JPS61228294A - Heating tube and its manufacture - Google Patents

Heating tube and its manufacture

Info

Publication number
JPS61228294A
JPS61228294A JP60069226A JP6922685A JPS61228294A JP S61228294 A JPS61228294 A JP S61228294A JP 60069226 A JP60069226 A JP 60069226A JP 6922685 A JP6922685 A JP 6922685A JP S61228294 A JPS61228294 A JP S61228294A
Authority
JP
Japan
Prior art keywords
tube
metal particles
particles
porous
adhesive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60069226A
Other languages
Japanese (ja)
Inventor
Masayuki Hayakawa
正幸 早川
Kazuo Nishikawa
和夫 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP60069226A priority Critical patent/JPS61228294A/en
Publication of JPS61228294A publication Critical patent/JPS61228294A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure

Abstract

PURPOSE:To obtain a porous heating tube having uniformly distributed fine holes whose diameter can be freely set up by using metal particles whose grain size is of free selectivity by bonding plural metal particles layers through a brazing to the surface of a heating tube. CONSTITUTION:The heating surface of a heating tube is formed by providing a porous layer 5 consisting of metal particles 3 of a grain size of 100-300mum, which are bonded and fixed metallurgically through a braze 2 to the inner surface of the tube and manu pores 4. Many pores 4 in the porous layer 5 servo to facilitate occurrence of the ebullition phenomenon of fluid inside the tube and the countless globular metal particles 3 servo to greatly increase the actual heating area. As the metal particles 3, copper particles may be cited, and as an adhesive metarial, styrene-butadiene may preferably be used. Also, as the braze 2, Sn or Sn-Pb alloy may be used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、管内面に多孔質層を有する高性能伝熱管及び
その製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a high-performance heat exchanger tube having a porous layer on the inner surface of the tube and a method for manufacturing the same.

(従来の技術) 熱交換器の性能向上を計るための方法として、熱交換器
に使用する伝熱管の管外あるいは管内に、第6,7図に
示すよう々凹凸を機械的に付与し、実伝熱面積を増大さ
せた伝熱管(前者をフィン付管、後者を溝付管と呼ぶ)
が実用されているが、いずれも熱伝達率の向上率は、凹
凸を付与しない管(平滑管と呼ぶ)のせいぜい1.5〜
2.5倍止りである。
(Prior art) As a method for improving the performance of a heat exchanger, irregularities are mechanically provided on the outside or inside of the heat exchanger tubes used in the heat exchanger, as shown in FIGS. 6 and 7. Heat transfer tube with increased actual heat transfer area (the former is called a finned tube, the latter is called a grooved tube)
have been put into practical use, but in both cases, the rate of improvement in heat transfer coefficient is at most 1.5 to 1.5 for pipes without unevenness (called smooth pipes).
It is only 2.5 times.

そこで、さらに熱伝達率を向上させる方法として、近年
、管外あるいは管内表面に微粒子で構成された多数の細
孔を有した多孔質層を付与して、伝熱面積の増大と核沸
とう伝熱による伝熱性能を向上させた多孔質管の開発お
よび性能研究がなされ、前記のフィン付管や溝付管の数
倍の性能を有することが明らかになってきた。
Therefore, as a method to further improve the heat transfer coefficient, in recent years, a porous layer with many pores made of fine particles has been added to the outside or inside of the tube to increase the heat transfer area and improve nucleate boiling transfer. Porous tubes with improved heat transfer performance have been developed and studied, and it has become clear that they have several times the performance of the finned tubes and grooved tubes.

これらの多孔質管製造法については、に)金属粒子と結
合剤の混合物を管内、または管外表面に塗布した后、焼
結する方法、(2)有機媒体中から金属粒子と有機物、
あるいは金属酸化物粒子と有機物を同時に電析させた后
、有機物を加熱蒸発させながら焼結する方法、(0線爆
溶射によって管内に金属微粒子を固着、堆積させる方法
などが発表されている。
These porous tube manufacturing methods include: (2) applying a mixture of metal particles and a binder to the inside or outside of the tube and then sintering;
Alternatively, a method has been announced in which metal oxide particles and organic matter are simultaneously electrodeposited and then sintered while the organic matter is heated and evaporated, and a method in which fine metal particles are fixed and deposited inside a tube by zero-ray detonation spraying.

しかし、上記の従来法に)〜に)の第1の欠点は、いず
れも均質で再現性の高い多孔質層が得られないことであ
シ、そのために、性能の安定した均質な多孔質層を有す
る伝熱管を製造することができない。
However, the first drawback of the above-mentioned conventional methods is that a porous layer that is homogeneous and highly reproducible cannot be obtained. It is not possible to manufacture heat exchanger tubes with

即ち、安定した性能を得るためには、多孔質層を形成す
る金属粒子の形状が球状で、かつ粒径も均一であること
はもちろん、粒子の配列が2次元又は3次元方向に均一
でなければならない。
In other words, in order to obtain stable performance, the metal particles forming the porous layer must not only have a spherical shape and a uniform particle size, but also the arrangement of the particles must be uniform in two or three dimensions. Must be.

例えば、方法に)では、金属粒子径が10〜20μ以下
であれば良いが、30〜50p以上になると、管表面の
よう表曲面上では、混合物の塗布電層に結合剤の固着力
が金属粒子の受ける重力に打ち勝つことができず、粒子
が重力方向に移動し、凝集するために、管表面に均一に
粒子を配列することができない。この傾向は管径が小さ
くなる程著しい。
For example, if the metal particle size is 10 to 20μ or less, it is sufficient, but if the metal particle size is 30 to 50μ or more, the adhesion force of the binder to the applied layer of the mixture may be lower than that of the metal on a curved surface such as a pipe surface. The particles cannot overcome the gravity exerted on them, move in the direction of gravity, and aggregate, making it impossible to arrange the particles uniformly on the pipe surface. This tendency becomes more pronounced as the pipe diameter becomes smaller.

方法■では、管長の中央と端部で電流密度が異々るため
に、均一厚さの電析層が得られず、したがって、多孔質
層の厚さく3次元)方向の粒子配列が不均一になる。ま
た、方法いと同様に、結合剤として作用する有機媒体(
エチレングリコール、イソプロピルアルコール等)の結
合力が非常に弱いので、粒子の脱落や重力移動によって
配列が乱れ易く、現実的な方法でまい。
In method 2, the current density differs between the center and the ends of the tube length, making it impossible to obtain a deposited layer with a uniform thickness, resulting in non-uniform particle arrangement in the three-dimensional (thickness) direction of the porous layer. become. Also, similar to the method, an organic medium (
Since the bonding force of ethylene glycol, isopropyl alcohol, etc. is very weak, the arrangement is easily disrupted by particles falling off or moving by gravity, making it difficult to use a practical method.

方法ゆでは、粒子形状および粒子寸法が不拘−表ため、
配列も不均一になるばかシでなく、得られた多孔質層中
に占める細孔径が5〜10μ以下と過小になる。
In the boiling method, particle shape and particle size are unrestricted;
The arrangement will not be non-uniform, but the pore diameters occupied in the obtained porous layer will be too small, 5 to 10 μm or less.

第2の欠点は、に)、@、働のいずれの方法も、(1)
粒子径の自由な選択が不可能で4j9、(21管内径が
φ1〇−以下の細管内面への処理が困難であシ、また、
■、(Oでは、(3) 1 m以上の長尺管の内直への
処理が不可能であシ、さらには、(C)では、(4)管
外処理が不可能である等、それぞれ処理性が悪い。
The second drawback is that both the ni), @, and work methods (1)
It is impossible to freely select the particle size, (21) it is difficult to treat the inner surface of a thin tube with an inner diameter of φ10- or less, and
■, (In O, (3) it is impossible to process a long pipe of 1 m or more directly inside the pipe, and in (C), (4) it is impossible to process it outside the pipe, etc.) Each has poor processing performance.

(発明が解決しようとする問題点) 本発明の目的は、上記従来のものの欠点を解消し、(へ
)粒子径の選択が自由で、細孔径が任意に設定でき、(
2)均質に細孔を分布させることが可能であり、(3)
製造が容易で、適用制限が少ない、多孔質伝熱管及び該
多孔質伝熱管の製造法を提供しようとするものである。
(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate the above-mentioned drawbacks of the conventional ones, (to) allow the particle diameter to be freely selected, the pore diameter to be arbitrarily set, and (
2) Pores can be distributed homogeneously; (3)
It is an object of the present invention to provide a porous heat exchanger tube that is easy to manufacture and has few application restrictions, and a method for manufacturing the porous heat exchanger tube.

(問題点を解決するための手段) 本発明は、伝熱管の伝熱面に、複数の金属粒子層がろう
材を介して固着された伝熱管に関する。
(Means for Solving the Problems) The present invention relates to a heat exchanger tube in which a plurality of metal particle layers are fixed to the heat transfer surface of the heat exchanger tube via a brazing material.

さらには、本発明は、次の(へ)〜(ホ)の工程を含む
伝熱管の製造法。
Furthermore, the present invention is a method for manufacturing a heat exchanger tube including the following steps (f) to (e).

(へ);伝熱管母材の伝熱面又は下記に)工程後の金属
粒子層に、粘着剤を薄く塗布する工程。
(f); Step of applying a thin layer of adhesive to the heat transfer surface of the heat transfer tube base material or the metal particle layer after the step (described below).

(ロ);(へ)工程後の粘着層上に金属粒子をのせ、回
転して均一ち密な金属粒子層を形成する工程。
(b); (f) A step of placing metal particles on the adhesive layer after the step and rotating to form a uniform and dense layer of metal particles.

f’) : @工程後、残余の金属粒子をとりだす工程
f'): A process of taking out the remaining metal particles after the @ process.

に);C9工程後、粘着剤を除去する工程。B): After the C9 step, a step of removing the adhesive.

(へ):(ニ)工程後の金属粒子層にろう材を噴霧し、
加熱ろう付けする工程 に関する。
(F): (D) Spraying a brazing material on the metal particle layer after the process,
It relates to the process of heating and brazing.

金属微粒子を用いて多孔質層を作る場合の技術的ポイン
トは、主要構成材となる粒子をいかにち密で均一に2次
元および3次元(厚さ方向)に配列するかである。本発
明は、この問題を粘着剤をプリセット剤として用いるこ
とによシ解決したものである。即ち、例えば、平たんな
粘着剤塗布面の一部に粒子が山盛υになるように置き、
わずか振動を与えた后、これを裏返すと、粘着剤に捕捉
されなかった粒子(余剰分)だけが脱落し、粒子と粒子
がだんご状に重なり合うことなく単粒子がち密で均一に
配列した状態が容易に得られ、かつ、粒子の固着力も十
分であることを応用したものである。
The technical point when creating a porous layer using fine metal particles is how densely and uniformly the particles, which are the main components, are arranged in two and three dimensions (thickness direction). The present invention solves this problem by using an adhesive as a presetting agent. That is, for example, particles are placed in a heap υ on a part of a flat adhesive-coated surface,
After giving it a slight vibration, when it is turned over, only the particles that were not captured by the adhesive (excess) will fall out, and the particles will be in a state where the particles are densely and uniformly arranged without overlapping each other like a dumpling. This is an application of the fact that it is easily obtained and has sufficient particle adhesion.

また、本発明によれば、内径φ10m以下の細径管内に
、他の方法にくらべ、極めて均質な多孔質膜を容易に生
成できる。
Furthermore, according to the present invention, an extremely homogeneous porous membrane can be easily produced in a small diameter tube with an inner diameter of 10 m or less, compared to other methods.

本発明に係る多孔質管は、第1図に示すように、伝熱面
が平滑な通常の管1と、管内面表面にろう材2によって
冶金的に接合−固定された粒径100〜500 p、、
の金属粒子3と、多数の空げき4とで形成される多孔質
層5有する。
As shown in FIG. 1, the porous tube according to the present invention consists of an ordinary tube 1 with a smooth heat transfer surface and a particle diameter of 100 to 500 metallurgically bonded and fixed to the inner surface of the tube with a brazing filler metal 2. p...
It has a porous layer 5 formed of metal particles 3 and a large number of voids 4.

多孔質層5中の多数の空げき4は、管内流体の核沸とう
現象の発生を容易にすると同時に、無数の球状の金属粒
子3は、真実伝熱面積を飛陸的に増大させる。
The large number of voids 4 in the porous layer 5 facilitate the occurrence of nucleate boiling of the fluid within the tube, and at the same time, the countless spherical metal particles 3 increase the actual heat transfer area in a flying manner.

本発明において、金属粒子5としては、銅粒子が好適に
用いられる。また、粘着剤としては、スチレン・ブタジ
ェン系粘着剤が好適に用いられる。さらに、ろう材2と
しては、錫あるいは錫−鉛合金が使用できる。
In the present invention, copper particles are preferably used as the metal particles 5. Furthermore, as the adhesive, a styrene-butadiene adhesive is preferably used. Further, as the brazing material 2, tin or a tin-lead alloy can be used.

(発明の効果) 本発明による伝熱管は、伝熱効率が平滑管の5〜6倍に
、また、(内面)溝付管の2〜3倍となるため、例えば
、本発明多孔質管を空調用熱広換器に使用すれば、性能
向上あるいは小型−軽量化が可能になる。
(Effects of the Invention) The heat transfer efficiency of the heat transfer tube according to the present invention is 5 to 6 times that of a smooth tube and 2 to 3 times that of a grooved tube (inner surface). If used in heat exchangers for industrial use, it will be possible to improve performance or reduce size and weight.

次に、素管(平滑管)として、長さ1000四、外径9
.5 tea 、内厚[L35mの鋼管を、金属粒子と
して球径200 pm  O銅粒子を用いた多孔質管の
製造法および性能の具体例を説明する。
Next, as a raw pipe (smooth pipe), the length is 1000 mm and the outer diameter is 9
.. A specific example of the manufacturing method and performance of a porous pipe using O copper particles with a spherical diameter of 200 pm as the metal particles will be described for a steel pipe with an inner thickness of 5 tea and an inner thickness of 35 m.

(1)管内にスチレン・ブタジェン系粘着剤を有機溶剤
(トリクレン)で溶した液(粘着剤含量2(重量S)を
スプレィ塗布した后、空気を吹込んで溶媒を揮発乾燥さ
せる。
(1) After spraying a solution of a styrene-butadiene adhesive dissolved in an organic solvent (triclene) (adhesive content 2 (weight S)) into the tube, air is blown in to volatilize and dry the solvent.

(2)次いで、予め、篩い分けし九球径200μmの銅
粒子を管の片方から、管を約20’傾斜した状態で回転
しながら充填する。
(2) Next, sieved copper particles having a nine-ball diameter of 200 μm are filled from one side of the tube while rotating the tube at an angle of about 20'.

充填完了后、他の一方の′栓を外し、管壁に付着しなか
った余剰の銅粒子を取出す。
After filling is completed, remove the other stopper and remove the excess copper particles that did not adhere to the tube wall.

(3)次に1フラツクス(20重量%塩化スズ溶液)を
管内にスプレーし、これを100℃炉中で10分間乾燥
する。
(3) Next, spray 1 flux (20% by weight tin chloride solution) into the tube and dry it in a 100°C oven for 10 minutes.

(4)  さらに、上記(1) 、 +21 、 r3
)の操作をくり返して、第2層目の粒子を仮止めする。
(4) Furthermore, the above (1), +21, r3
) to temporarily fix the second layer of particles.

(5)次に、錫ろう(200メツシの錫粉)を約a、0
1t/i相当付着するようにスプレーした后、SSO〜
500℃の炉中で10〜20分加熱し、ろう付けする。
(5) Next, add tin wax (200 mesh tin powder) to about a,0
After spraying so that it adheres to the equivalent of 1t/i, SSO~
Heat in a 500°C oven for 10 to 20 minutes and braze.

以上の方法で作成した内面多孔質管の表面状況は、第2
図の顕微鏡写真(倍率5倍)ように、銅粒子が均一に配
列し喪状態であシ、銅粒子同士はもちろん、銅粒子と管
壁は、第3図の顕微鏡写真(倍率200倍)に示すよう
に、錫ろうで完全にろう接されている。また、管軸に直
角の断面は、第4図の顕微鏡写真(倍率7倍)のとうυ
で、管内周に沿って均一に銅粒子が2層配例している。
The surface condition of the inner porous tube created by the above method is as follows.
As shown in the photomicrograph (5x magnification), the copper particles are uniformly arranged and in a state of mourning.The photomicrograph (200x magnification) in Fig. 3 shows that not only the copper particles but also the copper particles and the pipe wall are clearly visible. As shown, it is completely soldered with tin wax. In addition, the cross section perpendicular to the tube axis is the same as the one in the micrograph (7x magnification) in Figure 4.
In this case, two layers of copper particles are uniformly distributed along the inner circumference of the pipe.

なお、第3図において、1′は鋼管、2′は錫ろう、3
1は銅粒子を示す。
In Fig. 3, 1' is a steel pipe, 2' is a tin solder, and 3 is a steel pipe.
1 indicates copper particles.

前記方法で製造した多孔質管の伝熱性能をフルオロカー
ボン系冷媒(フレオンR11)用いて、平滑管、溝付管
と比較した結果、第5図に示すように、本発明に係る多
孔質管は、平滑管、および溝付管のそれぞれ5〜6倍、
2〜3倍であった。
As a result of comparing the heat transfer performance of the porous tube manufactured by the above method with that of a smooth tube and a grooved tube using a fluorocarbon refrigerant (Freon R11), as shown in FIG. , 5 to 6 times that of smooth tubes, and grooved tubes, respectively.
It was 2 to 3 times more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明に係る多孔質管の断面を示す概略図で
ちる。第2図は、本発明に係る多孔質管の表面状況を示
す顕微鏡写真(倍率5倍)、第3図は、銅粒子の配列状
況を示す顕微鏡写真(倍率200倍)であシ、第4図は
、同多孔質管の管軸に直角の断面を示す顕微鏡写真(倍
率7倍)である。第5図は、伝熱性能の比較図である。 第6図及び第7図は、従来の熱交換器に使用する伝熱管
、の概略を示す。 復代理人  内 1)  明 復代理人  萩 原 亮 − 第5図 汎 1 第2図 第4図
FIG. 1 is a schematic diagram showing a cross section of a porous tube according to the present invention. Figure 2 is a micrograph (magnification: 5x) showing the surface condition of the porous tube according to the present invention, Figure 3 is a micrograph (magnification: 200x) showing the arrangement of copper particles. The figure is a micrograph (7x magnification) showing a cross section of the same porous tube perpendicular to the tube axis. FIG. 5 is a comparison diagram of heat transfer performance. FIGS. 6 and 7 schematically show heat exchanger tubes used in conventional heat exchangers. Sub-agent 1) Meiji agent Ryo Hagiwara - Figure 5 General 1 Figure 2 Figure 4

Claims (2)

【特許請求の範囲】[Claims] (1)伝熱管の伝熱面に、複数の金属粒子層がろう材を
介して固着された伝熱管。
(1) A heat exchanger tube in which multiple layers of metal particles are fixed to the heat transfer surface of the tube via a brazing material.
(2)次の(イ)〜(ホ)の工程を含む伝熱管の製造法
。 (イ):伝熱管母材の伝熱面又は下記(ニ)工程後の金
属粒子層に、粘着剤を薄く塗布する工程。 (ロ):(イ)工程後の粘着層上に金属粒子をのせ、回
転して均一ち密な金属粒子層を形成する 工程。 (ハ):(ロ)工程後、残余の金属粒子をとりだす工程
。 (ニ):(ハ)工程後、粘着剤を除去する工程。 (ホ):(ニ)工程後の金属粒子層にろう材を噴霧し、
加熱ろう付けする工程。
(2) A method for manufacturing a heat exchanger tube including the following steps (a) to (e). (A): A step of applying a thin layer of adhesive to the heat transfer surface of the heat transfer tube base material or the metal particle layer after the step (D) below. (B): (B) A step in which metal particles are placed on the adhesive layer after the step and rotated to form a uniform and dense layer of metal particles. (c): After the (b) process, a process of taking out the remaining metal particles. (d): After the step (c), a step of removing the adhesive. (E): (D) Spraying a brazing material on the metal particle layer after the process,
The process of heating and brazing.
JP60069226A 1985-04-03 1985-04-03 Heating tube and its manufacture Pending JPS61228294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60069226A JPS61228294A (en) 1985-04-03 1985-04-03 Heating tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60069226A JPS61228294A (en) 1985-04-03 1985-04-03 Heating tube and its manufacture

Publications (1)

Publication Number Publication Date
JPS61228294A true JPS61228294A (en) 1986-10-11

Family

ID=13396596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60069226A Pending JPS61228294A (en) 1985-04-03 1985-04-03 Heating tube and its manufacture

Country Status (1)

Country Link
JP (1) JPS61228294A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281514A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Coated metal material excellent in radiation properties and electronic device component using it
JP2009109037A (en) * 2007-10-26 2009-05-21 General Electric Co <Ge> Heat transfer promoting system and manufacturing method of heat transfer device
CN113275576A (en) * 2021-05-20 2021-08-20 上海天阳钢管有限公司 Method for manufacturing metal porous layer by ultrasonic wave

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006281514A (en) * 2005-03-31 2006-10-19 Kobe Steel Ltd Coated metal material excellent in radiation properties and electronic device component using it
JP4527587B2 (en) * 2005-03-31 2010-08-18 株式会社神戸製鋼所 Painted metal material with excellent heat dissipation and electronic equipment parts using the same
JP2009109037A (en) * 2007-10-26 2009-05-21 General Electric Co <Ge> Heat transfer promoting system and manufacturing method of heat transfer device
CN113275576A (en) * 2021-05-20 2021-08-20 上海天阳钢管有限公司 Method for manufacturing metal porous layer by ultrasonic wave

Similar Documents

Publication Publication Date Title
EP1756330B1 (en) Method for reducing metal oxide powder and attaching it to a heat transfer surface and the heat transfer surface
JP2019509393A5 (en)
CN1054795C (en) Brazing composition, aluminum material provided with the brazing composition and heat exchanger
US4101691A (en) Enhanced heat transfer device manufacture
JP2007522346A (en) Porous coating member and method for producing the same using low temperature spraying method
TWI601831B (en) Metal particles, paste, formed body, and laminated body
JPH029155A (en) Composite metal material
US20050022976A1 (en) Heat transfer device and method of making same
JPS61228294A (en) Heating tube and its manufacture
DE3830907A1 (en) MATRIX MATERIAL FOR REGENERATORS
JPH10121110A (en) Boiling heat-transfer member and its production
JPS58129191A (en) Method of forming core material for heat pipe
JPS642475B2 (en)
JP3264240B2 (en) Method for producing copper tube having copper porous layer
CN113758325B (en) VC radiator with built-in copper/diamond sintered liquid suction core and preparation method thereof
US10804241B2 (en) Non-porous copper to copper interconnect
JPH1158072A (en) Manufacture of copper brazing sheet
JP2010132986A (en) Method for manufacturing aluminum member with layer of soldering material and method for manufacturing heat exchanger
JPH10202391A (en) Method for brazing copper or copper alloy
JP2002192336A (en) Manufacturing method of blazed plate heat exchanger and exchanger manufactured in such way
JPS605804A (en) Production of fine metallic ball
JP2784050B2 (en) Production method of metal powder
JPH0520508B2 (en)
CN105206541B (en) Integrated chip method
JPS59104285A (en) Production of heat transmitting pipe