JP4534278B2 - 燃料電池装置 - Google Patents

燃料電池装置 Download PDF

Info

Publication number
JP4534278B2
JP4534278B2 JP28632099A JP28632099A JP4534278B2 JP 4534278 B2 JP4534278 B2 JP 4534278B2 JP 28632099 A JP28632099 A JP 28632099A JP 28632099 A JP28632099 A JP 28632099A JP 4534278 B2 JP4534278 B2 JP 4534278B2
Authority
JP
Japan
Prior art keywords
hydrogen
alkali metal
fuel cell
gas
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP28632099A
Other languages
English (en)
Other versions
JP2001106503A (ja
Inventor
光悦 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP28632099A priority Critical patent/JP4534278B2/ja
Publication of JP2001106503A publication Critical patent/JP2001106503A/ja
Application granted granted Critical
Publication of JP4534278B2 publication Critical patent/JP4534278B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、水素富化装置および燃料電池装置に関し、詳しくは、炭化水素を改質したガスのような水素を含有するガスの水素分圧をさらに高める水素富化装置、および、このような水素富化装置を備え、得られたより水素分圧の高いガスを燃料電池における電気化学反応に供する燃料電池装置に関する。
【0002】
【従来の技術】
従来、燃料電池を用いて発電を行なう方法としては、燃料電池に供給する水素を含有する燃料ガスに、炭化水素を改質して得られる改質ガスを用いる方法が知られている。炭化水素を原燃料として、例えば水蒸気改質反応を行なうと、水素と二酸化炭素とを生成することができるため、このような炭化水素の改質によって得られる改質ガスを燃料ガスとして、燃料電池において電気化学反応を進行させることができる。
【0003】
ここで、燃料電池の電池性能を向上させ、出力電圧をより高めるためには、各電極に供給するガス中の電極活物質の分圧を上昇させると共に、電極活物質の濃度(純度)を上昇させることが有用である。すなわち、アノード側に供給する燃料ガスではガス中の水素分圧および水素濃度を、カソード側に供給する酸化ガスではガス中の酸素分圧および酸素濃度を、より上昇させることが望ましい。
【0004】
したがって、燃料ガスとして上記改質ガスを用いる場合にも、改質ガス中の水素分圧および水素濃度をさらに高めることによって、燃料電池の電池性能の向上を図ることが考えられる。改質ガス中の水素濃度を高める方法としては、改質ガスを燃料ガスとして燃料電池に供給するのに先立って、改質ガスを間接的にアルカリ水溶液と接触させて、改質ガス中の二酸化炭素とアルカリ水溶液中のアルカリとを反応させる方法が提案されている(例えば、特開平3−295175公報等)。このような方法によれば、二酸化炭素とアルカリとを反応させて改質ガス中の二酸化炭素量を削減することにより、改質ガス中の水素濃度を上昇させることができる。
【0005】
【発明が解決しようとする課題】
しかしながら、このように二酸化炭素とアルカリとを反応させることで改質ガス中の二酸化炭素量を削減しても、水素濃度が高まることによる所定の効果(反応に寄与しない他の成分の存在によって反応が妨げられるのを防ぐ効果)は得られるものの、二酸化炭素を除去することだけにより水素分圧を充分に高めることは困難であって、充分に水素分圧を高めるためには、改質ガスの総量を増やす必要があった。改質ガスの総量を増やそうとすると、改質ガスを生成するための原燃料である炭化水素の消費量が増大してしまう(運転効率が低下してしまう)ため、採用し難い場合がある。したがって、このような運転効率の低下を伴うことなく、燃料電池の電池性能をさらに向上させることが望まれていた。
【0006】
本発明の水素富化装置および燃料電池装置は、こうした問題を解決し、水素を含有するガス中の水素分圧をより高めることを目的として、次の構成を採った。
【0007】
【課題を解決するための手段およびその作用・効果】
本発明の水素富化装置は、水素と二酸化炭素とを含有する混合ガスの供給を受け、前記混合ガスよりも水素濃度の高い水素リッチガスを排出する水素富化装置であって、
アルカリ金属あるいは該アルカリ金属の化合物から成り、前記水素富化装置における所定の運転条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、充分に安定である材料から成る被膜によってさらにその表面を覆ったアルカリ金属塊を備える水素生成部と、
前記水素生成部に水を供給する水供給手段と、
前記水素生成部において、前記アルカリ金属塊を覆う前記被膜を損傷させ、該被膜の損傷の結果、前記アルカリ金属塊を構成する前記アルカリ金属あるいは前記アルカリ金属の化合物と、前記水供給手段により供給された水とを接触させて、前記アルカリ金属の水酸化物と水素とを生じる反応を起こさせ、該反応で生じた前記アルカリ金属の水酸化物が溶解した水溶液を生じる反応誘発手段と、
前記混合ガスの供給を受け、前記アルカリ金属の水酸化物が溶解する水溶液中の前記アルカリ金属の水酸化物と、前記混合ガス中の二酸化炭素とを反応させることによって、前記混合ガスから二酸化炭素を除去し、前記混合ガスから、二酸化炭素量を低減した二酸化炭素低減ガスを生成する二酸化炭素除去手段と、
前記二酸化炭素除去手段が生成した前記二酸化炭素低減ガスと、前記誘発手段における前記反応で生じた前記水素とを混合し、前記水素リッチガスとして排出する水素リッチガス排出手段と
を備えることを要旨とする。
【0008】
以上のように構成された本発明の水素富化装置は、アルカリ金属あるいは該アルカリ金属の化合物から成り、前記水素富化装置における所定の運転条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、充分に安定である材料から成る被膜によってさらにその表面を覆ったアルカリ金属塊を備える水素生成部に対して水を供給する。水素生成部では、前記アルカリ金属塊を覆う前記被膜を損傷させ、該被膜の損傷の結果、前記アルカリ金属塊を構成する前記アルカリ金属あるいは前記アルカリ金属の化合物と、供給された水とを接触させて、前記アルカリ金属の水酸化物と水素とを生じる反応を起こさせ、該反応で生じた前記アルカリ金属の水酸化物が溶解した水溶液を生じる。また、水素と二酸化炭素とを含有する混合ガスの供給を受け、前記アルカリ金属の水酸化物が溶解する水溶液中の前記アルカリ金属の水酸化物と、前記混合ガス中の二酸化炭素とを反応させることによって、前記混合ガスから二酸化炭素を除去し、前記混合ガスから、二酸化炭素量を低減した二酸化炭素低減ガスを生成する。さらに、この二酸化炭素低減ガスと、前記反応で生じた前記水素とを混合し、前記水素リッチガスとして排出する。
【0009】
このような水素富化装置によれば、アルカリ金属あるいは該アルカリ金属の化合物と、水との反応により生じたアルカリ金属の水酸化物を用いて、水素と二酸化炭素とを含有する混合ガス中の二酸化炭素を除去する。したがって、混合ガス中の二酸化炭素濃度を充分に低くすることができる。また、上記反応により生じた水素を、混合ガスの二酸化炭素濃度を低減して得られる二酸化炭素低減ガスに混合するため、水素と二酸化炭素とを含有する混合ガスを基にして、二酸化炭素濃度が充分に低く、水素分圧が充分に高いガスを得ることができる。
【0010】
水素と二酸化炭素とを含有する混合ガスを得る方法としては、炭化水素を改質する方法が良く知られているが、このような改質ガスを混合ガスとして本発明を適用すれば、炭化水素を改質して得られる改質ガスから、二酸化炭素濃度が充分に低く極めて水素純度の高いガスを得ることができる。
【0011】
ここで、水素生成部が備えるアルカリ金属塊は、粒状、球形、不定形などいかなる形状であってもよく、前記被膜が損傷された結果、アルカリ金属と水とが反応するのを妨げない形状であればよい。また、前記被膜を構成する充分に安定である材料とは、前記水素富化装置における所定の条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、これらのうちの少なくとも一つ、あるいは酸素など周囲の動作環境中に存在する物質との間で化学反応を起こす活性が充分に低く、非所望時に溶融や気化などの変化を起こさない材料であればよい。このような性質の材料によって被膜を形成することによって、非所望時にアルカリ金属と水とが接触して反応を起こすのを防ぐことができる。
【0012】
本発明の水素富化装置において、前記アルカリ金属は、ナトリウムまたはカリウムであることとしてもよい。
【0013】
また、本発明の水素富化装置において、前記アルカリ金属の化合物は、前記アルカリ金属の水素化物であることとしてもよい。アルカリ金属の水素化物も、水と反応して水素とアルカリ金属の水酸化物を生じる活性が充分に高い。
【0014】
このようなアルカリ金属あるいはアルカリ金属の化合物を用いれば、上記反応で生じるアルカリ金属の水酸化物や、これが二酸化炭素と反応して生じるアルカリ金属の炭酸塩は、水に対する溶解度が充分に高いため、上記反応で生じたアルカリ金属の水酸化物やアルカリ金属の炭酸塩を、水溶液の状態で、容易に移送し、貯蔵し、その後の反応に供し、また排出することができて有利である。
【0015】
また、本発明の水素富化装置において、前記反応誘発手段は、物理的な力によって前記被膜を損傷させることとしてもよい。
【0016】
本発明の第1の燃料電池装置は、水素を含有する燃料ガスと、酸素を含有する酸化ガスの供給を受け、電気化学反応により起電力を得る燃料電池を備える燃料電池装置であって、
請求項1ないし4いずれか記載の水素富化装置と、
前記水素富化装置が排出した前記水素リッチガスを、前記燃料ガスとして前記燃料電池に供給する燃料ガス供給手段とを備えることを要旨とする。
【0017】
以上のように構成された本発明の第1の燃料電池装置は、請求項1ないし4記載の水素富化装置が排出した水素リッチガスを、燃料ガスとして燃料電池に供給し、燃料電池では、この燃料ガスと共に酸素を含有する酸化ガスをさらに供給され、電気化学反応により起電力を得る。
【0018】
このような燃料電池装置によれば、本発明の水素富化装置を用いて、水素と二酸化炭素とを含有する混合ガスを基にして、より水素濃度および水素分圧が高い水素リッチガスを生じ、この水素リッチガスを燃料ガスとして燃料電池で発電を行なうため、燃料電池の性能をより向上させることができる。例えば、燃料電池に供給する燃料ガスとしては、炭化水素を改質した改質ガスが広く知られているが、水素と二酸化炭素とを含有するこのような改質ガスを、上記水素富化装置によってより水素濃度を高めて燃料電池に供給することにより、燃料電池の性能を大きく向上させることができる。
【0019】
このような本発明の第1の燃料電池装置において、前記燃料電池は、その電解質層を構成する電解液として、前記アルカリ金属の水酸化物と同種の水酸化物の水溶液を用いるアルカリ型燃料電池であって、
前記燃料電池の電解液を交換するために、前記反応誘発手段による前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液を、新たな電解液として前記電解質層に供給する電解液交換手段をさらに備えることとしてもよい。
【0020】
このような場合には、既述した効果に加えてさらに、以下のような効果を奏する。すなわち、水素富化装置が備える反応誘発手段による前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液を、新たな電解液として、アルカリ型燃料電池の電解質層に供給することができるため、アルカリ型燃料電池の電解液が劣化して電池性能が低下してしまうのを抑えることができる。
【0021】
このような燃料電池装置において、
前記燃料電池が備える前記電解液の劣化状態を検知する電解液劣化状態検知手段と、
前記反応誘発手段による前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液の流路を切り替えて、該水溶液を、前記電解液交換手段によって前記電解液の交換に用いるか、あるいは、前記二酸化炭素除去手段によって前記混合ガス中の二酸化炭素の除去に用いるかを、選択可能である切り替え手段と、
前記電解液劣化状態検知手段が前記電解液の劣化を検知したときに、前記水溶液を用いて前記電解液の交換を行なうように、前記切り替え手段を切り替える制御手段と
をさらに備えることとしてもよい。
【0022】
このような構成とすれば、アルカリ型燃料電池を備える燃料電池装置において、燃料電池の電解液の劣化を検知したときには、前記アルカリ金属の水酸化物が溶解する水溶液を用いて前記電解液の交換を行なうことができるので、電解液の劣化に起因して電池性能が低下してしまうのを防ぐことができる。また、それ以外の場合には、前記アルカリ金属の水酸化物が溶解する水溶液を用いて混合ガス中の二酸化炭素の除去を行ない、二酸化炭素が低減されたガスを燃料ガスとして燃料電池に供給することができるため、燃料ガス中に含まれる二酸化炭素によって電解液が劣化してしまうのを抑えることができる。
【0023】
本発明の第2の燃料電池装置は、
水素を含有する燃料ガスと、酸素を含有する酸化ガスの供給を受け、電気化学反応により起電力を得る燃料電池を備える燃料電池装置であって、
少なくとも水素を含有する水素含有ガスの供給を受け、水素濃度の高い水素リッチガスを排出する水素富化部と、
前記水素富化部が排出した前記水素リッチガスを、前記燃料ガスとして前記燃料電池に供給する燃料ガス供給手段とを備えると共に、
前記水素富化部は、
アルカリ金属あるいは該アルカリ金属の化合物から成り、前記水素富化部における所定の運転条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、充分に安定である材料から成る被膜によってさらにその表面を覆ったアルカリ金属塊を備える水素生成部と、
前記水素生成部に水を供給する水供給手段と、
前記水素生成部において、前記アルカリ金属塊を覆う前記被膜を損傷させ、該被膜の損傷の結果、前記アルカリ金属塊を構成する前記アルカリ金属あるいは前記アルカリ金属の化合物と、前記水供給手段により供給された水とを接触させて、前記アルカリ金属の水酸化物と水素とを生じる反応を起こさせ、該反応で生じた前記アルカリ金属の水酸化物が溶解した水溶液を生じる反応誘発手段と、
前記反応誘発手段における前記反応で生じた前記水素と、前記水素含有ガスとを混合し、前記水素リッチガスとして排出する水素リッチガス排出手段とを備え、
前記燃料電池は、その電解質層を構成する電解液として、前記アルカリ金属の水酸化物と同種の水酸化物の水溶液を用いるアルカリ型燃料電池であって、
前記燃料電池の電解液を交換するために、前記反応誘発手段における前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液を、新たな電解液として前記電解質層に供給する電解液交換手段をさらに備えることを要旨とする。
【0024】
以上のように構成された本発明の第2の燃料電池装置は、アルカリ金属あるいは該アルカリ金属の化合物から成り、水素富化部における所定の運転条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、充分に安定である材料から成る被膜によってさらにその表面を覆ったアルカリ金属塊を備える水素生成部に対して水を供給する。水素生成部では、前記アルカリ金属塊を覆う前記被膜を損傷させ、該被膜の損傷の結果、前記アルカリ金属塊を構成する前記アルカリ金属あるいは前記アルカリ金属の化合物と、供給された水とを接触させて、前記アルカリ金属の水酸化物と水素とを生じる反応を起こさせ、該反応で生じた前記アルカリ金属の水酸化物が溶解した水溶液を生じる。このアルカリ金属の水酸化物が溶解した水溶液は、この燃料電池装置が備えるアルカリ型燃料電池の電解質層に対して、新たな電解液として供給される。また、前記反応により生じた水素と、前記混合ガスとを混合し、前記混合ガスよりも水素濃度が高い水素リッチガスを生じる。前記燃料電池は、この水素リッチガスを燃料ガスとして供給され、酸素を含有する酸化ガスをさらに供給されて、電気化学反応により起電力を得る。
【0025】
このような燃料電池装置によれば、水素富化部が備える反応誘発手段による前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液を、新たな電解液として、アルカリ型燃料電池の電解質層に供給することができるため、アルカリ型燃料電池の電解液が劣化して電池性能が低下してしまうのを抑えることができる。さらに、前記反応で生じた水素を、前記水素含有ガスと混合して水素リッチガスとし、この水素リッチガスを燃料ガスとして燃料電池に供給するため、前記水素含有ガスが水素以外の成分を含有する場合にはより水素濃度が高いガスを燃料ガスとすることができると共に、水素分圧が高いガスを燃料ガスとすることができるため、燃料電池の性能をさらに向上させることができる。また、前記反応で生じた水素を前記水素含有ガスと混合して用いることにより、所定量の発電に要する前記水素含有ガスの量を削減することができる。
【0026】
このような本発明の第2の燃料電池装置において、
前記燃料電池が備える前記電解液の劣化状態を検知する電解液劣化状態検知手段をさらに備え、
前記電解液交換手段は、前記電解液劣化状態検知手段が前記電解液の劣化を検知したときに、前記水溶液を用いて前記電解液の交換を行なうように、前記水溶液を前記燃料電池に供給することとしても良い。
【0027】
このような構成とすれば、電解液の劣化を検知した上で前記電解液の交換を行なうため、電解液の劣化に起因して電池性能が低下してしまうのを確実に防ぐことができる。
【0028】
なお、本発明の第1および第2の燃料電池装置において、電解液劣化の検知は、例えば、電解液のpHを検出することによって容易に検知することができる。アルカリ金属の水酸化物の水溶液からなる電解液が、燃料電池に供給されるガス中の二酸化炭素によって劣化すると、上記アルカリ金属の水酸化物と二酸化炭素とが反応し、これに伴って電解液のpHの値が次第に小さくなる。したがって、電解液のpHを検出することで、電解液の劣化状態を知ることができる。
【0029】
【発明の実施の形態】
以上説明した本発明の構成・作用を一層明らかにするために、以下本発明の実施の形態を実施例に基づき説明する。
(1)装置の全体構成:
図1は、本発明の好適な第1実施例である水素富化部10の構成を表わす説明図、図2は、この水素富化部10を備える燃料電池装置20の構成を例示する概略構成図である。まず、図2に基づいて、燃料電池装置20の構成について説明する。燃料電池装置20は、メタノールを貯蔵する原燃料タンク22、水を貯蔵する水タンク24、メタノールおよび水を気化するための蒸発器32、蒸発器32に併設されて燃焼ガスを発生するバーナ28、改質反応によって水素を含有する改質ガスを生成する改質器34、改質ガス中の水素濃度を高める水素富化部10、電気化学反応により起電力を得る燃料電池40、空気を圧縮して燃料電池40に供給するブロワ38、コンピュータにより構成される制御部50を主な構成要素とする。以下、それぞれの構成要素について順に説明する。
【0030】
原燃料タンク22に貯蔵されるメタノールは、蒸発器32およびバーナ28に供給される。原燃料タンク22と蒸発器32とを接続するメタノール流路60には第2ポンプ71が設けられており、メタノール流路60から分岐してバーナ28に通じるメタノール分岐路61には第1ポンプ70が設けられている。第1ポンプ70および第2ポンプ71は、制御部50に接続されており、制御部50から出力される信号によって駆動され、蒸発器32およびバーナ28に供給されるメタノールの量を制御する。
【0031】
水タンク24に貯蔵される水は、蒸発器32および水素富化部10に供給される。水タンク24と蒸発器32とを接続する水流路62には第3ポンプ72が設けられており、水流路62から分岐して水素富化部10に通じる水分岐路74には第4ポンプ73が設けられている。第3ポンプ72および第4ポンプ73は、制御部50に接続されており、制御部50から出力される信号によって駆動され、蒸発器32および水素富化部10に供給する水量を調節する。水流路62は、メタノール流路60と合流して原燃料供給路63となり、所定量ずつ混合されたメタノールと水とが、蒸発器32に供給される。
【0032】
蒸発器32は、原燃料タンク22から供給されるメタノールと、水タンク24から供給される水とを気化させる装置であり、上記したようにメタノールと水の供給を受けて、昇温したメタノールと水との混合気体を排出する。蒸発器32から排出された水蒸気とメタノールとの混合気体は、原燃料ガス供給路64を介して改質器34に供給される。蒸発器32には、メタノールおよび水を気化させる熱源としてバーナ28が併設されている。バーナ28は、燃焼のための燃料を、燃料電池40のアノード側および原燃料タンク22から供給される。燃料電池40は、メタノールを改質器34で改質して生成した水素を含有するガスを燃料として電気化学反応を行なうが、燃料電池40に供給されたすべての水素が電気化学反応において消費されるわけではなく、消費されずに残った水素を含む燃料排ガスは燃料排出路67に排出される。バーナ28は、この燃料排出路67に接続して燃料排ガスの供給を受け、消費されずに残った水素を完全燃焼させて燃料の利用率の向上を図っている。通常はこのような排燃料だけではバーナ28における燃焼反応のための燃料として不足するため、この不足分に相当する燃料、および燃料電池装置20の起動時のように燃料電池40から排燃料の供給を受けられないときの、バーナ28における燃焼反応のための燃料は、既述したメタノール分岐路61を介して、原燃料タンク22から供給される。
【0033】
改質器34は、供給されたメタノールと水との混合気体である原燃料ガスを改質して、水素を含有する改質ガスを生成する。以下に、メタノールの水蒸気改質反応を表わす反応式を示す。
【0034】
CH3OH+H2O → CO2+3H2−49.5(kJ/mol) …(1)
【0035】
改質器34は、このような改質反応を促進する改質触媒を備えている。本実施例では、メタノールの水蒸気改質反応を促進する触媒としてCu−Zn触媒を用いた。改質器34内で上記改質触媒を保持する形状としては、種々のものを選択可能であるが、例えば、この改質触媒を粒子状に成形して成るペレットを改質器の内部に充填することとしてもよいし、あるいは、改質器をハニカム状に形成してその表面に上記改質触媒を担持させることとしてもよい。本実施例の改質器34では、ハニカム上に改質触媒を担持することとした。また、改質器34は、さらに、図示しない熱源(例えばヒータ)を備えている。改質器34で進行する水蒸気改質反応は(1)式に示したように吸熱反応であるため、改質器34で水素を生成する際には、この熱源によって、水蒸気改質反応で要する熱を賄っている。あるいは、バーナ28を備える蒸発器32において、メタノールと水とからなる混合ガスを充分に昇温させ、水蒸気改質反応で要する熱を混合ガス自身によって蒸発器32から改質器34に持ち込むこととしてもよい。改質器34に導入されたメタノールと水とからなる混合気体は、(1)式に示す水蒸気改質反応によって水素を含有する改質ガスとなり、改質ガス流路65を介して水素富化部10に供給される。
【0036】
水素富化部10は、水素を含有する改質ガスの供給を受けて、改質ガス中の二酸化炭素を除去すると共に、この改質ガスにさらに水素を加えることで、ガス中の水素濃度がより高い水素リッチガスとする装置である。この水素富化部10の構成は、本発明の要部に対応するものであり、後で詳しく説明する。
【0037】
水素富化部10で上記のように水素濃度が上昇した水素リッチガスは、燃料ガス供給路66によって燃料電池40に導かれ、燃料ガスとしてアノード側における電池反応に供される。なお、燃料電池40で電池反応に供された後の燃料排ガスは、既述したように燃料排出路67に排出されてバーナ28に導かれ、この燃料排ガス中に残っている水素が燃焼のための燃料として消費される。一方、燃料電池40のカソード側における電池反応に関わる酸化ガスは、ブロワ38から酸化ガス供給路68を介して圧縮空気として供給される。電池反応に用いられた残りの酸化排ガスは、酸化排ガス路69を介して外部に排出される。
【0038】
燃料電池40は、固体高分子電解質型の燃料電池であり、構成単位である単セルを複数積層したスタック構造を有している。各々の単セルのアノード側に水素を含有する燃料ガスを供給し、カソード側に酸素を含有する酸化ガスを供給することで、電気化学反応が進行し、起電力を生じる。以下に、固体高分子型燃料電池で進行する電気化学反応を示す。
【0039】
2 → 2H++2e- …(2)
(1/2)O2+2H++2e- → H2O …(3)
2+(1/2)O2 → H2O …(4)
【0040】
(2)式はアノード側で進行する反応、(3)式はカソード側で進行する反応を示し、燃料電池全体では(4)式に示す反応が進行する。燃料電池40が生じた電力は、燃料電池40に接続される所定の負荷に供給される。
【0041】
制御部50は、マイクロコンピュータを中心とした論理回路として構成され、詳しくは、予め設定された制御プログラムに従って所定の演算などを実行するCPU54と、CPU54で各種演算処理を実行するのに必要な制御プログラムや制御データ等が予め格納されたROM56と、同じくCPU54で各種演算処理をするのに必要な各種データが一時的に読み書きされるRAM58と、燃料電池装置20が備える各種センサからの検出信号を入力すると共にCPU54での演算結果に応じて既述したブロワ38やポンプなどに駆動信号を出力する入出力ポート52等を備える。制御部50は、このように各種の信号を入出力することによって、燃料電池装置20全体の運転状態を制御する。
【0042】
(2)第1実施例としての水素富化部10の構成:
図1に示すように、水素富化部10は、アルカリ金属貯蔵部12と、アルカリ水溶液貯蔵部14とを備えている。水素富化部10は、アルカリ金属貯蔵部12において水素を生成すると共に、アルカリ水溶液貯蔵部14において改質ガス中の二酸化炭素の低減を行ない、上記生成した水素と、二酸化炭素を低減した改質ガスとを混合して、水素濃度および水素分圧の高い燃料ガスとして排出する。
【0043】
既述したように、水タンク24に貯蔵した水を導く水流路62から分岐する水分岐路74は、水素富化部10に接続しているが、水素富化部10内では、上記水分岐路74は、アルカリ金属貯蔵部12に接続している。アルカリ金属貯蔵部12は、その内部に、アルカリ金属から成るアルカリ金属塊13を備えている。アルカリ金属塊13は、アルカリ金属の固まりであって、その表面は、樹脂から成る被膜18によって覆われている。なお、本実施例では、アルカリ金属塊13を構成するアルカリ金属として、ナトリウムを採用した。
【0044】
図1には記載を省略しているが、アルカリ金属貯蔵部12は、上記アルカリ金属塊13が備える被膜18を徐々に損傷させるための構造を備えている。図3は、アルカリ金属塊13が備える被膜18を損傷させる動作を表わす説明図である。アルカリ金属貯蔵部12は、その内部に潰し棒15を備えており、この潰し棒15をアルカリ金属塊13に接触させて所定の押圧力を加えることで、アルカリ金属塊13表面の被膜18を徐々に損傷させることができる。この潰し棒15の動作、すなわち潰し棒15によって被膜18を損傷させる速度は、制御部50によって制御されている。
【0045】
上記したように、アルカリ金属貯蔵部12には水タンク24から水が供給され、供給された水は、潰し棒15によってアルカリ金属塊13の被膜18が損傷されるのにしたがって、アルカリ金属塊13を構成するナトリウムと反応する。以下に、ナトリウムと水との反応を示す。
【0046】
Na + H2O → NaOH +(1/2)H2 …(5)
【0047】
上記(5)式に示すように、アルカリ金属貯蔵部12では、ナトリウムと水とが反応することで水素と水酸化ナトリウムとが生じる。生じた水素は、アルカリ金属貯蔵部12に接続する水素排出路19に排出される。また、生じた水酸化ナトリウムは、アルカリ金属貯蔵部12に供給された上記水中に溶解するため、アルカリ金属塊13と接触するようアルカリ金属貯蔵部12に供給された水は、水酸化ナトリウム水溶液となる。アルカリ金属貯蔵部12は、さらに、アルカリ水溶液供給路16を介してアルカリ水溶液貯蔵部14に接続しており、アルカリ金属貯蔵部12で生成された上記水酸化ナトリウム水溶液は、アルカリ水溶液供給路16を介してアルカリ水溶液貯蔵部14に送られる。
【0048】
なお、アルカリ水溶液供給路16には、制御部50に接続される図示しないバルブが設けられており、アルカリ金属貯蔵部12からアルカリ水溶液貯蔵部14に送られる水酸化ナトリウムの量を制御している。制御部50は、上記バルブと、既述した第4ポンプ73および潰し棒15の動作を制御することで、充分量の水をアルカリ金属貯蔵部12に供給しつつ所望の速度で被膜18を損傷させて、所望量の水素を生成すると共に、濃度が上昇した水酸化ナトリウム水溶液をアルカリ水溶液貯蔵部14に送り、さらなる水の供給を行なうことで、引き続きアルカリ金属貯蔵部12で水素を生成可能としている。
【0049】
アルカリ水溶液貯蔵部14は、上記したようにアルカリ金属貯蔵部12から送られた水酸化ナトリウム水溶液を貯蔵すると共に、改質ガスの供給を受ける部材である。図2に示したように、水素富化部10は、改質ガス流路65を介して改質器34から改質ガスを供給されるが、水素富化部10では、改質ガス流路65はアルカリ水溶液貯蔵部14に接続されており、改質ガスはアルカリ水溶液貯蔵部14に供給される。アルカリ水溶液貯蔵部14では、貯蔵した水酸化ナトリウム水溶液中に改質ガスをバブリングさせることで両者を接触させる。このように水酸化ナトリウム水溶液と改質ガスとを接触させると、改質ガス中の二酸化炭素と水酸化ナトリウムとが容易に反応する。以下に、この反応式を示す。
【0050】
2NaOH + CO2 → Na2CO3 + H2O …(6)
【0051】
水酸化ナトリウムと二酸化炭素とが反応して生じた炭酸ナトリウムは、アルカリ水溶液貯蔵部14に貯蔵される水酸化ナトリウム水溶液中に容易に溶解すると共に、上記反応で生じた水は、アルカリ水溶液貯蔵部14に貯蔵される水酸化ナトリウム水溶液中に混合される。このように、水酸化ナトリウムと二酸化炭素とが反応することによって、二酸化炭素が除去された改質ガスは、アルカリ水溶液貯蔵部14から改質ガス排出路17に排出される。この改質ガス排出路17は、既述した水素排出路19と合流し、二酸化炭素が除去された改質ガスは、アルカリ金属貯蔵部12で生成した水素と混合される。改質ガス排出路17と水素排出路19とは合流して既述した燃料ガス供給路66となり、二酸化炭素を除去した改質ガスと水素との混合ガスは、燃料ガスとして燃料電池40に供給される。
【0052】
以上のように構成された本実施例の水素富化部10を備える燃料電池装置20によれば、炭化水素を改質して得た水素と二酸化炭素とを含有する改質ガス中の二酸化炭素量を低減し、さらに、この二酸化炭素量を低減した改質ガスに水素を付加して燃料ガスとするため、極めて水素濃度が高く、水素分圧も充分に高いガスを燃料ガスとして燃料電池に供給することができ、燃料電池の性能を高めることができる。ここで、二酸化炭素を除去するために用いる水酸化ナトリウム水溶液は、水素を生成する過程で得られるため、二酸化炭素の除去のために予め水酸化ナトリウム水溶液を備える必要が無く、アルカリ金属塊を備えておけば、従来から炭化水素の改質に用いていた水をさらに流用するだけで、水素のさらなる生成と改質ガス中の二酸化炭素の除去との両方を行なうことができる。したがって、移動体の移動用電源として燃料電池を用い、燃料電池装置を移動体に搭載する場合などには、装置を過度に大型化することなく、電池性能を大きく向上させることができるため、特に有利である。
【0053】
また、ナトリウムからなるアルカリ金属塊は、水と反応することで多量の水素を発生するため、本実施例によれば、所定量の電力を燃料電池から得るために必要な炭化水素量を削減することができる。したがって、燃料電池装置を移動体に搭載する場合には、移動体の航続距離(所定量の炭化水素を改質のための原燃料として搭載した場合に、この原燃料を改質して得た水素を燃料として燃料電池の発電を行ない、移動体が移動可能な距離)を充分に延ばすことができる。
【0054】
なお、既述したように、アルカリ水溶液貯蔵部14では、その内部に貯蔵される水酸化ナトリウム水溶液中の水酸化ナトリウムは、改質ガス中の二酸化炭素と反応することによって消費され、この反応によって生じた炭酸ナトリウムは、アルカリ水溶液貯蔵部14に貯蔵される水酸化ナトリウム水溶液中に溶解する。そのため、アルカリ水溶液貯蔵部14では、アルカリ金属貯蔵部12から新たに水酸化ナトリウム水溶液が供給されるのに従い、内部の水酸化ナトリウム水溶液を入れ替えることが望ましい。これにより、アルカリ水溶液貯蔵部14内は、充分量の水酸化ナトリウムを常に備えることができ、改質ガス中の二酸化炭素を充分に取り除くことができる状態を維持することができる。
【0055】
また、上記実施例では、アルカリ水溶液貯蔵部14において、水酸化ナトリウム水溶液中に改質ガスをバブリングさせることで両者を直接に接触させて、改質ガス中の二酸化炭素と水酸化ナトリウムとを反応させ、改質ガスから二酸化炭素を除去したが、水酸化ナトリウム水溶液と改質ガスとは間接的に接触させることとしても良い。例えば、アルカリ水溶液貯蔵部14内に、気体は通過可能であって液体は通過不能である通気性の膜を備える流路を設け、この流路内に改質ガスを通過させて、上記膜を介して改質ガス中の二酸化炭素を水酸化ナトリウムと反応させて、改質ガス中の二酸化炭素を除去することとしても良い。
【0056】
さらに、本実施例の水素富化部10において、アルカリ金属貯蔵部12が備えるアルカリ金属塊13の形状は、粒状、球形、不定形など、いかなる形状であっても良い。被膜18を少なくとも部分的に除去した際に、アルカリ金属塊13を構成するナトリウムが、充分な広さの接触面において水と反応可能であればよい。アルカリ金属塊13は、その大きさも任意に選択することができ、個々のアルカリ金属塊13の大きさと、アルカリ金属貯蔵部12に予め貯蔵すべきナトリウムの総量とに基づいて、アルカリ金属貯蔵部12に貯蔵するアルカリ金属塊13の数量を決めればよい。ここで、アルカリ金属塊13においてナトリウムを被覆する被膜18は、樹脂により形成することとしたが、この被膜18を構成する材料は、アルカリ金属貯蔵部12内で、ナトリウムと水とが反応するのを充分に妨げることができ、さらに、アルカリ金属塊13を構成するナトリウムや供給された水と反応したり、空気中の酸素などと反応して変質し難い材料であればよい。潰し棒15によって被膜18を損傷することによってナトリウムと水とが接触し、(5)式に示した反応が進行するようになる構成とすることで、所望量の水素を生成させることが可能となる。
【0057】
また、上記実施例では、アルカリ金属塊13を構成するナトリウムと水とを反応させる際には、潰し棒15でアルカリ金属塊13に押圧力を加えるという方法で、アルカリ金属塊13の表面を覆う被膜18を損傷させることとしたが、被膜18を除去する方法は、被膜18を少なくとも部分的に取り除いてナトリウムと水とを反応可能に接触させることができれば、いかなる方法でも良い。実施例のような物理的な力を加えることで被膜を損傷させる方法以外でも構わない。例えば、被膜18が、融点の比較的低い材料で形成されている場合には、アルカリ金属塊13を所定の温度にまで加熱して被膜を融解させるといった方法を採ることもできる。
【0058】
また、上記実施例では、アルカリ金属貯蔵部12が備えるアルカリ金属塊13を構成する材料としてナトリウムを用いたが、水素化ナトリウムなどの化合物を用いても良い。表面を被膜18で覆ったアルカリ金属塊13を、水素化ナトリウムによって形成しても、上記実施例と同様の動作を行なうことができる。以下に、水素化ナトリウムでアルカリ金属塊13を形成した場合に、アルカリ金属貯蔵部12において、水素化ナトリウムと水との間で進行する反応(上記実施例の(5)式に対応する反応)を示す。
【0059】
NaH + H2O → NaOH + H2 …(7)
【0060】
また、アルカリ金属塊13を構成する材料として、カリウムなど他種のアルカリ金属や、その水素化物などの化合物を用いても良く、水と反応させることで容易に水素を生成すると共に、その水酸化物が二酸化炭素と容易に反応可能であれば、本発明を適用することができる。
【0061】
また、改質器34において炭化水素を改質することで生成される改質ガスは、通常は所定量の一酸化炭素を含有しているが、本実施例の燃料電池装置が備える燃料電池のような固体高分子型燃料電池では特に、供給する燃料ガス中の一酸化炭素濃度を極めて低くすることが求められる。したがって、上記実施例の燃料電池装置20において、改質ガス中の一酸化炭素濃度を充分に低減したうえで燃料電池40に供給するために、水素富化部10の上流側あるいは下流側に、さらに一酸化炭素低減部を設けても良い。すなわち、改質ガス中の一酸化炭素を選択的に酸化する一酸化炭素選択酸化触媒を備える一酸化炭素低減部を設け、改質ガス中の一酸化炭素を酸化することによって、改質ガス中の一酸化炭素量を低減することとしてもよい。
【0062】
なお、上記実施例では、アルカリ金属貯蔵部12とアルカリ水溶液貯蔵部14とを別体で設け、前者では(5)式の反応を進行させることで水酸化ナトリウムと水素とを生成し、後者では(6)式の反応を進行させることで改質ガス中の二酸化炭素の除去を行なったが、両者を一体で形成してもよい。アルカリ金属塊13表面の被膜18を損傷させることによって(5)式の反応を進行させて所望量の水素を生じさせることができ、また、改質ガス中の二酸化炭素量を充分に低減可能であれば、(5)式の反応と(6)式の反応とは、同一の反応槽内で進行させることとしても良い。
【0063】
また、上記実施例の水素富化部10を用いれば、改質ガス中の二酸化炭素量を低減することができるので、燃料電池が備える電解質の性質などから燃料ガス中の二酸化炭素濃度が低いこと(あるいは燃料ガスが二酸化炭素をほとんど含まないこと)が要求される燃料電池においても、燃料ガスに改質ガスを適用することがより容易となる。
【0064】
(3)第2実施例としての燃料電池装置120の構成:
以下に、図4に基づいて、第2実施例としての水素富化部110を備える燃料電池装置120について説明する。燃料電池装置120は、第1実施例の燃料電池装置20とほぼ同様の構成を備えており、燃料電池装置20と共通する部材については、同じ部材番号を付して詳しい説明を省略する。燃料電池装置120は、燃料電池40に代えて燃料電池140を備えている。この燃料電池140は、水酸化ナトリウムを電解液として電解質層に備えるアルカリ型燃料電池である。以下に、アルカリ型燃料電池で進行する電気化学反応を示す。
【0065】
2 + 2OH- → 2H2O + 2e- …(8)
(1/2)O2 + H2O + 2e- → 2OH- …(9)
【0066】
(8)式はアノード側で進行する反応を示し、(9)式はカソード側で進行する反応を示し、電池全体では既述した(4)式に示す反応が進行する。このようなアルカリ型燃料電池としては、電解液の保持方法によって、マトリクス型と自由電解液型とが知られているが、本実施例の燃料電池140は、従来知られる自由電解液型と同様の構成を有しており、電解液の交換が可能となっている。
【0067】
さらに、本実施例の燃料電池装置120は、水素富化部10に代えて、水素富化部110を備えている。水素富化部110は、後述するように、水素富化部10とほぼ同様の構成を備えているが、燃料電池140の電解質層に通じる電解液供給路80と接続しており、この電解液供給路80を介して、ナトリウムと水との反応で生じた水酸化ナトリウムの水溶液を、燃料電池140が備える電解質層に供給することが可能となっている。すなわち、燃料電池140は、水素富化部110から水酸化ナトリウム水溶液の供給を受けて電解液の交換を行なうことができる。燃料電池140内で電解液として保持されていた液は、上記電解液の交換の動作に伴って、電解液排出路81を介して燃料電池140外に排出される。
【0068】
燃料電池装置120では、改質器34で生成された改質ガスが、水素富化部110においてさらに水素濃度が上昇され、燃料ガスとして燃料電池140に供給される。また、燃料電池装置120は、ブロワ38に代えて、酸素ガスを貯蔵する酸素タンク26を備えており、この酸素タンク26に貯蔵する酸素を、酸化ガス供給路68を介して酸化ガスとして燃料電池140に供給する。
【0069】
(4)水素富化部110の構成:
図5は、水素富化部110の構成を表わす説明図である。本実施例の水素富化部110は、第1実施例の水素富化部10とほぼ同様の構成を有しており、共通する部材については同じ部材番号を付した。水素富化部110では、アルカリ金属貯蔵部12とアルカリ水溶液貯蔵部14とを接続するアルカリ水溶液供給路16において、切り替え弁11を備えている。この切り替え弁11において、アルカリ水溶液供給路16は、既述した電解液供給路80と接続している。切り替え弁11は、制御部50に接続されてその切り替え状態が制御されており、切り替え弁11を切り替えることによって、アルカリ金属貯蔵部12から排出された水酸化ナトリウム水溶液をアルカリ水溶液貯蔵部14に供給するか、アルカリ金属貯蔵部12から排出された水酸化ナトリウム水溶液を電解液として燃料電池140に供給するかを切り替えることができる。
【0070】
このような水素富化部110では、水タンク24から水分岐路74を介してアルカリ金属貯蔵部12に供給された水は、第1実施例と同様に、アルカリ金属塊13を構成するナトリウムと反応して、水素と水酸化ナトリウムを生じる。生じた水酸化ナトリウムは、水溶液の状態でアルカリ水溶液供給路16に排出され、切り替え弁11の切り替え状態に応じて、既述したように、燃料電池140とアルカリ水溶液貯蔵部14とのいずれかに供給される。アルカリ水溶液貯蔵部14に供給された水酸化ナトリウム水溶液は、第1実施例と同様に、改質器34から改質ガス流路65を介して供給された改質ガス中の二酸化炭素量を削減するために用いられる。アルカリ水溶液貯蔵部14を通過した改質ガスは、アルカリ金属貯蔵部12で生成された水素と混合されて、燃料ガスとして燃料電池140に供給される。
【0071】
なお、切り替え弁11の切替の動作は、燃料電池140の電解液の劣化の程度に応じて行なうこととした。アルカリ型燃料電池では、供給するガス中に二酸化炭素が混在している場合には、この二酸化炭素が電解液中の水酸化物イオンと反応する。以下に、二酸化炭素と水酸化物イオンの反応式を示す。
【0072】
2OH- + CO2 → CO3 2- + H2O …(10)
【0073】
このように、燃料電池140に供給されるガス中に二酸化炭素が含まれると、電解液中の水酸化物イオンと二酸化炭素とが反応して炭酸イオンが生成し、これが電解液中に蓄積され、炭酸イオンによって電解液のアルカリの性質が次第に希薄となる(以後、これを電解液の劣化という)。アルカリ型燃料電池では、発電の際に発電量に応じて水酸化物イオンがカソード側からアノード側に移動するが(既述した(8)式および(9)式の反応を参照)、上記(10)式の反応によって炭酸イオンが生じて電解液のアルカリの性質が弱まると、電解液の抵抗が増大して電池性能が低下してしまう。
【0074】
本実施例の燃料電池装置120では、アルカリ水溶液貯蔵部14に貯蔵した水酸化ナトリウム水溶液中に改質ガスを通過させて、改質ガス中の二酸化炭素を低減したうえで燃料電池に供給するため、このような電解液の劣化は抑えられているが、水素富化部110から排出される燃料ガス中に微量に残留する二酸化炭素によって、次第に電解液が劣化することがある。そこで、電解液の劣化状態を検知し、電解液が劣化したと判断されるときには、切り替え弁11を切り替えて電解液の交換を行ない、燃料電池140の性能を確保している。
【0075】
電解液の劣化状態を検知するために、本実施例では、燃料電池140内に、電解液のpHを検出するpHセンサ142を設けている(図4参照)。pHセンサ142が検出した電解液のpHが、予め定めた所定の値よりも小さくなり、燃料電池140において所望の性能が得られなくなったと判断されたときには、切り替え弁11を所定の時間切り替えて、アルカリ金属貯蔵部12から排出される水酸化ナトリウム水溶液を燃料電池140に供給して、電解液の交換を行なう。
【0076】
以上のように構成された水素富化部110を備える燃料電池装置120によれば、第1実施例と同様の効果を奏すると共に、さらに以下のような効果が得られる。すなわち、燃料電池としてアルカリ型燃料電池を備えており、アルカリ金属貯蔵部12で生じた水酸化ナトリウム水溶液を、この燃料電池の電解液を交換するために用いることにより、燃料電池に供給されるガス中に含まれる二酸化炭素に起因して電解液が劣化して燃料電池の性能が低下してしまうのを防ぐことができる。
【0077】
上記実施例では、燃料電池140の電解液のpHを検出することで電解液の劣化状態を判断し、電解液が劣化したと判断されるときに電解液の交換を行なうこととしたが、電解液の劣化状態を直接検出することに代えて、例えば、燃料電池による発電を所定時間行なう毎に、あるいは、所定量のガスを燃料電池に供給する毎に、あるいは、燃料電池による発電量が所定量を超える毎に、電解液の交換を行なうこととしてもよい。燃料電池における発電状態がある程度安定していれば、発電時間や、燃料電池に供給するガス量や、発電量等に基づいて、電解液の劣化状態を推定することができる。
【0078】
また、上記実施例では、電解液の交換を行なうとき以外は、アルカリ水溶液貯蔵部14において改質ガス中の二酸化炭素量の低減を図ることができる構成としたが、改質ガスのように燃料電池に燃料ガスとして供給するガス中の二酸化炭素量を許容範囲とすることができれば、アルカリ金属貯蔵部12で生成される水酸化ナトリウム水溶液は、燃料ガスとして用いるガス中の二酸化炭素量の削減には用いることなく、アルカリ型燃料電池の電解液の交換だけに用いることとしても良い。燃料電池に供給する燃料ガス中の二酸化炭素量が充分に少なければ、電解液の交換を継続して行なうことで、アルカリ型燃料電池の性能を確保することが可能となる。
【0079】
既述した第1および第2実施例では、アルカリ金属貯蔵部12で生じた水酸化ナトリウム水溶液はそのままアルカリ水溶液貯蔵部14あるいは燃料電池140に供給することとしたが、アルカリ金属貯蔵部12から排出される水酸化ナトリウム水溶液を一旦所定のタンク内に貯蔵し、その後必要に応じて、このタンクから、アルカリ水溶液貯蔵部14あるいは燃料電池140に、水酸化ナトリウム水溶液を供給することとしても良い。このようなタンクを設けることで、アルカリ金属塊13を用いた水素の生成量と、改質ガスにおける二酸化炭素の低減量と、燃料電池140における電解液の交換量とを、ある程度切り離して制御することが可能となる。
【0080】
また、上記第2実施例では、酸化ガスとして、酸素タンク26に貯蔵した酸素ガスを用いることとしたが、第1実施例と同様に酸化ガスとして空気を用い、アルカリ金属貯蔵部12で生じた水酸化ナトリウム水溶液によって、酸化ガスとして用いる空気中の二酸化炭素を除去しても良い。この場合には、アルカリ金属貯蔵部12で生じた水酸化ナトリウム水溶液の流路を切り替える手段をさらに設け、水酸化ナトリウム水溶液を、電解液の交換と、燃料ガス中の二酸化炭素の除去と、酸化ガス中の二酸化炭素の除去とのいずれに用いるかを、燃料電池装置の運転状態などに応じて切り替える、あるいは、それぞれに用いるアルカリ水溶液の量を制御することとすればよい。
【0081】
なお、上記第2実施例においても、既述した第1実施例と同様に、アルカリ金属貯蔵部12が備えるアルカリ金属塊13は、ナトリウム以外に、水素化ナトリウムのような化合物や、カリウムや水素化カリウムなど他種のアルカリ金属やその化合物によって形成してもよい。その際、第2実施例のように、アルカリ金属貯蔵部12で生じたアルカリ金属の水酸化物の水溶液を、アルカリ型燃料電池の電解液の交換に用いる場合には、アルカリ金属塊13を構成するアルカリ金属と、燃料電池の電解液であるアルカリ金属の水酸化物の水溶液を構成するアルカリ金属とを、同種のアルカリ金属とすればよい。
【0082】
ここで、ナトリウムとカリウム以外に、他種のアルカリ金属あるいはアルカリ土類金属を用いた場合にも、水と反応させることで同様に水素を発生させることができる。しかしながら、ナトリウムとカリウム、およびそれらの水素化物を用いる場合には、その水酸化物および炭酸塩は、他種のアルカリ金属あるいはアルカリ土類を用いた場合に比べて水に対して高い溶解度を示すため、生じた水酸化物および炭酸塩を水溶液の状態で容易に移送し、貯蔵し、反応に供することができて特に有利である。
【0083】
なお、既述した実施例では、改質ガスを生成するための原燃料としてメタノールを用いたが、メタノール以外の炭化水素を原燃料として用いても良く、また、水蒸気改質反応以外の例えば部分酸化反応によって、あるいはこれらの反応を組み合わせて炭化水素の改質を行なってもよい。炭化水素を改質して得られる改質ガスのように、水素と二酸化炭素とを含有するガスに対して本発明を適用することによって、このガス中の水素濃度および水素分圧を充分に高くする既述した効果を得ることができる。
【0084】
以上本発明の実施例について説明したが、本発明はこうした実施例に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々なる様態で実施し得ることは勿論である。
【図面の簡単な説明】
【図1】本発明の好適な一実施例である水素富化部10の構成を表わす説明図である。
【図2】燃料電池装置20の構成の概略を表わすブロック図である。
【図3】アルカリ金属塊13を用いて水素を発生させる動作を表わす説明図である。
【図4】燃料電池装置120の構成の概略を表わすブロック図である。
【図5】水素富化部110の構成を表わす説明図である。
【符号の説明】
10,110…水素富化部
11…切り替え弁
12…アルカリ金属貯蔵部
13…アルカリ金属塊
14…アルカリ水溶液貯蔵部
15…潰し棒
16…アルカリ水溶液供給路
17…改質ガス排出路
18…被膜
19…水素排出路
20,120…燃料電池装置
22…原燃料タンク
24…水タンク
26…酸素タンク
28…バーナ
32…蒸発器
34…改質器
38…ブロワ
40,140…燃料電池
50…制御部
52…入出力ポート
54…CPU
56…ROM
58…RAM
60…メタノール流路
61…メタノール分岐路
62…水流路
63…原燃料供給路
64…原燃料ガス供給路
65…改質ガス流路
66…燃料ガス供給路
67…燃料排出路
68…酸化ガス供給路
69…酸化排ガス路
70…第1ポンプ
71…第2ポンプ
72…第3ポンプ
73…第4ポンプ
74…水分岐路
80…電解液供給路
81…電解液排出路
142…pHセンサ

Claims (7)

  1. 水素を含有する燃料ガスと、酸素を含有する酸化ガスの供給を受け、電気化学反応により起電力を得る燃料電池を備える燃料電池装置であって、
    水素と二酸化炭素とを含有する混合ガスの供給を受け、前記混合ガスよりも水素濃度の高い水素リッチガスを排出する水素富化装置と、
    前記水素富化装置が排出した前記水素リッチガスを、前記燃料ガスとして前記燃料電池に供給する燃料ガス供給手段と、
    を備え、
    前記水素富化装置は、
    アルカリ金属あるいは該アルカリ金属の化合物から成り、前記水素富化装置における所定の運転条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、充分に安定である材料から成る被膜によってさらにその表面を覆ったアルカリ金属塊を備える水素生成部と、
    前記水素生成部に水を供給する水供給手段と、
    前記水素生成部において、前記アルカリ金属塊を覆う前記被膜を損傷させ、該被膜の損傷の結果、前記アルカリ金属塊を構成する前記アルカリ金属あるいは前記アルカリ金属の化合物と、前記水供給手段により供給された水とを接触させて、前記アルカリ金属の水酸化物と水素とを生じる反応を起こさせ、該反応で生じた前記アルカリ金属の水酸化物が溶解した水溶液を生じる反応誘発手段と、
    前記混合ガスの供給を受け、前記アルカリ金属の水酸化物が溶解する水溶液中の前記アルカリ金属の水酸化物と、前記混合ガス中の二酸化炭素とを反応させることによって、前記混合ガスから二酸化炭素を除去し、前記混合ガスから、二酸化炭素量を低減した二酸化炭素低減ガスを生成する二酸化炭素除去手段と、
    前記二酸化炭素除去手段が生成した前記二酸化炭素低減ガスと、前記誘発手段における前記反応で生じた前記水素とを混合し、前記水素リッチガスとして排出する水素リッチガス排出手段と
    を備え、
    前記燃料電池は、その電解質層を構成する電解液として、前記アルカリ金属の水酸化物と同種の水酸化物の水溶液を用いるアルカリ型燃料電池であって、
    前記燃料電池の電解液を交換するために、前記反応誘発手段による前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液を、新たな電解液として前記電解質層に供給する電解液交換手段をさらに備える
    燃料電池装置。
  2. 前記アルカリ金属は、ナトリウムまたはカリウムである請求項1記載の燃料電池装置。
  3. 前記アルカリ金属の化合物は、前記アルカリ金属の水素化物である請求項1または2記載の燃料電池装置。
  4. 前記反応誘発手段は、物理的な力によって前記被膜を損傷させる
    請求項1ないし3いずれか記載の燃料電池装置。
  5. 請求項1ないし4いずれか記載の燃料電池装置であって、
    前記燃料電池が備える前記電解液の劣化状態を検知する電解液劣化状態検知手段と、
    前記反応誘発手段による前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液の流路を切り替えて、該水溶液を、前記電解液交換手段によって前記電解液の交換に用いるか、あるいは、前記二酸化炭素除去手段によって前記混合ガス中の二酸化炭素の除去に用いるかを、選択可能である切り替え手段と、
    前記電解液劣化状態検知手段が前記電解液の劣化を検知したときに、前記水溶液を用いて前記電解液の交換を行なうように、前記切り替え手段を切り替える制御手段と
    をさらに備える燃料電池装置。
  6. 水素を含有する燃料ガスと、酸素を含有する酸化ガスの供給を受け、電気化学反応により起電力を得る燃料電池を備える燃料電池装置であって、
    少なくとも水素を含有する水素含有ガスの供給を受け、水素濃度の高い水素リッチガスを排出する水素富化部と、
    前記水素富化部が排出した前記水素リッチガスを、前記燃料ガスとして前記燃料電池に供給する燃料ガス供給手段とを備えると共に、
    前記水素富化部は、
    アルカリ金属あるいは該アルカリ金属の化合物から成り、前記水素富化部における所定の運転条件下で、前記アルカリ金属あるいは前記アルカリ金属の化合物、および水と接触しても、充分に安定である材料から成る被膜によってさらにその表面を覆ったアルカリ金属塊を備える水素生成部と、
    前記水素生成部に水を供給する水供給手段と、
    前記水素生成部において、前記アルカリ金属塊を覆う前記被膜を損傷させ、該被膜の損傷の結果、前記アルカリ金属塊を構成する前記アルカリ金属あるいは前記アルカリ金属の化合物と、前記水供給手段により供給された水とを接触させて、前記アルカリ金属の水酸化物と水素とを生じる反応を起こさせ、該反応で生じた前記アルカリ金属の水酸化物が溶解した水溶液を生じる反応誘発手段と、
    前記反応誘発手段における前記反応で生じた前記水素と、前記水素含有ガスとを混合し、前記水素リッチガスとして排出する水素リッチガス排出手段とを備え、
    前記燃料電池は、その電解質層を構成する電解液として、前記アルカリ金属の水酸化物と同種の水酸化物の水溶液を用いるアルカリ型燃料電池であって、
    前記燃料電池の電解液を交換するために、前記反応誘発手段における前記反応で生じた前記アルカリ金属の水酸化物が溶解する水溶液を、新たな電解液として前記電解質層に供給する電解液交換手段をさらに備える
    燃料電池装置。
  7. 請求項記載の燃料電池装置であって、
    前記燃料電池が備える前記電解液の劣化状態を検知する電解液劣化状態検知手段をさらに備え、
    前記電解液交換手段は、前記電解液劣化状態検知手段が前記電解液の劣化を検知したときに、前記水溶液を用いて前記電解液の交換を行なうように、前記水溶液を前記燃料電池に供給する
    燃料電池装置。
JP28632099A 1999-10-07 1999-10-07 燃料電池装置 Expired - Fee Related JP4534278B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28632099A JP4534278B2 (ja) 1999-10-07 1999-10-07 燃料電池装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28632099A JP4534278B2 (ja) 1999-10-07 1999-10-07 燃料電池装置

Publications (2)

Publication Number Publication Date
JP2001106503A JP2001106503A (ja) 2001-04-17
JP4534278B2 true JP4534278B2 (ja) 2010-09-01

Family

ID=17702868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28632099A Expired - Fee Related JP4534278B2 (ja) 1999-10-07 1999-10-07 燃料電池装置

Country Status (1)

Country Link
JP (1) JP4534278B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2352626A1 (fr) 2001-07-12 2003-01-12 Co2 Solution Inc. Couplage d'une pile a hydrogene a un bioreacteur enzymatique de transformation et sequestration du co2
WO2009029292A1 (en) * 2007-08-27 2009-03-05 Surendra Saxena Hydrogen production with carbon sequestration in coal and/natural gas-burning power plants
US8012453B2 (en) 2007-10-25 2011-09-06 Surendra Saxena Carbon sequestration and production of hydrogen and hydride
JP5312076B2 (ja) * 2009-02-06 2013-10-09 トヨタ自動車株式会社 燃料電池システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196025A (ja) * 1975-02-20 1976-08-23
JPS63222001A (ja) * 1987-03-10 1988-09-14 Babcock Hitachi Kk 水素ガス発生剤
JPH03242302A (ja) * 1990-02-20 1991-10-29 Mitsubishi Kakoki Kaisha Ltd 水素及び一酸化炭素の製造方法
JPH03295175A (ja) * 1990-04-13 1991-12-26 Mitsubishi Heavy Ind Ltd 二酸化炭素除去方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627604A (ja) * 1985-07-04 1987-01-14 Jgc Corp メタノ−ル分解ガスの精製法
JP2607682B2 (ja) * 1989-05-25 1997-05-07 三菱重工業株式会社 燃料電池に供給する水素ガスの精製装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5196025A (ja) * 1975-02-20 1976-08-23
JPS63222001A (ja) * 1987-03-10 1988-09-14 Babcock Hitachi Kk 水素ガス発生剤
JPH03242302A (ja) * 1990-02-20 1991-10-29 Mitsubishi Kakoki Kaisha Ltd 水素及び一酸化炭素の製造方法
JPH03295175A (ja) * 1990-04-13 1991-12-26 Mitsubishi Heavy Ind Ltd 二酸化炭素除去方法

Also Published As

Publication number Publication date
JP2001106503A (ja) 2001-04-17

Similar Documents

Publication Publication Date Title
JP3658866B2 (ja) 燃料電池発電装置
KR100762685B1 (ko) 개질기 및 이를 채용한 연료전지 시스템
JP4000608B2 (ja) 水素製造充填装置および電気自動車
US7264897B2 (en) Fuel cell system
KR101240704B1 (ko) 이동가능한 열원을 갖는 연료개질 시스템 및 이를 구비한연료전지 시스템
JPH111302A (ja) 燃料改質方法と燃料改質装置ならびに該燃料改質装置を備えた燃料電池装置
KR101955693B1 (ko) 이산화탄소를 이용한 수계 이차전지 및 이를 구비하는 복합 전지 시스템
WO1999016706A1 (fr) Appareil et procede de reduction de la concentration du monoxyde de carbone, et catalyseur pour l'oxydation selective du monoxyde de carbone
JP3897143B2 (ja) 改質装置とその起動方法及び燃料電池発電装置
JPWO2010041471A1 (ja) 水素生成装置、燃料電池システム、及び水素生成装置の運転方法
US20070269691A1 (en) Reformer with oxygen supplier and fuel cell system using the same
JP4534278B2 (ja) 燃料電池装置
JP2002334714A (ja) 燃料電池を組み込んだ水素製造システム
KR101252839B1 (ko) 회수장치를 채용한 연료전지
JP2003132926A (ja) 燃料電池発電装置用改質器
JP4556305B2 (ja) 燃料改質装置および水素製造方法
JP2013101822A (ja) 燃料電池システム
JP2008130266A (ja) 燃料電池システムにおける凝縮水の循環方法
JPH1029804A (ja) 一酸化炭素濃度低減装置および一酸化炭素濃度低減方法
JP2007128786A (ja) 燃料電池システム
JP2007165130A (ja) 燃料電池システム及び燃料電池システムの制御方法
KR101986642B1 (ko) 이산화탄소를 이용한 수소 발생장치를 구비하는 연료전지 시스템
JP2005200246A (ja) 燃料改質装置および燃料電池システム
JP3983020B2 (ja) 燃料電池システムにおける改質装置の起動方法
JP2004281393A (ja) 燃料電池発電システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees