JP4530579B2 - Package for storing semiconductor elements - Google Patents

Package for storing semiconductor elements Download PDF

Info

Publication number
JP4530579B2
JP4530579B2 JP2001152590A JP2001152590A JP4530579B2 JP 4530579 B2 JP4530579 B2 JP 4530579B2 JP 2001152590 A JP2001152590 A JP 2001152590A JP 2001152590 A JP2001152590 A JP 2001152590A JP 4530579 B2 JP4530579 B2 JP 4530579B2
Authority
JP
Japan
Prior art keywords
line conductor
input
dielectric
metallized layer
flat plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001152590A
Other languages
Japanese (ja)
Other versions
JP2002353353A (en
Inventor
廉可 國松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2001152590A priority Critical patent/JP4530579B2/en
Publication of JP2002353353A publication Critical patent/JP2002353353A/en
Application granted granted Critical
Publication of JP4530579B2 publication Critical patent/JP4530579B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信分野やマイクロ波通信およびミリ波通信等の分野で用いられる、高い周波数で作動する各種半導体素子を収納する半導体素子収納用パッケージに関するものである。
【0002】
【従来の技術】
従来の光通信分野やマイクロ波通信およびミリ波通信分野等で用いられる、高い周波数で作動する各種半導体素子を気密封止して収容する半導体素子収納用パッケージ(以下、半導体パッケージという)として、例えば光通信分野に用いられる光半導体パッケージを図4に示す。同図に示すように、光半導体パッケージとしての半導体パッケージ1は、一般に鉄(Fe)−ニッケル(Ni)−コバルト(Co)合金や銅(Cu)−タングステン(W)合金等の金属材料から成り、上面の略中央部に半導体レーザ(LD)やフォトダイオード(PD)等の光半導体素子等の半導体素子2が載置される載置部3を設けた基体4を有する。この基体4は、略長方形の板状であり、その対向する辺部に外部の実装基板(図示せず)にネジ止めするためのネジ止め孔11が設けられている。
【0003】
また、載置部3を囲繞するようにして基体4の上側主面に銀ロウ等のロウ材を介して接合されると共に、基体4の長辺側に位置する両側部に、半導体素子2と外部電気回路(図示せず)とを電気的に接続する高周波信号入出力用の入出力端子5を嵌着接合するための貫通孔または切欠き部から成る取付部6が設けられた枠体7を有する。この枠体7は、Fe−Ni−Co合金等から成り、基体4の短辺側に位置する一側部に、光ファイバ12固定用の筒状の固定部材18が嵌着接合される貫通孔14が形成されている。そして、枠体7の光伝送路である貫通孔14の外側開口の周辺部には、枠体7の熱膨張係数に近似するFe−Ni−Co合金やFe−Ni合金等の金属材料から成る光ファイバ12固定用の筒状の固定部材18が銀ロウ等のロウ材で接合される。
【0004】
また、シールリング17は、枠体7の上面および入出力端子5の上面に銀ロウ等のロウ材を介して接合され、入出力端子5を挟持すると共に上面に蓋体15をシーム溶接等により接合するための接合媒体として機能する。
【0005】
更に、この半導体パッケージ1は、取付部6に取着された入出力端子5と、枠体7の上面に取着された半導体素子2を気密に封止する蓋体15とを具備して成る。
【0006】
このような半導体パッケージ1は、基体4の載置部3に半導体素子2を錫(Sn)−鉛(Pb)半田等の低融点ロウ材で載置固定させると共に、半導体素子2の電極をボンディングワイヤ(図示せず)を介して図5に示す入出力端子5の線路導体28に電気的に接続し、更に光ファイバ12と半導体素子2との光軸を調整する。その後、固定部材18の枠体7外側の端面に光ファイバ12を樹脂等の接着剤で取着した金属ホルダ13を、金(Au)−錫(Sn)等の低融点ロウ材で接合する。次に、枠体7の上面に蓋体15をシーム溶接等により接合して基体4と枠体7と蓋体15とから成る容器内部に半導体素子2を気密に収容することにより、製品としての光半導体装置となる。
【0007】
このような光半導体装置は、実装基板上にネジ止めされた後、半導体素子2を外部電気回路から供給される駆動用の高周波信号によって光励起させ、励起したレーザ光等の光を光ファイバ12に授受させ光ファイバ12内を伝送させることにより、大容量の情報を高速に伝送できる光電変換装置として機能し、光通信分野等に多用されている。
【0008】
そこで、この光半導体装置を構成する半導体パッケージ1に用いられる入出力端子5には、電気的に絶縁され、リード線接続およびワイヤーボンディングが可能な配線パターンの形成ができることが必要となる。このような入出力端子5は、図5,図6に示すように、上面の1辺側から対向する他辺側にかけて形成された線路導体28を有する誘電体から成る平板部9と、平板部9の上面に線路導体28を間に挟んで接合された同様の誘電体から成る立壁部10とから構成されている。また、平板部9および立壁部10の線路導体28に略平行な両側面には、線路導体28を擬似同軸状に囲み接地導体として機能すると共に、図4に示す取付部6の内周面に銀ロウ等のロウ材を介して接合させる接合媒体として機能するメタライズ層(図示せず)が形成されている。
【0009】
この線路導体28の枠体7外側の部位の上面には、Fe−Ni−Co合金等の金属材料から成り、銀ロウ等のロウ材で接合されると共に、入出力端子5と外部電気回路との電気的接続を行なうためのリード端子16が接合される。一方、線路導体28の枠体7内側の部位の上面に位置するワイヤーボンディング部28aには、Au,アルミニウム(Al)等の線材から成り、超音波接合法や熱圧着法等により半導体素子2と入出力端子5との電気的接続を行なうためのボンディングワイヤ(図示せず)が接続される。
【0010】
このような入出力端子5を構成する誘電体としては、一般にアルミナ(Al23)質焼結体等のセラミックスが用いられていた。一方、入出力端子5に形成される線路導体28には、電気抵抗が小さく、上記セラミックスと同時焼成により微細な配線パターンの形成が可能なWやMo等の高融点金属が採用されていた。
【0011】
近年、より高い周波数の入出力信号を伝送すると共に小型化されたものに対する要求が高まっており、その結果線路導体28の線幅も細くなって配線抵抗が増大するようになっていた。しかし、高融点金属から成る線路導体28では、シート抵抗もせいぜい8mΩ/□程度までしか低くできず、高周波信号の透過損失が大きくなるという問題があった。そこで、より低抵抗のCuまたはCuとW,Moとを組み合わせた導体を用いて上記セラミックスと同時焼成して線路導体28を形成することが提案されている。
【0012】
【発明が解決しようとする課題】
しかしながら、CuまたはCuとW,Moとを組み合わせた導体をアルミナ(Al23)質焼結体から成る誘電体と1200〜1500℃の低い温度で同時焼成して線路導体28が形成されているため、アルミナ(Al23)質焼結体から成る誘電体成分は、Cuとの濡れ性が悪いことから、CuまたはCuとW,Moとを組み合わせた導体層への拡散が不充分となっていた。その結果、半導体素子2と入出力端子5との電気的接続を行なうボンディングワイヤには外力が加わらないことから、線路導体28のワイヤーボンディング部28aには何等問題は生じないものの、上記導体層にロウ付けした、外部電気回路との電気的接続を行なうためのリード端子16に、外部電気回路との電気的接続時等に外部応力が加わると、リード端子16が導体層ごと誘電体表面から剥離するという問題点があった。
【0013】
従って、本発明は上記問題点に鑑み完成されたものであり、その目的は、アルミナを主成分とする誘電体等と同時焼成で形成でき、外部電気回路との電気的接続を行なうリード端子に外部応力が加わっても、誘電体から成る平板部上面に強固に接合されて剥離せず高周波信号の伝送特性を損なわない線路導体を有する入出力端子を具備したものとすることにある。
【0014】
本発明の半導体パッケージは、上側主面に半導体素子が載置される載置部を有する基体と、前記上側主面に前記載置部を囲繞するように取着され、側部に切欠き部または貫通孔から成る入出力端子の取付部が形成された枠体と、上面の一辺側から対向する他辺側にかけて形成された複数の線路導体を有する誘電体から成る平板部および該平板部の上面に前記複数の線路導体を間に挟んで接合された誘電体から成る立壁部から構成されると共に、前記取付部に嵌着されて前記半導体素子と外部電気回路とを電気的に接続する入出力端子とを具備した半導体素子収納用パッケージにおいて、前記線路導体は、前記枠体の内側の部位が銅を10〜70体積%、タングステンおよび/またはモリブデンを30〜90体積%含有するメタライズ層から成るとともに前記枠体の外側の部位がモリブデンを70〜90重量%、マンガンを2〜15重量%、酸化珪素を5〜20重量%、酸化チタンを1〜10重量%含有するメタライズ層から成り、これらのメタライズ層が前記立壁部の下面で接続されて成ることを特徴とする。
【0015】
本発明は、線路導体が、枠体の内側の部位が銅を10〜70体積%、タングステンおよび/またはモリブデンを30〜90体積%含有するメタライズ層から成るとともに枠体の外側の部位がモリブデンを主成分とするメタライズ層から成り、これらのメタライズ層が立壁部の下面で接続されて成ることにより、アルミナ質焼結体等から成る誘電体成分のMoを主成分とするメタライズ層への拡散が容易となる。その結果、枠体の外側の部位であるリード線接続部のMoのメタライズ層が、アルミナ質焼結体等から成る平板部上面に強固に接合されるため、そこに接続されたリード端子の外部応力に対する強度が増大して接続信頼性が向上することになる。
【0016】
【発明の実施の形態】
本発明の半導体パッケージについて以下に詳細に説明する。図1は、本発明の半導体パッケージを構成する入出力端子の例を示す斜視図であり、図2は、本発明の半導体パッケージを構成する入出力端子の例を示す断面図である。本発明の半導体パッケージ全体の基本構成は従来例の半導体パッケージを示す図4と同様であり、共通する各部の詳細な説明は省略する。
【0017】
本発明の半導体パッケージを構成する入出力端子は、図1および図2に示すように、略四角形の誘電体板から成り、上面に1辺側から対向する他辺側にかけて形成された複数の線路導体8を有する平板部9と、その上面に複数の線路導体8を間に挟んで接合された誘電体から成る略直方体の立壁部10とから構成される。線路導体8は、枠体7の内側の部位がCuを10〜70体積%、Wおよび/またはMoを30〜90体積%含有するメタライズ層から成るとともに枠体7の外側の部位がMoを主成分とするメタライズ層から成り、これらのメタライズ層が立壁部10の下面で接続されて成る。
【0018】
この線路導体8を構成するリード端子接続部8bのMoを主成分とするメタライズ層は、平板部9および立壁部10を構成するセラミックス等に対する密着性が極めて良好であり、線路導体8全体の配線抵抗もワイヤーボンディング部8aがCuを10〜70体積%、Wおよび/またはMoを30〜90体積%含有するメタライズ層から成ることから、リード端子接続部8bおよびワイヤーボンディング部8aの全体のシート抵抗も7mΩ/□程度以下と低抵抗なものとなる。
【0019】
本発明の線路導体8のワイヤーボンディング部8aは、CuとWおよび/またはMoとの複合材料を主成分とするメタライズ層から成り、後述するように平板部9および立壁部10を構成する誘電体と同時焼成により形成されるものである。このメタライズ層は、Cuを10〜70体積%、Wおよび/またはMoを30〜90体積%含有して成るが、線路導体8の低抵抗化、誘電体との同時焼結性および線路導体8の保形性を維持する上では、Cuを40〜60体積%、Wおよび/またはMoを40〜60体積%含有することが好ましい。この場合、ワイヤーボンディング部8aのシート抵抗を8mΩ/□程度以下に低減できる。
【0020】
線路導体8におけるCu量が10体積%未満であり、かつWおよび/またはMo量が90体積%を超えると、線路導体8の抵抗が高くなる。また、Cu量が70体積%を超え、かつWおよび/またはMo量が30体積%未満になると、線路導体8の保形性が低下し、線路導体8ににじみ等が発生したり、溶融したCuにより線路導体8が凝集して断線を生じると共に、誘電体と線路導体8との熱膨張差により線路導体8が剥離を生じ易くなる。
【0021】
また、線路導体8は、含有されるWおよび/またはMoが平均粒径1〜10μmの球状あるいは数個の粒子による焼結粒子としてCuから成るマトリックス中に分散含有されていることが好適である。これは、平均粒径が1μmより小さいと線路導体8の保形性が悪くなり、組織が多孔質化して抵抗値が高くなる。他方、10μmを超えると、Cuから成るマトリックスがWやMoの粒子によって分断されてしまい、抵抗値が高くなったり、Cu成分の分離によりにじみが発生する恐れがある。
【0022】
また、Wおよび/またはMoの平均粒径は1.3〜5μmがよく、1.3μm未満では、焼結時に焼結が進行しすぎて誘電体との接着強度が低下するおそれがある。5μmを超えると、焼結が不十分となり、線路導体8の強度不足や誘電体との密着性不足、さらに導通抵抗の増加等が発生するおそれがある。より好ましくは1.3〜3μmが良い。
【0023】
一方、本発明の線路導体8のリード端子接続部8bはMoを主成分とするメタライズ層から成り、ワイヤーボンディング部8aの場合と同様に、後述するように平板部9および立壁部10を構成する誘電体と同時焼成により形成される。このようなMoを主成分とするメタライズ層は、従来周知のMo−マンガン(Mn)ペーストを用いて誘電体と同時焼成して形成される。Mo−Mnペーストとしては、例えば、Moを70〜90重量%、Mnを2〜15重量%、酸化珪素(SiO2)を5〜20重量%、酸化チタン(TiO2)を1〜10重量%含有するものが良い。
【0024】
また、Moを主成分とするメタライズ層には、とりわけアルミナ質焼結体から成る誘電体成分が容易に拡散し、その結果、リード端子接続部8bのMoを主成分とするメタライズ層がアルミナ質焼結体から成る平板部9上面に強固に接合されることから、ロウ材により接続されたリード端子16の外部応力に対する強度が増加して接続信頼性が向上することになる。
【0025】
また、ワイヤーボンディング部8aのCuとWおよび/またはMoとの複合材料を主成分とするメタライズ層と、リード端子接続部8bのMoを主成分とするメタライズ層は、入出力端子5の立壁部10の下面で電気的に接続されている。このとき、ワイヤーボンディング部8aのCu成分がリード端子接続部8bのMoを主成分とするメタライズ層側に拡散して接合していることから、立壁部10の下面の接続部においてはCuが全体的に拡散されている。従って、Cuの拡散により、ワイヤーボンディング部8aとリード端子接続部8bとの界面の抵抗変化が急激な変化ではなく徐々に変化するものとなり、その結果、高周波信号の伝送特性に影響することはない。
【0026】
この接続部の形態については電気的に接続されていればよいが、図2に示すようにワイヤーボンディング部8aのCuとWおよび/またはMoとの複合材料を主成分とする導通抵抗の小さいメタライズ層を、リード端子接続部8bのMoを主成分とするメタライズ層の上面に被着形成した形態がよく、高周波信号の伝送特性の点で好ましい。即ち、高周波信号は表皮効果により線路導体8の極く表面を伝送するため、導通抵抗の小さいメタライズ層を上側(表層側)にするのがよく、またリード端子16を接続するための銀ロウ等の高導電性のロウ材皮膜とも相俟って透過損失が小さくなり、高周波信号の伝送特性が向上することになる。
【0027】
また、ワイヤーボンディング部8aのメタライズ層と、リード端子接続部8bのメタライズ層の接続界面は、入出力端子5の平板部9と立壁部10との間に介在させ、立壁部10を平板部9に接合する際に加圧接合して入出力端子5の寸法精度を確保すると良い。また、加圧接合して寸法精度を確保することは入出力端子5と枠体7との気密封止にとっても効果的である。
【0028】
さらに、ワイヤーボンディング部8aのメタライズ層と、リード端子接続部8bのメタライズ層との接続は、図3に他の例を示すように、ワイヤーボンディング部8aのメタライズ層とリード端子接続部8bのメタライズ層とを突き合せて線路導体8を形成し、その接続界面を平板部9と立壁部10との間に介在させ、立壁部10を平板部9に接合する際に加圧接合して入出力端子5の寸法精度を確保するようにしても良い。これより、上記と同様に気密封止にも効果的なものとなる。
【0029】
いずれの場合も、リード端子接続部8bは、リード端子16がメタライズ層と十分な長さ(0.2〜3mm程度)で銀ロウ等のロウ材で接合できる領域が確保できれば良く、リード端子16がワイヤーボンディング部8aのメタライズ層の線路導体8に接しないようにすることが接続信頼性の点で重要となる。
【0030】
更に、線路導体8の表面には、酸化による腐食防止、ワイヤボンディング性、半田との濡れ性、および線路導体8の抵抗低化のために、Au,Cu,Ti,NiおよびPdの群から選ばれる少なくとも1種からなる金属層が、無電解めっき、電解めっき等によって被着されていることが好ましい。特に、耐食性の向上と抵抗低減の点からは、最表面はAuから成ることがより好ましい。
【0031】
更に、線路導体8中には、誘電体との密着性を改善するために、誘電体を構成するセラミックスを主成分としたセラミック成分、あるいは誘電体組成と同一組成のセラミック成分を0.05〜2体積%の割合で含有させることが好ましい。
【0032】
なお、本発明の入出力端子5においては、Cuの融点を超える温度で誘電体と同時焼成すると、線路導体8中のCu成分が誘電体中に拡散する場合があるが、線路導体8の周囲の誘電体へのCuの拡散距離を30μm以下、特に10μm以下とすることが好ましく、この場合、焼成条件等を制御することにより拡散距離を制御できる。線路導体8中のCu成分の誘電体中への拡散距離が30μmを超えると、線路導体8間の絶縁性が低下し、線路導体8としての信頼性が低下する。従って、上記拡散距離を30μm以下に制御することにより、線路導体8間の最小線間距離を100μm以下、とりわけ90μm以下として、線路導体8の高密度配線化が可能となる。
【0033】
更に、線路導体8の枠体7外側の部位には、外部電気回路と入出力端子5との高周波信号の入出力を行なうためのFe−Ni−Co合金等の金属材料から成るリード端子16が、銀ロウ等のロウ材で接合される。
【0034】
また、平板部9は、アルミナを主成分とするセラミックスから成るのがよく、Cuを含有するメタライズ層とMoを主成分とするメタライズ層から成る線路導体8との同時焼結性の点で好ましい。このアルミナを主成分とするセラミックスは、相対密度が95%以上、特に97%以上、更には99%以上の高緻密体から形成されていることが好適であり、高熱伝導性と高強度を具備するものとなる。更に、線路導体8との同時焼成時に線路導体8の保形性を確保するためには、焼成温度を1200〜1500℃の低温とするとともに相対密度を95%以上に緻密化させることが好ましい。
【0035】
従って、このような特性を有する入出力端子5の誘電体としては、主成分としてアルミナを84〜90重量%の割合で含有すると共に、上記焼成温度での焼結性を高める点でMn化合物をMnO2換算で2〜6重量%の割合で含有するものが好適である。
【0036】
また、この誘電体中には、第3成分としてSiO2およびマグネシウム(Mg),カルシウム(Ca),ストロンチウム(Sr)等のアルカリ土類元素の1種以上を酸化物として含有させるとよく、Cuを含有するメタライズ層との同時焼結性を向上させ得る。その含有量は、SiO2が2〜15重量%、上記同時焼結性の点からは3〜10重量%がより好適である。また、アルカリ土類元素は、酸化物換算で合計が0.1〜4重量%が良く、更に同時焼結性の点からは0.2〜2.5重量%が良い。更に、第4成分としてW,Mo,クロム(Cr)等の金属を着色成分として2重量%以下の割合で含有させても良い。
【0037】
本発明では、Al23以外の成分は、Al23主結晶相の粒界に非晶質相あるいは結晶相として存在するが、熱伝導性を高めるうえで粒界中に助剤成分を含有する結晶相が形成されていることが好ましい。また、Al23主結晶相は、粒状または柱状の結晶として存在するが、これら主結晶相の平均結晶粒径は1.5〜5μmであることが好ましい。なお、主結晶相が柱状結晶から成る場合、上記平均結晶粒径は短軸径に基くものである。この主結晶相の平均結晶粒径が1.5μm未満であると高熱伝導化が難しく、5μmを超えると入出力端子5に要求される強度が得難くなる。
【0038】
また、立壁部10は、平板部9と同様の誘電体から成り、その上面全面に線路導体8と同様のメタライズ層が形成されると共に、枠体7の取付部6の内周面に接合される面にもメタライズ層が形成されている。このメタライズ層は、線路導体8等と同様の方法により金属ペーストを所定パターンに印刷塗布し焼成することにより形成される。このメタライズ層は、例えば、WやMo等の金属粉末に有機溶剤、溶媒を添加混合して得た金属ペーストを、平板部9用のセラミックグリーンシートに周知のスクリーン印刷法等により所定のパターンに印刷塗布しておき、焼成することにより形成される。
【0039】
かくして得られた入出力端子5は、Fe−Ni−Co合金やCu−W合金等の金属材料から成る基体4の上側主面に接合された枠体7の側部の取付部6に銀ロウ等のロウ材により嵌着接合される。これにより、枠体7の一部となって内外を気密に仕切ると共に枠体7の内外を導通する導電路となる。
【0040】
次に、本発明の半導体パッケージ1を構成する入出力端子5の製造方法について、その一例を以下の[1]〜[6]に具体的に説明する。
【0041】
[1]先ず、入出力端子5の平板部9と立壁部10を形成するために、主成分となるAl23原料粉末として、平均粒径が0.5〜2.5μm、より好ましくは0.5〜2μmの粉末を用いる。これは、平均粒径が0.5μm未満の場合、そのような微粉末は取り扱いが難しく、また粉末製造のコストが高くなり、2.5μmより大きくなると1500℃以下の低温での焼成が困難となるからである。
【0042】
[2]次に、Al23原料粉末に対して、第2成分としてMnO2を2〜15重量%、より好ましくは3〜10重量%の割合で添加する。また、第3成分としてSiO2およびMgO,CaO,SrO等のアルカリ土類元素の1種以上の酸化物を0.1〜4重量%、より好ましくは0.2〜2.5重量%の割合で添加する。更に、第4成分としてW,Mo,Cr等の遷移金属の金属粉末や酸化物粉末等を着色成分として金属換算で2重量%以下の割合で添加する。
【0043】
なお、これら各酸化物を添加する際は、酸化物粉末以外に、焼成することにより酸化物を形成し得る炭酸塩、硝酸塩、酢酸塩等で添加しても良い。
【0044】
[3]その後、この混合粉末から周知の成形方法によりシート状の成形体を作成する。具体的には、この混合粉末に有機バインダーや溶媒を添加して泥しょうを調製した後、得られた泥しょうをドクターブレード法によりシート状に成形する。あるいは、この混合粉末に有機バインダーを添加し、プレス成形法や圧延成形法により所定の厚さのシート状の成形体を作製する。
【0045】
[4]次に、平均粒径が1〜10μmのCu粉末を10〜70体積%、平均粒径が1〜10μmのWおよび/またはMo粉末を30〜90体積%の割合で含有した導体ペーストAと、平均粒径が1〜10μmのMo粉末を70〜90重量%、平均粒径が1〜10μmのMn粉末を2〜15重量%、SiO2粉末を5〜20重量%、TiO2粉末を1〜10重量%の割合で含有した導体ペーストBを調製する。
【0046】
先ず、この導体ペーストBを用いて、平板部9用のシート状の成形体のリード端子接続部側表面にスクリーン印刷法やグラビア印刷法等により線路導体8となる配線パターンを印刷塗布する。次いで、リード端子接続部側表面に形成した配線パターンに一部が重なるように、導体ペーストAを用いて、平板部9用のシート状の成形体のワイヤーボンディング部側表面に、同様のスクリーン印刷法やグラビア印刷法等により、線路導体8となる配線パターンを印刷塗布する。その後、配線パターンの重複部を加圧して所定厚さになるように微調整する。
【0047】
また、この導体ペースト中には、平板部9の誘電体との密着性を高めるために、Al23粉末、または誘電体を構成する酸化物セラミックス成分と同一組成のセラミック粉末を0.05〜2体積%添加することも可能である。
【0048】
[5]その後、シート状の成形体から、平板部9および立壁部10の形状のものを打ち抜き加工で作製し、平板部9の上面に立壁部10を積層圧着し、この積層体を非酸化性雰囲気中、焼成最高温度1200〜1500℃で焼成一体化する。
【0049】
このとき、焼成温度が1200℃より低いと、酸化アルミニウム質焼結体の相対密度が95%以上となるように緻密化できず、熱伝導性や強度が低下する。1500℃を超えると、導体ペースト中のWやMo自体の焼結が進み、マトリックスであるCu中にW,Moが均一に存在する均質な組織のメタライズ層が得られず、低い抵抗値を維持することができなくなる。即ち、ワイヤーボンディング部8a側の線路導体8のシート抵抗を8mΩ/□以下とすることが困難になる。また、1500℃を超えると、酸化物セラミックスの主結晶相の粒径が大きくなって異常粒成長が発生したり、Cuがセラミックス中に拡散する際の経路である粒界の長さが短くなると共に、拡散速度も速くなる。その結果、拡散距離を30μm以下に抑制することが困難となり、抵抗値が増加することになる。従って、上記焼成温度は1250〜1400℃の範囲がより好適である。
【0050】
更に、焼成時の非酸化性雰囲気としては、窒素、または窒素と水素の混合雰囲気であることが好ましい。特に、線路導体8中のCuの拡散を抑制する点で、窒素および水素を含み、露点が10℃以下、特に−10℃以下の非酸化性雰囲気が好ましい。この非酸化性雰囲気にはアルゴンガス等の不活性ガスを混入しても良い。この非酸化性雰囲気の露点が10℃より高いと、焼成中に酸化物セラミックスと雰囲気中の水分とが反応して酸化膜を形成し、この酸化膜と導体中のCuが反応してしまい、線路導体8の低抵抗化の妨げとなるのみならずCuの拡散を助長してしまうからである。
【0051】
[6]その後、同時焼成された入出力端子5の線路導体8に対して、無電解めっき法または電解めっき法により、Au,Cu,Ti,NiおよびPdの群から選ばれる少なくとも1種のメタライズ層を0.5〜10μmの厚さで被着する。
【0052】
そして線路導体8に対して、外部電気回路と入出力端子5との高周波信号の入出力を行なうための、Fe−Ni−Co合金やCu−W等の金属材料から成るリード端子16が銀ロウ等のロウ材で接合される。
【0053】
本発明において、線路導体8の枠体7内側の部位がCuを10〜70体積%、Wおよび/またはMoを30〜90体積%含有するメタライズ層から成るが、メタライズ層中のCu,W,Moの体積%は以下のようにして特定できる。即ち、このメタライズ層はCuの融点(1083℃)以上の1200〜1500℃で平板部9と同時焼成されるものであり、従ってCuより融点が1000℃以上高いW,MoとCuとは固溶体を形成しない。よって、メタライズ層はW粒子,Mo粒子の間隔をCuが埋めた構成となり、Cu,W,Moの体積%を特定することが可能となる。
【0054】
具体的は以下のようになる。まず、一定量の線路導体8試料の重量を測定した後、それに含有されるCu成分のみを亜硫酸ナトリウム,塩酸または硫酸等の酸で溶解する。処理液にCu成分が溶解し終えて酸処理した線路導体8試料の重量が変化しなくなったのを確認した後、酸処理後の線路導体8試料の重量を再度測定し重量変化を算出する。Cuの比重8.94よりCuの体積を算出する。酸処理後の線路導体8試料の重量から、W(比重19.3)および/またはMo(比重10.22)の体積を算出する。Cu,W,Moのそれぞれの体積から体積%を算出する。
【0055】
なお、本発明は上記実施の形態に限定されず、本発明の要旨を逸脱しない範囲内において種々の変更を行うことは何等支障ない。
【0056】
【発明の効果】
本発明は、入出力端子の平板部の上面に形成された線路導体は、枠体の内側の部位が銅を10〜70体積%、タングステンおよび/またはモリブデンを30〜90体積%含有するメタライズ層から成るとともに枠体の外側の部位がモリブデンを主成分とするメタライズ層から成り、これらのメタライズ層が立壁部の下面で接続されて成ることにより、枠体外側の部位であるリード端子接続部のMoを主成分とするメタライズ層が平板部上面に強固に接合され、その結果、Moを主成分とするメタライズ層上面に接続されたリード端子に外部応力が加わってもメタライズ層ごと剥離したりせず、接続信頼性が向上する。
【0057】
また、枠体内側の部位であるワイヤーボンディング部がCuを10〜70体積%、Wおよび/またはMoを30〜90体積%含有する低抵抗導体から成るメタライズ層で構成され、リード端子接続部のMoを主成分とするメタライズ層と電気的に接続されていることから、ワイヤーボンディング部のCuがリード端子接続部のメタライズ層に拡散して線路導体全体の導体抵抗が低くなり、その結果高周波信号の透過損失が小さくなる。
【0058】
以上の結果、アルミナを主成分とする焼結体と同時焼成でき、外部電気回路との電気的接続を行なうためのリード端子に外力が加わっても、誘電体から成る平板部上面に強固に接続されて剥離することがない線路導体を有する入出力端子を具備した、高周波信号の伝送特性に優れた半導体パッケージを実現できる。
【図面の簡単な説明】
【図1】本発明の半導体パッケージにおける入出力端子について実施の形態の例を示す斜視図である。
【図2】図1の入出力端子の断面図である。
【図3】本発明の半導体パッケージにおける入出力端子について実施の形態の他の例を示す断面図である。
【図4】従来の半導体パッケージを示す分解斜視図である。
【図5】従来の半導体パッケージにおける入出力端子の斜視図である。
【図6】図5の入出力端子の断面図である。
【符号の説明】
1:半導体パッケージ
2:半導体素子
3:載置部
4:基体
5:入出力端子
6:取付部
7:枠体
8:線路導体
8a:ワイヤーボンディング部
8b:リード端子接続部
9:平板部
10:立壁部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor element housing package for housing various semiconductor elements operating at a high frequency, which are used in the fields of optical communication, microwave communication, millimeter wave communication, and the like.
[0002]
[Prior art]
As a semiconductor element storage package (hereinafter referred to as a semiconductor package) for hermetically sealing and storing various semiconductor elements operating at a high frequency used in the conventional optical communication field, microwave communication, and millimeter wave communication fields, for example, An optical semiconductor package used in the optical communication field is shown in FIG. As shown in the figure, a semiconductor package 1 as an optical semiconductor package is generally made of a metal material such as an iron (Fe) -nickel (Ni) -cobalt (Co) alloy or a copper (Cu) -tungsten (W) alloy. And a base 4 provided with a mounting portion 3 on which a semiconductor element 2 such as an optical semiconductor element such as a semiconductor laser (LD) or a photodiode (PD) is mounted at a substantially central portion of the upper surface. The base 4 has a substantially rectangular plate shape, and is provided with screw holes 11 for screwing to an external mounting board (not shown) on opposite sides thereof.
[0003]
Further, it is joined to the upper main surface of the base 4 via a brazing material such as silver brazing so as to surround the mounting portion 3, and the semiconductor element 2 and the semiconductor element 2 are connected to both sides located on the long side of the base 4. A frame 7 provided with a mounting portion 6 formed of a through hole or a notch for fitting and joining an input / output terminal 5 for inputting and outputting a high-frequency signal for electrically connecting an external electric circuit (not shown). Have The frame body 7 is made of an Fe—Ni—Co alloy or the like, and is a through hole into which a cylindrical fixing member 18 for fixing the optical fiber 12 is fitted and joined to one side portion located on the short side of the base body 4. 14 is formed. The periphery of the outer opening of the through hole 14 that is the optical transmission path of the frame body 7 is made of a metal material such as an Fe—Ni—Co alloy or an Fe—Ni alloy that approximates the thermal expansion coefficient of the frame body 7. A cylindrical fixing member 18 for fixing the optical fiber 12 is joined with a brazing material such as silver brazing.
[0004]
The seal ring 17 is joined to the upper surface of the frame body 7 and the upper surface of the input / output terminal 5 via a brazing material such as silver brazing, and sandwiches the input / output terminal 5 and the lid body 15 is seam welded to the upper surface. It functions as a bonding medium for bonding.
[0005]
The semiconductor package 1 further includes an input / output terminal 5 attached to the attachment portion 6 and a lid 15 for hermetically sealing the semiconductor element 2 attached to the upper surface of the frame body 7. .
[0006]
In such a semiconductor package 1, the semiconductor element 2 is mounted and fixed on the mounting portion 3 of the base 4 with a low melting point brazing material such as tin (Sn) -lead (Pb) solder, and the electrode of the semiconductor element 2 is bonded. It is electrically connected to the line conductor 28 of the input / output terminal 5 shown in FIG. 5 through a wire (not shown), and the optical axes of the optical fiber 12 and the semiconductor element 2 are adjusted. Thereafter, a metal holder 13 in which the optical fiber 12 is attached to the end face of the fixing member 18 on the outer side of the frame 7 with an adhesive such as a resin is bonded with a low melting point brazing material such as gold (Au) -tin (Sn). Next, the lid body 15 is joined to the upper surface of the frame body 7 by seam welding or the like, and the semiconductor element 2 is hermetically accommodated in the container composed of the base body 4, the frame body 7 and the lid body 15 to obtain a product as a product. An optical semiconductor device is obtained.
[0007]
In such an optical semiconductor device, after being screwed onto the mounting substrate, the semiconductor element 2 is optically excited by a driving high-frequency signal supplied from an external electric circuit, and excited light such as laser light is applied to the optical fiber 12. It functions as a photoelectric conversion device that can transmit and receive a large amount of information at a high speed by transmitting and receiving through the optical fiber 12, and is widely used in the field of optical communication and the like.
[0008]
Therefore, the input / output terminal 5 used in the semiconductor package 1 constituting this optical semiconductor device needs to be able to form a wiring pattern that is electrically insulated and capable of lead wire connection and wire bonding. As shown in FIGS. 5 and 6, the input / output terminal 5 includes a flat plate portion 9 made of a dielectric having a line conductor 28 formed from one side of the upper surface to the opposite side, and a flat plate portion. 9 and a standing wall portion 10 made of a similar dielectric material joined with a line conductor 28 interposed therebetween. Further, the both sides of the flat plate portion 9 and the standing wall portion 10 substantially parallel to the line conductor 28 surround the line conductor 28 in a pseudo-coaxial manner and function as a ground conductor, and on the inner peripheral surface of the attachment portion 6 shown in FIG. A metallized layer (not shown) that functions as a joining medium to be joined via a brazing material such as silver brazing is formed.
[0009]
The upper surface of the part outside the frame body 7 of the line conductor 28 is made of a metal material such as an Fe-Ni-Co alloy and joined with a brazing material such as silver brazing, and the input / output terminal 5 and an external electric circuit Lead terminals 16 for electrical connection are connected. On the other hand, the wire bonding portion 28a located on the upper surface of the portion inside the frame body 7 of the line conductor 28 is made of a wire material such as Au or aluminum (Al), and is connected to the semiconductor element 2 by an ultrasonic bonding method or a thermocompression bonding method. A bonding wire (not shown) for electrical connection with the input / output terminal 5 is connected.
[0010]
As a dielectric constituting such an input / output terminal 5, generally alumina (Al 2 O Three ) Ceramics such as quality sintered bodies have been used. On the other hand, the line conductor 28 formed on the input / output terminal 5 employs a refractory metal such as W or Mo that has a low electrical resistance and can form a fine wiring pattern by simultaneous firing with the ceramics.
[0011]
In recent years, there has been an increasing demand for transmission of higher-frequency input / output signals and miniaturization, and as a result, the line width of the line conductor 28 has become narrower and the wiring resistance has increased. However, the line conductor 28 made of a refractory metal has a problem that the sheet resistance can only be lowered to about 8 mΩ / □ at most, and the transmission loss of high-frequency signals becomes large. Therefore, it has been proposed to form the line conductor 28 by co-firing with the ceramic using a conductor having a lower resistance Cu or a combination of Cu and W, Mo.
[0012]
[Problems to be solved by the invention]
However, a conductor that combines Cu or Cu and W, Mo is alumina (Al 2 O Three ) Since the line conductor 28 is formed by simultaneous firing at a low temperature of 1200 to 1500 ° C. with a dielectric made of a sintered material, alumina (Al 2 O Three ) Since the dielectric component made of a sintered material has poor wettability with Cu, the diffusion to the conductor layer combining Cu or Cu with W and Mo has been insufficient. As a result, since no external force is applied to the bonding wire that electrically connects the semiconductor element 2 and the input / output terminal 5, no problem occurs in the wire bonding portion 28a of the line conductor 28. When an external stress is applied to the brazed lead terminal 16 for electrical connection with the external electric circuit when the electrical connection with the external electric circuit is applied, the lead terminal 16 is peeled off from the dielectric surface together with the conductor layer. There was a problem of doing.
[0013]
Accordingly, the present invention has been completed in view of the above-mentioned problems, and the object thereof is a lead terminal that can be formed by simultaneous firing with a dielectric or the like mainly composed of alumina, and is electrically connected to an external electric circuit. The present invention has an input / output terminal having a line conductor that is firmly bonded to the upper surface of a flat plate portion made of a dielectric material and does not peel off even when external stress is applied, and does not impair the transmission characteristics of high-frequency signals.
[0014]
A semiconductor package according to the present invention includes a base body having a mounting portion on which a semiconductor element is mounted on the upper main surface, and a cutout portion on the side portion, which is attached to the upper main surface so as to surround the mounting portion. Alternatively, a frame having an input / output terminal mounting portion formed of a through hole, a flat plate portion made of a dielectric having a plurality of line conductors formed from one side of the upper surface to the opposite side, and the plate portion It is composed of a standing wall portion made of a dielectric material joined to the upper surface with the plurality of line conductors sandwiched therebetween, and is fitted to the attachment portion to electrically connect the semiconductor element and an external electric circuit. In the package for housing a semiconductor element having an output terminal, the line conductor is formed of a metallized layer in which the inner portion of the frame body contains 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum. Completion Site outside of the frame body is molybdenum with 70 to 90% by weight, manganese 2 to 15% by weight, silicon oxide 5 to 20% by weight, titanium oxide 1 to 10% by weight These metallized layers are connected to each other at the lower surface of the standing wall portion.
[0015]
According to the present invention, the line conductor is composed of a metallized layer containing 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum at the inner part of the frame and molybdenum at the outer part of the frame. Consists of metallized layers with main components, and these metallized layers are connected at the lower surface of the standing wall portion, so that the diffusion of the dielectric component composed of an alumina sintered body or the like into the metalized layers with Mo as the main component is possible. It becomes easy. As a result, the Mo metallization layer of the lead wire connection portion, which is the outer portion of the frame, is firmly bonded to the upper surface of the flat plate portion made of an alumina sintered body, so the outside of the lead terminal connected thereto The strength against stress is increased and the connection reliability is improved.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The semiconductor package of the present invention will be described in detail below. FIG. 1 is a perspective view showing an example of input / output terminals constituting the semiconductor package of the present invention, and FIG. 2 is a cross-sectional view showing an example of input / output terminals constituting the semiconductor package of the present invention. The basic configuration of the entire semiconductor package of the present invention is the same as that shown in FIG.
[0017]
As shown in FIGS. 1 and 2, the input / output terminals constituting the semiconductor package of the present invention are formed of a substantially rectangular dielectric plate, and a plurality of lines formed on the upper surface from one side to the opposite side. A flat plate portion 9 having a conductor 8 and a substantially cuboid standing wall portion 10 made of a dielectric material joined to the upper surface of the plate portion 9 with a plurality of line conductors 8 interposed therebetween. The line conductor 8 is composed of a metallized layer containing 10 to 70 volume% Cu and 30 to 90 volume% W and / or Mo in the inner portion of the frame body 7 and the outer portion of the frame body 7 is mainly made of Mo. It consists of metallized layers as components, and these metallized layers are connected at the lower surface of the standing wall 10.
[0018]
The metallized layer containing Mo as a main component of the lead terminal connecting portion 8b constituting the line conductor 8 has extremely good adhesion to the ceramics constituting the flat plate portion 9 and the standing wall portion 10, and wiring of the entire line conductor 8 is performed. Since the wire bonding part 8a is composed of a metallized layer containing 10 to 70% by volume of Cu and 30 to 90% by volume of W and / or Mo, the sheet resistance of the entire lead terminal connection part 8b and wire bonding part 8a Also, the resistance is as low as 7 mΩ / □ or less.
[0019]
The wire bonding portion 8a of the line conductor 8 of the present invention is made of a metallized layer mainly composed of a composite material of Cu, W and / or Mo, and is a dielectric that constitutes the flat plate portion 9 and the standing wall portion 10 as will be described later. Are formed by simultaneous firing. The metallized layer contains 10 to 70% by volume of Cu and 30 to 90% by volume of W and / or Mo. However, the resistance of the line conductor 8 is reduced, the simultaneous sinterability with the dielectric, and the line conductor 8 are included. In order to maintain the shape retention, it is preferable to contain 40 to 60% by volume of Cu and 40 to 60% by volume of W and / or Mo. In this case, the sheet resistance of the wire bonding portion 8a can be reduced to about 8 mΩ / □ or less.
[0020]
When the amount of Cu in the line conductor 8 is less than 10% by volume and the amount of W and / or Mo exceeds 90% by volume, the resistance of the line conductor 8 increases. Further, when the Cu amount exceeds 70% by volume and the W and / or Mo amount is less than 30% by volume, the shape retaining property of the line conductor 8 is deteriorated, and the line conductor 8 is smeared or melted. The line conductor 8 is aggregated by Cu to cause disconnection, and the line conductor 8 is liable to be peeled off due to a difference in thermal expansion between the dielectric and the line conductor 8.
[0021]
The line conductor 8 is preferably contained in a matrix composed of Cu as W and / or Mo contained in a spherical or sintered particle having an average particle diameter of 1 to 10 μm. . This is because when the average particle size is smaller than 1 μm, the shape retention of the line conductor 8 is deteriorated, the structure becomes porous, and the resistance value becomes high. On the other hand, if it exceeds 10 μm, the matrix made of Cu is divided by the particles of W and Mo, and there is a possibility that the resistance value becomes high and bleeding occurs due to separation of the Cu component.
[0022]
Further, the average particle diameter of W and / or Mo is preferably 1.3 to 5 μm, and if it is less than 1.3 μm, the sintering proceeds excessively at the time of sintering, and the adhesive strength with the dielectric may be lowered. If it exceeds 5 μm, the sintering becomes insufficient, and there is a risk of insufficient strength of the line conductor 8, insufficient adhesion to the dielectric, and an increase in conduction resistance. More preferably, 1.3-3 micrometers is good.
[0023]
On the other hand, the lead terminal connecting portion 8b of the line conductor 8 of the present invention is made of a metallized layer mainly composed of Mo, and forms the flat plate portion 9 and the standing wall portion 10 as will be described later, as in the case of the wire bonding portion 8a. It is formed by simultaneous firing with a dielectric. Such a metallized layer containing Mo as a main component is formed by co-firing with a dielectric using a conventionally known Mo-manganese (Mn) paste. Examples of the Mo—Mn paste include 70 to 90 wt% Mo, 2 to 15 wt% Mn, and silicon oxide (SiO 2 2 ) 5-20% by weight, titanium oxide (TiO 2 ) In an amount of 1 to 10% by weight.
[0024]
In addition, in the metallized layer mainly composed of Mo, a dielectric component composed of an alumina sintered body is easily diffused, and as a result, the metallized layer mainly composed of Mo in the lead terminal connecting portion 8b is made of alumina. Since it is firmly joined to the upper surface of the flat plate portion 9 made of a sintered body, the strength against the external stress of the lead terminal 16 connected by the brazing material is increased, and the connection reliability is improved.
[0025]
Further, the metallized layer mainly composed of a composite material of Cu and W and / or Mo in the wire bonding part 8a and the metallized layer mainly composed of Mo in the lead terminal connecting part 8b are the standing wall part of the input / output terminal 5. 10 are electrically connected at the lower surface. At this time, since the Cu component of the wire bonding portion 8a is diffused and bonded to the metallized layer side mainly composed of Mo of the lead terminal connection portion 8b, Cu is entirely present in the connection portion on the lower surface of the standing wall portion 10. Has been diffused. Therefore, due to the diffusion of Cu, the resistance change at the interface between the wire bonding portion 8a and the lead terminal connection portion 8b is not a sudden change but gradually changes, and as a result, the high-frequency signal transmission characteristics are not affected. .
[0026]
As for the form of this connection part, it is only necessary to be electrically connected, but as shown in FIG. 2, the metallization with a small conduction resistance, which is mainly composed of a composite material of Cu and W and / or Mo of the wire bonding part 8a. The layer is preferably formed on the upper surface of the metallized layer containing Mo as a main component of the lead terminal connecting portion 8b, which is preferable in terms of transmission characteristics of the high-frequency signal. That is, since the high-frequency signal is transmitted on the very surface of the line conductor 8 by the skin effect, the metallized layer having a small conduction resistance is preferably on the upper side (surface layer side), and silver brazing for connecting the lead terminal 16 or the like. In combination with the highly conductive brazing material film, the transmission loss is reduced and the transmission characteristics of the high-frequency signal are improved.
[0027]
Further, the connection interface between the metallized layer of the wire bonding part 8 a and the metallized layer of the lead terminal connection part 8 b is interposed between the flat plate part 9 and the standing wall part 10 of the input / output terminal 5, and the standing wall part 10 is inserted into the flat plate part 9. It is preferable to ensure the dimensional accuracy of the input / output terminal 5 by press-bonding at the time of bonding. Further, securing the dimensional accuracy by pressure bonding is also effective for hermetic sealing between the input / output terminal 5 and the frame body 7.
[0028]
Furthermore, the metallization layer of the wire bonding part 8a and the metallization layer of the lead terminal connection part 8b are connected to the metallization layer of the wire bonding part 8a and the metallization layer of the lead terminal connection part 8b as shown in FIG. The line conductor 8 is formed by abutting the layers, the connection interface thereof is interposed between the flat plate portion 9 and the standing wall portion 10, and pressure bonding is performed when the rising wall portion 10 is joined to the flat plate portion 9. You may make it ensure the dimensional accuracy of the terminal 5. FIG. As a result, similar to the above, it is effective for hermetic sealing.
[0029]
In any case, the lead terminal connecting portion 8b only needs to secure an area where the lead terminal 16 can be joined to the metallized layer with a sufficient length (about 0.2 to 3 mm) with a brazing material such as silver solder. In view of connection reliability, it is important that the wire conductor 8 is not in contact with the line conductor 8 of the metallized layer of the wire bonding portion 8a.
[0030]
Further, the surface of the line conductor 8 is selected from the group of Au, Cu, Ti, Ni and Pd for preventing corrosion due to oxidation, wire bonding, wettability with solder, and reducing the resistance of the line conductor 8. It is preferable that the at least one metal layer is deposited by electroless plating, electrolytic plating, or the like. In particular, the outermost surface is more preferably made of Au from the viewpoint of improving corrosion resistance and reducing resistance.
[0031]
Further, in order to improve the adhesion to the dielectric, the line conductor 8 contains a ceramic component mainly composed of ceramics constituting the dielectric or a ceramic component having the same composition as the dielectric composition. It is preferable to make it contain in the ratio of 2 volume%.
[0032]
In the input / output terminal 5 of the present invention, if the dielectric is simultaneously fired at a temperature exceeding the melting point of Cu, the Cu component in the line conductor 8 may diffuse into the dielectric. The diffusion distance of Cu to the dielectric is preferably 30 μm or less, particularly 10 μm or less. In this case, the diffusion distance can be controlled by controlling the firing conditions and the like. When the diffusion distance of the Cu component in the line conductor 8 into the dielectric exceeds 30 μm, the insulation between the line conductors 8 is lowered and the reliability as the line conductor 8 is lowered. Therefore, by controlling the diffusion distance to be 30 μm or less, the line conductor 8 can be formed with high density wiring by setting the minimum distance between the line conductors 8 to 100 μm or less, particularly 90 μm or less.
[0033]
Further, a lead terminal 16 made of a metal material such as an Fe-Ni-Co alloy for inputting / outputting a high frequency signal between the external electric circuit and the input / output terminal 5 is provided at a portion outside the frame body 7 of the line conductor 8. Bonded with a brazing material such as silver brazing.
[0034]
The flat plate portion 9 is preferably made of ceramics mainly composed of alumina, and is preferable in terms of simultaneous sintering of the metallized layer containing Cu and the line conductor 8 composed of the metallized layer mainly containing Mo. . This ceramic mainly composed of alumina is preferably formed from a highly dense body having a relative density of 95% or more, particularly 97% or more, and more preferably 99% or more, and has high thermal conductivity and high strength. Will be. Furthermore, in order to ensure the shape retention of the line conductor 8 at the time of simultaneous firing with the line conductor 8, it is preferable that the firing temperature is a low temperature of 1200 to 1500 ° C. and the relative density is densified to 95% or more.
[0035]
Therefore, as the dielectric of the input / output terminal 5 having such characteristics, alumina is contained in a proportion of 84 to 90% by weight as a main component, and a Mn compound is used in terms of enhancing the sinterability at the firing temperature. MnO 2 What contains in the ratio of 2 to 6 weight% in conversion is suitable.
[0036]
In addition, in this dielectric, the third component is SiO. 2 One or more alkaline earth elements such as magnesium (Mg), calcium (Ca), and strontium (Sr) may be contained as an oxide, and the simultaneous sinterability with a metallized layer containing Cu can be improved. . Its content is SiO 2 Is preferably 2 to 15% by weight, and more preferably 3 to 10% by weight from the point of simultaneous sintering. The total amount of alkaline earth elements in terms of oxides is preferably 0.1 to 4% by weight, and more preferably 0.2 to 2.5% by weight from the point of simultaneous sintering. Furthermore, you may contain metals, such as W, Mo, chromium (Cr), as a 4th component in the ratio of 2 weight% or less as a coloring component.
[0037]
In the present invention, Al 2 O Three Ingredients other than Al 2 O Three Although it exists as an amorphous phase or a crystalline phase at the grain boundary of the main crystalline phase, it is preferable that a crystalline phase containing an auxiliary component is formed in the grain boundary in order to enhance thermal conductivity. Al 2 O Three The main crystal phase exists as granular or columnar crystals, and the average crystal grain size of these main crystal phases is preferably 1.5 to 5 μm. When the main crystal phase is composed of columnar crystals, the average crystal grain size is based on the minor axis diameter. When the average crystal grain size of the main crystal phase is less than 1.5 μm, it is difficult to achieve high thermal conductivity, and when it exceeds 5 μm, it is difficult to obtain the strength required for the input / output terminal 5.
[0038]
Further, the standing wall portion 10 is made of a dielectric similar to the flat plate portion 9, and a metallized layer similar to the line conductor 8 is formed on the entire upper surface thereof, and is joined to the inner peripheral surface of the mounting portion 6 of the frame body 7. A metallized layer is also formed on the surface. This metallized layer is formed by printing and applying a metal paste in a predetermined pattern and firing by a method similar to that for the line conductor 8 or the like. This metallized layer is formed, for example, by applying a metal paste obtained by adding and mixing an organic solvent and a solvent to a metal powder such as W or Mo into a ceramic green sheet for the flat plate portion 9 by a known screen printing method or the like. It is formed by printing and applying and baking.
[0039]
The input / output terminal 5 obtained in this way is attached to the mounting portion 6 on the side of the frame 7 joined to the upper main surface of the base 4 made of a metal material such as an Fe—Ni—Co alloy or Cu—W alloy. It is fitted and joined by brazing material such as. As a result, it becomes a part of the frame 7, and the inside and outside of the frame 7 are hermetically partitioned, and a conductive path that conducts the inside and outside of the frame 7 is formed.
[0040]
Next, an example of the method for manufacturing the input / output terminal 5 constituting the semiconductor package 1 of the present invention will be specifically described in the following [1] to [6].
[0041]
[1] First, in order to form the flat plate portion 9 and the standing wall portion 10 of the input / output terminal 5, Al as a main component is formed. 2 O Three As the raw material powder, a powder having an average particle diameter of 0.5 to 2.5 μm, more preferably 0.5 to 2 μm is used. This is because when the average particle size is less than 0.5 μm, such fine powder is difficult to handle, and the cost of powder production becomes high, and when it is larger than 2.5 μm, firing at a low temperature of 1500 ° C. or less is difficult. Because it becomes.
[0042]
[2] Next, Al 2 O Three MnO as the second component for the raw material powder 2 In an amount of 2 to 15% by weight, more preferably 3 to 10% by weight. Also, as the third component, SiO 2 And one or more oxides of alkaline earth elements such as MgO, CaO and SrO are added in a proportion of 0.1 to 4% by weight, more preferably 0.2 to 2.5% by weight. Furthermore, a metal powder or oxide powder of a transition metal such as W, Mo, Cr or the like is added as a fourth component as a coloring component at a ratio of 2% by weight or less in terms of metal.
[0043]
In addition, when adding each oxide, you may add with carbonate, nitrate, acetate etc. which can form an oxide by baking other than oxide powder.
[0044]
[3] Thereafter, a sheet-like molded body is prepared from the mixed powder by a known molding method. Specifically, an organic binder and a solvent are added to the mixed powder to prepare a slurry, and the obtained slurry is formed into a sheet by a doctor blade method. Alternatively, an organic binder is added to the mixed powder, and a sheet-like molded body having a predetermined thickness is produced by a press molding method or a rolling molding method.
[0045]
[4] Next, a conductor paste containing 10 to 70% by volume of Cu powder having an average particle diameter of 1 to 10 μm and 30 to 90% by volume of W and / or Mo powder having an average particle diameter of 1 to 10 μm. A, 70 to 90% by weight of Mo powder having an average particle diameter of 1 to 10 μm, 2 to 15% by weight of Mn powder having an average particle diameter of 1 to 10 μm, SiO 2 5-20% by weight of powder, TiO 2 A conductor paste B containing 1 to 10% by weight of powder is prepared.
[0046]
First, using this conductor paste B, a wiring pattern to be the line conductor 8 is printed and applied to the surface of the lead terminal connecting portion side surface of the sheet-like molded body for the flat plate portion 9 by a screen printing method or a gravure printing method. Next, the same screen printing is performed on the wire bonding portion side surface of the sheet-like molded body for the flat plate portion 9 using the conductive paste A so that a part of the wiring pattern formed on the lead terminal connection portion side surface overlaps. A wiring pattern to be the line conductor 8 is printed and applied by a method, a gravure printing method, or the like. Thereafter, the overlapping portion of the wiring pattern is pressed and finely adjusted to a predetermined thickness.
[0047]
Further, in this conductor paste, in order to improve the adhesion of the flat plate portion 9 to the dielectric, Al 2 O Three It is also possible to add 0.05 to 2% by volume of powder or ceramic powder having the same composition as the oxide ceramic component constituting the dielectric.
[0048]
[5] After that, a sheet-like molded body having the shape of the flat plate portion 9 and the upright wall portion 10 is produced by punching, and the upright wall portion 10 is laminated and pressure-bonded to the upper surface of the flat plate portion 9, and this laminated body is non-oxidized. Calcination and integration at a firing maximum temperature of 1200 to 1500 ° C. in an acidic atmosphere.
[0049]
At this time, if the firing temperature is lower than 1200 ° C., the aluminum oxide sintered body cannot be densified so that the relative density becomes 95% or more, and the thermal conductivity and strength are lowered. When the temperature exceeds 1500 ° C., sintering of W and Mo itself in the conductive paste proceeds, and a metallized layer having a homogeneous structure in which W and Mo are uniformly present in Cu as a matrix cannot be obtained, and a low resistance value is maintained. Can not do. That is, it becomes difficult to set the sheet resistance of the line conductor 8 on the wire bonding portion 8a side to 8 mΩ / □ or less. Further, when the temperature exceeds 1500 ° C., the grain size of the main crystal phase of the oxide ceramic becomes large and abnormal grain growth occurs, or the length of the grain boundary, which is a path when Cu diffuses into the ceramic, becomes short. At the same time, the diffusion rate is increased. As a result, it becomes difficult to suppress the diffusion distance to 30 μm or less, and the resistance value increases. Accordingly, the firing temperature is more preferably in the range of 1250 to 1400 ° C.
[0050]
Further, the non-oxidizing atmosphere during firing is preferably nitrogen or a mixed atmosphere of nitrogen and hydrogen. In particular, a non-oxidizing atmosphere containing nitrogen and hydrogen and having a dew point of 10 ° C. or lower, particularly −10 ° C. or lower is preferable in terms of suppressing diffusion of Cu in the line conductor 8. An inert gas such as argon gas may be mixed in the non-oxidizing atmosphere. When the dew point of this non-oxidizing atmosphere is higher than 10 ° C., oxide ceramics react with moisture in the atmosphere during firing to form an oxide film, and this oxide film reacts with Cu in the conductor, This is because it not only prevents the resistance of the line conductor 8 from being lowered, but also promotes the diffusion of Cu.
[0051]
[6] Thereafter, at least one metallization selected from the group of Au, Cu, Ti, Ni, and Pd is applied to the line conductor 8 of the input / output terminal 5 fired simultaneously by electroless plating or electrolytic plating. The layer is applied with a thickness of 0.5 to 10 μm.
[0052]
A lead terminal 16 made of a metal material such as Fe-Ni-Co alloy or Cu-W for inputting / outputting a high frequency signal between the external electric circuit and the input / output terminal 5 with respect to the line conductor 8 is a silver solder. Bonded with a brazing material such as
[0053]
In the present invention, the portion inside the frame body 7 of the line conductor 8 is composed of a metallized layer containing 10 to 70% by volume of Cu and 30 to 90% by volume of W and / or Mo. Cu, W, The volume percentage of Mo can be specified as follows. That is, this metallized layer is fired simultaneously with the flat plate portion 9 at 1200 to 1500 ° C. which is not lower than the melting point (1083 ° C.) of Cu. Therefore, W, Mo and Cu having a melting point higher than Cu by 1000 ° C. are solid solutions. Do not form. Therefore, the metallized layer has a configuration in which the interval between the W particles and the Mo particles is filled with Cu, and the volume% of Cu, W, and Mo can be specified.
[0054]
Specifically, it is as follows. First, after measuring the weight of a certain amount of the line conductor 8 sample, only the Cu component contained therein is dissolved with an acid such as sodium sulfite, hydrochloric acid or sulfuric acid. After confirming that the weight of the acid-treated line conductor 8 sample is no longer changed after the Cu component is completely dissolved in the treatment liquid, the weight of the acid-treated line conductor 8 sample is measured again to calculate the change in weight. The volume of Cu is calculated from the specific gravity of Cu of 8.94. The volume of W (specific gravity 19.3) and / or Mo (specific gravity 10.22) is calculated from the weight of the line conductor 8 sample after acid treatment. The volume% is calculated from the respective volumes of Cu, W, and Mo.
[0055]
In addition, this invention is not limited to the said embodiment, It does not have any trouble in making a various change within the range which does not deviate from the summary of this invention.
[0056]
【The invention's effect】
According to the present invention, the line conductor formed on the upper surface of the flat plate portion of the input / output terminal has a metallized layer in which the inner part of the frame contains 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum. And the outer part of the frame body is made of a metallized layer mainly composed of molybdenum, and these metallized layers are connected by the lower surface of the standing wall part. The metallized layer containing Mo as the main component is firmly bonded to the upper surface of the flat plate portion. Therefore, connection reliability is improved.
[0057]
Moreover, the wire bonding part which is a site | part inside a frame is comprised with the metallization layer which consists of a low resistance conductor containing 10-70 volume% Cu, and 30-90 volume% of W and / or Mo, and is a lead terminal connection part. Since it is electrically connected to the metallized layer containing Mo as the main component, Cu in the wire bonding part diffuses into the metallized layer in the lead terminal connecting part and the conductor resistance of the entire line conductor is lowered, resulting in a high-frequency signal. Transmission loss is reduced.
[0058]
As a result of the above, it can be fired simultaneously with a sintered body containing alumina as a main component, and even when an external force is applied to the lead terminal for electrical connection with an external electric circuit, it is firmly connected to the upper surface of the flat plate made of dielectric. Thus, a semiconductor package having an input / output terminal having a line conductor that does not peel off and excellent in high-frequency signal transmission characteristics can be realized.
[Brief description of the drawings]
FIG. 1 is a perspective view showing an example of an embodiment of an input / output terminal in a semiconductor package of the present invention.
2 is a cross-sectional view of the input / output terminal of FIG. 1. FIG.
FIG. 3 is a cross-sectional view showing another example of the embodiment of the input / output terminal in the semiconductor package of the present invention.
FIG. 4 is an exploded perspective view showing a conventional semiconductor package.
FIG. 5 is a perspective view of input / output terminals in a conventional semiconductor package.
6 is a cross-sectional view of the input / output terminal of FIG.
[Explanation of symbols]
1: Semiconductor package
2: Semiconductor element
3: Placement part
4: Substrate
5: Input / output terminal
6: Mounting part
7: Frame
8: Line conductor
8a: Wire bonding part
8b: Lead terminal connection part
9: Flat plate
10: Standing wall

Claims (1)

上側主面に半導体素子が載置される載置部を有する基体と、前記上側主面に前記載置部を囲繞するように取着され、側部に切欠き部または貫通孔から成る入出力端子の取付部が形成された枠体と、上面の一辺側から対向する他辺側にかけて形成された複数の線路導体を有する誘電体から成る平板部および該平板部の上面に前記複数の線路導体を間に挟んで接合された誘電体から成る立壁部から構成されると共に、前記取付部に嵌着されて前記半導体素子と外部電気回路とを電気的に接続する入出力端子とを具備した半導体素子収納用パッケージにおいて、前記線路導体は、前記枠体の内側の部位が銅を10〜70体積%、タングステンおよび/またはモリブデンを30〜90体積%含有するメタライズ層から成るとともに前記枠体の外側の部位がモリブデンを70〜90重量%、マンガンを2〜15重量%、酸化珪素を5〜20重量%、酸化チタンを1〜10重量%含有するメタライズ層から成り、これらのメタライズ層が前記立壁部の下面で接続されて成ることを特徴とする半導体素子収納用パッケージ。A base having a mounting portion on which the semiconductor element is mounted on the upper main surface, and an input / output composed of a cutout portion or a through hole attached to the upper main surface so as to surround the mounting portion. A frame formed with a terminal mounting portion, a flat plate portion made of a dielectric having a plurality of line conductors formed from one side of the upper surface to the opposite side, and the plurality of line conductors on the upper surface of the flat plate portion A semiconductor comprising an upright wall portion made of a dielectric material sandwiched between and an input / output terminal that is fitted to the mounting portion and electrically connects the semiconductor element and an external electric circuit In the element storage package, the line conductor is formed of a metallized layer containing 10 to 70% by volume of copper and 30 to 90% by volume of tungsten and / or molybdenum at an inner portion of the frame, and outside the frame. Part of There 70-90 wt% molybdenum, manganese 2-15 wt%, 5-20 wt% silicon oxide, consists metallized layer containing 1 to 10% by weight of titanium oxide, these metallization layers of the vertical wall portion A package for housing a semiconductor element, wherein the package is connected at the lower surface.
JP2001152590A 2001-05-22 2001-05-22 Package for storing semiconductor elements Expired - Fee Related JP4530579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001152590A JP4530579B2 (en) 2001-05-22 2001-05-22 Package for storing semiconductor elements

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001152590A JP4530579B2 (en) 2001-05-22 2001-05-22 Package for storing semiconductor elements

Publications (2)

Publication Number Publication Date
JP2002353353A JP2002353353A (en) 2002-12-06
JP4530579B2 true JP4530579B2 (en) 2010-08-25

Family

ID=18997230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001152590A Expired - Fee Related JP4530579B2 (en) 2001-05-22 2001-05-22 Package for storing semiconductor elements

Country Status (1)

Country Link
JP (1) JP4530579B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4761713B2 (en) * 2004-01-28 2011-08-31 京セラ株式会社 Electronic component sealing substrate, multi-component electronic component sealing substrate, and method of manufacturing electronic device
AT15574U3 (en) * 2017-05-11 2018-05-15 Plansee Se Flexible component with layer structure with metallic layer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176988A (en) * 1997-12-15 1999-07-02 Kyocera Corp High frequency input/output terminal and package for housing high frequency semiconductor device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645041A (en) * 1987-06-29 1989-01-10 Shinko Electric Ind Co Manufacture of ceramic body having superconducting circuit pattern

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11176988A (en) * 1997-12-15 1999-07-02 Kyocera Corp High frequency input/output terminal and package for housing high frequency semiconductor device

Also Published As

Publication number Publication date
JP2002353353A (en) 2002-12-06

Similar Documents

Publication Publication Date Title
JP4959079B2 (en) Package for storing semiconductor elements
JP4530579B2 (en) Package for storing semiconductor elements
JP3825310B2 (en) Input / output terminal, semiconductor element storage package, and semiconductor device
JP4530524B2 (en) Wiring board
JP3762352B2 (en) Wiring board
JP2003188300A (en) Package for housing semiconductor element and semiconductor device
JP2002289719A (en) Package for storing semiconductor element
JP2002329800A (en) Semiconductor device housing package
JP2750232B2 (en) Electronic component storage package
JP2740605B2 (en) Manufacturing method of semiconductor device storage package
JP4000093B2 (en) Input / output terminal, manufacturing method of input / output terminal, package for storing semiconductor element using input / output terminal, and semiconductor device
JP2003234552A (en) Wiring board
JP2801449B2 (en) Package for storing semiconductor elements
JP4454183B2 (en) Wiring board manufacturing method
JP2685159B2 (en) Electronic component storage package
JP2740606B2 (en) Package for storing semiconductor elements
JP2004221407A (en) Wiring board
JP3670523B2 (en) Optical semiconductor element storage package
JP2003234551A (en) Wiring board
JP2000260896A (en) Package for housing semiconductor element
JP2003007923A (en) Wiring board
JP2004228532A (en) Input/output terminal, semiconductor element housing package, and semiconductor device
JP2001185850A (en) Wiring board
JP2004296788A (en) Package for housing semiconductor element and semiconductor device
JP4530525B2 (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100608

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees