JP4527587B2 - Painted metal material with excellent heat dissipation and electronic equipment parts using the same - Google Patents

Painted metal material with excellent heat dissipation and electronic equipment parts using the same Download PDF

Info

Publication number
JP4527587B2
JP4527587B2 JP2005102100A JP2005102100A JP4527587B2 JP 4527587 B2 JP4527587 B2 JP 4527587B2 JP 2005102100 A JP2005102100 A JP 2005102100A JP 2005102100 A JP2005102100 A JP 2005102100A JP 4527587 B2 JP4527587 B2 JP 4527587B2
Authority
JP
Japan
Prior art keywords
coating film
metal material
porous particles
heat
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005102100A
Other languages
Japanese (ja)
Other versions
JP2006281514A (en
Inventor
康雄 平野
岳史 渡瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005102100A priority Critical patent/JP4527587B2/en
Priority to KR1020060021307A priority patent/KR100764340B1/en
Priority to TW095109678A priority patent/TW200643127A/en
Priority to CNB2006100716337A priority patent/CN100441647C/en
Publication of JP2006281514A publication Critical patent/JP2006281514A/en
Application granted granted Critical
Publication of JP4527587B2 publication Critical patent/JP4527587B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

本発明は放熱性に優れた塗装金属材に関し、特に、熱源を内蔵する電子機器(熱源を内蔵する電気機器や光学機器を含む、以下同じ)を収容する筺体(ケーシング)の素材として有用な放熱性に優れた塗装金属材と、該塗装金属材を保護用の筺体として用いた電子機器部品に関するものである。   TECHNICAL FIELD The present invention relates to a coated metal material having excellent heat dissipation, and in particular, heat dissipation useful as a material of a casing (casing) that houses an electronic device (including an electric device and an optical device that includes a heat source). The present invention relates to a coated metal material having excellent properties and an electronic device component using the painted metal material as a protective casing.

近年、電子機器などの高性能化・小型化が進むにつれて、電子機器などの内部からの発熱による機器内部温度の上昇が問題となっており、IC、CPU(半導体素子)、ディスク、モータなどの耐熱温度を超えて安定操作に支障をきたす恐れが懸念されている。また電子機器の内部温度が上昇すると、半導体素子が壊れたり故障したりする原因にもなり、電子機器部品の寿命を短縮させる恐れもある。   In recent years, as the performance and miniaturization of electronic equipment has progressed, the rise in the internal temperature of the equipment due to heat generated from the inside of the electronic equipment has become a problem, such as IC, CPU (semiconductor element), disk, motor, etc. There is a concern that the stable operation may be hindered beyond the heat-resistant temperature. Further, when the internal temperature of the electronic device rises, the semiconductor element may be broken or broken, and the life of the electronic device component may be shortened.

本発明者らはこうした状況に注目し、熱源を内蔵する電子機器部品から発生する熱を外部へ速やかに放散して内部温度の上昇を抑えることのできる筺体素材の開発に着手し、先に特許文献1に記載の技術を開発した。   The present inventors pay attention to such a situation, and started to develop a housing material that can quickly dissipate heat generated from electronic device parts with a built-in heat source to the outside to suppress the rise in internal temperature. The technology described in Document 1 was developed.

この発明は、基材の表面または表裏面に、放熱性添加剤を配合した放熱性塗膜を形成することにより放熱性を高めた塗装体で、該放熱性塗膜にはカーボンブラック等の放熱性添加剤と共に、Niなどの導電性フィラーを配合して導電性を持たせている。この塗装体は、100℃に加熱したときの赤外線(波長:4.5〜15.4μm)積分放射率が下記(1)式の関係を満たすもので、放熱性と電磁波シールドのための導電性に優れた電子機器(電子レンジ部品を除く)用の塗装体として注目を集めている。
a×b≧0.42……(1)
a:表面に放熱性塗膜が形成された塗装体の赤外線積分放射率
b:裏面に放熱性塗膜が形成された塗装体の赤外線積分放射率
The present invention is a coated body having improved heat dissipation by forming a heat-dissipating coating film containing a heat-dissipating additive on the surface or front and back surfaces of a base material. A conductive filler such as Ni is blended together with a conductive additive to provide conductivity. This coated body has an infrared ray (wavelength: 4.5 to 15.4 μm) integral emissivity when heated to 100 ° C. that satisfies the relationship of the following formula (1), and has heat dissipation and conductivity for electromagnetic wave shielding. It is attracting attention as a coated body for electronic devices (excluding microwave oven parts) that excel in the area.
a × b ≧ 0.42 (1)
a: Infrared integrated emissivity of a coated body having a heat-radiating coating film formed on the surface b: Infrared integrated emissivity of a coated body having a heat-radiating coating film formed on the back surface

この塗装体は、放熱性添加剤を配合した放熱性塗膜を基材の片面もしくは両面に形成することで優れた熱放射特性を発揮することから、熱源による内部温度の上昇が問題となる各種電子機器用の筺体として広範な用途展開が期待されている。しかし、この技術を今後さらに発展させていくには、放熱特性の更なる向上が求められる。   This coated body exhibits excellent heat radiation characteristics by forming a heat-dissipating coating film containing a heat-dissipating additive on one or both sides of the base material. A wide range of applications is expected as a housing for electronic equipment. However, in order to further develop this technology in the future, further improvement in heat dissipation characteristics is required.

また特許文献2には、電池の外側最表面に空気対流を促進する対流促進膜を装着した対流促進膜付きの密閉電池が開示されており、対流促進膜として薄膜状のポリエチレンテレフタレート膜やポリテトラフルオロエチレン膜、ポリプロピレン膜などが挙げられている。   Patent Document 2 discloses a sealed battery with a convection promoting film in which a convection promoting film that promotes air convection is mounted on the outermost surface of the battery. As the convection promoting film, a thin-film polyethylene terephthalate film or polytetrafluoroethylene film is disclosed. Examples thereof include a fluoroethylene film and a polypropylene film.

しかし、該特許文献2に記載されている薄膜素材を本発明で意図する塗膜素材として使用しても、本発明で期待される様な放熱特性は発揮されない。   However, even if the thin film material described in Patent Document 2 is used as the coating material intended by the present invention, the heat radiation characteristics as expected in the present invention are not exhibited.

更に特許文献3には、電子機器部品を収納した密閉構造の筺体と、該筺体内に設けられ、下部に吸気孔と上部に排気孔を有する通風路を備え、筺体内を自然空冷により冷却する構造とした空冷式密閉型電子機器筺体が開示されている。   Furthermore, Patent Document 3 includes a sealed housing housing electronic device parts, a ventilation path provided in the housing, having an intake hole in the lower portion and an exhaust hole in the upper portion, and cools the housing by natural air cooling. An air-cooled sealed electronic device housing having a structure is disclosed.

しかしこの技術は、発熱体の周辺構造を工夫することによって外部空気の流れを制御し放熱を促進するものであり、塗膜自体の放熱特性を高める技術とは本質的に異なる。
特許第3563731号 特開2001−313009号公報 特開2001−291982号公報
However, this technique is intended to control the flow of external air by devising the peripheral structure of the heating element to promote heat dissipation, and is essentially different from the technique of improving the heat dissipation characteristics of the coating film itself.
Japanese Patent No. 3563731 JP 2001-313209 A JP 2001-291982 A

本発明は上記の様な状況の下でなされたものであり、その目的は、前記特許文献1に開示した様な放熱性塗装体の性能を更に向上させ、塗膜の放熱特性を一段と高めた塗装金属材を提供すると共に、該塗装金属材を用いた有用な電子機器部品を提供することにある。   The present invention has been made under the circumstances as described above, and its purpose is to further improve the performance of the heat dissipating coated body as disclosed in Patent Document 1 and further improve the heat dissipating characteristics of the coating film. In addition to providing a painted metal material, it is an object of the present invention to provide useful electronic device parts using the painted metal material.

上記課題を解決することのできた本発明の塗装金属材は、金属基材の片面もしくは両面に少なくとも1層の塗膜が形成されている塗装金属材であって、最外層には、表面に開口した1〜1000nmの細孔を有する多孔質粒子を、最外層の表面から少なくとも一部が露出した状態で含有せしめてなるところに特徴を有している。   The coated metal material of the present invention that has solved the above problems is a coated metal material in which at least one layer of a coating film is formed on one side or both sides of a metal substrate, and the outermost layer has an opening on the surface. The porous particles having pores of 1 to 1000 nm are contained in a state in which at least a part is exposed from the surface of the outermost layer.

本発明の塗装金属材における上記最外層は、厚さ(x)が0.5〜4μmで、多孔質粒子の平均粒径(y)は1〜8μmであり、且つ「x<y」の関係を満たしていることが好ましい。また、該最外層の下面側には放射性添加剤を含む塗膜層が形成されており、該塗装金属体を100℃に加熱したときの赤外線(波長4.5〜15.4μm)の積分放射率が0.6以上を示すものは、一段と優れた放熱特性を有するので好ましく、また該塗膜にNiなどの導電性フィラーを配合して表面抵抗を100Ω以下に低減したものは、電磁波シールド効果も発揮するので好ましい。そして、こうした特性を備えた本発明の塗装金属体は、特に、熱源を有する電子機器の筺体用として極めて有効に活用できる。   The outermost layer in the coated metal material of the present invention has a thickness (x) of 0.5 to 4 μm, an average particle size (y) of porous particles of 1 to 8 μm, and a relationship of “x <y” Is preferably satisfied. In addition, a coating layer containing a radioactive additive is formed on the lower surface side of the outermost layer, and infrared radiation (wavelength: 4.5 to 15.4 μm) integrated radiation when the coated metal body is heated to 100 ° C. Those having a rate of 0.6 or more are preferable because they have more excellent heat dissipation characteristics, and those having a surface resistance reduced to 100 Ω or less by blending the coating film with a conductive filler such as Ni have an electromagnetic shielding effect. Is also preferable. And the coated metal body of this invention provided with such a characteristic can be utilized very effectively especially for the housing | casing of the electronic device which has a heat source.

また、本発明の電子機器部品は、熱源を内蔵する電子機器部品であって、該電子機器部品の外壁の少なくとも一部を、前掲の塗装金属体で構成し、優れた放熱特性を与えたものであるところに特徴を有している。   Further, the electronic device component of the present invention is an electronic device component having a built-in heat source, wherein at least a part of the outer wall of the electronic device component is composed of the above-mentioned painted metal body and has excellent heat dissipation characteristics. It has the characteristic in that.

本発明の塗装金属材は、上記の様に塗膜の最外層に、表面に開口した1〜1000nmの細孔を有する多孔質粒子を、該多孔質粒子の少なくとも一部が最外層の表面から露出し細孔が開口した状態で含有せしめ、該多孔質粒子によって与えられる対流による外気への熱伝達促進作用を有効に活用して優れた放熱特性を発揮させるもので、発熱により内部温度の上昇を起こす様々の電子機器を保護する筺体用の素材として極めて有効に活用できる。   As described above, the coated metal material of the present invention has porous particles having pores of 1 to 1000 nm opened on the surface in the outermost layer of the coating film, and at least a part of the porous particles from the surface of the outermost layer. Exposed and contained in open pores, effectively utilizing the heat transfer promoting action to the outside air by the convection provided by the porous particles to exhibit excellent heat dissipation characteristics. It can be used very effectively as a material for the housing that protects various electronic devices that cause eruption.

特に、塗膜の最外層に上記多孔質粒子を配合すると共に、その下層側に放熱性添加剤を配合した塗膜を形成したものは、最外層の対流による熱伝達促進作用と下層皮膜の熱放射特性が相俟って格段に優れた放熱特性を発揮し、更には上記塗膜の少なくとも1方に導電性フィラーを配合して塗膜の電気抵抗を100Ω以下に低減したものは、導電性が良好で電磁波シールド効果においても優れた性能を有するものとなる。   In particular, the above-mentioned porous particles are blended in the outermost layer of the coating film, and the coating film in which the heat-dissipating additive is blended in the lower layer side is used to promote heat transfer by the convection of the outermost layer and Combined with radiation characteristics, it exhibits extremely excellent heat dissipation characteristics. Furthermore, a conductive filler is blended in at least one of the above coatings to reduce the electrical resistance of the coating to 100Ω or less. Is good and has excellent performance in the electromagnetic shielding effect.

電子機器などの内部発熱部品から発生する熱は、熱伝導、対流、熱放射などによって当該機器を保護する筺体(ケーシング)に伝達される。従って、この熱を筺体内で蓄積させることなく速やかに大気へ放散させることができれば、筺体の内部温度が過度に高まることもなく、電子機器の内部機能を安全に保つことができる。   Heat generated from an internal heat generating component such as an electronic device is transmitted to a casing (casing) that protects the device by heat conduction, convection, heat radiation, or the like. Therefore, if this heat can be quickly dissipated to the atmosphere without accumulating in the housing, the internal temperature of the housing can be kept safe without excessively increasing the internal temperature of the housing.

そこで前掲の特許文献1では、筺体の構成素材を放熱性塗膜で被覆した板材で筺体を構成することにより、機器内部で生じる熱を外気へ放散させ、電子機器の内部温度の上昇を抑えている。こうした放熱性塗膜は、先に説明した如くカーボンブラック等の放熱性添加剤を配合することによって放熱性を高めたもので、該塗膜に導電性フィラーを配合して導電性を与えると、電磁波シールド効果も付与できることを明らかにしている。   Therefore, in the above-mentioned Patent Document 1, by constituting the casing with a plate material in which the constituent material of the casing is covered with a heat-dissipating coating film, heat generated inside the apparatus is dissipated to the outside air, and an increase in the internal temperature of the electronic apparatus is suppressed. Yes. Such a heat-dissipating coating film is one that has improved heat dissipation by blending a heat-dissipating additive such as carbon black as described above, and by adding a conductive filler to the coating film to give conductivity, It is clarified that an electromagnetic wave shielding effect can be imparted.

これに対し本発明では、こうした放熱性添加剤の使用を排除するわけではないが、放熱作用の主体を、塗膜の最外層に含有させる、表面に開口した1〜1000nmの細孔を有する多孔質粒子によって発揮させるところに特徴を有している。即ち、表面に開口した所定サイズの細孔を有する多孔質粒子を、その一部が塗膜最外層の表面から露出した状態で含有させると、該多孔質粒子の露出した細孔が外気に対し対流による優れた熱伝達作用を発揮し、放熱特性を更に高めることが確認されたのである。   On the other hand, in the present invention, the use of such a heat-dissipating additive is not excluded, but the main component of the heat-dissipating action is contained in the outermost layer of the coating film, and has a pore having 1-1000 nm pores opened on the surface. It is characterized by the fact that it is exhibited by the particles. That is, if porous particles having pores of a predetermined size opened on the surface are contained in a state where a part thereof is exposed from the surface of the outermost layer of the coating film, the exposed pores of the porous particles are against the outside air. It was confirmed that the heat transfer effect by convection was demonstrated and the heat dissipation characteristics were further improved.

この様に、多孔質粒子の表面に開口した所定サイズの細孔が特異な放熱特性を発揮する理由は、現在のところ明らかにされていない。しかし後述する実施例でも明らかにする如く、開口した細孔の平均径が1nm未満の微細なものでは殆ど放熱特性が改善されず、また、細孔が表面に開口していない閉気孔である場合も、本発明で意図する放熱特性が発現されないこと等から考えると、平均径で1nm以上の開口された細孔が放熱特性に少なからぬ影響を及ぼしていることは明白である。   As described above, the reason why the pores of a predetermined size opened on the surface of the porous particles exhibit a specific heat dissipation characteristic has not been clarified at present. However, as will be clarified in the examples to be described later, in the case where the average diameter of the open pores is smaller than 1 nm, the heat dissipation characteristics are hardly improved, and the pores are closed pores which are not opened on the surface. However, considering that the heat dissipation characteristics intended by the present invention are not exhibited, it is clear that the apertured pores having an average diameter of 1 nm or more have a considerable influence on the heat dissipation characteristics.

しかも上記多孔質粒子は、その少なくとも一部が塗膜最外層の表面から露出しており、開口した上記細孔が外表面に開口状態で存在していることが重要であり、その為には、最外層を構成する塗膜の膜厚(x)と上記多孔質粒子の平均粒径(y)が「x<y」の関係を満たす様に調整するのが最も簡便な方法である。即ち、多孔質粒子の平均粒径(y)と膜厚(x)が上記関係を満足するということは、多孔質粒子の少なくとも一部が最外層塗膜の表面から露出することを意味している。そのため、該露出した多孔質粒子の表面に存在する開口した細孔が、対流による外部雰囲気方向への熱伝達を促進し、放熱特性がより効果的に高められるのである。   Moreover, it is important that at least a part of the porous particles are exposed from the surface of the outermost layer of the coating film, and the open pores are present in an open state on the outer surface. The simplest method is to adjust the film thickness (x) of the coating film constituting the outermost layer and the average particle diameter (y) of the porous particles so as to satisfy the relationship of “x <y”. That is, the fact that the average particle diameter (y) and the film thickness (x) of the porous particles satisfy the above relationship means that at least a part of the porous particles is exposed from the surface of the outermost layer coating film. Yes. For this reason, the open pores present on the surface of the exposed porous particles promote heat transfer in the direction of the external atmosphere by convection, and the heat dissipation characteristics are more effectively enhanced.

但し、膜厚(x)に対して多孔質粒子の平均粒径(y)が大き過ぎると、多孔質粒子が最外層の表面から大きく突出し、該突出した多孔質粒子が小さな摩擦力で最外層から脱落し易くなるので、好ましくは、多孔質粒子の平均粒径(y)を膜厚(x)の3/2〜2倍程度、即ち「(3/2)・x≦y≦2x」とし、多孔質粒子の1/3〜1/2程度が最外層の上面から露出する様に、膜厚と多孔質粒子の平均粒径を調整することが望ましい。但し、多孔質粒子の粒度分布が狭い場合は、更に高い割合の粒子を最外層の表面に露出させることができる。   However, if the average particle diameter (y) of the porous particles is too large with respect to the film thickness (x), the porous particles greatly protrude from the surface of the outermost layer, and the protruded porous particles are exposed to the outermost layer with a small frictional force. The average particle diameter (y) of the porous particles is preferably about 3/2 to 2 times the film thickness (x), that is, “(3/2) · x ≦ y ≦ 2x”. It is desirable to adjust the film thickness and the average particle diameter of the porous particles so that about 1/3 to 1/2 of the porous particles are exposed from the upper surface of the outermost layer. However, when the particle size distribution of the porous particles is narrow, a higher proportion of particles can be exposed on the surface of the outermost layer.

なお、該多孔質粒子の表面に開口した細孔のサイズは、外気方向への対流による熱伝達効率を高める上で極めて重要であり、本発明者らが実験で確認したところによると、そのサイズは少なくとも1nm以上でなければならないことが確認された。その理由は現在のところ明確にされていないが、1nm未満の微細な孔では、本発明で意図する放熱促進効果は発揮されないことを確かめている。実験によって確認しているより好ましい細孔の平均径は5nm以上、より好ましくは10nm以上である。   Note that the size of the pores opened on the surface of the porous particles is extremely important in increasing the heat transfer efficiency by convection in the direction of the outside air. Has been confirmed to be at least 1 nm or more. The reason for this is not clarified at present, but it has been confirmed that a fine hole of less than 1 nm does not exhibit the effect of promoting heat dissipation intended in the present invention. The average diameter of the more preferable pore confirmed by experiment is 5 nm or more, More preferably, it is 10 nm or more.

細孔平均径の上限は特に存在しないが、本発明では該細孔を有する粒状の多孔質粒子を最外層塗膜中に混入させてその機能を発揮させるものであり、最外層の膜厚(x)は後述する如く0.5〜4μm程度が好ましく、また該膜厚(x)との関係で多孔質粒子の平均粒径(y)は1〜8μmの範囲が好ましいことを考慮すると、細孔が大き過ぎると多孔質粒子が脆弱となり圧壊し易くなるので、こうした問題を回避するための細孔径の上限は1000nm程度と考えられる。より好ましい細孔径の上限は500nm、更に好ましくは200nm程度である。   There is no particular upper limit of the average pore diameter, but in the present invention, granular porous particles having the pores are mixed in the outermost layer coating film to exert its function, and the outermost layer thickness ( x) is preferably about 0.5 to 4 μm as described later, and the average particle diameter (y) of the porous particles is preferably in the range of 1 to 8 μm in relation to the film thickness (x). If the pores are too large, the porous particles become brittle and easily collapse, so the upper limit of the pore diameter to avoid such problems is considered to be about 1000 nm. The upper limit of the more preferable pore diameter is 500 nm, and more preferably about 200 nm.

なお、上記多孔質粒子の細孔径は、ユアサイオニクス社製の商品名「AUTOSORBI」を用いて窒素ガス吸着法によって測定し、また、多孔質粒子の平均粒径はLeed & Northrup社製の商品名「マイクロトラック9220FRA」を用いて測定した値である。   The pore diameter of the porous particles is measured by a nitrogen gas adsorption method using a trade name “AUTOSORBI” manufactured by UAE Sonics, and the average particle diameter of the porous particles is a trade name manufactured by Leed & Northrup. This is a value measured using “Microtrack 9220FRA”.

なお上記最外層の好ましい膜厚を0.5〜4μmの範囲に定めたのは、該膜厚が余りに薄すぎると、最外層に必要量の多孔質粒子を保持することができないため、満足のいく放熱特性が得られ難くなり、逆に膜厚が4μmを超えて厚くなり過ぎると、該最外層を構成するビヒクル樹脂層により却って放熱が阻害される恐れが生じてくるからである。多孔質粒子の保持性や放熱性を考慮して最外層のより好ましい膜厚は、1μm以上、3μm以下である。   The preferable thickness of the outermost layer is set in the range of 0.5 to 4 μm because if the film thickness is too thin, the outermost layer cannot hold a necessary amount of porous particles. This is because if the film thickness exceeds 4 μm, the vehicle resin layer constituting the outermost layer may hinder heat dissipation. A more preferable film thickness of the outermost layer is 1 μm or more and 3 μm or less in consideration of the retention property and heat dissipation of the porous particles.

なお本発明では、上記の様に塗膜最外層の表面から露出した多孔質粒子の開口した細孔による対流熱伝達の促進作用を活用して放熱特性を高めるものであるから、最外層表面に露出した多孔質粒子表面の細孔は開口状態に保たれていることが必要であり、その為には、該多孔質粒子含有層を形成する際の塗布液として、ヒビクル樹脂成分が揮発性溶剤で十分に希釈された固形分濃度の低い塗布液を使用するのがよい。   In the present invention, as described above, the heat radiation characteristics are enhanced by utilizing the convective heat transfer promoting action by the open pores of the porous particles exposed from the surface of the outermost layer of the coating film. The exposed pores on the surface of the porous particles must be kept in an open state. For this purpose, the vehicle resin component is a volatile solvent as a coating solution for forming the porous particle-containing layer. It is preferable to use a coating solution with a low solid content that is sufficiently diluted with the above.

即ち固形分濃度の高い塗布液を使用すると、塗膜最外層に塗布液を塗布乾燥して最外層塗膜を形成する際に、多孔質粒子の細孔内部まで侵入した樹脂がそのまま乾燥固化して細孔を塞いでしまう恐れがあるが、固形分濃度の低い塗布液を使用すると、乾燥固化後に残存する樹脂量が少ないため、細孔内壁面に樹脂膜を形成する程度で細孔を塞いでしまうような恐れがないからである。   That is, when a coating solution with a high solid content is used, when the coating solution is applied to the outermost coating layer and dried to form the outermost coating layer, the resin that penetrates into the pores of the porous particles is dried and solidified as it is. However, if a coating solution with a low solid content is used, the amount of resin remaining after drying and solidification is small, so the pores are blocked to the extent that a resin film is formed on the inner wall surface of the pores. This is because there is no fear of getting out.

従って最外層塗膜を形成する際には、多孔質粒子を除いた樹脂固形分の濃度で10質量%以下、より好ましくは7.5質量%以下、更に好ましくは5質量%程度以下の低濃度の塗布液を使用するのがよい。こうした低濃度の塗布液を使用することは、相対的に薄肉である0.5〜4μmレベルの膜厚の最外層を形成する上でも有利である。塗布液濃度の下限は特に存在しないが、塗布液中の多孔質粒子の分離安定性や塗装作業性などを考慮すると、多孔質粒子を除いた樹脂固形分の濃度で1質量%程度以上、より好ましくは2質量%程度以上である。   Therefore, when forming the outermost layer coating film, the concentration of the resin solid content excluding the porous particles is 10% by mass or less, more preferably 7.5% by mass or less, and further preferably about 5% by mass or less. It is recommended to use the coating solution. Use of such a low-concentration coating solution is advantageous in forming the outermost layer having a thickness of 0.5 to 4 μm, which is relatively thin. There is no particular lower limit of the coating solution concentration, but considering the separation stability of the porous particles in the coating solution and the coating workability, the concentration of the resin solids excluding the porous particles is about 1% by mass or more. Preferably it is about 2 mass% or more.

本発明では、上記の様に塗膜の最外層に、開口した所定サイズの細孔を有する多孔質粒子を混入させ、塗膜表面から外気方向への対流による熱伝達を加速することによって放熱特性を高めたところに特徴を有しており、こうした作用のみを活用して放熱性を高めることも勿論可能であるが、こうした特性を、前掲の特許文献1に示した放熱性向上技術と組み合わせて発揮させることは極めて有効である。   In the present invention, as described above, the outermost layer of the coating film is mixed with porous particles having pores of a predetermined size, and heat transfer characteristics are accelerated by accelerating heat transfer from the coating film surface to the outside air direction. Of course, it is possible to improve heat dissipation by utilizing only such an action, but these characteristics are combined with the heat dissipation improvement technique shown in the above-mentioned Patent Document 1. It is extremely effective to make it appear.

即ち、上記多孔質粒子を含む最外層の下層側に、前掲の特許文献1に開示されている様な放射性添加剤を含む下層塗膜を形成し、該下層塗膜による熱放射特性を利用して放熱特性を更に高めることも有効である。具体的には、放射性添加剤を配合することで放熱特性を高めた下層塗膜を形成することで、該塗装金属板を100℃に加熱したときの赤外線(波長4.5〜15.4μm)の積分放射率を0.6以上に高めてやれば、多孔質粒子を配合することで対流熱伝達性能の高められた最外層塗膜の存在とも相俟って、放熱特性は一段と向上する。   That is, on the lower layer side of the outermost layer containing the porous particles, a lower coating film containing a radioactive additive as disclosed in Patent Document 1 is formed, and the thermal radiation characteristics of the lower coating film are utilized. It is also effective to further improve the heat dissipation characteristics. Specifically, infrared rays (wavelength: 4.5 to 15.4 μm) when the coated metal plate is heated to 100 ° C. by forming a lower layer coating film having improved heat dissipation characteristics by blending radioactive additives. If the integral emissivity is increased to 0.6 or more, the heat radiation characteristics are further improved in combination with the presence of the outermost coating film whose convective heat transfer performance is enhanced by blending the porous particles.

なお、上記「赤外線の積分放射率」とは、赤外線(熱エネルギー)の放出し易さ(吸収し易さ)を意味する。従って、上記赤外線放射率が高い程、塗膜から放出される熱エネルギー量は大きくなる。例えば物体(本発明の場合は塗装金属材)に与えられる熱エネルギーの100%が放射される場合には、当該赤外線積分放射率は1となる。   The “integrated emissivity of infrared rays” means the ease of releasing (easy absorption) of infrared rays (thermal energy). Therefore, the higher the infrared emissivity, the greater the amount of heat energy released from the coating. For example, when 100% of thermal energy given to an object (in the case of the present invention, a painted metal material) is radiated, the infrared integrated emissivity is 1.

なお本発明では、上記の様に100℃に加熱したときの赤外線積分放射率を定めているが、これは、本発明の塗装金属材が通常の電子機器(用途によっても相違するが、通常の使用雰囲気温度は概ね50〜70℃で、最高で約100℃)に適用されることを考慮し、当該実用雰囲気温度と一致させるため、加熱温度を100℃に定めた。但し本発明者らの実験によると、200℃に加熱したときの赤外線積分放射率は、100℃の赤外線積分放射率に比べて僅か0.02(即ち、2%)程度高くなるだけで、概略同一となることを確認している。   In the present invention, the infrared integrated emissivity when heated to 100 ° C. is determined as described above. This is because the coated metal material of the present invention is a normal electronic device (although it differs depending on the application, In consideration of the fact that the operating atmospheric temperature is approximately 50 to 70 ° C. and about 100 ° C. at the maximum, the heating temperature was set to 100 ° C. in order to match the practical atmospheric temperature. However, according to the experiments by the present inventors, the infrared integrated emissivity when heated to 200 ° C. is only about 0.02 (ie, 2%) higher than the infrared integrated emissivity of 100 ° C. It is confirmed that they are the same.

本発明で採用される赤外線積分放射率の測定法は、前掲の特許文献1でも明らかにしているが、再掲すると下記の通りである。
装置:日本電子社製の「JIR−5500型フーリエ変換赤外分光光度計」及び放射測定ユニット「IRR−200」
測定波長範囲:4.5〜15.4μm
測定温度:供試材の加熱温度を100℃に設定
積算回数:200回
分解能 :16cm−1
The method for measuring the infrared integrated emissivity employed in the present invention is also clarified in the above-mentioned Patent Document 1, but it is as follows.
Apparatus: “JIR-5500 type Fourier transform infrared spectrophotometer” manufactured by JEOL Ltd. and radiation measurement unit “IRR-200”
Measurement wavelength range: 4.5 to 15.4 μm
Measurement temperature: Set the heating temperature of the test material to 100 ° C. Integration count: 200 times Resolution: 16 cm −1

上記装置を使用し、赤外線波長域(4.5〜15.4μm)における供試材の分光放射強度(実測値)を測定する。この実測値は、バックグラウンドの放射強度と装置関数が加算/付加された数値として測定されるので、これらを補正するため、放射率測定プログラム[日本電子社製の放射率測定プログラム]を用いて積分放射率を算出する。算出法の詳細は次の通りである。   Using the above apparatus, the spectral radiant intensity (measured value) of the test material in the infrared wavelength region (4.5 to 15.4 μm) is measured. Since this actual measurement value is measured as a numerical value obtained by adding / adding the background radiation intensity and the device function, an emissivity measurement program [emissivity measurement program manufactured by JEOL Ltd.] is used to correct these values. Calculate the integral emissivity. Details of the calculation method are as follows.

Figure 0004527587
Figure 0004527587

式中、ε(λ)は波長λにおける供試材の分光放射率(%)、E(T)は温度T(℃)における供試材の積分放射率(%)、M(λ,T)は波長λ、温度T(℃)における供試材の分光放射強度(実測値)、A(λ)は装置関数、KFB(λ)は波長λにおける固定バックグラウンド(供試材によって変化しないバックグラウンド)の分光放射強度、KTB(λ,TTB)は波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度、K(λ,T)は波長λ、温度T(℃)における黒体の分光放射強度(プランクの理論式からの計算値)、λ,λは積分する波長の範囲、をそれぞれ意味している。 In the formula, ε (λ) is the spectral emissivity (%) of the specimen at the wavelength λ, E (T) is the integral emissivity (%) of the specimen at the temperature T (° C.), M (λ, T) Is the spectral radiant intensity (measured value) of the test material at wavelength λ and temperature T (° C.), A (λ) is the instrument function, and K FB (λ) is a fixed background at wavelength λ (the back surface does not vary with the test material) Spectral radiation intensity of ground), K TB (λ, T TB ) is wavelength λ, spectral radiation intensity of trapped black body at temperature T TB (° C.), K B (λ, T) is wavelength λ, temperature T (° C.) , And λ 1 and λ 2 mean the range of wavelengths to be integrated, respectively.

ここで、上記A(λ:装置関数)、及び上記KFB(λ:固定バックグラウンドの分光放射強度)は、2つの黒体炉(80℃、160℃)の分光放射強度の実測値と、当該温度域における黒体の分光放射強度(プランクの理論式からの計算値)に基づき、下記式によって算出したものである。 Here, A (λ: instrument function) and K FB (λ: spectral radiant intensity of fixed background) are measured values of spectral radiant intensity of two blackbody furnaces (80 ° C., 160 ° C.), and Based on the spectral radiant intensity (calculated value from Planck's theoretical formula) of the black body in the temperature range, the following formula is used.

Figure 0004527587
Figure 0004527587

式中、M160℃(λ,160℃)は、波長λにおける160℃の黒体炉の分光放射強度(実測値)、M80℃(λ,80℃)は、波長λにおける80℃の黒体炉の分光放射強度(実測値)、K160℃(λ,160℃)は、波長λにおける160℃の黒体炉の分光放射強度(プランクの理論式からの計算値)、K80℃(λ,80℃)は、波長λにおける80℃の黒体炉の分光放射強度(プランクの理論式からの計算値)、をそれぞれ意味する。 In the formula, M 160 ° C. (λ, 160 ° C.) is the spectral radiant intensity (measured value) of the black body furnace at 160 ° C. at the wavelength λ, and M 80 ° C. (λ, 80 ° C.) is the black at 80 ° C. at the wavelength λ. Spectral radiant intensity (actually measured value) of the body furnace, K 160 ° C. (λ, 160 ° C.) is a spectral radiant intensity of the black body furnace at 160 ° C. at a wavelength λ (calculated value from Planck's theoretical formula), K 80 ° C. ( (λ, 80 ° C.) means the spectral radiant intensity (calculated value from Planck's theoretical formula) of a black body furnace at a wavelength λ of 80 ° C., respectively.

尚、積分放射率E(T=100℃)の算出に当たり、KTB(λ,TTB)を考慮しているのは、測定に際し、供試材の周囲に水冷したトラップ黒体を配置している為である。該トラップ黒体の設置により、変動バックグランド放射(供試材によって変化するバックグラウンド放射を意味する。供試材の周囲からの放射が供試材表面で反射される為、供試材の分光放射強度の実測値は、このバックグランド放射が加算された数値として表れる)の分光放射強度を低くコントロールすることができる。上記トラップ黒体としては、放射率0.96の疑似黒体を使用しており、前記KTB[(λ,TTB):波長λ、温度TTB(℃)におけるトラップ黒体の分光放射強度]は、以下の様にして算出する。
TB(λ,TTB)=0.96×K(λ,TTB
式中、K(λ,TTB)は、波長λ、温度TTB(℃)における黒体の分光放射強度を意味する。
In calculating the integral emissivity E (T = 100 ° C.), K TB (λ, T TB ) is taken into account when a trapped black body cooled with water is placed around the specimen. Because it is. By installing the trap black body, variable background radiation (meaning background radiation that varies depending on the specimen). Since the radiation from the surroundings of the specimen is reflected on the specimen surface, The actually measured value of the radiation intensity can be controlled to a low spectral radiation intensity (which appears as a numerical value obtained by adding the background radiation). As the trap black body, a pseudo black body having an emissivity of 0.96 is used, and K TB [(λ, T TB ): spectral radiant intensity of the trap black body at the wavelength λ and the temperature T TB (° C.). ] Is calculated as follows.
K TB (λ, T TB ) = 0.96 × K B (λ, T TB )
In the formula, K B (λ, T TB ) means the spectral radiant intensity of a black body at a wavelength λ and a temperature T TB (° C.).

放射性添加剤を含む下層塗膜が形成された塗装金属材は、この様にして測定した赤外線(波長4.5〜15.4μm)の積分放射率[上記E(T=100℃)]であって、該放熱性塗膜が形成された塗装金属材の赤外線積分放射率(a)が少なくとも0.6以上であることが望ましい。また、裏面にも同様の放熱性塗膜が形成されている塗装金属材の場合は、表裏面側の赤外線積分放射率(a),(b)の積(a×b)で0.6以上を満足するものが好ましい。   The coated metal material on which the lower coating film containing the radioactive additive was formed had an integral emissivity [E (T = 100 ° C.)] of infrared rays (wavelength: 4.5 to 15.4 μm) measured in this way. In addition, the infrared integrated emissivity (a) of the coated metal material on which the heat-radiating coating film is formed is preferably at least 0.6 or more. Moreover, in the case of the coating metal material in which the same heat dissipating coating film is formed also on the back surface, the product (a × b) of infrared integrated emissivities (a) and (b) on the front and back surfaces is 0.6 or more. Those satisfying the above are preferable.

即ち、塗装金属材から放出される赤外線積分放射率は、塗装金属材自体の放熱効果を示す指標として有用であり、この値が「0.6以上」を示すものは、上記赤外線波長域で平均して高い放射特性を発揮することから、本発明では好ましい積分放射率として上記値を定めている。より好ましくは0.64以上、更に好ましくは0.72以上である。   In other words, the infrared integrated emissivity emitted from the painted metal material is useful as an index indicating the heat dissipation effect of the painted metal material itself, and those whose values show “0.6 or more” are average values in the above infrared wavelength region. Therefore, in the present invention, the above value is set as a preferable integral emissivity. More preferably, it is 0.64 or more, More preferably, it is 0.72 or more.

なお本発明を実施する際には、筺体の外面側となる片面側の赤外線放射率が大きいものほど好ましく、該片面側の積分放射率で0.6以上、より好ましくは0.7以上、更に好ましくは0.8以上である塗装金属材は、本発明における最も好ましい実施態様として推奨される。   When carrying out the present invention, it is preferable that the infrared emissivity on one side which is the outer surface side of the housing is larger, the integral emissivity on the one side is 0.6 or more, more preferably 0.7 or more, and further Painted metal materials that are preferably 0.8 or more are recommended as the most preferred embodiment in the present invention.

なお上記赤外線積分放射率は、多孔質粒子を配合した最外層塗膜の構成には殆ど影響を受けることがなく、放射性添加剤を含む下層塗膜の構成によってほぼ一義的に決まってくる。従って、該下層塗膜と最外層塗膜を複合した本発明の好ましい態様では、該下層塗膜の上記積分放射率と最外層塗膜の対流熱伝達による放熱効果が総合された放熱特性を発揮することになる。   The infrared integrated emissivity is almost unaffected by the configuration of the outermost layer coating film containing the porous particles, and is almost uniquely determined by the configuration of the lower layer coating film containing the radioactive additive. Therefore, in a preferred embodiment of the present invention in which the lower layer coating film and the outermost layer coating film are combined, the above integrated emissivity of the lower layer coating film and the heat radiation effect by the convective heat transfer of the outermost layer coating film are exhibited. Will do.

下層塗膜中に配合される放射性添加剤として最も好ましいのはカーボンブラックであるが、その他、Co,Ni,Cu,Mn,Ag,Snなどの酸化物、硫化物、カーバイドなど、更にはTiO、セラミックス、酸化鉄、酸化アルミニウム、硫酸バリウム、酸化ケイ素などを使用することもできる。これら放射性添加剤の好ましい配合量は、下層塗膜中に占める固形分比率で1質量%以上、より好ましくは2質量%以上である。 Carbon black is most preferable as a radioactive additive to be blended in the lower layer coating film, but other oxides such as Co, Ni, Cu, Mn, Ag, Sn, sulfide, carbide, etc., and further TiO 2. Ceramics, iron oxide, aluminum oxide, barium sulfate, silicon oxide and the like can also be used. A preferable blending amount of these radioactive additives is 1% by mass or more, more preferably 2% by mass or more in terms of a solid content ratio in the lower layer coating film.

放射性添加剤としてカーボンブラックを使用する場合の好ましいサイズは、平均粒径で5nm以上、100nm以下である。平均粒径が5nm未満では、所望の放熱特性が得られ難いばかりか、塗料の安定性が低下して塗装外観が悪くなる傾向があり、一方、平均粒径が100nmを超えて大き過ぎても放熱特性が低下し、且つ塗膜外観も不均一になる傾向があるからである。好ましくは10nm以上、90nm以下;より好ましくは15nm以上、80nm以下である。尚、放熱特性に加え、塗料安定性、塗装後外観の均一性等を総合的に勘案すると、カーボンブラックの最適平均粒径は概ね20〜40nmの範囲である。   A preferable size when carbon black is used as the radioactive additive is 5 nm or more and 100 nm or less in terms of average particle diameter. If the average particle size is less than 5 nm, it is difficult not only to obtain desired heat dissipation characteristics but also the coating stability tends to deteriorate and the appearance of the coating tends to deteriorate. On the other hand, even if the average particle size exceeds 100 nm, it is too large. This is because the heat dissipation characteristics are lowered and the appearance of the coating film tends to be non-uniform. Preferably they are 10 nm or more and 90 nm or less; More preferably, they are 15 nm or more and 80 nm or less. In addition to the heat dissipation characteristics, the optimum average particle diameter of carbon black is generally in the range of 20 to 40 nm when comprehensively considering the stability of the paint, the uniformity of the appearance after coating, and the like.

前述した最外層塗膜および上記下層塗膜のビヒクル成分として使用される樹脂(放熱塗膜を形成するベース樹脂)の種類は、放熱特性の観点からは特に限定されず、アクリル系樹脂、ウレタン系樹脂、ポリオレフィン系樹脂、ポリエステル系樹脂、フッ素系樹脂、シリコン系樹脂、およびそれらのブレンド物や変性樹脂などを適宜使用できる。但し、本発明の塗装金属材は電子機器の筺体として使用されるため、放熱特性に加えて、耐食性や加工性なども要求されることが多いので、上記ベース樹脂としては、非親水性樹脂[具体的には、水との接触角が30°以上(より好ましくは50°以上、更に好ましくは70°以上)を満足するもの]を使用するのがよい。この様な非親水性樹脂は、混合度合いや変性度合い等にもよるが、例えばポリエステル系樹脂、ポリオレフィン系樹脂、フッ素系樹脂、シリコン系樹脂、およびそれらのブレンド物または変性樹脂が好ましく、中でも特に好ましいのは、ポリエステル系樹脂やその変性樹脂(エポキシ変性ポリエステル系樹脂、フェノール誘導体を骨格に導入したポリエステル系樹脂等の熱硬化性ポリエステル系樹脂または不飽和ポリエステル系樹脂)である。   The type of the resin used as the vehicle component of the outermost layer coating film and the lower layer coating film (the base resin forming the heat radiation coating film) is not particularly limited from the viewpoint of heat radiation characteristics, and is an acrylic resin or urethane resin. Resins, polyolefin resins, polyester resins, fluorine resins, silicon resins, blends and modified resins thereof, and the like can be used as appropriate. However, since the coated metal material of the present invention is used as a casing of an electronic device, corrosion resistance and workability are often required in addition to heat dissipation characteristics. Therefore, as the base resin, a non-hydrophilic resin [ Specifically, those satisfying a contact angle with water of 30 ° or more (more preferably 50 ° or more, more preferably 70 ° or more) are preferably used. Such a non-hydrophilic resin depends on the degree of mixing and the degree of modification, but for example, polyester resins, polyolefin resins, fluorine resins, silicone resins, and blends or modified resins thereof are preferred, among others. Preferred are polyester resins and modified resins thereof (epoxy-modified polyester resins, thermosetting polyester resins such as polyester resins having a phenol derivative introduced into the skeleton, or unsaturated polyester resins).

これらの樹脂には、必要により例えばメラミン系化合物やイソシアネート系化合物などの架橋剤を添加することができる。   If necessary, a crosslinking agent such as a melamine compound or an isocyanate compound can be added to these resins.

また、上記最外層塗膜や下層塗膜には、本発明の作用を損なわない範囲で、その他の添加剤、例えば防錆顔料や帯電防止剤、耐候性改善剤などを添加してもよい。他の添加剤の中でも、好ましくは下層塗膜側に配合することによって優れた性能を与える添加剤として導電性フィラーが挙げられる。   Moreover, you may add another additive, for example, a rust preventive pigment, an antistatic agent, a weather resistance improving agent, etc. to the said outermost layer coating film and lower layer coating film in the range which does not impair the effect | action of this invention. Among other additives, a conductive filler is preferably used as an additive that gives excellent performance when blended on the lower coating film side.

即ち本発明が適用される電子機器部品は、放熱の問題の他、外部への電磁波障害を招くこともあるので、それら電子機器用の筺体として用いる本発明の塗装金属材は電磁波シールド性を有するものであることが望ましく、その為には、最外層塗膜や下層塗膜の一方もしくは両方(好ましくは下層塗料中)に導電性フィラーを配合することによって導電性を与え、電磁波シールド性能を付与することが推奨される。   That is, the electronic device component to which the present invention is applied may cause an electromagnetic interference to the outside in addition to the problem of heat dissipation. Therefore, the coated metal material of the present invention used as a casing for the electronic device has an electromagnetic shielding property. For this purpose, it is possible to provide conductivity by adding a conductive filler to one or both of the outermost layer coating and the lower layer coating (preferably in the lower layer coating), and to provide electromagnetic shielding performance. It is recommended to do.

こうした目的で使用される導電性フィラーとしては、Ag、Zn、Fe、Ni、Cu等の金属単体や、FeP等の金属化合物が挙げられる。中でも特に好ましいのはNiである。その形状は特に限定されないが、より少ない配合量で優れた導電性を与えるには、鱗片状のものを使用するのがよい。導電性フィラーの配合量は、使用するベース樹脂の種類や、必要に応じて添加される架橋剤や放熱性添加剤その他の添加剤なども含めて、塗膜を構成する全ての成分中に占める比率(固形分換算)で5〜50質量%の範囲とするのがよい。5%未満では所望の導電性付与効果が得られないので、好ましくは15%以上、より好ましくは20%以上配合するのがよい。但し、導電性フィラーの量が50質量%を超えると、塗膜の加工性が低下する。特に、塗装金属板として高度の曲げ加工性が要求される部位に適用する場合は、優れた加工性を保つため40質量%以下、より好ましくは35質量%以下に抑えるのがよい。   Examples of the conductive filler used for such purposes include simple metals such as Ag, Zn, Fe, Ni, and Cu, and metal compounds such as FeP. Of these, Ni is particularly preferable. The shape is not particularly limited, but it is preferable to use a scaly shape in order to give excellent conductivity with a smaller amount. The blending amount of the conductive filler occupies in all the components constituting the coating film, including the type of base resin to be used and the crosslinking agent, heat-dissipating additive and other additives added as necessary. It is good to set it as the range of 5-50 mass% by a ratio (solid content conversion). If it is less than 5%, the desired conductivity imparting effect cannot be obtained. Therefore, it is preferably 15% or more, more preferably 20% or more. However, when the amount of the conductive filler exceeds 50% by mass, the processability of the coating film is lowered. In particular, when it is applied to a portion where a high degree of bending workability is required as a coated metal plate, it should be suppressed to 40% by mass or less, more preferably 35% by mass or less in order to maintain excellent workability.

導電性の指標としては、電気抵抗で100Ω以下を基準とすればよく、より好ましくは10Ω以下である。ここで、電気抵抗は次の様な方法で測定できる。   The conductivity index may be based on an electrical resistance of 100Ω or less, more preferably 10Ω or less. Here, the electrical resistance can be measured by the following method.

導電性測定装置として三菱化学製「ロレスタEP」、プローブは三菱化学製2探針プローブ(MCP−TP01)を使用し、測定に当たっては、プローブの探針と測定サンプルとの間に、厚さ0.8mm、大きさ20mm角の銅板を、銅板同士が接触しない様に2枚置いて供試材の抵抗(Ω)を測定する。   “Loresta EP” manufactured by Mitsubishi Chemical as a conductivity measuring device and a two-probe probe manufactured by Mitsubishi Chemical (MCP-TP01) are used as the conductivity measuring device, and the thickness between the probe probe and the measurement sample is 0 when measuring. Two copper plates of 8 mm in size and 20 mm in size are placed so that the copper plates do not contact each other, and the resistance (Ω) of the test material is measured.

また、基材として金属を使用する本発明においては、上記以外の添加剤として防錆剤を配合することも有効である。その具体例としては、シリカ系化合物、リン酸塩系化合物、亜リン酸塩系化合物、ポリリン酸塩系化合物、イオウ系有機化合物、ベンゾトリアゾール、タンニン酸、モリブデン酸塩系化合物、タングステン酸塩系化合物、バナジウム系化合物、シランカップリング剤等が挙げられ、これらを単独で若しくは併用することができる。特に好ましいのは、シリカ系化合物(例えばカルシウムイオン交換シリカ等)と、リン酸塩系化合物、亜リン酸塩系化合物、ポリリン酸塩系化合物(例えばトリポリリン酸アルミニウム等)との併用であり、シリカ系化合物:(リン酸塩系化合物、亜リン酸塩系化合物、またはポリリン酸塩系化合物)を、質量比率で0.5〜9.5:9.5〜0.5(より好ましくは1:9〜9:1)の範囲で併用することが推奨される。この様な範囲に制御することにより、優れた耐食性と加工性を兼ね備えた塗膜を得ることができる。   In the present invention in which a metal is used as the base material, it is also effective to add a rust inhibitor as an additive other than the above. Specific examples include silica compounds, phosphate compounds, phosphite compounds, polyphosphate compounds, sulfur organic compounds, benzotriazole, tannic acid, molybdate compounds, tungstate compounds. Compounds, vanadium compounds, silane coupling agents and the like can be mentioned, and these can be used alone or in combination. Particularly preferred is a combination of a silica-based compound (for example, calcium ion-exchanged silica) and a phosphate-based compound, a phosphite-based compound, or a polyphosphate-based compound (for example, aluminum tripolyphosphate). Compound: (phosphate compound, phosphite compound, or polyphosphate compound) in a mass ratio of 0.5 to 9.5: 9.5 to 0.5 (more preferably 1: It is recommended to use in the range of 9-9: 1). By controlling in such a range, a coating film having both excellent corrosion resistance and workability can be obtained.

以上、本発明の塗装体を特徴付ける塗膜について詳述したが、本発明の最重要ポイントは、塗膜、それも最外層塗膜、或いはこれと下層塗膜の構成を特定したところにあり、塗膜が形成される金属基材の種類は特に限定されない。従って本発明に用いられる金属基材としては、最も代表的な鋼板、具体的には冷延鋼板、熱延鋼板、電気亜鉛めっき鋼板(EG)、溶融亜鉛めっき鋼板(GI)、合金化溶融亜鉛めっき鋼板(GA)、Al−Znめっき鋼板、Al等の各種めっき鋼板、ステンレス鋼板等の鋼板類や、非鉄金属板等を全て適用することができ、更には、金属板以外の基材、具体的には管材、線材、棒材、異形材などが全て使用できる。   As described above, the coating film characterizing the coated body of the present invention has been described in detail, but the most important point of the present invention is that the coating film, also the outermost coating film, or the configuration of this and the lower coating film, The kind of metal base material on which the coating film is formed is not particularly limited. Therefore, as the metal substrate used in the present invention, the most typical steel plates, specifically cold-rolled steel plates, hot-rolled steel plates, electrogalvanized steel plates (EG), hot-dip galvanized steel plates (GI), alloyed hot-dip zinc Plated steel sheets (GA), Al-Zn plated steel sheets, various plated steel sheets such as Al, steel sheets such as stainless steel sheets, non-ferrous metal sheets, etc. can be applied. In particular, pipes, wires, rods, deformed materials, etc. can all be used.

尚、上記の金属材は、耐食性や塗膜の密着性向上などを目的として、クロメート処理やリン酸塩処理などの表面処理が施されたものでもよく、更には、環境汚染等を考慮して、ノンクロメート処理した金属材を使用してもよく、いずれの態様も本発明の技術的範囲に包含される。   In addition, the above metal material may be subjected to surface treatment such as chromate treatment or phosphate treatment for the purpose of improving corrosion resistance or adhesion of the coating film. A nonchromated metal material may be used, and any embodiment is included in the technical scope of the present invention.

本発明の塗装体は、前述した様な成分を含む塗料を、公知の塗装法で基材の表面に塗布して乾燥し、或いは加熱焼付け処理することによって製造することができる。塗装方法は特に限定されないが、例えば表面を清浄化して、必要に応じて塗装前処理(例えばリン酸塩処理、クロメート処理など)を施した基材の表面に、ロールコーター法、スプレー法、カーテンフローコーター法などを用いて塗料を塗工し、熱風乾燥炉を通過させて乾燥し、或いは焼付け硬化させる方法などが挙げられる。   The coated body of the present invention can be produced by applying a coating containing the above-described components to the surface of a substrate by a known coating method and drying or heat baking. The coating method is not particularly limited. For example, the surface of a base material that has been cleaned and subjected to pre-coating treatment (for example, phosphate treatment, chromate treatment, etc.) as necessary is applied to a roll coater method, a spray method, or a curtain. Examples thereof include a method of applying a paint using a flow coater method and the like, passing it through a hot air drying oven, drying it, or baking and hardening it.

最外層塗膜の下に下層塗膜を設けた多層構造の塗膜を形成する場合は、上述した様な方法で下層塗膜を形成した後、該下層塗膜が乾燥固化した後に最外層塗膜を形成するのがよい。ちなみに、下層塗膜と最外層塗膜を順次塗布したのち乾燥固化を同時に行なおうとすると、下層塗膜材と最外層塗膜材の相互拡散や混合が起こり、本発明で意図する様な最外層塗膜が得られ難くなるからである。   When forming a multi-layered coating film having a lower layer coating under the outermost layer coating layer, after forming the lower layer coating layer by the method described above, the outermost layer coating layer is dried and solidified. A film should be formed. By the way, if the lower layer coating material and the outermost layer coating material are sequentially applied and then dried and solidified simultaneously, mutual diffusion and mixing of the lower layer coating material and the outermost layer coating material occurs. It is because it becomes difficult to obtain an outer layer coating film.

かくして得られる本発明の塗装体は、最外層に前掲の多孔質粒子を含む薄肉の表皮塗膜が形成されて優れた対流熱伝導作用を有し、好ましくは更に、その下層側に放射性添加剤を含む下層塗膜を形成することで優れた放熱特性を有し、或いは更に、好ましくは下層側に導電性フィラーを配合して導電性塗膜とすることで電磁波シールド性を与えることができ、電子機器を保護収納するための筺体用素材として極めて有効に活用できる。   The coated body of the present invention thus obtained has an excellent convective heat conduction effect in which a thin-walled skin coating film containing the above-mentioned porous particles is formed in the outermost layer, and preferably further has a radioactive additive on the lower layer side. It has excellent heat dissipation characteristics by forming a lower layer coating film containing, or more preferably, it can provide electromagnetic wave shielding properties by blending a conductive filler on the lower layer side to make a conductive coating film, It can be used very effectively as a housing material for protecting and storing electronic devices.

また本発明の特徴が効果的に発揮される電子機器部品には、閉じられた空間に発熱体を内蔵する電子機器部品であって、該電子機器部品の外壁の全部または一部を上記塗装金属材で構成した電子機器部品も包含される。   An electronic device component that effectively exhibits the features of the present invention is an electronic device component that contains a heating element in a closed space, and all or part of the outer wall of the electronic device component is coated with the painted metal. Electronic equipment parts made of materials are also included.

その様な電子機器部品としては、CD、LD、DVD、CD−ROM、CD−RAM、PDP、LCD等の情報記録製品;パソコン、カーナビ、カーAV等の電気・電子・通信関連製品;プロジェクター、テレビ、ビデオ、ゲーム機等のAV機器;コピー機、プリンター等の複写機;エアコン室外機等の電源ボックスカバー、制御ボックスカバー、自動販売機、冷蔵庫などが具体例として例示される。   Such electronic equipment components include CD, LD, DVD, CD-ROM, CD-RAM, PDP, LCD and other information recording products; PC, car navigation, car AV and other electrical / electronic / communication related products; projectors, Specific examples include AV devices such as televisions, videos, and game machines; copiers such as copiers and printers; power supply box covers such as air conditioner outdoor units, control box covers, vending machines, and refrigerators.

以下、実施例を挙げて本発明を更に具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited by the following examples as a matter of course, and appropriate modifications are made within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

実施例
クロメート処理を施した電気亜鉛めっき鋼板(板厚;0.8mm、Cr付着量;20mg/mを原板として使用し、その片面に下記表1に示す添加剤を配合した塗料(ベース樹脂としてポリエステル系樹脂を使用し、架橋剤としてメラミン樹脂を用いたもの)を塗布した後、焼付け及び乾燥を行なって下層塗膜を形成した。
Example Electrogalvanized steel sheet subjected to chromate treatment (plate thickness: 0.8 mm, Cr adhesion amount: 20 mg / m 3 was used as a base plate, and a paint (base resin) blended with additives shown in Table 1 on one side thereof A polyester resin and a melamine resin as a crosslinking agent) were applied, followed by baking and drying to form a lower coating film.

次いでその上に、表1に示す微粒子を配合したポリエステル系樹脂塗料を塗布してから焼付け・乾燥することにより最外層塗膜を形成した。このポリエステル系樹脂塗料において、塗料中の樹脂固形分を50質量%としたもの、及び7.5質量%としたものの各々に、表面が開口した口径;約20nmの細孔を多数有する多孔質シリカ(水澤化学社製の商品名「Mizukasil P−707」)、または、表面が開口した口径;約0.3nmの細孔を多数有するゼオライト(日本化学社製の商品名「ゼオスターKA−100P」)を、乾燥塗膜中に占める比率で10質量%となる様に配合した。   Next, a polyester resin paint blended with the fine particles shown in Table 1 was applied thereon, followed by baking and drying to form an outermost layer coating film. In this polyester-based resin coating material, porous silica having a large diameter of about 20 nm in diameter with a surface opening in each of the resin solid content in the coating material of 50% by mass and 7.5% by mass (Trade name “Mizukasil P-707” manufactured by Mizusawa Chemical Co., Ltd.) or a diameter having an open surface; zeolite having many pores of about 0.3 nm (trade name “Zeostar KA-100P” manufactured by Nippon Chemical Co., Ltd.) Was blended so as to be 10% by mass in the ratio of the dried coating film.

得られた各塗装金属板について、下記の方法で対流による熱伝達性を評価すると共に、100℃に加熱したときの赤外線(波長4.5〜15.4μm)積分放射率を調べた。   For each of the obtained coated metal plates, heat transferability by convection was evaluated by the following method, and infrared (wavelength: 4.5 to 15.4 μm) integrated emissivity when heated to 100 ° C. was examined.

「対流熱伝達性評価法」
各供試鋼板の対流・熱伝達性能を評価するため、下記の原理で、同一方向に均一な速度で加熱した供試鋼板の代表温度を計測し、供試鋼板間で相対評価を行なった。
"Convection heat transfer evaluation method"
In order to evaluate the convection and heat transfer performance of each test steel plate, the representative temperature of the test steel plate heated at a uniform speed in the same direction was measured according to the following principle, and a relative evaluation was performed between the test steel plates.

原理:
図1に示す如く、同じ寸法の供試鋼板A,Bの片面側を同じ熱量(Q0)で加熱し、反対面に同一温度T0で同一流速(V1)に設定した空気を流す。供試鋼板Aの熱通過性能が供試鋼板Bよりも優れておれば、供試鋼板Aの表面温度TAと供試鋼板Bの表面温度TBの間には「TA<TB」の関係が成立する。図中、ha,hbは供試鋼板A,Bの熱伝達係数、A0は供試鋼板A,Bのマクロ的表面積(即ち、表面に露出した多孔質粒子の細孔面積は無視した表面積で、実験では等しいサイズの供試板を用いたので同じ値である)を表わす。
principle:
As shown in FIG. 1, one side of test steel plates A and B having the same dimensions are heated with the same amount of heat (Q0), and air set at the same temperature T0 and the same flow velocity (V1) is flowed on the opposite side. If the heat passing performance of the test steel plate A is superior to that of the test steel plate B, a relationship of “TA <TB” is established between the surface temperature TA of the test steel plate A and the surface temperature TB of the test steel plate B. To do. In the figure, ha and hb are the heat transfer coefficients of the test steel plates A and B, A0 is the macroscopic surface area of the test steel plates A and B (that is, the pore area of the porous particles exposed on the surface is a negligible surface area, In the experiment, since the test plates of the same size were used, the values are the same).

なお上記熱通過性能は、放射伝熱量と対流熱伝達量により決まってくるが、供試鋼板の放射率(ε0)と空気温度(T0)が明らかになれば、放射伝熱量(Q2)は下記式によって求めることができるので、残りの対流熱伝達量(Q1)は「Q1=Q0−Q2」として求めることができ、対流熱伝達性の向上の良否を判断できる。
Q2=5.67×ε0×A0×{[(TA+273)/100]−[(T0+273)/100]}
The heat passing performance is determined by the amount of radiant heat transfer and the amount of convection heat transfer. If the emissivity (ε0) and air temperature (T0) of the test steel plate are determined, the radiant heat transfer amount (Q2) is as follows. Since it can be obtained by the equation, the remaining convective heat transfer amount (Q1) can be obtained as “Q1 = Q0−Q2”, and the quality of improvement in convective heat transfer can be determined.
Q2 = 5.67 × ε0 × A0 × {[(TA + 273) / 100] 4 − [(T0 + 273) / 100] 4 }

Figure 0004527587
Figure 0004527587

上記表1から次の様に考えることができる。   From Table 1 above, it can be considered as follows.

符号1は、何らの塗膜も形成されていない電気亜鉛めっき鋼板をそのまま用いたブランク材である。符号2は、前記特許文献1として示した先願発明に係る放射性添加物を含む下層皮膜のみからなる塗装金属板であり、高い熱放射率を有すると共に放熱性も良好で、ブランク材に較べて6.3℃もの降温(放熱)効果が得られている。   The code | symbol 1 is the blank material which used the electrogalvanized steel plate in which no coating film is formed as it is. Reference numeral 2 is a coated metal plate made of only a lower layer film containing the radioactive additive according to the invention of the prior application shown as Patent Document 1, and has a high heat emissivity and good heat dissipation, compared with a blank material. A temperature drop (heat radiation) effect of 6.3 ° C. is obtained.

符号3は、熱放射性の下層塗膜を形成すると共にその上に本発明の規定要件を満たす最外層塗膜を形成した本発明の実施例であり、符号2の従来材に比べて更に1.3℃の放熱効果が得られている。   Reference numeral 3 is an embodiment of the present invention in which a heat-radiating lower layer coating film is formed and an outermost layer coating film satisfying the specified requirements of the present invention is formed thereon. A heat dissipation effect of 3 ° C. is obtained.

符号4は、符号3に対し最外層塗膜を形成するための塗料として樹脂固形分濃度の高いものを使用した例であり、多孔質粒子の細孔が樹脂で塞がれてしまったためか、最外層塗膜を形成した効果が全く発揮されていない。また符号5,6は、多孔質粒子として、細孔を有しているが平均細孔径が本発明で規定するサイズに達していない微細細孔のゼオライトを用いたものであり、放熱性は下層塗膜のみを設けた符号2よりも悪くなっている。これは、ゼオライトに対流熱伝達による放熱効果がないばかりか、下層塗膜の熱放射が該ゼオライトを含む最外層塗膜によって阻害されたためと考えている。   Reference numeral 4 is an example using a high resin solid content concentration as a paint for forming the outermost layer coating film with respect to the reference numeral 3 because the pores of the porous particles have been blocked by the resin, The effect of forming the outermost layer coating film is not exhibited at all. Reference numerals 5 and 6 are fine particles of zeolite having fine pores that do not reach the size defined in the present invention but have fine pores as the porous particles. It is worse than the code | symbol 2 which provided only the coating film. This is considered to be because not only the zeolite does not have a heat dissipation effect due to convective heat transfer, but also the thermal radiation of the lower layer coating is inhibited by the outermost layer coating containing the zeolite.

なお熱放射率は専ら下層塗膜に依存しており、下層塗膜の構成が同一である符号2〜6の熱放射率は、最外層塗膜の如何を問わず一定の値を示している。   The thermal emissivity depends exclusively on the lower layer coating film, and the thermal emissivity of reference numerals 2 to 6 having the same configuration of the lower layer coating film shows a constant value regardless of the outermost layer coating film. .

塗装金属板の放射伝熱量(Q2)と対流熱伝達量(Q1)の算出法を示す原理説明図である。It is principle explanatory drawing which shows the calculation method of the amount of radiant heat transfer (Q2) and convective heat transfer amount (Q1) of a coating metal plate.

Claims (4)

金属基材の片面もしくは両面に、少なくとも1層の塗膜が形成されている塗装金属材であって、
前記塗膜は、放熱性添加剤を含む下層塗膜層Aと、1〜1000nmの細孔を有する多孔質粒子を含む最外層塗膜Bと、を有しており、
前記最外層塗膜Bは、その層厚(x)が0.5〜4μm、前記多孔質粒子の平均粒径(y)が1〜8μmであり、「x<y」の関係を満たすものであり、
前記多孔質粒子の少なくとも一部は、前記最外層塗膜Bの表層側露出した状態で含まれており、且つ、露出した多孔質粒子表面の細孔は開口状態に保たれており、
前記塗装金属材を100℃に加熱したときの赤外線(波長4.5〜15.4μm)の積分放射率が0.6以上であることを特徴とする放熱性に優れた塗装金属材。
A coated metal material in which at least one layer of a coating film is formed on one side or both sides of a metal substrate,
The coating film has a lower coating film layer A containing a heat-dissipating additive and an outermost coating film B containing porous particles having pores of 1 to 1000 nm,
The outermost layer coating film B has a layer thickness (x) of 0.5 to 4 μm, an average particle diameter (y) of the porous particles of 1 to 8 μm, and satisfies the relationship of “x <y”. Yes,
At least a part of the porous particles are included in a state of being exposed on the surface layer side of the outermost layer coating film B , and the exposed pores on the surface of the porous particles are maintained in an open state,
A coated metal material excellent in heat dissipation, wherein an integral emissivity of infrared rays (wavelength: 4.5 to 15.4 μm) when the painted metal material is heated to 100 ° C. is 0.6 or more .
前記塗膜は、導電性フィラーを塗膜構成成分中に占める比率(固形分換算)で5〜50質量%含有するものである請求項1に記載の塗装金属材。 The coated metal material according to claim 1, wherein the coating film contains 5 to 50% by mass of a conductive filler in a ratio (in terms of solid content) occupying the constituent components of the coating film . 熱源を有する電子機器の筺体用として使用されるものである請求項1または2に記載の塗装金属材。 The painted metal material according to claim 1 or 2 , which is used for a casing of an electronic device having a heat source. 熱源を内蔵する電子機器部品であって、該電子機器部品の外壁の少なくとも一部が、前記請求項1〜のいずれかに記載の塗装金属材で構成されていることを特徴とする電子機器部品。 An electronic device component incorporating a heat source, wherein at least a part of an outer wall of the electronic device component is made of the painted metal material according to any one of claims 1 to 3. parts.
JP2005102100A 2005-03-31 2005-03-31 Painted metal material with excellent heat dissipation and electronic equipment parts using the same Expired - Fee Related JP4527587B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005102100A JP4527587B2 (en) 2005-03-31 2005-03-31 Painted metal material with excellent heat dissipation and electronic equipment parts using the same
KR1020060021307A KR100764340B1 (en) 2005-03-31 2006-03-07 High thermal emissive coated metal material
TW095109678A TW200643127A (en) 2005-03-31 2006-03-21 Coated metal material excellent in radiation properties and electronic device component using it
CNB2006100716337A CN100441647C (en) 2005-03-31 2006-03-27 Coating metal with excellent heat diffusion character

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102100A JP4527587B2 (en) 2005-03-31 2005-03-31 Painted metal material with excellent heat dissipation and electronic equipment parts using the same

Publications (2)

Publication Number Publication Date
JP2006281514A JP2006281514A (en) 2006-10-19
JP4527587B2 true JP4527587B2 (en) 2010-08-18

Family

ID=37077087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102100A Expired - Fee Related JP4527587B2 (en) 2005-03-31 2005-03-31 Painted metal material with excellent heat dissipation and electronic equipment parts using the same

Country Status (4)

Country Link
JP (1) JP4527587B2 (en)
KR (1) KR100764340B1 (en)
CN (1) CN100441647C (en)
TW (1) TW200643127A (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8329313B2 (en) 2008-11-27 2012-12-11 Korea Institute Of Industrial Technology Electrically conductive and anti-corrosive coating, a method for preparing the same and an article coated with the same
ES2761918T3 (en) 2009-08-06 2020-05-21 Nippon Steel Corp Steel sheet for radiation heating, manufacturing method thereof, and processed steel product having a portion with different strength and manufacturing method thereof
KR101035011B1 (en) * 2010-01-19 2011-05-17 한국전기연구원 Heat-radiant coatings and heat-radiant plate thereby
KR20110132210A (en) * 2010-05-31 2011-12-07 스미토모 게이 긴조쿠 고교 가부시키가이샤 Led bulb member and method for manufacturing the same
WO2012018242A2 (en) * 2010-08-05 2012-02-09 한화케미칼 주식회사 High-efficiency heat-dissipating paint composition using a carbon material
TW201414666A (en) * 2012-10-03 2014-04-16 Saveway Nano Applic Co Ltd Nanometer material having fast cold/hot exchange, coating material, coating film and spray coating formed structural member
TWI500457B (en) * 2012-12-20 2015-09-21 Ming Der Jean Method for processing of radiation coating layer
JPWO2015063866A1 (en) * 2013-10-29 2017-03-09 新日鐵住金株式会社 Surface-treated metal plate and method for producing surface-treated metal plate
JP6470004B2 (en) * 2014-09-29 2019-02-13 日立オートモティブシステムズ株式会社 In-vehicle control device
CN108299933A (en) * 2016-08-18 2018-07-20 Bgt材料有限公司 Thermal dispersant coatings and preparation method thereof
CN107237780A (en) * 2017-05-25 2017-10-10 合肥皖化电泵有限公司 A kind of boiler water circulating pump shell
CN107227048A (en) * 2017-05-25 2017-10-03 合肥皖化电泵有限公司 BCP pump thermal dispersant coatings
JP7212451B2 (en) * 2018-02-16 2023-01-25 三井化学株式会社 Metal-resin bonded plates, housings and electronic devices
JP7219540B2 (en) * 2018-02-16 2023-02-08 三井化学株式会社 Electronic component housing and electronic device
JP2019145745A (en) * 2018-02-23 2019-08-29 三井化学株式会社 Component and electronic device
CN109830703B (en) * 2019-02-22 2022-02-08 成都新柯力化工科技有限公司 Polymer-based gas diffusion layer sheet and preparation method thereof
JP7247003B2 (en) 2019-04-12 2023-03-28 本田技研工業株式会社 Heat-dissipating paint composition and method for producing heat-dissipating coating

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228294A (en) * 1985-04-03 1986-10-11 Mitsubishi Heavy Ind Ltd Heating tube and its manufacture
JPS63290833A (en) * 1987-03-05 1988-11-28 ユニオン・カーバイド・コーポレーション Improved alkylation using rising type boiling surface heat exchanger in reaction zone
JPH04106396A (en) * 1990-08-24 1992-04-08 Seibu Giken:Kk Manufacture of element for total heat exchanger
JPH11157967A (en) * 1997-12-02 1999-06-15 Fuji Shirishia Kagaku Kk Siliceous fertilizer for nursery bed and its application
JP2002138376A (en) * 2000-10-26 2002-05-14 Toto Ltd Interior material
WO2004033980A1 (en) * 2002-10-10 2004-04-22 Iseya Manufacturing Co. Method for heat conduction and system for heat exchange between solid and fluid
JP3563731B2 (en) * 2001-07-25 2004-09-08 株式会社神戸製鋼所 Painted body for electronic equipment with excellent heat dissipation and conductivity

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558488A (en) * 1978-07-05 1980-01-22 Mitsubishi Electric Corp Surface treating method of radiator
JPS56119800A (en) * 1980-02-25 1981-09-19 Mitsubishi Electric Corp Surface treating method of heat radiating body
ATE473800T1 (en) * 1998-10-20 2010-07-15 Ngk Insulators Ltd COMPOSITE ZEOLITE FILM AND METHOD FOR PRODUCING THE SAME
AU2001222589A1 (en) * 2000-06-09 2001-12-24 3M Innovative Properties Company Materials and methods for creating waterproof, durable aqueous inkjet receptive media
EP1533113A1 (en) * 2003-11-14 2005-05-25 Siemens Aktiengesellschaft High temperature layered system for heat dissipation and method for making it
KR200400943Y1 (en) * 2005-08-25 2005-11-09 김병창 Heat sink

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61228294A (en) * 1985-04-03 1986-10-11 Mitsubishi Heavy Ind Ltd Heating tube and its manufacture
JPS63290833A (en) * 1987-03-05 1988-11-28 ユニオン・カーバイド・コーポレーション Improved alkylation using rising type boiling surface heat exchanger in reaction zone
JPH04106396A (en) * 1990-08-24 1992-04-08 Seibu Giken:Kk Manufacture of element for total heat exchanger
JPH11157967A (en) * 1997-12-02 1999-06-15 Fuji Shirishia Kagaku Kk Siliceous fertilizer for nursery bed and its application
JP2002138376A (en) * 2000-10-26 2002-05-14 Toto Ltd Interior material
JP3563731B2 (en) * 2001-07-25 2004-09-08 株式会社神戸製鋼所 Painted body for electronic equipment with excellent heat dissipation and conductivity
WO2004033980A1 (en) * 2002-10-10 2004-04-22 Iseya Manufacturing Co. Method for heat conduction and system for heat exchange between solid and fluid

Also Published As

Publication number Publication date
CN100441647C (en) 2008-12-10
TWI338025B (en) 2011-03-01
KR100764340B1 (en) 2007-10-05
TW200643127A (en) 2006-12-16
CN1847337A (en) 2006-10-18
KR20060106666A (en) 2006-10-12
JP2006281514A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4527587B2 (en) Painted metal material with excellent heat dissipation and electronic equipment parts using the same
US7279218B2 (en) Coated body having excellent thermal radiation property used for members of electronic device
JP2006286729A (en) Paint composition excellent in electromagnetic wave absorbency and conductivity, and coated metal plate coated therewith
JP3563731B2 (en) Painted body for electronic equipment with excellent heat dissipation and conductivity
JP4188857B2 (en) Coated body for electronic device members with excellent heat dissipation and electronic device parts
JP5201228B2 (en) Heat-dissipating surface-treated metal plate and housing for electronic equipment
KR100704063B1 (en) Resin-coated metal sheet
KR100563919B1 (en) High thermal emissive coated bodies for electronic equipment parts
JP2008246974A (en) Laminated resin coated metal plate excellent in electromagnetic wave absorbency
JP4736314B2 (en) Heat-dissipating surface-treated metal plate and housing for electronic equipment
JP3796257B2 (en) Coated body for electronic device members having excellent heat dissipation and self-cooling properties, and electronic device parts
JP5061978B2 (en) Surface-treated steel sheets and coated steel plates with excellent corrosion resistance, heat radiation, and conductivity
JP2005271572A (en) Resin-coated metal plate for electronic device having excellent electromagnetic wave absorption and workability
JP4194041B2 (en) Resin-coated metal plate and electronic device parts with excellent scratch resistance and fingerprint resistance
JP3796249B2 (en) Coated body for electronic equipment members having excellent heat dissipation, self-cooling and electrical conductivity, and electronic equipment parts
JP5368396B2 (en) Resin-coated metal material and electronic device parts using the metal material
JP2004122674A (en) Heat radiation coated metal plate
JP3796232B2 (en) Painted body for electronic equipment with excellent heat dissipation
JP2004074145A5 (en)
JP4252818B2 (en) Painted steel sheet with high cooling capacity
JP2004134722A (en) Cabinet for electric/electronic apparatus with high cooling power
WO2023090184A1 (en) Resin-coated aluminum alloy sheet and resin composition for resin-coated aluminum alloy sheet
JP4347790B2 (en) Resin-coated steel sheet for electronic equipment with excellent electromagnetic wave absorption
JP2005199429A (en) Resin-coated aluminium material for electronic device part excellent in radiation properties and conductivity
JP2007237655A (en) Thin film coated metal plate showing excellent endothermic/exothermic characteristic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees