JP4529168B2 - Electrostatic actuator and manufacturing method thereof - Google Patents

Electrostatic actuator and manufacturing method thereof Download PDF

Info

Publication number
JP4529168B2
JP4529168B2 JP2000062550A JP2000062550A JP4529168B2 JP 4529168 B2 JP4529168 B2 JP 4529168B2 JP 2000062550 A JP2000062550 A JP 2000062550A JP 2000062550 A JP2000062550 A JP 2000062550A JP 4529168 B2 JP4529168 B2 JP 4529168B2
Authority
JP
Japan
Prior art keywords
electrode
electrode assembly
electrostatic actuator
wiring
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000062550A
Other languages
Japanese (ja)
Other versions
JP2001251871A (en
Inventor
雄二 麻生
正勝 清原
広典 鳩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2000062550A priority Critical patent/JP4529168B2/en
Publication of JP2001251871A publication Critical patent/JP2001251871A/en
Application granted granted Critical
Publication of JP4529168B2 publication Critical patent/JP4529168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、静電気力を動力源とする静電アクチュエータに関するものである。
【0002】
【従来の技術】
静電アクチュエータは、第1電極、第2電極、第3電極を同一平面上に形成するため、集合配線の取り回しとして、多層構造をとらざるを得ない。一般的に、ビアホールを設けて多層構造を形成する製法や、特開平7−255185に記載されているような粘着層および絶縁層を介して多層化する製法が提案されている。
【0003】
【発明が解決しようとする課題】
しかし、ビアホールを設けて多層構造を形成する製法は、製造工程が複雑なため、コストが高くなってしまう。また、絶縁層を介して多層化する製法は、比較的製造工程が単純なため、低コスト化が可能であるが、第1の工程として、第1電極と第1電極集合配線と、第2電極と第2電極集合配線を同時に形成した後、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として、第3電極と第3電極集合配線とを形成するやり方だと、第1電極と第3電極、および第2電極と第3電極との位置ズレが生じやすく、結果として電極ピッチの精度が悪くなり、静電モータの動特性に悪影響を与えてしまう。また、粘着層を設ける工程が余分となる。
【0004】
本発明は上記課題を解決するためになされたもので、低コスト化が可能で電極ピッチの精度の高い静電アクチュエータを提供することにある。
【0008】
上記目的を達成するためになされた請求項1の発明は、本発明の静電アクチュエータの製造工程を具体的に示したもので、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を同時に形成し、第2の工程として、第1電極集合配線および第2電極集合配線を形成し、第3の工程として、第2電極集合配線上に絶縁層を形成し、第4の工程として第3電極集合線を形成することを特徴とする。これにより、電極ピッチの高精度化や、電極材料、電極厚みの選定の自由度が増し、静電アクチュエータの特性向上が期待できる。
【0009】
上記目的を達成するためになされた請求項2の発明は、本発明の本発明の静電アクチュエータの製造工程を具体的に示したもので、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、第2の工程として、第2電極集合配線を形成し、第3の工程として、第2電極集合配線上に絶縁層を形成し、第4の工程として第1電極集合配線および第3電極集合線を形成することを特徴とする。これにより、電極ピッチの高精度化や、電極材料、電極厚みの選定の自由度が増し、静電アクチュエータの特性向上が期待できる。
【0010】
上記目的を達成するためになされた請求項3の発明は、本発明の静電アクチュエータの製造工程を具体的に示したもので、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、および第2電極集合配線を形成し、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として第1電極集合配線および第3電極集合線を形成することを特徴とする。これにより、電極ピッチの高精度化や、電極材料、電極厚みの選定の自由度が増し、静電アクチュエータの特性向上が期待できる。
【0011】
上記目的を達成するためになされた請求項4の発明は、本発明の静電アクチュエータの製造工程を具体的に示したもので、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、および第1電極集合配線および第2電極集合配線を形成し、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として第3電極集合線を形成することを特徴とする。これにより、電極ピッチの高精度化や、電極材料、電極厚みの選定の自由度が増し、静電アクチュエータの特性向上が期待できる。
【0012】
上記目的を達成するためになされた請求項5の発明は、本発明の静電アクチュエータの製造工程を具体的に示したもので、第1の工程として、誘電体基材上に第2電極集合配線を形成し、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として、前記誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、および、第1電極集合配線および第3電極集合線を形成することを特徴とする。これにより、電極ピッチの高精度化や、電極材料、電極厚みの選定の自由度が増し、静電アクチュエータの特性向上が期待できる。
【0013】
上記目的を達成するためになされた請求項の発明は、電極および電極集合配線をスクリーン印刷法にて形成したことを特徴とする。静電アクチュエータの場合、微細な配線をパターンニングする必要があるが、スクリーン印刷法の場合は、エッチング処理等による不要部分の除去を必要とせずに、直接パターンニング出来るため、電極材料費の節約が可能になる。
【0014】
上記目的を達成するためになされた請求項の発明は、電極および電極集合配線を、ガスデポジション法(気相堆積法)にて形成したことを特徴とする。静電アクチュエータの場合、微細な配線をパターンニングする必要があるが、ガスデポジション法(気相堆積法)の場合は、エッチング処理等による不要部分の除去を必要とせずに、直接パターンニング出来るため、電極材料費の節約が可能になる。
【0015】
上記目的を達成するためになされた請求項の発明は、絶縁層をスクリーン印刷法で形成したことを特徴とする。静電アクチュエータの場合、微細な配線をパターンニングする必要があるが、スクリーン印刷法の場合は、エッチング処理等による不要部分の除去を必要とせずに、直接パターンニング出来るため、電極材料費の節約が可能になる。
【0016】
上記目的を達成するためになされた請求項の発明は、絶縁層を、ガスデポジション法(気相堆積法)にて形成したことを特徴とする。静電アクチュエータの場合、微細な配線をパターンニングする必要があるが、ガスデポジション法(気相堆積法)の場合は、エッチング処理等による不要部分の除去を必要とせずに、直接パターンニング出来るため、電極材料費の節約が可能になる。
【0017】
【発明の実施の形態】
本発明にかかる好適な第1実施例を図1に示す。
第1電極1および第2電極2、第3電極3、第1電極の集合配線4、第2電極の集合配線5、第3電極の集合配線6の材質としては、金、銀、白金、銅、タングステン、モリブデン、TiC、ITOなど様々な材料が使用出来る。製法としては、メッキ、PVD、CVD、印刷、転写など、材料に応じた製法を採用する。絶縁層7の材質としては、アルミナセラミックスやガラスなど様々な材料が使用出来る。製法としては、PVD、CVD、印刷、ゾルゲル法、溶射法など、材料に応じた製法を採用する。
【0018】
図2は本発明にかかる第2実施例で、第3電極3と第3電極の集合配線6との接続部9に、ランド部10を設けたものである。これにより、第3電極3と第3電極の集合配線6との位置合わせが容易になる。
【0019】
図3は本発明にかかる第3実施例で、第3電極3と第3電極の集合配線6との接続部9において、電極集合配線を電極よりも細くしたものである。これにより、電極と電極集合配線との位置合わせが容易になる。
【0020】
図4は本発明にかかる第4実施例で、電極、電極集合配線、絶縁層の形成手順を工程毎に示したものである。第1の工程として、第1電極1および第2電極2および第3電極3および第1電極集合配線4および第2電極集合配線5を形成し、第2の工程として、第2電極集合配線5上に絶縁層7を形成し、第3の工程として第3電極集合線6を形成する。
【0021】
図5は本発明にかかる実施例5で、電極、電極集合配線、絶縁層の形成手順を工程毎に示したものである。第1の工程として、第1電極1および第2電極2および第3電極3および第2電極集合配線5を形成し、第2の工程として、第2電極集合配線5上に絶縁層7を形成し、第3の工程として第1電極集合配線4および第3電極集合線6を形成する。
【0022】
図6は本発明にかかる実施例6で、電極、電極集合配線、絶縁層の形成手順を工程毎に示したものである。第1の工程として、第2電極集合配線5を形成し、第2の工程として、第2電極集合配線5上に絶縁層7を形成し、第3の工程として、第1電極1および第1電極集合配線4および第2電極2および第3電極3および第3電極集合線6を形成する。
【0023】
図7は本発明にかかる実施例6で、電極、電極集合配線、絶縁層の形成手順を工程毎に示したものである。第1の工程として、第1電極1および第2電極2および第3電極3を形成し、第2の工程として、第2電極集合配線5を形成し、第3の工程として、第2電極集合配線5上に絶縁層7を形成し、第4の工程として第1電極集合配線4および第3電極集合線6を形成する。
【0024】
図8は本発明にかかる実施例6で、電極、電極集合配線、絶縁層の形成手順を工程毎に示したものである。第1の工程として、第1電極1および第2電極2および第3電極3を同時に形成し、第2の工程として、第1電極集合配線4および第2電極集合配線5を形成し、第3の工程として、第2電極集合配線5上に絶縁層7を形成し、第4の工程として第3電極集合線6を形成する。
【0025】
図9は従来技術における、電極、電極集合配線、絶縁層の形成手順を工程毎に示したものである。第1の工程として、第1電極1と第1電極集合配線4と、第2電極2と第2電極集合配線5を同時に形成した後、第2の工程として、第2電極集合配線5上に絶縁層7を形成し、第3の工程として、第3電極3と第3電極集合配線6とを形成する。
【0026】
【発明の効果】
高い位置合わせ精度が要求される第1電極と第2電極と第3電極は、一つのマスク等を用いて、同時形成されており、比較的位置合わせ精度がラフな電極集合配線を別工程で形成し接合することにより、電極ピッチの高精度化や、電極材料、電極厚みの選定の自由度が増し、静電アクチュエータの特性向上が期待できる。
【図面の簡単な説明】
【図1】 本発明にかかる実施例1の平面図
【図2】 本発明にかかる実施例2の平面図
【図3】 本発明にかかる実施例3の平面図
【図4】 本発明にかかる実施例4の工程毎の平面図
【図5】 本発明にかかる実施例5の工程毎の平面図
【図6】 本発明にかかる実施例6の工程毎の平面図
【図7】 本発明にかかる実施例7の工程毎の平面図
【図8】 本発明にかかる実施例8の工程毎の平面図
【図9】 従来技術における工程毎の平面図
1…第1電極、2…第2電極、3…第3電極、4…第1電極の集合配線、5…第2電極の集合配線、6…第3電極の集合配線、7…絶縁層、8…誘電体基材、9…電極と集合配線との接合部、10…ランド部、11…細線部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrostatic actuator that uses electrostatic force as a power source.
[0002]
[Prior art]
In the electrostatic actuator, since the first electrode, the second electrode, and the third electrode are formed on the same plane, a multilayer structure is unavoidable as the wiring of the collective wiring. In general, a manufacturing method in which a via hole is provided to form a multilayer structure and a manufacturing method in which a multilayer structure is formed through an adhesive layer and an insulating layer as described in JP-A-7-255185 have been proposed.
[0003]
[Problems to be solved by the invention]
However, a manufacturing method in which a via hole is provided to form a multilayer structure increases the cost because the manufacturing process is complicated. In addition, since the manufacturing method in which the number of layers is increased via the insulating layer is relatively simple, the cost can be reduced. However, as the first step, the first electrode, the first electrode assembly wiring, After forming the electrode and the second electrode assembly wiring simultaneously, as a second step, an insulating layer is formed on the second electrode assembly wiring, and as the third step, a third electrode and a third electrode assembly wiring are formed. In this way, the first electrode and the third electrode, and the second electrode and the third electrode are likely to be misaligned, resulting in poor electrode pitch accuracy and adversely affecting the dynamic characteristics of the electrostatic motor. End up. Moreover, the process of providing an adhesion layer becomes extra.
[0004]
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an electrostatic actuator that can be reduced in cost and that has a high electrode pitch accuracy.
[0008]
The invention of claim 1 made to achieve the above object specifically shows the manufacturing process of the electrostatic actuator of the present invention. As the first process , each of them is formed on the same plane on the dielectric substrate. The first electrode, the second electrode, and the third electrode are simultaneously formed in parallel , the first electrode assembly wiring and the second electrode assembly wiring are formed as the second step, and the second electrode assembly wiring is performed as the third step. An insulating layer is formed thereon, and a third electrode assembly line is formed as a fourth step. This increases the accuracy of the electrode pitch, increases the degree of freedom in selecting the electrode material and electrode thickness, and can be expected to improve the characteristics of the electrostatic actuator.
[0009]
The invention of claim 2 made to achieve the above object specifically shows the manufacturing process of the electrostatic actuator of the present invention of the present invention. As the first process, the same process on the dielectric substrate is performed. each forms a parallel to the first electrode and the second electrode and the third electrode to the plane, as a second step to form a second electrode assembly wiring, as a third step, the insulating layer on the second electrode assembly wiring And forming a first electrode assembly line and a third electrode assembly line as a fourth step. This increases the accuracy of the electrode pitch, increases the degree of freedom in selecting the electrode material and electrode thickness, and can be expected to improve the characteristics of the electrostatic actuator.
[0010]
In order to achieve the above object, the invention of claim 3 specifically shows the manufacturing process of the electrostatic actuator of the present invention. As the first process , each of them is formed on the same plane on the dielectric substrate. A first electrode, a second electrode, and a third electrode are formed in parallel , and a second electrode assembly wiring is formed. As a second step, an insulating layer is formed on the second electrode assembly wiring, and a third step The first electrode assembly wiring and the third electrode assembly line are formed as follows. This increases the accuracy of the electrode pitch, increases the degree of freedom in selecting the electrode material and electrode thickness, and can be expected to improve the characteristics of the electrostatic actuator.
[0011]
The invention of claim 4 made to achieve the above object specifically shows the manufacturing process of the electrostatic actuator of the present invention. As the first process , each of them is formed on the same plane on the dielectric substrate. The first electrode, the second electrode, and the third electrode are formed in parallel, the first electrode assembly wiring and the second electrode assembly wiring are formed, and an insulating layer is formed on the second electrode assembly wiring as the second step. In the third step, the third electrode assembly line is formed. This increases the accuracy of the electrode pitch, increases the degree of freedom in selecting the electrode material and electrode thickness, and can be expected to improve the characteristics of the electrostatic actuator.
[0012]
The invention of claim 5 made to achieve the above object specifically shows the manufacturing process of the electrostatic actuator of the present invention. As the first process , the second electrode assembly is formed on the dielectric substrate. A wiring is formed, an insulating layer is formed on the second electrode assembly wiring as a second step, and a first electrode and a second electrode are respectively parallel to the same plane on the dielectric substrate as a third step. The third electrode is formed, and the first electrode assembly wiring and the third electrode assembly line are formed. This increases the accuracy of the electrode pitch, increases the degree of freedom in selecting the electrode material and electrode thickness, and can be expected to improve the characteristics of the electrostatic actuator.
[0013]
The invention of claim 6 made to achieve the above object is characterized in that the electrode and the electrode assembly wiring are formed by a screen printing method. In the case of electrostatic actuators, it is necessary to pattern fine wiring, but in the case of screen printing, electrode material costs can be saved because patterning can be performed directly without removing unnecessary parts by etching. Is possible.
[0014]
The invention of claim 7 made to achieve the above object is characterized in that the electrode and the electrode assembly wiring are formed by a gas deposition method (vapor phase deposition method). In the case of an electrostatic actuator, it is necessary to pattern fine wiring, but in the case of the gas deposition method (vapor phase deposition method), patterning can be performed directly without the need to remove unnecessary portions by etching treatment or the like. Therefore, the electrode material cost can be saved.
[0015]
The invention of claim 8 has been made in order to achieve the above object is characterized by forming an insulating layer by screen printing. In the case of electrostatic actuators, it is necessary to pattern fine wiring, but in the case of screen printing, electrode material costs can be saved because patterning can be performed directly without removing unnecessary parts by etching. Is possible.
[0016]
The invention of claim 9 made to achieve the above object is characterized in that the insulating layer is formed by a gas deposition method (vapor deposition method). In the case of an electrostatic actuator, it is necessary to pattern fine wiring, but in the case of the gas deposition method (vapor phase deposition method), patterning can be performed directly without the need to remove unnecessary portions by etching treatment or the like. Therefore, the electrode material cost can be saved.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
A preferred first embodiment of the present invention is shown in FIG.
The materials of the first electrode 1, the second electrode 2, the third electrode 3, the first electrode collective wiring 4, the second electrode collective wiring 5, and the third electrode collective wiring 6 are gold, silver, platinum, copper Various materials such as tungsten, molybdenum, TiC, and ITO can be used. As a manufacturing method, a manufacturing method according to the material such as plating, PVD, CVD, printing, transfer, or the like is adopted. As the material for the insulating layer 7, various materials such as alumina ceramics and glass can be used. As a production method, a production method according to the material such as PVD, CVD, printing, sol-gel method, thermal spraying method or the like is adopted.
[0018]
FIG. 2 shows a second embodiment according to the present invention in which a land portion 10 is provided at a connection portion 9 between the third electrode 3 and the collective wiring 6 of the third electrode. This facilitates alignment between the third electrode 3 and the collective wiring 6 of the third electrode.
[0019]
FIG. 3 shows a third embodiment according to the present invention in which the electrode assembly wiring is made thinner than the electrode at the connection portion 9 between the third electrode 3 and the assembly wiring 6 of the third electrode. This facilitates the alignment between the electrode and the electrode assembly wiring.
[0020]
FIG. 4 is a fourth embodiment according to the present invention, and shows a procedure for forming electrodes, electrode assembly wirings, and insulating layers for each process. The first electrode 1, the second electrode 2, the third electrode 3, the first electrode assembly wiring 4 and the second electrode assembly wiring 5 are formed as a first process, and the second electrode assembly wiring 5 is formed as a second process. An insulating layer 7 is formed thereon, and a third electrode assembly line 6 is formed as a third step.
[0021]
FIG. 5 shows a procedure for forming electrodes, electrode assembly wirings, and insulating layers for each step in Example 5 according to the present invention. As the first step, the first electrode 1, the second electrode 2, the third electrode 3, and the second electrode assembly wiring 5 are formed. As the second step, the insulating layer 7 is formed on the second electrode assembly wiring 5. As a third step, the first electrode assembly wiring 4 and the third electrode assembly line 6 are formed.
[0022]
FIG. 6 is a sixth embodiment according to the present invention and shows the steps of forming electrodes, electrode assembly wirings, and insulating layers for each step. As the first step, the second electrode assembly wiring 5 is formed, as the second step, the insulating layer 7 is formed on the second electrode assembly wiring 5, and as the third step, the first electrode 1 and the first electrode 1 are formed. The electrode assembly wiring 4, the second electrode 2, the third electrode 3, and the third electrode assembly line 6 are formed.
[0023]
FIG. 7 shows a procedure for forming electrodes, electrode assembly wirings, and insulating layers for each step in Example 6 according to the present invention. As the first step, the first electrode 1, the second electrode 2, and the third electrode 3 are formed, as the second step, the second electrode assembly wiring 5 is formed, and as the third step, the second electrode assembly is formed. An insulating layer 7 is formed on the wiring 5, and a first electrode assembly wiring 4 and a third electrode assembly line 6 are formed as a fourth step.
[0024]
FIG. 8 shows a procedure for forming electrodes, electrode assembly wirings, and insulating layers for each step in Example 6 according to the present invention. As the first step, the first electrode 1, the second electrode 2 and the third electrode 3 are formed at the same time, and as the second step, the first electrode assembly wiring 4 and the second electrode assembly wiring 5 are formed, As the step, the insulating layer 7 is formed on the second electrode assembly wiring 5, and as the fourth step, the third electrode assembly line 6 is formed.
[0025]
FIG. 9 shows a procedure for forming an electrode, an electrode assembly wiring, and an insulating layer for each process in the prior art. As a first step, after the first electrode 1 and the first electrode assembly wiring 4 and the second electrode 2 and the second electrode assembly wiring 5 are formed at the same time, as a second step, on the second electrode assembly wiring 5 The insulating layer 7 is formed, and the third electrode 3 and the third electrode assembly wiring 6 are formed as a third step.
[0026]
【The invention's effect】
The first electrode, the second electrode, and the third electrode, which require high alignment accuracy, are simultaneously formed using a single mask or the like, and electrode assembly wiring with relatively rough alignment accuracy is formed in a separate process. By forming and bonding, it is possible to increase the accuracy of the electrode pitch and to increase the degree of freedom in selecting the electrode material and electrode thickness, and to improve the characteristics of the electrostatic actuator.
[Brief description of the drawings]
FIG. 1 is a plan view of a first embodiment according to the present invention. FIG. 2 is a plan view of a second embodiment according to the present invention. FIG. 3 is a plan view of a third embodiment according to the present invention. The top view for every process of Example 4 [FIG. 5] The top view for every process of Example 5 concerning this invention [FIG. 6] The top view for every process of Example 6 concerning this invention [FIG. FIG. 8 is a plan view for each step of Example 8 according to the present invention. FIG. 9 is a plan view for each step in the prior art. 1... First electrode, 2. 3 ... 3rd electrode, 4 ... Collective wiring of 1st electrode, 5 ... Collective wiring of 2nd electrode, 6 ... Collective wiring of 3rd electrode, 7 ... Insulating layer, 8 ... Dielectric base material, 9 ... With electrode Joint part with collective wiring, 10 ... Land part, 11 ... Fine wire part

Claims (10)

第1・第2・第3電極と第1・第2・第3電極集合配線との組合わせのうち少なくとも1つに接合部を設けた静電アクチュエータの製造方法であって、第1の工程として誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を同時に形成し、第2の工程として第1電極集合配線および第2電極集合配線を形成し、第3の工程として第2電極集合配線上に絶縁層を形成し、第4の工程として第3電極集合線を形成することを特徴とする静電アクチュエータの製造方法。A method of manufacturing an electrostatic actuator in which a joint is provided in at least one of a combination of first, second, and third electrodes and first, second, and third electrode assembly wirings. Forming a first electrode, a second electrode and a third electrode simultaneously in parallel with each other on the same plane on the dielectric substrate, and forming a first electrode assembly wiring and a second electrode assembly wiring as a second step, 3. A method of manufacturing an electrostatic actuator, comprising forming an insulating layer on the second electrode assembly wiring as the third step and forming a third electrode assembly line as the fourth step. 第1・第2・第3電極と第1・第2・第3電極集合配線との組合わせのうち少なくとも1つに接合部を設けた静電アクチュエータの製造方法であって、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、第2の工程として、第2電極集合配線を形成し、第3の工程として、第2電極集合配線上に絶縁層を形成し、第4の工程として第1電極集合配線および第3電極集合線を形成することを特徴とする静電アクチュエータの製造方法。A method of manufacturing an electrostatic actuator in which a joint is provided in at least one of a combination of first, second, and third electrodes and first, second, and third electrode assembly wirings. As the second step, forming the first electrode, the second electrode and the third electrode in parallel with each other on the same plane on the dielectric substrate , forming the second electrode assembly wiring as the second step, An insulating layer is formed on a second electrode assembly wiring, and a first electrode assembly wiring and a third electrode assembly line are formed as a fourth step. 第1・第2・第3電極と第1・第2・第3電極集合配線との組合わせのうち少なくとも1つに接合部を設けた静電アクチュエータの製造方法であって、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、および第2電極集合配線を形成し、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として第1電極集合配線および第3電極集合線を形成することを特徴とする静電アクチュエータの製造方法。A method of manufacturing an electrostatic actuator in which a joint is provided in at least one of a combination of first, second, and third electrodes and first, second, and third electrode assembly wirings. Forming a first electrode, a second electrode, and a third electrode in parallel with each other on the same plane on the dielectric base material , and forming a second electrode assembly wiring; An electrostatic actuator manufacturing method comprising: forming an insulating layer thereon; and forming a first electrode assembly wiring and a third electrode assembly line as a third step. 第1・第2・第3電極と第1・第2・第3電極集合配線との組合わせのうち少なくとも1つに接合部を設けた静電アクチュエータの製造方法であって、第1の工程として、誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、および第1電極集合配線および第2電極集合配線を形成し、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として第3電極集合線を形成することを特徴とする静電アクチュエータの製造方法。A method of manufacturing an electrostatic actuator in which a joint is provided in at least one of a combination of first, second, and third electrodes and first, second, and third electrode assembly wirings. As a second step, a first electrode, a second electrode, and a third electrode are formed in parallel on the same plane on the dielectric substrate , and a first electrode assembly wiring and a second electrode assembly wiring are formed. A method of manufacturing an electrostatic actuator, comprising: forming an insulating layer on the second electrode assembly wiring, and forming a third electrode assembly wire as a third step. 第1・第2・第3電極と第1・第2・第3電極集合配線との組合わせのうち少なくとも1つに接合部を設けた静電アクチュエータの製造方法であって、第1の工程として、誘電体基材上に第2電極集合配線を形成し、第2の工程として、第2電極集合配線上に絶縁層を形成し、第3の工程として、前記誘電体基材上の同一平面に各々平行に第1電極および第2電極および第3電極を形成し、および、第1電極集合配線および第3電極集合線を形成することを特徴とする静電アクチュエータの製造方法。A method of manufacturing an electrostatic actuator in which a joint is provided in at least one of a combination of first, second, and third electrodes and first, second, and third electrode assembly wirings. as the second electrode assembly wiring formed on the dielectric substrate, a second step, on the second electrode assembly wiring to form an insulating layer, as a third step, the same on the dielectric substrate A method of manufacturing an electrostatic actuator, wherein a first electrode, a second electrode, and a third electrode are formed in parallel to a plane , and a first electrode assembly wiring and a third electrode assembly line are formed. 前記静電アクチュエータの電極および、または電極集合配線を、スクリーン印刷法にて形成したことを特徴とする請求項1から5のいずれかに記載の静電アクチュエータの製造方法。6. The method of manufacturing an electrostatic actuator according to claim 1, wherein the electrodes of the electrostatic actuator and / or electrode assembly wirings are formed by a screen printing method. 前記静電アクチュエータの電極および、または電極集合配線を、ガスデポジション法(気相堆積法)にて形成したことを特徴とする請求項1から5のいずれかに記載の静電アクチュエータの製造方法。6. The method of manufacturing an electrostatic actuator according to claim 1, wherein the electrode and / or electrode assembly wiring of the electrostatic actuator is formed by a gas deposition method (vapor phase deposition method). . 前記静電アクチュエータの絶縁層を、スクリーン印刷法で形成したことを特徴とする請求項1から7のいずれかに記載の静電アクチュエータの製造方法。The method for manufacturing an electrostatic actuator according to claim 1, wherein the insulating layer of the electrostatic actuator is formed by a screen printing method. 前記静電アクチュエータの絶縁層を、ガスデポジション法(気相堆積法)にて形成したことを特徴とする請求項1から7のいずれかに記載静電アクチュエータの製造方法。The method for manufacturing an electrostatic actuator according to claim 1, wherein the insulating layer of the electrostatic actuator is formed by a gas deposition method (vapor phase deposition method). 請求項1から9のいずれかに記載の製造方法で製造されたことを特徴とする静電アクチュエータ。An electrostatic actuator manufactured by the manufacturing method according to claim 1.
JP2000062550A 2000-03-07 2000-03-07 Electrostatic actuator and manufacturing method thereof Expired - Fee Related JP4529168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000062550A JP4529168B2 (en) 2000-03-07 2000-03-07 Electrostatic actuator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000062550A JP4529168B2 (en) 2000-03-07 2000-03-07 Electrostatic actuator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001251871A JP2001251871A (en) 2001-09-14
JP4529168B2 true JP4529168B2 (en) 2010-08-25

Family

ID=18582552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000062550A Expired - Fee Related JP4529168B2 (en) 2000-03-07 2000-03-07 Electrostatic actuator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4529168B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222464A (en) * 1994-02-04 1995-08-18 Dainippon Printing Co Ltd Electrostatic actuator
JPH09224383A (en) * 1996-02-19 1997-08-26 Mitsubishi Chem Corp Method for manufacturing element for electrostatic actuator use

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06233555A (en) * 1993-01-29 1994-08-19 Mitsubishi Electric Corp Electrostatic actuator
JPH0767361A (en) * 1993-08-30 1995-03-10 Aichi Electric Co Ltd Stator of electrostatic actuator and its manufacture
US5606485A (en) * 1994-07-18 1997-02-25 Applied Materials, Inc. Electrostatic chuck having improved erosion resistance
JPH0833359A (en) * 1994-07-19 1996-02-02 Mitsubishi Chem Corp Manufacture of electrostatic actuator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07222464A (en) * 1994-02-04 1995-08-18 Dainippon Printing Co Ltd Electrostatic actuator
JPH09224383A (en) * 1996-02-19 1997-08-26 Mitsubishi Chem Corp Method for manufacturing element for electrostatic actuator use

Also Published As

Publication number Publication date
JP2001251871A (en) 2001-09-14

Similar Documents

Publication Publication Date Title
US7446388B2 (en) Integrated thin film capacitor/inductor/interconnect system and method
US20050175938A1 (en) Integrated thin film capacitor/inductor/interconnect system and method
US20050162236A1 (en) Lange coupler system and method
SE9701618D0 (en) Capacitor in integrated circuit
JP3590283B2 (en) Manufacturing method of electrostatic movable contact element
JP4529168B2 (en) Electrostatic actuator and manufacturing method thereof
JP2004146748A (en) Thin film capacitor element
US10020114B2 (en) Method of making a high frequency inductor chip
JPH01296694A (en) Wiring board and manufacture thereof
JP3081528B2 (en) Photoelectric conversion device
JP4671511B2 (en) Wiring board manufacturing method
JPH03101233A (en) Electrode structure and its manufacture
JPH02205081A (en) Manufacture of thermoelectric device
JP2002252444A (en) Gang-molded wiring board
JPS6247139A (en) Forming method for transfer bump substrate
JP2003037001A (en) Chip resistor and manufacturing method therefor
JPH03112135A (en) Semiconductor device and manufacture thereof
JP4089054B2 (en) Circuit board and manufacturing method thereof
JPS5820159B2 (en) Method for manufacturing thin film circuit board with cross wiring
JP3565872B2 (en) Thin film multilayer wiring board
JPH04171845A (en) Wiring structure and manufacture thereof
JP3019944U (en) Fluorescent display tube
CN117747587A (en) Package carrier, method of manufacturing the same, semiconductor device, and semiconductor module
JP2002359152A (en) Thin film capacitor and manufacturing method therefor
JPH02153543A (en) Flexible printed board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100517

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees