JPH0767361A - Stator of electrostatic actuator and its manufacture - Google Patents

Stator of electrostatic actuator and its manufacture

Info

Publication number
JPH0767361A
JPH0767361A JP21391893A JP21391893A JPH0767361A JP H0767361 A JPH0767361 A JP H0767361A JP 21391893 A JP21391893 A JP 21391893A JP 21391893 A JP21391893 A JP 21391893A JP H0767361 A JPH0767361 A JP H0767361A
Authority
JP
Japan
Prior art keywords
stator
pattern
adhesive layer
electrode
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21391893A
Other languages
Japanese (ja)
Inventor
Hideo Takino
秀雄 滝野
Nobumasa Kimura
信正 木村
Shigeki Tsunekawa
茂樹 恒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Electric Co Ltd
Original Assignee
Aichi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Electric Co Ltd filed Critical Aichi Electric Co Ltd
Priority to JP21391893A priority Critical patent/JPH0767361A/en
Publication of JPH0767361A publication Critical patent/JPH0767361A/en
Pending legal-status Critical Current

Links

Landscapes

  • Micromachines (AREA)

Abstract

PURPOSE:To obtain a stator not requiring the widening of the facing distance between electrodes by embedding, in the form of flush with the top surface of an adhesive layer, part of an electrode pattern and a feed line pattern provided on the top surface of an insulation substrate and then covering the top surface with an insulation layer. CONSTITUTION:An insulation substrate 5 as the main body portion of a stator A is produced by blending a thermoplastic high-viscosity saturated polyester resin, glass fiber and inorganic filler and then by extrusion molding, and copper foil is adhered to the top surface through an adhesive layer 7 by heating and pressing means. Then, copper foil is subjected to electrodeposition resist treatment thereby forming a resist pattern corresponding to feed line patterns 2A and 3A, and unnecessary portion of the copper foil is removed by etching treatment and a required conductor pattern P is formed on an adhesive layer 7. Then, flattening treatment is given to make the top surface of the projected conductor pattern p flush with the top surface of the adhesive layer 7. In consequence, a gap between electrodes C2 be made sufficiently close each other and smooth driving is guaranteed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、静電アクチュエータの
固定子と、この固定子の製造方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stator for an electrostatic actuator and an improvement in a method for manufacturing the stator.

【0002】[0002]

【従来の技術】従来の静電アクチュエータの概略の構成
と、その作動を図9〜図12によって説明する。図9に
示すように、静電アクチュエータ300は、薄板状の固
定子101の上面に接して、同じく薄板状の可動子20
1を、固定子101に対して所定方向に平行移動可能に
配設した構成を備えている。固定子101及び可動子2
01は、図10,11に示した様に、絶縁基板101a
及び201aを本体とし、両絶縁基板の夫々の対向面に
は、ポリウレタン樹脂等から成る誘電体層102及び2
02を積層状に設けている。この誘電体層102及び2
02には、夫々複数列の帯状をした下部電極103及び
上部電極203を、所定の間隔を隔てて並列状に埋設し
ている。そして、互いに隣接する各3組の下部電極10
3には、夫々三相電源(500〜1000V)から供給
される各相電圧が、駆動制御回路(図示略)及び給電回
路104を介して供給されるようになっている。尚、下
部電極103の別の埋設方法として、図12に示した様
に、絶縁基板101a上に極薄金属箔等を使って極く肉
薄の下部電極103をパターン形成し、その上面に絶縁
フイルム105を被着させる方法も行われている。上記
の如き構成を備える静電アクチュエータの作動原理に就
いては、「特開平3−65081」、「特開平5−91
761」等に説明されている。その概要は、固定子10
1の下部電極103に三相の電圧を印加すると、可動子
201の上部電極203に電荷が誘導される。この状態
で、下部電極103の各相に印加する電圧の極性を、駆
動制御回路により所定のパターンで変化させると、固定
子101側の電荷分布は直ちに変化するが、可動子20
1側に誘導されている電荷は、上部電極203の抵抗に
妨げられて変化が遅れる。このため、固定子101側と
可動子201側とにおいて、相対向する各電極103と
203とは同極の電荷を帯びた状態になり、可動子20
1は同極同士間に生ずる反発力により固定子101上に
浮上すると共に、上部電極203に生じた誘導電荷の遅
れた移動に伴って、可動子201は、上下の対向電極に
生じた異極間の静電吸引力により、下部電極103の配
列の1ピッチ分だけその並列方向に移動される。そし
て、この移動速度、移動距離、移動方向は、駆動制御回
路によって任意にコントロールされる。
2. Description of the Related Art A schematic structure of a conventional electrostatic actuator and its operation will be described with reference to FIGS. As shown in FIG. 9, the electrostatic actuator 300 is in contact with the upper surface of the thin plate-shaped stator 101, and the thin plate-shaped movable element 20 is also provided.
1 is provided so as to be movable in parallel with the stator 101 in a predetermined direction. Stator 101 and mover 2
01 indicates the insulating substrate 101a as shown in FIGS.
And 201a as the main body, and dielectric layers 102 and 2 made of polyurethane resin or the like on the opposing surfaces of both insulating substrates.
02 are laminated. The dielectric layers 102 and 2
02, a plurality of rows of lower electrodes 103 and upper electrodes 203 each having a strip shape are embedded in parallel at predetermined intervals. Then, each set of three lower electrodes 10 adjacent to each other
Each phase voltage supplied from the three-phase power supply (500 to 1000 V) is supplied to the circuit 3 via the drive control circuit (not shown) and the power supply circuit 104. As another embedding method for the lower electrode 103, as shown in FIG. 12, an extremely thin lower electrode 103 is patterned on an insulating substrate 101a using an ultrathin metal foil or the like, and an insulating film is formed on the upper surface thereof. A method of attaching 105 is also performed. Regarding the operating principle of the electrostatic actuator having the above-mentioned structure, see "JP-A-3-65081" and "JP-A-5-91."
761 "and the like. The outline is the stator 10
When a three-phase voltage is applied to the lower electrode 103 of No. 1, electric charges are induced in the upper electrode 203 of the mover 201. In this state, if the polarity of the voltage applied to each phase of the lower electrode 103 is changed in a predetermined pattern by the drive control circuit, the charge distribution on the stator 101 side immediately changes, but the mover 20
The charge induced on the 1st side is delayed by the resistance of the upper electrode 203 and delayed. For this reason, on the stator 101 side and the mover 201 side, the electrodes 103 and 203 facing each other are in the state of being charged with the same polarity, and the mover 20
1 is levitated on the stator 101 due to the repulsive force generated between the same poles, and the mover 201 has different polarities generated on the upper and lower counter electrodes due to the delayed movement of the induced charges generated in the upper electrode 203. By the electrostatic attraction force between them, the lower electrodes 103 are moved in the parallel direction by one pitch. The moving speed, moving distance, and moving direction are arbitrarily controlled by the drive control circuit.

【0003】[0003]

【発明が解決しようとする課題】ところで、下部電極1
03を図11示した方法で埋設した場合には、図示のよ
うに、下部電極103が存在しない電極間部分bは、電
極埋設部分cに比べてかなり肉厚になる。その為、下部
電極103を、塗布手段等によって、合成樹脂系の誘電
体層102で被覆する際に、誘電体層の固化に伴う体積
収縮の度合が、この電極間部分bにおいて大きく、いわ
ゆる“ヒケ現象”によって凹入部dが出来てしまう。そ
の為、下部電極103に500〜1000V(電流密度
は極めて小さい)の高電圧が印加されると、この凹入部
dの近傍で絶縁破壊が起こる恐れがある。この危険を無
くすには絶縁破壊に対する安全率を見込んで、誘電体層
102をかなり厚くする必要があった。誘電体層102
の厚さを増せば、当然その分、上下両電極103,20
3間のギヤップが広がって、静電アクチュエータはその
駆動力が低下するうえに、固定子101の厚みが増す不
具合を生ずる。更には、誘電体層102を塗布手段等に
よって形成させる方法によると、塗布厚を均一にし難い
為に、上記エアギャップを固定子101の全面に亙って
均等に保つのが難しくなり、従って、スムーズな駆動力
を得難いという問題もあった。一方、下部電極103を
図12に示した方法で絶縁被覆する場合には、絶縁フイ
ルム105は、樹脂の塗布層に比べて組織がはるかに緻
密で絶縁性能が優れており、且つ、厚さも均一なので、
薄い絶縁フイルム105を使って上記エアギャップをか
なり狭められる。しかし、隣接する下部電極103,1
03間のギヤップが100μm内外と狭いこともあっ
て、絶縁フイルム10を被着させる際に真空吸引を行っ
ても、下部電極103の両側端の段差箇所に空隙gが残
される現象を避け難かった。そして、この空隙gの存在
による絶縁耐力の低下を償う為には、並列された下部電
極103の対向間隔(ピッチ)を広げねばならなかっ
た。そこで、本発明の目的は、固定子及び可動子に夫々
形成した電極の対向間隔を極力狭められ、又、必要な絶
縁耐力を確保する為に、並列した各電極間の対向間隔を
広げなくても済むようにした静電アクチュエータの固定
子とその製造方法を提供するにある。
By the way, the lower electrode 1
When 03 is embedded by the method shown in FIG. 11, the inter-electrode portion b where the lower electrode 103 does not exist becomes considerably thicker than the electrode embedded portion c as shown in the figure. Therefore, when the lower electrode 103 is coated with the synthetic resin dielectric layer 102 by a coating means or the like, the degree of volume contraction due to the solidification of the dielectric layer is large in the inter-electrode portion b, which is so-called " Due to the sink mark phenomenon, the recessed portion d is formed. Therefore, when a high voltage of 500 to 1000 V (current density is extremely small) is applied to the lower electrode 103, dielectric breakdown may occur near the recessed portion d. In order to eliminate this danger, it was necessary to make the dielectric layer 102 considerably thick in consideration of the safety factor against dielectric breakdown. Dielectric layer 102
If the thickness of the upper and lower electrodes 103, 20
The gap between the three spreads, the driving force of the electrostatic actuator decreases, and the thickness of the stator 101 increases. Further, according to the method of forming the dielectric layer 102 by a coating means or the like, it is difficult to make the coating thickness uniform, so that it becomes difficult to keep the air gaps evenly over the entire surface of the stator 101. There was also a problem that it was difficult to obtain a smooth driving force. On the other hand, when the lower electrode 103 is insulatingly coated by the method shown in FIG. 12, the insulating film 105 has a much finer structure and excellent insulating performance as compared with the resin coating layer, and has a uniform thickness. So
A thin insulating film 105 can be used to significantly narrow the air gap. However, the adjacent lower electrodes 103, 1
Since the gap between 03 is as narrow as 100 μm inside and outside, even if vacuum suction is performed when the insulating film 10 is applied, it is difficult to avoid the phenomenon that the gap g is left at the stepped portion on both ends of the lower electrode 103. . Then, in order to compensate for the decrease in dielectric strength due to the presence of the gap g, the facing interval (pitch) of the parallel lower electrodes 103 has to be widened. Therefore, the object of the present invention is to minimize the facing distance between the electrodes formed on the stator and the mover, and to widen the facing distance between the parallel electrodes in order to secure the necessary dielectric strength. Another object of the present invention is to provide a stator of an electrostatic actuator and a method for manufacturing the same, which are designed to be completed.

【0004】[0004]

【課題を解決するための手段】上記の目的を達成する為
の、本発明による静電アクチュエータの固定子は、絶縁
基板上に複数の電極パターンを並列状に配設した固定子
と、この固定子に近接して平行移動可能に配設した可動
子とを備え、電極パターンに多相電源の電圧を印加して
固定子と可動子との間に生じさせた静電力により、固定
子を電極パターンの並列方向に移動させるようにしたも
のにおいて、前記固定子は、絶縁基板5の上面に接着剤
層7を介して設けた、電極パターン1〜3と、該電極へ
の給電路パターン1A〜3Aの少なくとも一部とを、前
記接着剤層7の上面と面一状になるようにして該層中に
埋込み、その上面を絶縁層9,9Aで被覆した構成を備
えることを特徴とする。そして、絶縁層9Aは、合成樹
脂フイルムによって形成させるとよい。又、本発明によ
る静電アクチュエータの固定子の製造方法は、絶縁基板
5の素材として、加熱により結晶化する性質を備えた合
成樹脂を用い、 結晶化前の状態の絶縁基板5の上面
に、熱硬化性を有して半硬化状態にある接着剤層7を介
して、電極パターン1〜3及びその給電路パターン1A
〜3A(導体パターンP)を形成させる導体パターン形
成工程と、導体パターンPを形成させた絶縁基板5を熱
・圧プレス処理して、導体パターンPを接着剤層7中に
面一状に埋込むと共に、絶縁基板5を結晶構造に変え、
且つ、接着剤層7を完全硬化させる平坦化処理工程と、
平坦化処理した導体パターンPを絶縁層9,9Aで被覆
す絶縁工程とを含む構成にするとよい。そして、電極パ
ターン1〜3及び給電路パターン1A〜3Aのうち、給
電路パターン1Aを除く他の導体パターンPを、接着剤
層7中に埋め込んだうえ、その上面を絶縁層9で被覆
し、次いで、該絶縁層9の上面に給電路パターン1Aを
形成させると共に、給電路パターン1Aを電極パターン
1に設けた導通スポット4に導通させ、次いで、給電路
パターン1A及び導通スポット4を第2の絶縁層10で
被覆するようにするとよい。又、第2の絶縁層10のう
ち、電極パターン1〜3の形成域を覆う絶縁層10は、
合成樹脂フィルムで形成させるとよい。
To achieve the above object, a stator of an electrostatic actuator according to the present invention comprises a stator having a plurality of electrode patterns arranged in parallel on an insulating substrate, and the stator. A movable element arranged so as to be able to move in parallel with the movable element, and the electrode is applied to the stator by an electrostatic force generated between the movable element and the stator by applying a voltage of a polyphase power source to the electrode pattern. In the case of moving in a pattern parallel direction, the stator includes electrode patterns 1 to 3 provided on an upper surface of an insulating substrate 5 via an adhesive layer 7 and power supply path patterns 1A to 1A to the electrodes. At least a part of 3A is embedded in the adhesive layer 7 so as to be flush with the upper surface of the adhesive layer 7, and the upper surface is covered with insulating layers 9 and 9A. Then, the insulating layer 9A may be formed of a synthetic resin film. Further, in the method for manufacturing the stator of the electrostatic actuator according to the present invention, the insulating substrate 5 is made of a synthetic resin having a property of being crystallized by heating, and the upper surface of the insulating substrate 5 before being crystallized is Electrode patterns 1 to 3 and its power feeding path pattern 1A through the adhesive layer 7 which is thermosetting and is in a semi-cured state.
3A (conductor pattern P) is formed, and the insulating substrate 5 on which the conductor pattern P is formed is subjected to heat / pressure press treatment so that the conductor pattern P is flush-filled in the adhesive layer 7. At the same time, the insulating substrate 5 is changed to a crystal structure,
And a flattening treatment step for completely curing the adhesive layer 7,
An insulating step of covering the flattened conductor pattern P with the insulating layers 9 and 9A is preferably included. Then, of the electrode patterns 1 to 3 and the power feeding path patterns 1A to 3A, other conductor patterns P except the power feeding path pattern 1A are embedded in the adhesive layer 7, and the upper surface thereof is covered with the insulating layer 9. Next, the power supply path pattern 1A is formed on the upper surface of the insulating layer 9, and the power supply path pattern 1A is electrically connected to the conduction spot 4 provided on the electrode pattern 1, and then the power supply path pattern 1A and the conduction spot 4 are connected to each other. It is preferable to cover with the insulating layer 10. In addition, of the second insulating layer 10, the insulating layer 10 covering the formation regions of the electrode patterns 1 to 3 is
It may be formed of a synthetic resin film.

【0005】[0005]

【作用】固定子の本体をなす絶縁基板5の上面に形成さ
せる電極パターン1〜3と、その給電路パターン1A〜
3Aの少なくとも一部とを、絶縁基板5の上面に設けた
接着剤層7中に、それ等の上面が接着剤層7の上面と面
一状になるように埋込んだことによって、その上面を被
覆する絶縁層9,9Aの厚さは、従来に比べて薄くて足
りるようになる。そして、電気絶縁性に優れ、組織が緻
密で厚さも極めて均一な合成樹脂フイルムで絶縁層9A
を形成すれば、更に薄い絶縁層で足りるようになる。従
って、固定子と可動子との夫々に設けた電極間のギャツ
プを、それだけ狭められて、その分、静電アクチュエー
タの駆動性能が向上すると共に、その厚さ寸法を薄く出
来る。又、電極パターン1〜3及びその給電路パターン
1A〜3Aを、接着剤層7中に埋設する方法を採用した
ことによって、静電アクチュエータの製作に要する手間
・時間等を大幅に節減出来る。更に、絶縁基板5の素材
として、加熱により結晶化して柔軟性を失い剛性を増す
性質を備えた合成樹脂を使うことによって、電極パター
ン1〜3及び給電路パターン1A〜3Aの上記埋設処理
が容易になる共に、固定子を任意の形状に形成すること
も可能になる。
The electrode patterns 1 to 3 to be formed on the upper surface of the insulating substrate 5 forming the main body of the stator and the feeding path patterns 1A to 1A to
By embedding at least a part of 3A in the adhesive layer 7 provided on the upper surface of the insulating substrate 5 so that their upper surfaces are flush with the upper surface of the adhesive layer 7, The thickness of the insulating layers 9 and 9 </ b> A for covering the layer is thinner than the conventional one and is sufficient. The insulating layer 9A is made of a synthetic resin film having excellent electrical insulation properties, a dense structure, and an extremely uniform thickness.
By forming the above, a thinner insulating layer will be sufficient. Therefore, the gap between the electrodes provided on each of the stator and the mover can be narrowed by that amount, and the driving performance of the electrostatic actuator can be improved correspondingly, and the thickness can be reduced. Further, by adopting a method of embedding the electrode patterns 1 to 3 and the power feeding path patterns 1A to 3A in the adhesive layer 7, it is possible to greatly reduce the labor and time required for manufacturing the electrostatic actuator. Further, by using a synthetic resin having a property of crystallizing by heating to lose flexibility and increase rigidity as a material of the insulating substrate 5, the above-mentioned embedding treatment of the electrode patterns 1 to 3 and the power feeding path patterns 1A to 3A is easy. In addition, the stator can be formed in any shape.

【0006】[0006]

【実施例】以下に、本発明の一実施例を、図1〜図6を
参照しながら説明する。この実施例の静電アクチュエー
タの基本構成は、図9,10に示した従来のものと略同
じであるが、固定子Aの構成は、従来のものと本質的に
相異している。この固定子Aの細部の構造を、その部分
平面透視図としての図1、図1のX−X線に沿う縦断面
を示した図2、図1のY−Y線に沿う縦断面を示した図
3、及び図1のZ−Z線に沿う縦断面を示した図4、及
び製造工程を示した図5によって、順次説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. The basic configuration of the electrostatic actuator of this embodiment is substantially the same as the conventional one shown in FIGS. 9 and 10, but the configuration of the stator A is essentially different from the conventional one. The detailed structure of the stator A is shown in FIG. 1 as a partial plan perspective view thereof, and FIG. 2 is a vertical cross section taken along line XX of FIG. 1, and is shown as a vertical cross section taken along line YY of FIG. 3 and FIG. 4, which shows a vertical section taken along line ZZ of FIG. 1, and FIG. 5 which shows a manufacturing process, will be sequentially described.

【0007】図1で、固定子Aの中央部分に描いた平行
する二本の二点鎖線a,aに挟まれた部分に載置した可
動子Bは、図示を省いた移動ガイド手段にガイドされ
て、図の左右方向に移動可能である。上記中央部分に
は、三相電源のS,R及びTの各相の電圧を夫々供給さ
れる電極パターン1〜3が、図示の如き櫛の歯状のパタ
ーンを以て同一平面上にパターン形成されている。
In FIG. 1, a mover B mounted on a portion sandwiched by two parallel two-dot chain lines a, drawn on the central portion of the stator A, is guided by a movement guide means (not shown). It is possible to move in the left-right direction in the figure. In the central portion, electrode patterns 1 to 3 to which the voltages of the respective phases of S, R and T of the three-phase power source are respectively supplied are formed on the same plane by a comb tooth-shaped pattern as shown in the drawing. There is.

【0008】1A〜3Aは各電極パターン1〜3の給電
路パターンで、電極パターン1〜3と一体をなして、同
一平面上に形成されている。ただし、給電路パターン1
Aだけは、図3に示したように、電極パターン1〜3及
び給電路パターン1A〜3Aを絶縁被覆する後述の絶縁
層9を介して、その上面に形成されている。各給電路パ
ターン1A〜3Aの夫々の基端は、各相の給電端子R,
S,Tとなっている。又、電極パターン1は、図1中に
小さな破線円で囲んで示した導通スポット4に於いて、
給電路パターン1Aと導通している。
Reference numerals 1A to 3A are power supply path patterns of the electrode patterns 1 to 3 and are formed on the same plane integrally with the electrode patterns 1 to 3. However, power supply line pattern 1
As shown in FIG. 3, only A is formed on the upper surface of the electrode patterns 1 to 3 and the power feeding path patterns 1A to 3A via an insulating layer 9 described later that insulates the electrodes. The respective base ends of the respective power feeding path patterns 1A to 3A have power feeding terminals R of the respective phases,
It is S and T. In addition, the electrode pattern 1 has a conductive spot 4 surrounded by a small dashed circle in FIG.
It is electrically connected to the power feeding path pattern 1A.

【0009】固定子Aの本体部分となる絶縁基板5(図
2,3参照)は、この実施例では、ユニチカ株式会社が
開発した合成樹脂板「ユニレート」を使用している。こ
の「ユニレート」は、その結晶化温度以上に加熱すると
非結晶構造から結晶構造に変化する性質を備えた、熱可
塑性の高粘度飽和ポリエステル樹脂に、ガラス繊維及び
無機質フィラーを配合したうえ、押出成形して作られて
いる。この場合の板厚は、0.3〜2.0mmである。
The insulating substrate 5 (see FIGS. 2 and 3), which is the main body of the stator A, uses a synthetic resin plate "Unilate" developed by Unitika Ltd. in this embodiment. This "Unilate" is a highly viscous thermoplastic polyester resin that has the property of changing from an amorphous structure to a crystalline structure when heated above its crystallization temperature. It is made by. The plate thickness in this case is 0.3 to 2.0 mm.

【0010】次に、絶縁基板5の上面に、電極パターン
1〜及び給電路パターン1A〜3Aをパターン形成させ
る手順に就いて、以下に順次説明する。尚、図6は、こ
の実施例の固定子Aの製造工程を示したフローチャート
である。 先ず、図5の(a)に示したように、絶縁基
板5の上面に銅箔6を、熱硬化性合成樹脂系の接着剤層
7を介して熱・圧プレス手段により貼着させる。これを
行うには、裏面に予め接着剤層7を塗布手段等により形
成させた銅箔6を、ロールプレスを使って、10Kgf
/cm、130〜150℃の条件下で熱圧着させる。
或は、フィルム状に成形した接着剤層7を、絶縁基板5
と銅箔6との間に介在させて熱・圧プレス処理してもよ
い。接着剤層7の厚さは、銅箔6より厚くしている。
Next, the procedure for patterning the electrode patterns 1 and the feeding path patterns 1A to 3A on the upper surface of the insulating substrate 5 will be sequentially described below. 6 is a flowchart showing the manufacturing process of the stator A of this embodiment. First, as shown in FIG. 5A, the copper foil 6 is attached to the upper surface of the insulating substrate 5 by the heat / pressure pressing means via the thermosetting synthetic resin adhesive layer 7. To do this, the copper foil 6 having the adhesive layer 7 previously formed on the back surface by a coating means or the like is rolled to a pressure of 10 Kgf.
/ Cm, thermocompression-bonding on conditions of 130-150 degreeC.
Alternatively, the adhesive layer 7 formed in a film shape is used as the insulating substrate 5.
It may be interposed between the copper foil 6 and the copper foil 6 and subjected to heat / pressure press treatment. The adhesive layer 7 is thicker than the copper foil 6.

【0011】次に、銅箔6を電着レジスト処理して、電
極パターン1〜3と、給電路パターン2A及び3A(以
後、此等のパターンをまとめて、導体パターンPと総称
する)に夫々対応したレジストパターンを形成させる。
次いで、エッチング処理を施し、銅箔6の不要部分を化
学的に除去すれば、図5の(b)に示した様に、所要の
導体パターンPが接着剤層7上に形成される。つまり、
銅箔6は導体パターンPの形態に変えられる。この状態
で、導体パターンPは、接着剤層7の上面にその厚さ
分、この場合は10〜50μm だけ突出している。
Next, the copper foil 6 is subjected to an electrodeposition resist treatment to form electrode patterns 1 to 3 and power supply path patterns 2A and 3A (hereinafter, these patterns are collectively referred to as a conductor pattern P). A corresponding resist pattern is formed.
Then, an etching process is performed to chemically remove the unnecessary portion of the copper foil 6, so that the required conductor pattern P is formed on the adhesive layer 7, as shown in FIG. That is,
The copper foil 6 can be changed to the form of the conductor pattern P. In this state, the conductor pattern P projects on the upper surface of the adhesive layer 7 by the thickness thereof, in this case, 10 to 50 μm.

【0012】そこで、この突出している導体パターンP
を、その上面が接着剤層7の上面と面一状になるように
接着剤層7内に埋め込むための、平坦化処理を行う。こ
れを行うには、図5の(c)に説明されているように、
プレス装置等を使って熱・圧プレス処理すればよい。図
中の8は、プレス型としての、上下一対のステンレスス
チール製の鏡面板で、プレス面にはフッ素樹脂等から成
る離型性被膜を設けている。その上面に、接着剤層7を
介して導体パターンPを形成させた絶縁基板5は、鏡面
板8,8間に挟み込み、絶縁基板5を構成する前述の熱
可塑性飽和ポリエステル樹脂を結晶化させるに必要な1
80〜190℃に加熱しながら、50Kgf/cmの加
圧条件を約30分間維持する。
Therefore, this protruding conductor pattern P
Is embedded in the adhesive layer 7 such that the upper surface thereof is flush with the upper surface of the adhesive layer 7. To do this, as described in FIG. 5 (c),
The heat / pressure press treatment may be performed using a press device or the like. Reference numeral 8 in the figure is a pair of upper and lower mirror plates made of stainless steel as a press die, and a release film made of fluororesin or the like is provided on the press surface. The insulating substrate 5 having the conductor pattern P formed on the upper surface thereof via the adhesive layer 7 is sandwiched between the mirror surface plates 8 and 8 to crystallize the above-mentioned thermoplastic saturated polyester resin constituting the insulating substrate 5. 1 required
While heating at 80 to 190 ° C., a pressure condition of 50 Kgf / cm is maintained for about 30 minutes.

【0013】この間に、導体パターンPは、加熱途中の
ゲル化した接着剤層7内に完全に埋め込まれると共に、
熱可塑性飽和ポリエステル樹脂は非結晶構造から結晶構
造に変化して、絶縁基板5の機械的及び電気的特性が大
幅に高められる。そして、接着剤層7も完全硬化する。
尚、この熱・圧プレス処理の進行途中で、結晶化前で未
だ可塑性を保っている絶縁基板5は、導体パターンPに
押された接着剤層7の逃げ塲を提供するように変形挙動
するので、導体パターンPの埋込みは無理なくスムーズ
に行われる。
During this time, the conductor pattern P is completely embedded in the gelled adhesive layer 7 during heating, and
The thermoplastic saturated polyester resin changes from an amorphous structure to a crystalline structure, and the mechanical and electrical characteristics of the insulating substrate 5 are significantly improved. Then, the adhesive layer 7 is also completely cured.
Note that, during the progress of this heat / pressure press treatment, the insulating substrate 5 which is still plastic before crystallization deforms so as to provide a relief for the adhesive layer 7 pressed by the conductor pattern P. Therefore, the conductor pattern P can be embedded smoothly without any problem.

【0014】平坦化処理を終えた後、冷却してプレス装
置から取出した絶縁基板5は、次に、図3,4に示した
ように、各給電端子R,S,Tと導通スポット4とを除
く導体パターンP上に、ソルダーレジスト処理を行っ
て、絶縁層9を形成させる。絶縁層9は、絶縁インクを
約30μmの厚さに、例えば、スクリーン印刷法で形成
させる。
After the flattening process is completed, the insulating substrate 5 which is cooled and taken out from the press machine is then connected to the power supply terminals R, S and T and the conductive spots 4 as shown in FIGS. The insulating layer 9 is formed by performing a solder resist process on the conductor pattern P except for. The insulating layer 9 is formed of an insulating ink with a thickness of about 30 μm, for example, by a screen printing method.

【0015】引続いて、各給電端子R,S,Tと導通ス
ポット4とを除いて、絶縁基板5の上面全域に、パラジ
ューム等の触媒入りのソルダーレジストを使って、約3
0μmの厚さでレジスト処理を行う。この処理によっ
て、後に続く無電解メッキを容易に行える。次いで、導
通スポット4も含めて、絶縁基板5の全面に無電解銅メ
ッキ及び電気銅メッキを順次行う。
Subsequently, except for the power supply terminals R, S, T and the conduction spot 4, a solder resist containing a catalyst such as palladium is used for the entire area of the upper surface of the insulating substrate 5 to make about 3
Resist processing is performed with a thickness of 0 μm. This treatment facilitates subsequent electroless plating. Next, electroless copper plating and electrolytic copper plating are sequentially performed on the entire surface of the insulating substrate 5 including the conductive spots 4.

【0016】次に、R相の給電路パターン1Aを、図3
に示したように、絶縁層9の上面に重ねて形成させる。
この形成は、ドライフィルムを用いた写真法によって行
う。即ち、絶縁基板5の上面全面にドライフィルムをラ
ミネートし、続いて、ネガフィルムを重ね合わせて露光
・現像すれば、後に続くエッチング処理によって、給電
路パターン1Aが、図1,3に示したように、導通スポ
ット4において電極パターン1と導通した状態で形成さ
れる。
Next, the R-phase feeding path pattern 1A is shown in FIG.
As shown in FIG. 5, it is formed so as to overlap the upper surface of the insulating layer 9.
This formation is performed by a photographic method using a dry film. That is, if a dry film is laminated on the entire upper surface of the insulating substrate 5 and then a negative film is superposed and exposed / developed, the power feeding path pattern 1A is formed by the subsequent etching process as shown in FIGS. In addition, the conductive spots 4 are formed so as to be electrically connected to the electrode pattern 1.

【0017】給電路パターン1Aの形成を終えたら、こ
の給電路パターン1Aを除く残余の導体部分を、エッチ
ング処理によって除去する。続いて、給電路パターン1
Aの絶縁と酸化防止のために、その上面を第2の絶縁層
10で被覆する。この場合は、印刷手段によって熱硬化
性ソルダーレジストの被覆層を形成させている。以上の
一連の処理工程を経て、固定子Aが完成する。出来上が
った固定子Aは、静電アクチュエータを組立るに必要
な、孔明け、裁断その他の後加工を施す。
After the formation of the power feeding path pattern 1A, the remaining conductor portion excluding the power feeding path pattern 1A is removed by etching. Then, the power supply path pattern 1
A second insulating layer 10 is coated on the upper surface of the layer A in order to insulate the layer A and prevent oxidation. In this case, the coating layer of the thermosetting solder resist is formed by printing means. The stator A is completed through the series of processing steps described above. The completed stator A is subjected to punching, cutting and other post-processing required for assembling the electrostatic actuator.

【0018】このようにして出来上がった固定子Aは、
平坦化処理を行ったことによって、図2の縦断面に示し
たように、導体パターンPの上面の全面が、接着剤層7
の上面と面一状をなして完全に平坦化されている。そし
て、導体パターンPの上面を被覆する絶縁層9は、絶縁
インクをスクリーン印刷して、30μm内外の極めて薄
く均等な厚さで形成されているので、組立てられた静電
アクチュエータの駆動力を支配する、固定子Aと固定子
Bとの夫々の電極間のギャップを十分に接近させられ
る。従って、静電アクチュエータの駆動力を最大限に発
揮させられる。又、絶縁層9が極めて均等な厚さに形成
されることによって、円滑な駆動が保証される。
The stator A thus completed is
By performing the flattening process, as shown in the vertical cross section of FIG. 2, the entire upper surface of the conductor pattern P is covered with the adhesive layer 7.
Is flush with the upper surface of the and completely flattened. Since the insulating layer 9 covering the upper surface of the conductor pattern P is formed by screen-printing an insulating ink with an extremely thin and uniform thickness of 30 μm or less, it controls the driving force of the assembled electrostatic actuator. The gaps between the respective electrodes of the stator A and the stator B can be made sufficiently close to each other. Therefore, the driving force of the electrostatic actuator can be maximized. In addition, since the insulating layer 9 is formed to have an extremely uniform thickness, smooth driving is guaranteed.

【0019】尚、この実施例に於いて、絶縁層9とし
て、合成樹脂系の絶縁インクに代えて、チタン酸バリウ
ム、チタン酸鉛等を主成分とするインク状組成物を使っ
て、静電力の優れた絶縁層9を形成せさることも出来
る。
In this embodiment, as the insulating layer 9, an ink-like composition containing barium titanate, lead titanate or the like as a main component was used in place of the synthetic resin-based insulating ink. It is also possible to form the excellent insulating layer 9.

【0020】図7は、本発明の他の実施例を示すもの
で、固定子Aの電極パターン1〜3の形成部分の縦断面
を示しいる(図2相当図)。上記実施例にとの相異点
は、電極パターン1〜3の形成部分、つまり、図1中で
中央部分の平行する二条の二点鎖線a,aに挟まれた部
分に限って、絶縁層9の形成方法を変えている。
FIG. 7 shows another embodiment of the present invention and shows a vertical section of a portion of the stator A where the electrode patterns 1 to 3 are formed (corresponding to FIG. 2). The difference from the above-described embodiment is that the insulating layer is formed only in the portion where the electrode patterns 1 to 3 are formed, that is, the portion sandwiched between two parallel two-dot chain lines a and a in the central portion in FIG. The forming method of 9 is changed.

【0021】即ち、導体パターンP部分の上面に絶縁イ
ンクを印刷する方法に変えて、裏面側に接着剤層11を
設けたポリエステルフィルム等の合成樹脂フィルム9A
によって、ラミネート(被覆)処理している。絶縁特性
の優れた合成樹脂フィルムから成るこの絶縁層9Aは、
印刷手段によって形成させた絶縁層9とは異なって、ピ
ンホールも存在せず組織が緻密なので、固定子Aの電極
に印加可能な最高電圧は、上記実施例のものが400V
程度で、低トルク発生向きであったのに対して、この実
施例にのものは、1000V以上に高められ、高トルク
を発生させることが出来る。図8は、この実施例の固定
子の製造工程を示すフローシートである。
That is, instead of the method of printing the insulating ink on the upper surface of the conductor pattern P, a synthetic resin film 9A such as a polyester film having an adhesive layer 11 on the back surface side.
Laminating (coating) is performed by. This insulating layer 9A made of a synthetic resin film having excellent insulating properties is
Unlike the insulating layer 9 formed by the printing means, there is no pinhole and the structure is dense, so the maximum voltage that can be applied to the electrodes of the stator A is 400 V in the above embodiment.
In contrast to the low torque generation, the device of this embodiment can be increased to 1000 V or higher and can generate high torque. FIG. 8 is a flow sheet showing the manufacturing process of the stator of this embodiment.

【0022】尚、上記構成において、細部の構成は適宜
に設計変更しても、本発明の目的は達成てれる。例え
ば、導体パターンPは、適宜の転写用ベースシートに印
刷手段によって予め形成して置いた導体パターンPを、
接着剤層7の上面に転写させる等してもよい。又、必要
に応じて、平坦化処理工程において、適宜の形状のプレ
ス形を使えば、固定子Aを、曲面状その他の任意の形状
に成形することも出来る。
In the above structure, the object of the present invention can be achieved even if the detailed structure is appropriately changed in design. For example, as the conductor pattern P, a conductor pattern P which is previously formed and placed on an appropriate transfer base sheet by a printing unit is used.
It may be transferred onto the upper surface of the adhesive layer 7. Further, if necessary, in the flattening step, a press shape having an appropriate shape can be used to shape the stator A into a curved shape or any other shape.

【0023】[0023]

【発明の効果】以上の説明により明らかなように、本発
明方法によって作られた、本発明による静電アクチュエ
ータの固定子は、以下に列挙した如き実用上の様々の優
れた効果を奏する。 (a) 電極パターン及び給電路パターンを、接着剤層
(絶縁層)内に埋込む平坦化処理を施すことによって、
電極パターン及び給電路パターンを絶縁被覆する絶縁層
の厚みを、従来技術に比べて十分に薄く、然もその厚み
を十分に均等化出来るので、従来のものに比べて駆動力
がより高められ、且つ、円滑な駆動が保証されると共
に、静電アクチュエータをより薄形化出来る。 (b) 給電路パターンは、電極パターンと同一工程で
形成出来るので、固定子の製作に要する手間や時間等を
確実に節減出来る。 (c) 互いに隣接する電極パターン間の間隔や、電極
パターンを被覆する絶縁層の厚みを増すことなく、固定
子への印加電圧を高圧化することが出来て、静電アクチ
ュエータの駆動性能の向上が達成される。 (d) 必要に応じて、平坦化処理工程において、固定
子を任意の形状に成形加工することも出来る。
As is apparent from the above description, the stator of the electrostatic actuator according to the present invention produced by the method of the present invention exhibits various excellent practical effects as listed below. (A) By performing a flattening process of embedding the electrode pattern and the feeding path pattern in the adhesive layer (insulating layer),
The thickness of the insulating layer that insulates and coats the electrode pattern and the power feeding path pattern is sufficiently thin as compared with the conventional technique, and since the thickness can be sufficiently equalized, the driving force is further increased as compared with the conventional one. In addition, smooth driving is guaranteed, and the electrostatic actuator can be made thinner. (B) Since the power feeding path pattern can be formed in the same process as the electrode pattern, it is possible to surely save the labor and time required for manufacturing the stator. (C) The voltage applied to the stator can be increased without increasing the distance between adjacent electrode patterns or the thickness of the insulating layer that covers the electrode patterns, thus improving the driving performance of the electrostatic actuator. Is achieved. (D) If necessary, in the flattening process, the stator can be formed into any shape.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すもので、固定子の部分
透視平面図である。
FIG. 1 is a partial perspective plan view of a stator according to an embodiment of the present invention.

【図2】同上、図1のX−X線に沿う縦断面図である。FIG. 2 is a vertical sectional view taken along line XX of FIG.

【図3】同上、図1のY−Y線に沿う縦断面図である。FIG. 3 is a vertical sectional view taken along the line YY of FIG.

【図4】同上、図1のZ−Z線に沿う縦断面図である。FIG. 4 is a vertical sectional view taken along line ZZ of FIG.

【図5】同上、電極パターン及び給電路パターンの形成
工程と、此等の導体パターンを絶縁層中に埋め込む平坦
化処理工程の説明図である。
FIG. 5 is an explanatory diagram of a step of forming an electrode pattern and a power supply path pattern and a step of flattening the conductive patterns to be embedded in an insulating layer.

【図6】同上、固定子の製作工程を説明したフローシー
トである。
FIG. 6 is a flow sheet explaining the manufacturing process of the stator.

【図7】本発明の他の実施例を示す、図2相当図であ
る。
FIG. 7 is a view corresponding to FIG. 2, showing another embodiment of the present invention.

【図8】同上、図6相当図である。FIG. 8 is a diagram corresponding to FIG.

【図9】従来例を示すもので、静電アクチュエータの概
略の構成を説明した斜視図である。
FIG. 9 shows a conventional example and is a perspective view illustrating a schematic configuration of an electrostatic actuator.

【図10】同上、静電アクチュエータの作動説明の為の
縦断面図である。
FIG. 10 is a vertical sectional view for explaining the operation of the electrostatic actuator.

【図11】同上、絶縁基板上の電極パターンを絶縁被覆
した状態の一例を示す、部分縦断面図である。
FIG. 11 is a partial vertical cross-sectional view showing an example of the same as above, in which an electrode pattern on an insulating substrate is insulation-coated.

【図12】同上、絶縁基板上の電極パターンを絶縁被覆
した状態の他の例を示す、部分縦断面図である。
FIG. 12 is a partial vertical cross-sectional view showing another example of the same as above, in which the electrode pattern on the insulating substrate is insulation-coated.

【符号の説明】[Explanation of symbols]

A 固定子 B 可動子 1〜3 電極パターン 1A〜3A 給電路パターン P 導体パターン R,S,T 給電端子 4 導通スポット 5 絶縁基板 6 銅箔 7 接着剤層 8 鏡面板 9,9A 絶縁層 10 第2の絶縁層 11 接着剤層 a 平行二点鎖線 101 固定子 201 可動子 101a,201a 絶縁基板 102,202 誘電体層 103 下部電極 203 上部電極 104 給電回路 105 絶縁フイルム 300 静電アクチュエータ b 電極間部分 c 電極埋設部分 d 凹入部 g 空隙 A stator B mover 1 to 3 electrode pattern 1A to 3A power feeding path pattern P conductor pattern R, S, T power feeding terminal 4 conduction spot 5 insulating substrate 6 copper foil 7 adhesive layer 8 mirror plate 9, 9A insulating layer 10th 2 Insulating layer 11 Adhesive layer a Parallel two-dot chain line 101 Stator 201 Mover 101a, 201a Insulating substrate 102, 202 Dielectric layer 103 Lower electrode 203 Upper electrode 104 Feeding circuit 105 Insulating film 300 Electrostatic actuator b Electrode part c Electrode embedded part d Recessed part g Void

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 絶縁基板上に複数の電極パターンを並列
状に配設した固定子と、この固定子に近接して平行移動
可能に配設した可動子とを備え、電極パターンに多相電
源の電圧を印加して固定子と可動子との間に生じさせた
静電力により、固定子を電極パターンの並列方向に移動
させるようにしたものにおいて、 前記固定子は、 絶縁基板5の上面に接着剤層7を介して設けた、電極パ
ターン1〜3と、該電極への給電路パターン1A〜3A
の少なくとも一部とを、前記接着剤層7の上面と面一状
になるようにして該層中に埋込み、その上面を絶縁層
9,9Aで被覆した構成を備えることを特徴とする静電
アクチュエータの固定子。
1. A multi-phase power supply for an electrode pattern, comprising a stator in which a plurality of electrode patterns are arranged in parallel on an insulating substrate, and a mover arranged in parallel with and close to the stator. Voltage is applied to move the stator in the direction parallel to the electrode pattern by the electrostatic force generated between the stator and the mover. The stator is formed on the upper surface of the insulating substrate 5. Electrode patterns 1 to 3 provided via an adhesive layer 7 and power supply path patterns 1A to 3A to the electrodes
At least a part of the above is buried in the adhesive layer 7 so as to be flush with the upper surface of the adhesive layer 7, and the upper surface is covered with insulating layers 9 and 9A. Actuator stator.
【請求項2】 前記絶縁層9Aは、合成樹脂フイルムか
ら成ることを特徴とする、請求項1記載の静電アクチュ
エータの固定子。
2. The stator of the electrostatic actuator according to claim 1, wherein the insulating layer 9A is made of a synthetic resin film.
【請求項3】 絶縁基板上に複数の電極パターンを並列
状に配設した固定子と、この固定子に近接して平行移動
可能に配設した可動子とを備え、電極パターンに多相電
源の電圧を印加して固定子と可動子との間に生じさせた
静電力により、固定子を電極パターンの並列方向に移動
させるようにしたものにおいて、 前記固定子の製造方法として、 絶縁基板5の素材として、加熱により結晶化する性質を
備えた合成樹脂を用い、 結晶化前の状態の絶縁基板5
の上面に、熱硬化性を有して半硬化状態にある接着剤層
7を介して、電極パターン1〜3及びその給電路パター
ン1A〜3A(導体パターンP)を形成させる導体パタ
ーン形成工程と、 導体パターンPを形成させた絶縁基板5を熱・圧プレス
処理して、導体パターンPを接着剤層7中に面一状に埋
込むと共に、絶縁基板5を結晶構造に変え、且つ、接着
剤層7を完全硬化させる平坦化処理工程と、 平坦化処理した導体パターンPを絶縁層9,9Aで被覆
する絶縁工程とを含むことを特徴とする静電アクチュエ
ータの固定子の製造方法。
3. A multi-phase power supply for an electrode pattern, comprising a stator having a plurality of electrode patterns arranged in parallel on an insulating substrate, and a mover arranged so as to be movable in parallel with the stator. In which the stator is moved in the direction parallel to the electrode pattern by the electrostatic force generated between the stator and the mover by applying the voltage of 1. An insulating substrate 5 in a state before crystallization is used as a raw material of the synthetic resin having a property of crystallization by heating.
And a conductor pattern forming step of forming the electrode patterns 1 to 3 and the power feeding path patterns 1A to 3A (conductor pattern P) on the upper surface of the electrode via the adhesive layer 7 having thermosetting property and in a semi-cured state. , The insulating substrate 5 on which the conductor pattern P is formed is subjected to a heat / pressure press treatment so that the conductor pattern P is embedded in the adhesive layer 7 so as to be flush with the insulating substrate 5, and the insulating substrate 5 is changed into a crystal structure and bonded. A method of manufacturing a stator of an electrostatic actuator, comprising: a flattening treatment step of completely curing the agent layer 7; and an insulating step of covering the flattened conductor pattern P with insulating layers 9 and 9A.
【請求項4】 前記電極パターン1〜3及び給電路パタ
ーン1A〜3Aのうち、給電路パターン1Aを除く他の
導体パターンPを、接着剤層7中に埋め込んだうえ、そ
の上面を絶縁層9で被覆し、次いで、該絶縁層9の上面
に給電路パターン1Aを形成させると共に、給電路パタ
ーン1Aを電極パターン1に設けた導通スポット4に導
通させ、次いで、給電路パターン1A及び導通スポット
4を第2の絶縁層10で被覆することを特徴とする請求
項3記載の静電アクチュエータの固定子の製造方法。
4. The conductor pattern P other than the power feeding path pattern 1A among the electrode patterns 1 to 3 and the power feeding path patterns 1A to 3A is embedded in the adhesive layer 7, and the upper surface thereof is covered with the insulating layer 9. Then, the power feeding path pattern 1A is formed on the upper surface of the insulating layer 9, and the power feeding path pattern 1A is electrically connected to the conductive spot 4 provided on the electrode pattern 1, and then the power feeding path pattern 1A and the conductive spot 4 are provided. The method for manufacturing a stator of an electrostatic actuator according to claim 3, wherein the is covered with a second insulating layer 10.
【請求項5】 前記第2の絶縁層10のうち、電極パタ
ーン1〜3の形成域を覆う絶縁層10は、合成樹脂フィ
ルムを被着させて形成したことを特徴とする請求項4記
載の静電アクチュエータの固定子の製造方法。
5. The insulating layer 10 of the second insulating layer 10 covering the formation regions of the electrode patterns 1 to 3 is formed by depositing a synthetic resin film. Method for manufacturing a stator of an electrostatic actuator.
JP21391893A 1993-08-30 1993-08-30 Stator of electrostatic actuator and its manufacture Pending JPH0767361A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21391893A JPH0767361A (en) 1993-08-30 1993-08-30 Stator of electrostatic actuator and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21391893A JPH0767361A (en) 1993-08-30 1993-08-30 Stator of electrostatic actuator and its manufacture

Publications (1)

Publication Number Publication Date
JPH0767361A true JPH0767361A (en) 1995-03-10

Family

ID=16647201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21391893A Pending JPH0767361A (en) 1993-08-30 1993-08-30 Stator of electrostatic actuator and its manufacture

Country Status (1)

Country Link
JP (1) JPH0767361A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037919A1 (en) * 1998-12-07 2000-06-29 Zakrytoe Aktsionernoe Obschestvo 'visko Tekh' Device for measuring the viscosity of flowing media, viscosity sensor and method for manufacturing the electrodes of a tachometer for said viscosity sensor
JP2001251871A (en) * 2000-03-07 2001-09-14 Toto Ltd Electrostatic actuator and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037919A1 (en) * 1998-12-07 2000-06-29 Zakrytoe Aktsionernoe Obschestvo 'visko Tekh' Device for measuring the viscosity of flowing media, viscosity sensor and method for manufacturing the electrodes of a tachometer for said viscosity sensor
JP2001251871A (en) * 2000-03-07 2001-09-14 Toto Ltd Electrostatic actuator and its manufacturing method

Similar Documents

Publication Publication Date Title
WO1988004475A1 (en) Piezoelectric/pyroelectric elements and a process for making same
US20160204338A1 (en) Method and device for producing an elastomer stack actuator
US3857074A (en) Electrical capacitors and method of making same
JPH0767361A (en) Stator of electrostatic actuator and its manufacture
JPS63261892A (en) Manufacture of printed circuit
JP4125644B2 (en) Method for forming multilayer circuit board and multilayer circuit board
JPS6311752B2 (en)
JP3568091B2 (en) Laminated sheet, printed wiring board and method of manufacturing the same
KR100544173B1 (en) Method for manufacturing of thin-film laminated type micro-coil
TWI828659B (en) Manufacturing method of wiring board
JPH05267743A (en) Manufacture of laminated piezoelectric actuator
US7987590B2 (en) Method for manufacturing an electronic part
US20060232161A1 (en) Method of production of electrodes for an electrostatic motor, electrodes for an electrostatic motor, and an electrostatic motor
US6557250B2 (en) Multilayer board compound and method for the manufacture thereof
JP3556459B2 (en) EL module
JPH04359577A (en) Manufacture of laminated piezoelectric actuator element
JPH0923030A (en) Manufacture of laminated piezoelectric element
JPH0256829B2 (en)
JP2006179682A (en) Method for molding laminate board
JPS6351534B2 (en)
JP2000252146A (en) Multilayer printed coil and manufacture thereof
JPH0227144B2 (en)
JP2755688B2 (en) Method for manufacturing photovoltaic device
JP2005032465A (en) Laminate substrate and electric apparatus using it
JP2006013076A (en) Laminate substrate and electric device using the same