の上昇に伴って、上記M−M距離dが短縮されるように自動調整されることで、磁気抵抗素子としての抵抗変化率が補償されるようになり、ひいては回転検出装置としてのセンシング感度も高く維持されるようになる。
以上説明したように、この第比較例にかかる回転検出装置によっても、先の第1の比較例による前記(1)〜(5)の効果と同様、もしくはそれに準じた効果が得られるとともに、さらに以下のような効果が得られるようになる。
(7)磁気抵抗素子対1および2が磁石30の先端面33の内側に収まる態様でセンサチップ11が上記ケース本体20の舌部21に搭載されるときに、調整部材60を上記キャップ部材40の内底面43と上記磁石30の先端面33との間に介装することとした。これにより、調整部材60とキャップ部材40との線膨張差、および調整部材60とケース本体20との線膨張差により温度が上昇したときに上記調整部材60のほうが大きく寸法変化することで、上記M−M距離の短縮、すなわち磁気抵抗素子における抵抗変化率の拡大が図られるようになる。
(8)調整部材60として、ケース本体20およびキャップ部材40よりも線膨張係数の大きい材料を用いることとした。これにより、ケース本体20とキャップ部材40とで同一の材料を使用することができるようになるため、調整部材60としての材料選択の自由度、並びにその配設にかかる自由度がさらに高められるようになる。
(第比較例
次に、こうした回転検出装置の第比較例について、図7を参照して説明する。この比較例にかかる回転検出装置も、回転検出装置としての基本的な部分の構成は先の各比較例、実施の形態と同様であるが、この回転検出装置は、2つの調整部材を用いて前記M−M距離を調整する装置として構成されている。
すなわち、第比較例では、図7に示されるように、上記ケース本体20の舌部導出面22と上記磁石30の基端面32との間に第1の調整部材51を、また上記キャップ部材40の内底面43と上記磁石30の先端面33との間に第2の調整部材61をそれぞれ介装するようにしている。そして、これら調整部材51および61も、先の第1の比較例
と同様、例えばPA66(ポリアミド66)樹脂からなるが、この比較例では、それぞれにガラス繊維が含まれており、その含有率および形状および大きさおよびガラス繊維の種類の少なくとも1つを通じてそれらの線膨張係数が調整されている。具体的には、調整部材51としてはその線膨張係数が例えば「110×10−6/℃」あるポリアミド樹脂(PA66)を用い、調整部材61としてはその線膨張係数が例えば「80×10−6/℃」であるポリアミド樹脂(PA66)を用いている。また、ケース本体20は、先の第1の比較例と同様、PPS(ポリフェニレンスルフィド)樹脂からなり、その線膨張係数は例えば「20×10−6/℃」であるが、キャップ部材40は、やはりポリアミド樹脂(PA66)からなって、上記調整部材51および61の線膨張係数を吸収し得る線膨張係数に設定されているとする。そして、これらケース本体20、調整部材51および61は磁石30およびキャップ部材40共々、室温(例えば25℃)付近で一体に組み付けられ、この組付け時に上記磁気抵抗素子対1および2と上記磁石30の先端との距離であるM−M距離dが設定されて、これら磁石30と磁気抵抗素子対1および2との相対位置が位置決めされる。
そして、この比較例にかかる回転検出装置でも、先の第1の比較例と同様、上記磁気抵抗素子対1および2が上記磁石30の先端面33から突き出す態様で上記センサチップ11が上記ケース本体20の舌部21に搭載されており、このM−M距離dが例えば「+0.5mm」に設定された状態でその最適化が図られているとする。ここで、回転検出装置がその使用に際して高温環境下におかれ、装置全体の温度が例えば「150℃」まで上昇したとすると、上記調整部材51と調整部材61との線膨張差により、調整部材51の長さL5が調整部材61の長さL6の寸法変化に対しより大きく変化する。これにより、これら調整部材51および61に接合されている磁石30がキャップ部材40の内底面43側に移動し、上記M−M距離dが短縮されるように、すなわち「0mm」に近づくように変化するようになる。このような構造によっても、温度の上昇に伴って、上記M−M距離dが短縮されるように自動調整されることで、磁気抵抗素子としての抵抗変化率が補償されるようになり、ひいては回転検出装置としてのセンシング感度も高く維持されるようになる。
以上説明したように、この第比較例にかかる回転検出装置によっても、先の第1の比較例による前記(1)〜(5)の効果と同様、もしくはそれに準じた効果が得られるようになる。
(変形例)
上記第比較例にかかる回転検出装置では、上記磁気抵抗素子対1および2が上記磁
石30の先端面33から突き出す態様でセンサチップ11が上記ケース本体20の舌部21に搭載されることとした。これに代えて図8に示すように、上記磁気抵抗素子対1および2が上記磁石30の先端面33の内側に収まる態様で上記センサチップ11が搭載される装置に適用してもよい。この場合、第1の調整部材52の線膨張係数は第2の調整部材62の線膨張係数よりも小さくなるように設定する必要がある。具体的には、調整部材52としてはその線膨張係数が例えば「80×10−6/℃」であるポリアミド樹脂(PA66)を用い、調整部材62としてはその線膨張係数が例えば「110×10−6/℃」であるポリアミド樹脂(PA66)を用いている。また、キャップ部材40もポリアミド樹脂(PA66)からなって、これら調整部材52および62の線膨張係数を吸収し得る線膨張係数に設定されることは上記第比較例と同様である。そして、上記M−M距離dが例えば「−0.5mm」に設定されている状態でその最適化が図られているとする。ここで、回転検出装置がその使用に際して高温環境下におかれ、装置全体の温度が例えば「150℃」まで上昇したとすると、上記調整部材52と調整部材62との線膨張差により調整部材62の長さL6が調整部材52の長さL5の寸法変化に対しより大きく変化する。これにより、これら調整部材52および62に接合されている磁石30がケース本体20側に移動し、上記M−M距離dが短縮されるように、すなわち「0mm」に近づくように変化するようになる。このような構造によっても、温度の上昇に伴って、上記M−M距離dが短縮されることで、上記と同様の効果が得られるようになる。
(その他の実施の形態)
その他、上記各比較例、実施の形態、ならびに上記変形例に共通して変更可能な要素としては以下のようなものがある。
・上記第1及び比較例、上記実施の形態では、調整部材として、PA66(ポリアミド66)樹脂を用いることとしたが、これに代えて上記第比較例および変形例と同様、樹脂中にガラス繊維を含有するようにしてもよい。上記樹脂中に含有されるガラス繊維の含有率、形状、大きさあるいはガラス繊維の種類の少なくとも1つを変更することによって、所望の線膨張係数を有する調整部材が得られるようになる。
・上記各比較例および実施の形態およびそれらの変形例では、調整部材としてPA66(ポリアミド66)樹脂を用いることとしたが、その他樹脂やセラミックス等の非磁性体材料を用いてもよいし、磁性体材料を用いてもよい。ただし、上記調整部材(50〜52、60〜62)として磁性体材料を用いる場合には、磁石30から磁気抵抗素子に付与されるバイアス磁界に影響を及ぼさない領域にて用いることが望ましい。
・上記調整部材として温度の上昇に伴って形状変化するバイメタルや形状記憶合金を用いることも可能である。要は、回転検出装置の磁気検出に影響を及ぼさない範囲内で、温度の上昇に伴って寸法変化する部材であれば、調整部材として採用することができる。
・上記各比較例および実施の形態およびそれらの変形例では、調整部材が少なくともケース本体20よりも線膨張係数の大きい材料からなることとした。しかしながら、温度の上昇に伴うこれら各部材間の線膨張差による寸法変化を利用して磁気抵抗素子と磁石30先端との相対距離(M−M距離d)の短縮を図ることが可能であれば、調整部材の線膨張係数は上記範囲内に限定されない。
転検出装置の第1の比較例について、その全体構造を模式的に示す一部断面側面図。 図1のA−A線に沿った断面構造を示す模式的に示す断面図。 比較例にかかる回転検出装置を構成するセンシングチップ内部の等価回路を示す回路図。 回転検出装置における磁気抵抗素子対と磁石との距離に対する抵抗変化率の関係を示すグラフ。 この発明にかかる回転検出装置の一実施の形態について、その全体構造を模式的に示す一部断面側面図。 この発明にかかる回転検出装置の第比較例について、その全体構造を模式的に示す一部断面側面図。 この発明にかかる回転検出装置の第比較例について、その全体構造を模式的に示す一部断面側面図。 同第比較例の変形例について、その全体構造を示す一部断面側面図。 従来の回転検出装置の平面構造を、被検出回転体との関係も含めてその概要を模式的に示す平面図。 同従来の回転検出装置の一例についてその断面構造を模式的に示す断面図。 同従来の回転検出装置について、そのセンシングチップ内部の等価回路の一例を示す回路図。
符号の説明
1、2…磁気抵抗素子対、10…センシングチップ、11…センサチップ、12…処理回路チップ、12a…差動増幅器、12b…比較器、12c…メモリ回路、13…リードフレーム、20…ケース本体、21…舌部、22…舌部導出面、23…フランジ、24…コネクタ部、30…磁石、31…中空部、32…基端面、33…先端面、40、40a…キャップ部材、41…開口端、43…内底面、44…凹部、45…突起部、50〜52、60〜62…調整部材、101…センサチップ、102…モールド樹脂、120…ハウジング樹脂、123…フランジ、124…コネクタ部、100a〜100c…金属ターミナル、T1…給電端子、T2…出力端子、T3…GND(接地)端子、T4…データ用端子、W1、W2…ボンディングワイヤ、MRE1〜MRE4…磁気抵抗素子、RT…ロータ。

Claims (3)

  1. 磁気抵抗素子を有するセンサチップと、該センサチップの前記磁気抵抗素子にバイアス磁界を付与する磁石とを備え、前記センサチップの近傍にてロータが回転するときに前記磁石から付与されるバイアス磁界と協働して生じる磁気ベクトルの変化を前記磁気抵抗素子を通じて感知して前記ロータの回転態様を検出する回転検出装置において、
    前記センサチップはその給電端子および出力端子がリードフレームに接続された状態で非磁性体材料からなるケース本体の舌部に一体に配設されるとともに、前記磁石は筒状に形成されて前記センサチップ共々前記ケース本体の舌部を覆う態様で挿入され、有底筒状の非磁性体材料からなるキャップ部材が前記ケース本体の舌部導出面を塞ぐ態様で同キャップ部材の開口端が前記ケース本体に接合されることによって前記センサチップ共々前記舌部および前記磁石が外部雰囲気から保護される構造を有し、前記磁気抵抗素子は、前記磁石先端から突き出す態様で前記センサチップが前記ケース本体の舌部に配設されてなり、前記磁石の先端面は、前記ケース本体よりも線膨張係数の大きい非磁性体材料によって前記キャップ部材として形成されて温度の上昇に伴前記磁気抵抗素子と磁石先端との相対距離が短縮される方向に同磁石の位置を調整する調整部材に接合されてなる
    ことを特徴とする回転検出装置。
  2. 前記非磁性体材料はポリアミド樹脂からなり、ガラス繊維の含有率および形状および大きさおよびガラス繊維の種類の少なくとも1つを通じて前記線膨張係数が調整されてなる
    請求項に記載の回転検出装置。
  3. 前記ケース本体の舌部には前記センサチップによる検出信号を電気的に処理するとともに調整用のデータを記憶する不揮発性メモリを有する処理回路チップが配設されてなり、前記不揮発性メモリに記憶されている調整用のデータに基づいて前記センサチップによる検出信号の出力波形を調整する
    請求項1または2に記載の回転検出装置。
JP2005296622A 2005-10-11 2005-10-11 回転検出装置 Expired - Fee Related JP4539521B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005296622A JP4539521B2 (ja) 2005-10-11 2005-10-11 回転検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005296622A JP4539521B2 (ja) 2005-10-11 2005-10-11 回転検出装置

Publications (2)

Publication Number Publication Date
JP2007107922A JP2007107922A (ja) 2007-04-26
JP4539521B2 true JP4539521B2 (ja) 2010-09-08

Family

ID=38033907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005296622A Expired - Fee Related JP4539521B2 (ja) 2005-10-11 2005-10-11 回転検出装置

Country Status (1)

Country Link
JP (1) JP4539521B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296785A (zh) * 2013-07-19 2015-01-21 北汽福田汽车股份有限公司 用于汽车的曲轴位置传感器

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5125989B2 (ja) * 2008-10-23 2013-01-23 ティアック株式会社 センサ本体および接続機器
JP5014468B2 (ja) * 2010-06-16 2012-08-29 三菱電機株式会社 回転センサ
US8736260B2 (en) 2012-01-06 2014-05-27 Allegro Microsystems, Llc Magnetic field sensor and associated method that can establish a measured threshold value and that can store the measured threshold value in a memory device
US9395391B2 (en) * 2013-03-15 2016-07-19 Allegro Microsystems, Llc Magnetic field sensor and associated method that can store a measured threshold value in a memory device during a time when the magnetic field sensor is powered off
US10845434B2 (en) 2012-01-06 2020-11-24 Allegro Microsystems, Llc Magnetic field sensor having a temperature compensated threshold on power up
JP6306827B2 (ja) * 2013-05-16 2018-04-04 アズビル株式会社 回転角度検出器
JP2015225023A (ja) * 2014-05-29 2015-12-14 日本電産サンキョー株式会社 エンコーダ
KR102523479B1 (ko) * 2021-10-19 2023-04-18 현대트랜시스 주식회사 수동변속기 속도계 구조
CN115575801B (zh) * 2022-12-07 2023-03-31 无锡昌鼎电子有限公司 一种基于温度变化的芯片检测装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727571A (ja) * 1993-05-10 1995-01-27 Nippondenso Co Ltd 磁気検出装置
JPH08193802A (ja) * 1995-01-13 1996-07-30 Murata Mfg Co Ltd 無接触型ポテンショメータ
JP3102268B2 (ja) * 1994-06-08 2000-10-23 株式会社デンソー 磁気検出装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727571A (ja) * 1993-05-10 1995-01-27 Nippondenso Co Ltd 磁気検出装置
JP3102268B2 (ja) * 1994-06-08 2000-10-23 株式会社デンソー 磁気検出装置
JPH08193802A (ja) * 1995-01-13 1996-07-30 Murata Mfg Co Ltd 無接触型ポテンショメータ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104296785A (zh) * 2013-07-19 2015-01-21 北汽福田汽车股份有限公司 用于汽车的曲轴位置传感器
CN104296785B (zh) * 2013-07-19 2017-01-25 北汽福田汽车股份有限公司 用于汽车的曲轴位置传感器

Also Published As

Publication number Publication date
JP2007107922A (ja) 2007-04-26

Similar Documents

Publication Publication Date Title
JP4539521B2 (ja) 回転検出装置
US7408344B2 (en) Magnetic sensor
JP4232771B2 (ja) 回転検出装置
JP4645477B2 (ja) 回転検出装置
US6937010B1 (en) Magnetic detector
US7301331B2 (en) Magnetic sensor device having components mounted on magnet
US20070247144A1 (en) Rotation detecting device
US6962081B2 (en) Semiconductor physical quantity sensor with improved noise resistance
CN101275860A (zh) 传感器设备
JP4293037B2 (ja) 回転検出装置
JP4645520B2 (ja) 回転角度検出装置
JP4835218B2 (ja) センサ装置
JP4453520B2 (ja) 回転検出装置
JP2006047113A (ja) 回転検出装置の製造方法
JP4385915B2 (ja) 回転検出装置
KR20050013044A (ko) 자기 검출 장치의 제조 방법 및 자기 검출 장치
JP3811255B2 (ja) 二線式センサ回路
JP6058401B2 (ja) 磁気センサ装置
JP4370998B2 (ja) 回転検出装置
JP4281537B2 (ja) 回転検出センサ装置
JP5531980B2 (ja) 圧力センサ
JP5720450B2 (ja) 圧力センサおよび圧力センサの取り付け構造
JP2007162708A (ja) 電子制御式絞り弁装置、当該装置等に用いられる非接触式回転角度検出装置、ホール素子の信号処理装置
JP2003014494A (ja) ポジションセンサ
US20040263156A1 (en) Magnetoresistive angle sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees