JP4524477B2 - Copper powder for conductive paste - Google Patents

Copper powder for conductive paste Download PDF

Info

Publication number
JP4524477B2
JP4524477B2 JP2007001531A JP2007001531A JP4524477B2 JP 4524477 B2 JP4524477 B2 JP 4524477B2 JP 2007001531 A JP2007001531 A JP 2007001531A JP 2007001531 A JP2007001531 A JP 2007001531A JP 4524477 B2 JP4524477 B2 JP 4524477B2
Authority
JP
Japan
Prior art keywords
copper powder
viscosity
copper
conductive paste
reduction method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2007001531A
Other languages
Japanese (ja)
Other versions
JP2007165326A (en
Inventor
和司 佐野
美洋 岡田
宏昌 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2007001531A priority Critical patent/JP4524477B2/en
Publication of JP2007165326A publication Critical patent/JP2007165326A/en
Application granted granted Critical
Publication of JP4524477B2 publication Critical patent/JP4524477B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は,高い充填率でも低粘性の導電ペーストが得られる銅粉に関する。   The present invention relates to a copper powder from which a low-viscosity conductive paste can be obtained even at a high filling rate.

従来より,絶縁基板上に導電ペーストをスクリーン印刷して厚膜回路基板を作製する場合,該導電ペーストとしては銀系ペーストが主に使用されてきたが,銅ペーストも使用される傾向にある。銅ペーストは銀系ペーストに比べて次のような利点があるからである。   Conventionally, when a thick film circuit board is produced by screen-printing a conductive paste on an insulating substrate, a silver paste has been mainly used as the conductive paste, but a copper paste tends to be used. This is because copper paste has the following advantages over silver-based paste.

(1) マイグレーションが起き難いのでショートし難い。
(2) 導体抵抗および高周波損失が小さいので回路の微細化が可能である。
(3) 耐半田性に優れるので信頼性が高い。
(4) 低コスト化が可能である。
(1) It is difficult for short-circuiting because migration is unlikely to occur.
(2) Since the conductor resistance and high-frequency loss are small, the circuit can be miniaturized.
(3) High reliability due to excellent solder resistance.
(4) Cost reduction is possible.

このような利点をもつ銅ペーストは,粒径が0.1〜10μm程度の銅粉をビヒクル(樹脂)中に分散させることによって得られる。   A copper paste having such advantages can be obtained by dispersing copper powder having a particle size of about 0.1 to 10 μm in a vehicle (resin).

銅粉の製造法としては,機械的粉砕法,溶融銅を噴霧するアトマイズ法,陰極への電解析出法,蒸発蒸着法,湿式還元法等が知られている。これらはそれぞれ得失があるが,湿式還元法はペースト用に適する粒径の微細粉を比較的容易に得ることができるので,導電ペースト用銅粉を製造する場合の主流となっており,例えば特開平4−116109号公報,特開平2−197012号公報および特開昭62−99406号公報には湿式還元法による銅粉の製造法が記載されている。   As a method for producing copper powder, a mechanical pulverization method, an atomization method in which molten copper is sprayed, an electrolytic deposition method on a cathode, an evaporation method, a wet reduction method, and the like are known. Each of these has advantages and disadvantages, but the wet reduction method can obtain a fine powder having a particle size suitable for paste relatively easily, and is therefore the mainstream in producing copper powder for conductive paste. Japanese Laid-Open Patent Publication No. 4-116109, Japanese Laid-Open Patent Publication No. 2-97012, and Japanese Laid-Open Patent Publication No. 62-99406 describe a method for producing copper powder by a wet reduction method.

湿式還元法による銅粉の製法は,水中で析出させた水酸化銅を亜酸化銅に一次還元し,次いでこの亜酸化銅を金属銅に二次還元することを要旨とするものであり,一次還元剤としてはブドウ糖,二次還元剤として抱水ヒドラジン等が使用される。そのさい,水酸化銅の析出工程,一次還元工程および二次還元工程の条件設定により,得られる銅粉の粒径や粒子形状を制御することができ,導電ペースト用に適する粒径のものを安定して製造できる利点がある。本発明者らは先に特願平10−323866号において,一次還元工程と二次還元工程の間で,酸素含有ガス吹込みによる酸化処理を行う方法を提案した。この酸化処理により粒径の揃った銅粉を得ることができ,一層,粒径制御と粒子形状制御が精密化できるようになった。
特開平4−116109号公報 特開平2−197012号公報 特開昭62−99406号公報
The copper powder production method by the wet reduction method is primarily intended to primarily reduce copper hydroxide precipitated in water to cuprous oxide, and then to secondary reduction of this cuprous oxide to metallic copper. Glucose is used as the reducing agent, and hydrazine hydrate is used as the secondary reducing agent. At that time, by setting the conditions for the copper hydroxide precipitation process, primary reduction process and secondary reduction process, the particle size and particle shape of the obtained copper powder can be controlled. There is an advantage that it can be manufactured stably. The present inventors previously proposed a method for performing an oxidation treatment by blowing oxygen-containing gas between the primary reduction step and the secondary reduction step in Japanese Patent Application No. 10-323866. By this oxidation treatment, copper powder with uniform particle size can be obtained, and particle size control and particle shape control can be refined further.
JP-A-4-116109 Japanese Patent Laid-Open No. 2-197012 JP-A-62-99406

湿式還元法では導電ペーストに適した粒径の銅粉が製造できるとしても,その銅粉は,適正な粘性をもつ導電ペーストを得ようとする場合には問題があった。導電ペーストの粘性は,使用する樹脂自身の粘性,銅粉の充填率(フイラー値)および銅粉の粒度分布等が関与するが,湿式還元法による銅粉では,導電ペーストの粘性が高くなる傾向がある。すなわち,湿式還元法による銅粉では,粒径が適正に制御できても,それだけでは導電ペーストの粘性を低下させることには限界があることがわかった。   Even if the wet reduction method can produce copper powder having a particle size suitable for a conductive paste, the copper powder has a problem in obtaining a conductive paste having an appropriate viscosity. The viscosity of the conductive paste is related to the viscosity of the resin itself, the filling rate of the copper powder (filler value), the particle size distribution of the copper powder, etc., but the copper paste by the wet reduction method tends to increase the viscosity of the conductive paste. There is. In other words, it was found that the copper powder produced by the wet reduction method has a limit in reducing the viscosity of the conductive paste, even if the particle size can be controlled appropriately.

したがって,本発明はこのような問題を解決し,湿式還元法による銅粉を用いた場合でも,導電ペーストにとって必要な粘性を確保できる銅粉を得ることを課題としたものである。   Accordingly, an object of the present invention is to solve such problems and to obtain a copper powder that can ensure a viscosity necessary for a conductive paste even when a copper powder obtained by a wet reduction method is used.

前記の課題を解決すべく本発明者らは鋭意研究を重ねたところ,湿式還元法で得られた銅粉に対して銅粉同士を機械的に衝突させる処理を施し,粒径や粒度分布および比表面積はそれほど変化させないで,粒子表面を平滑化させると,導電ペーストの粘性を著しく低下させることができることを見い出した。すなわち,粒子表面に存在する凸凹や角張った部分を,粒径や粒度分布を実質上変化させないで,粒子同士の衝突により滑らかにするのであり,この処理は,粒子を機械的に流動化させることができる装置を用いて行うことができる。   In order to solve the above-mentioned problems, the present inventors have made extensive studies and applied a process of mechanically colliding the copper powders obtained by the wet reduction method with each other to obtain a particle size and a particle size distribution. It was found that the viscosity of the conductive paste can be significantly reduced by smoothing the particle surface without changing the specific surface area so much. In other words, unevenness and angular portions on the particle surface are smoothed by collision between particles without substantially changing the particle size or particle size distribution, and this treatment mechanically fluidizes the particles. Can be performed using an apparatus capable of

したがって本発明は,湿式還元法で製造された銅粉に,粒子同士を機械的に衝突させる表面平滑化処理が施された導電ペースト用銅粉を提供するものである。本発明の銅粉は平均粒径が0.1〜10μmであり,また,ダイマー酸をグリシジルエステル化したエポキシ当量が446で且つ25℃での粘度730cpsのエポキシ樹脂8重量%に,本発明の銅粉92重量%を混練し,この混練物の粘度をE型粘度計を用いて10rpmで測定したとき,300Pa・sec以下の粘度を示す。   Therefore, this invention provides the copper powder for electrically conductive paste by which the surface smoothening process which makes particles collide mechanically with the copper powder manufactured by the wet reduction method was performed. The copper powder of the present invention has an average particle size of 0.1 to 10 μm, and an epoxy equivalent of glycidyl ester of dimer acid is 446, and an epoxy resin having a viscosity of 730 cps at 25 ° C. is 8% by weight. When 92 weight% of copper powder is kneaded and the viscosity of this kneaded product is measured at 10 rpm using an E-type viscometer, it shows a viscosity of 300 Pa · sec or less.

本発明によると,高い充填率で樹脂に混練しても粘度の低いペーストにすることができる銅粉を湿式還元法で製造することができ,その結果,高品質の銅ペーストを安定して得ることができる。   According to the present invention, a copper powder that can be made into a paste having a low viscosity even when kneaded into a resin at a high filling rate can be produced by a wet reduction method, and as a result, a high-quality copper paste can be stably obtained. be able to.

前述のように,水酸化銅を水に懸濁させた懸濁液に還元剤を添加して亜酸化銅に一次還元し,この亜酸化銅を水に懸濁させた懸濁液に還元剤を添加して金属銅に二次還元するいわゆる湿式還元法で製造される銅粉は,粒径や粒子形状も導電ペースト用として適したものが得られる。例えば,平均粒径が0.1〜10μm好ましくは3〜10μm更に好ましくは4〜8μmで,比表面積(BET法で測定して)が0.1〜10m2/g 好ましくは0.1〜1.0m2/g のものが安定して得られる。しかし,その粒子はたとえ球状に近い形状を有していても,実際には平らな結晶面が多面的に露出した多面体形状を有しており,このために結晶面の辺では角張りがあり,全体としては粒子表面は凸凹した状態となっている。このような角張りのある表面状態は,アトマイズ粉のように溶融処理されたものとは基本的に相違している。 As described above, a reducing agent is added to a suspension in which copper hydroxide is suspended in water to perform primary reduction to cuprous oxide, and the reducing agent is added to the suspension in which cuprous oxide is suspended in water. The copper powder produced by the so-called wet reduction method in which the secondary reduction to metallic copper is added to obtain a suitable particle size and particle shape for the conductive paste. For example, the average particle size is 0.1 to 10 μm, preferably 3 to 10 μm, more preferably 4 to 8 μm, and the specific surface area (measured by the BET method) is 0.1 to 10 m 2 / g, preferably 0.1 to 1. A product of 0.0 m 2 / g can be obtained stably. However, even if the particles have a nearly spherical shape, they actually have a polyhedral shape in which flat crystal faces are exposed in a multifaceted manner. As a whole, the particle surface is uneven. Such an angular surface state is fundamentally different from that obtained by melting treatment like atomized powder.

そして,このような角張り(凹凸)があることが,導電ペーストの粘性を下げるのに支障となることがわかった。すなわち湿式還元法で得られた銅粉が,導電ペーストの粘性を下げることのできない理由はここにある。本発明者らは,該銅粉に対して粒径や比表面積等は変化させないで,該角張り部分を滑らかな曲面にすると,導電ペーストの粘性を著しく下げることができることを見い出した。すなわち,樹脂に分散させる前に,粒子同士を機械的に衝突させるような前処理を行ない,角張り部分を減らして滑らかな曲面をもつ粒子としてから,樹脂に分散させると,処理前のものに比べて著しく粘性を低下させることができることがわかった。   And it was found that such squareness (unevenness) hinders the viscosity of the conductive paste from being lowered. That is why the copper powder obtained by the wet reduction method cannot lower the viscosity of the conductive paste. The present inventors have found that the viscosity of the conductive paste can be remarkably lowered by making the squared portion a smooth curved surface without changing the particle size, specific surface area, etc. of the copper powder. In other words, pre-dispersion of particles mechanically colliding with each other before dispersing in the resin, reducing the corners to form particles with a smooth curved surface, and then dispersing in the resin results in pre-treatment. It was found that the viscosity can be remarkably reduced as compared with that.

この処理は粉体の流動化によって行うことができ,この流動化は機械的に粉体を流動化させる装置,例えば筒型高速攪拌機(流動ミキサー)によるのが便利である。すなわち,各粒子に運動量を与え,その運動する粒子同士を互いに衝突させることにより,粒子表面の角張り部分を平滑化する処法によれば,粒径と比表面積は殆んど変化させずに,各粒子の表面を滑らかにすることができる。筒型高速攪拌機は,筒状の密閉容器(軸を垂直方向にした円筒型容器)の内部下方に設けた回転羽根によって粉体に遠心力と浮揚力を与えることができ,これにより容器内を粉体が流動するので,この流動の間に表面が平滑化される。   This treatment can be performed by fluidizing the powder, and this fluidization is conveniently performed by an apparatus that mechanically fluidizes the powder, such as a cylindrical high-speed stirrer (fluid mixer). In other words, by applying a momentum to each particle and causing the moving particles to collide with each other to smooth the angular portions of the particle surface, the particle size and specific surface area are hardly changed. , The surface of each particle can be smoothed. The cylindrical high-speed stirrer can give centrifugal force and levitation force to the powder by rotating blades provided inside the cylindrical sealed container (cylindrical container with the shaft vertical). Since the powder flows, the surface is smoothed during this flow.

湿式還元法の最終段階では,液中で生成した金属銅の微粉を液から分離し,分離された固形分から水分が除去されるが,この乾燥処理された状態ではいわゆるケーキ状となっているので,これを解砕機で解砕処理し,粒子同士をばらばらに単離することが必要である。解砕機では付着している粒子に衝撃を付与して互いに解離させるが,解離した粒子は最終還元された状態の粒子形状にほぼ復元しており,この解砕処理では粒子表面の凹凸が除去されて表面が平滑になることはあまり期待できない。このため,銅粉ケーキを解砕して得た銅粉のままでは,樹脂に分散させたときに高い粘性を示すようになる。例えば,後記の実施例に示すように,ダイマー酸をグリシジルエステル化したエポキシ当量が446g/eqで且つ25℃粘度が730cpsのエポキシ樹脂8重量%に対し,この解砕した銅粉92重量%を混練し,E型粘度計を用いてこの混練物の粘度を10rpmで測定した場合,通常は400Pa・sec以上の粘度を示すようになり,300Pa・sec以下,場合によっては200Pa・sec以下と言った低粘度は到底望めない。   At the final stage of the wet reduction method, the metal copper fine powder formed in the liquid is separated from the liquid, and the water is removed from the separated solids. It is necessary to crush this with a crusher and isolate the particles apart. In the crusher, the adhering particles are impacted and dissociated from each other, but the dissociated particles are almost restored to the final reduced particle shape, and this crushing process removes the irregularities on the particle surface. Therefore, it cannot be expected that the surface becomes smooth. For this reason, the copper powder obtained by pulverizing the copper powder cake exhibits high viscosity when dispersed in the resin. For example, as shown in the examples described later, 92% by weight of the crushed copper powder is added to 8% by weight of an epoxy resin having a glycidyl esterification of dimer acid and an epoxy equivalent of 446 g / eq and a viscosity at 25 ° C. of 730 cps. When the viscosity of this kneaded product is measured at 10 rpm using an E-type viscometer, it usually shows a viscosity of 400 Pa · sec or more, which is 300 Pa · sec or less, and in some cases 200 Pa · sec or less. A low viscosity cannot be expected.

これに対し,前記のように粒子同士を機械的に衝突させて表面平滑化処理を施した銅粉の場合には,同じ湿式還元法で得られたものであるにしても,前記同様ダイマー酸をグリシジルエステル化したエポキシ当量が446g/eqで且つ25℃粘度が730cpsのエポキシ樹脂8重量%に対し,この表面平滑化処理した銅粉92重量%を混練し,E型粘度計を用いてこの混練物の粘度を10rpmで測定した場合,通常は300Pa・sec以下,さらには250Pa・sec以下,場合によってはさらに200Pa・sec以下と言った低粘性を示すことがわかった。   On the other hand, in the case of copper powder that has been subjected to surface smoothening treatment by mechanically colliding particles with each other as described above, even if it is obtained by the same wet reduction method, the dimer acid is the same as described above. The surface-smoothed copper powder (92% by weight) was kneaded with 8% by weight of epoxy resin having a glycidyl esterified epoxy equivalent of 446 g / eq and a viscosity at 25 ° C. of 730 cps. When the viscosity of the kneaded product was measured at 10 rpm, it was found that the viscosity was usually 300 Pa · sec or less, more preferably 250 Pa · sec or less, and in some cases 200 Pa · sec or less.

また,湿式還元法で製造された銅粉に,無機物または有機物を被覆したうえ,粒子同士を機械的に衝突させる表面平滑化処理を施した場合にも,同様に低粘性を示すことがわかった。導電ペースト用銅粉においては,導電率をさらに向上させるために銀等の金属で銅粉表面を被覆したり,表面酸化を防止するためにカルボン酸例えばステアリン酸等の有機化合物で被覆することも有利であり,このような被覆処理は,湿式還元法による銅粉の製造の場合にはその最終的な段階で行うことができる。そして,この被覆処理を施した銅粉に対して,前記同様に粒子同士を機械的に衝突させて表面平滑化処理を行なった場合には,被覆された部分を損傷することなく表面を平滑化することができ,したがって,被覆したことによる特性を具備したまま,低粘性の導電ペーストが得られることがわかった。   It was also found that the copper powder produced by the wet reduction method was coated with an inorganic or organic substance and was subjected to a surface smoothing treatment that caused the particles to mechanically collide with each other. . In copper powder for conductive paste, the surface of copper powder may be coated with a metal such as silver to further improve the conductivity, or it may be coated with an organic compound such as carboxylic acid such as stearic acid to prevent surface oxidation. Advantageously, such a coating treatment can be carried out at the final stage in the case of producing copper powder by a wet reduction method. Then, when the surface smoothing treatment is performed on the copper powder subjected to the coating treatment by mechanically colliding particles with each other in the same manner as described above, the surface is smoothed without damaging the coated portion. Therefore, it was found that a low-viscosity conductive paste can be obtained while maintaining the characteristics of the coating.

硫酸銅水溶液と苛性ソーダ水溶液を,銅1モルに対し苛性ソーダ1.25モルの当量比で混合し,水酸化銅が析出した懸濁液を得る。この懸濁液にブドウ糖液を当量以上添加し,添加後30分間で液の温度を70℃まで昇温したあと,15分間保持し水酸化銅を亜酸化銅に一次還元する。ここまでの処理操作は全て窒素雰囲気下で行う。この液中に空気をバブリングさせて酸化処理したあと,窒素雰囲気中で2日間静置後に上澄液を除去して沈殿をほぼ全量採取し,この沈殿物に純水を追加し,得られた懸濁液に抱水ヒドラジンを当量以上添加して金属銅にまで二次還元する。反応終了後の懸濁液を固液分離し,固形分を120℃の窒素雰囲気中で乾燥し,銅粉ケーキを得る。   An aqueous copper sulfate solution and an aqueous caustic soda solution are mixed at an equivalent ratio of 1.25 mol of caustic soda to 1 mol of copper to obtain a suspension in which copper hydroxide is precipitated. An equivalent amount of glucose solution is added to this suspension, and the temperature of the solution is raised to 70 ° C. in 30 minutes after the addition, and then maintained for 15 minutes to primarily reduce copper hydroxide to cuprous oxide. All the processing operations so far are performed in a nitrogen atmosphere. After bubbling air into this solution and oxidizing, it was left in a nitrogen atmosphere for 2 days, and then the supernatant was removed to collect almost all the precipitate, and pure water was added to this precipitate. A hydrazine hydrate is added to the suspension in an equivalent amount or more and secondarily reduced to copper metal. The suspension after the reaction is separated into solid and liquid, and the solid content is dried in a nitrogen atmosphere at 120 ° C. to obtain a copper powder cake.

以上の湿式還元法による銅粉の製法において,空気バブリングの酸化処理の時間だけを変えて,A,BおよびCの3種類の銅粉ケーキを得た。得られた各ケーキをいずれも二分し,一方は解砕機に装入し,窒素雰囲気中で解砕処理して銅粉A1,B1およびC1を得た。他方は,筒型高速攪拌機に装入し,窒素雰囲気中で流動化処理して銅粉A2,B2およびC2を得た。   In the above copper powder manufacturing method by the wet reduction method, only the time for the air bubbling oxidation treatment was changed, and three types of copper powder cakes A, B and C were obtained. Each of the obtained cakes was divided into two, and one was charged into a crusher and crushed in a nitrogen atmosphere to obtain copper powders A1, B1 and C1. The other was charged into a cylindrical high speed stirrer and fluidized in a nitrogen atmosphere to obtain copper powders A2, B2 and C2.

解砕処理に用いた解砕機は,スイングするハンマーを内装した衝撃式粉砕機であり,凝集乾燥した銅粉ケーキを湿式還元法の最終工程で得られた微細粒子に解砕するが,粒子表面を平滑化する機能は殆んど有しない。流動化処理に用いた筒型高速攪拌機は,軸を垂直にした円筒容器の底部に2枚の回転羽根をもつミキサーであり,該羽根の回転により遠心力を付与された粉体は上方向に流動し,この流動の間に粒子同士が衝突を繰り返すことにより,粒子表面の凹凸が平滑化される。   The crusher used in the crushing treatment is an impact crusher with a swinging hammer inside, and crushes the coagulated and dried copper powder cake into fine particles obtained in the final step of the wet reduction method. There is almost no function for smoothing. The cylindrical high-speed stirrer used for the fluidization treatment is a mixer having two rotating blades at the bottom of a cylindrical container with a vertical axis, and the powder to which centrifugal force is applied by the rotation of the blades is upward. As the particles flow and the particles repeatedly collide with each other during the flow, the irregularities on the particle surface are smoothed.

銅粉ケーキAを解砕処理した銅粉A1と,流動化処理した銅粉A2の電子顕微鏡SEM像(aは2000倍,bは5000倍)を図1と図2に示した。同じく銅粉ケーキBおよびCを解砕処理した銅粉B1およびC1と,流動化処理した銅粉B2およびC2の電子顕微鏡SEM像(aは2000倍,bは5000倍)を図3〜4および図5〜6に示した。また,これらのSEM像から各銅粉の平均粒径を調査すると共に,BET法による比表面積,かさ密度およびTAP密度を測定し,それらの結果を表1に示した。   1 and 2 show electron microscope SEM images (a is 2000 times and b is 5000 times) of copper powder A1 obtained by pulverizing copper powder cake A and fluidized copper powder A2. Similarly, copper powders B1 and C1 obtained by pulverizing the copper powder cakes B and C, and electron microscopic SEM images (a is 2000 times and b is 5000 times) of the fluidized copper powders B2 and C2 are shown in FIGS. Shown in FIGS. In addition, the average particle size of each copper powder was investigated from these SEM images, and the specific surface area, bulk density and TAP density were measured by the BET method, and the results are shown in Table 1.

また,各銅粉92重量%をエポキシ樹脂8重量%に振動型ミキサーで混練し,得られたペーストの粘度を測定した。エポキシ樹脂としては,ダイマー酸をグリシジルエステル化したエポキシ当量が446g/eqで且つ25℃粘度が730cpsのエポキシ樹脂を使用し,混練条件も各銅粉について一定とし, 各ペーストの粘度はE型粘度計を用いて回転速度10rpm のもとで25℃で測定した。その結果も表1に併記した。   Further, 92% by weight of each copper powder was kneaded with 8% by weight of an epoxy resin with a vibration mixer, and the viscosity of the obtained paste was measured. As the epoxy resin, an epoxy resin having a glycidyl ester of dimer acid and an epoxy equivalent of 446 g / eq and a viscosity of 730 cps at 25 ° C. is used, the kneading conditions are constant for each copper powder, and the viscosity of each paste is an E type viscosity. The measurement was performed at 25 ° C. using a meter at a rotation speed of 10 rpm. The results are also shown in Table 1.

表1の結果から,流動化処理した銅粉A2,B2およびC2は,流動化処理しない銅粉A1,B1およびC1に比べて,平均粒径,比表面積,かさ密度およびTAP密度はそれほど変わらないが,樹脂と混練したときのペーストの粘度は著しく低下していることがわかる。粒径や比表面積がそれほど変化しないのにペーストの粘度が低下したのは,図1と図2,図3と図4および図5と図6の比較から明らかなように,流動化処理したものは粒子表面の角張りが除去されて滑らかな曲面となったからであると見てよい。   From the results of Table 1, the fluidized copper powders A2, B2 and C2 have the same average particle size, specific surface area, bulk density and TAP density as compared to the copper powders A1, B1 and C1 which are not fluidized. However, it can be seen that the viscosity of the paste when kneaded with the resin is significantly reduced. The fact that the viscosity of the paste was reduced even though the particle size and specific surface area did not change so much was apparent from the comparison of FIGS. 1, 2, 3, 4, 5, and 6. It can be seen that this is because the angular surface of the particle surface has been removed, resulting in a smooth curved surface.

銅粉ケーキAを解砕処理して得た銅粉A1の電子顕微鏡SEM像であり,図1の(a)は2000倍,図1の(b)は5000倍のものである。It is an electron microscope SEM image of copper powder A1 obtained by crushing copper powder cake A, (a) of FIG. 1 is 2000 times, (b) of FIG. 1 is 5000 times. 銅粉ケーキAを流動化処理して得た銅粉A2の電子顕微鏡SEM像であり,図2の(a)は2000倍,図2の(b)は5000倍のものである。It is an electron microscope SEM image of copper powder A2 obtained by fluidizing copper powder cake A, (a) of FIG. 2 is 2000 times, (b) of FIG. 2 is 5000 times. 銅粉ケーキBを解砕処理して得た銅粉B1の電子顕微鏡SEM像であり,図3の(a)は2000倍,図3の(b)は5000倍のものである。It is an electron microscope SEM image of copper powder B1 obtained by crushing copper powder cake B, (a) of FIG. 3 is 2000 times, (b) of FIG. 3 is 5000 times. 銅粉ケーキBを流動化処理して得た銅粉B2の電子顕微鏡SEM像であり、図4の(a)は2000倍,図4の(b)は5000倍のものである。It is an electron microscope SEM image of copper powder B2 obtained by fluidizing copper powder cake B, (a) of FIG. 4 is 2000 times, (b) of FIG. 4 is 5000 times. 銅粉ケーキCを解砕処理して得た銅粉C1の電子顕微鏡SEM像であり,図5の(a)は2000倍,図5の(b)は5000倍のものである。It is an electron microscope SEM image of the copper powder C1 obtained by crushing the copper powder cake C, (a) of FIG. 5 is 2000 times, and (b) of FIG. 5 is 5000 times. 銅粉ケーキCを流動化処理して得た銅粉C2の電子顕微鏡SEM像であり,図6の(a)は2000倍,図6の(b)は5000倍のものである。It is an electron microscope SEM image of the copper powder C2 obtained by fluidizing the copper powder cake C, (a) of FIG. 6 is 2000 times, and (b) of FIG. 6 is 5000 times.

Claims (5)

湿式還元法で製造された銅粉に、粒子同士を機械的に衝突させる表面平滑化処理が施された銅粉であって、ダイマー酸をグリシジルエステル化したエポキシ当量が446g/eqで且つ25℃粘度が730cpsのエポキシ樹脂8重量%に92重量%を混練しこの混練物の粘度をE型粘度計を用いて10rpmで測定したとき300Pa・sec以下の粘度を示す導電ペースト用銅粉。 A copper powder produced by a wet reduction method and subjected to a surface smoothing treatment for mechanically colliding particles with each other , and an epoxy equivalent of glycidyl ester of dimer acid is 446 g / eq and 25 ° C. Copper powder for conductive paste showing a viscosity of 300 Pa · sec or less when 92 wt% is kneaded with 8 wt% of an epoxy resin having a viscosity of 730 cps and the viscosity of the kneaded product is measured at 10 rpm using an E-type viscometer . 湿式還元法で製造された銅粉に、無機物または有機物を被覆したうえ、粒子同士を機械的に衝突させる表面平滑化処理を施した銅粉であって、ダイマー酸をグリシジルエステル化したエポキシ当量が446g/eqで且つ25℃粘度が730cpsのエポキシ樹脂8重量%に92重量%を混練しこの混練物の粘度をE型粘度計を用いて10rpmで測定したとき300Pa・sec以下の粘度を示す導電ペースト用銅粉。 Copper powder produced by a wet reduction method, coated with inorganic or organic matter, and subjected to surface smoothening treatment that mechanically collides particles with each other . The epoxy equivalent of dimer acid is glycidyl esterified. A conductive material exhibiting a viscosity of 300 Pa · sec or less when 92 wt% is kneaded with 8 wt% of an epoxy resin having a viscosity of 446 g / eq and a viscosity of 730 cps at 25 ° C., and the viscosity of the kneaded product is measured at 10 rpm using an E-type viscometer. Copper powder for paste. 平均粒径が0.1〜10μmである請求項1または2に記載の導電ペースト用銅粉。 The copper powder for conductive paste according to claim 1 or 2 , wherein the average particle size is 0.1 to 10 µm. 湿式還元法は、水酸化銅を水に懸濁させた懸濁液に還元剤を添加して亜酸化銅に一次還元し、この亜酸化銅を水に懸濁させた懸濁液に還元剤を添加して金属銅に二次還元する方法である請求項1〜3のいずれかに記載の導電ペースト用銅粉。 In the wet reduction method, a reducing agent is added to a suspension in which copper hydroxide is suspended in water to perform primary reduction to cuprous oxide, and the reducing agent is added to the suspension in which cuprous oxide is suspended in water. The copper powder for electrically conductive pastes in any one of Claims 1-3 which is the method of adding a secondary reduction to metallic copper. 一次還元処理と二次還元処理の間に酸化処理を有する請求項4に記載の導電ペースト用銅粉。 The copper powder for electrically conductive paste of Claim 4 which has an oxidation process between a primary reduction process and a secondary reduction process.
JP2007001531A 2007-01-09 2007-01-09 Copper powder for conductive paste Expired - Lifetime JP4524477B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001531A JP4524477B2 (en) 2007-01-09 2007-01-09 Copper powder for conductive paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001531A JP4524477B2 (en) 2007-01-09 2007-01-09 Copper powder for conductive paste

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07634899A Division JP3932336B2 (en) 1999-03-19 1999-03-19 Method for producing copper powder for conductive paste

Publications (2)

Publication Number Publication Date
JP2007165326A JP2007165326A (en) 2007-06-28
JP4524477B2 true JP4524477B2 (en) 2010-08-18

Family

ID=38247952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001531A Expired - Lifetime JP4524477B2 (en) 2007-01-09 2007-01-09 Copper powder for conductive paste

Country Status (1)

Country Link
JP (1) JP4524477B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243701A (en) * 1989-03-17 1990-09-27 Daido Steel Co Ltd Treatment of metal powder
JPH04116109A (en) * 1990-09-06 1992-04-16 Sumitomo Metal Ind Ltd Production of fine copper powder
JPH07176846A (en) * 1993-10-29 1995-07-14 Matsushita Electric Ind Co Ltd Composition of conductor paste for filling via hole, both-sided and multilayered printed board using it, and its manufacture
JPH08120309A (en) * 1994-10-25 1996-05-14 Daido Steel Co Ltd Manufacture of metallic powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS644401A (en) * 1987-06-24 1989-01-09 Fukuda Metal Foil Powder Production of spheroidal copper powder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02243701A (en) * 1989-03-17 1990-09-27 Daido Steel Co Ltd Treatment of metal powder
JPH04116109A (en) * 1990-09-06 1992-04-16 Sumitomo Metal Ind Ltd Production of fine copper powder
JPH07176846A (en) * 1993-10-29 1995-07-14 Matsushita Electric Ind Co Ltd Composition of conductor paste for filling via hole, both-sided and multilayered printed board using it, and its manufacture
JPH08120309A (en) * 1994-10-25 1996-05-14 Daido Steel Co Ltd Manufacture of metallic powder

Also Published As

Publication number Publication date
JP2007165326A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
JP4145127B2 (en) Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder
JP4954885B2 (en) Conductive powder and method for producing the same, conductive powder paste, and method for producing conductive powder paste
KR100923696B1 (en) Method for producing surface-treated silver-containing powder and silver paste using surface-treated silver-containing powder
JP5047864B2 (en) Conductive paste and cured film containing fine silver particles
JP5023506B2 (en) Method for producing conductive paint
JP5181434B2 (en) Fine copper powder and method for producing the same
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP5323461B2 (en) Fine metal powder for conductive paint and method for producing the same
JP3932336B2 (en) Method for producing copper powder for conductive paste
JP4779134B2 (en) Conductive filler for conductive paste and method for producing the same
JP4227373B2 (en) Flake copper powder and copper paste using the flake copper powder
JP4342746B2 (en) Method for producing copper powder for conductive paste
US6881240B2 (en) Copper powder for electrically conductive paste
JP2004156061A (en) Tin-coated copper powder, method of producing the tin-coated copper powder, and electrically conductive paste obtained by using the tin-coated copper powder
JP4524477B2 (en) Copper powder for conductive paste
JP4505633B2 (en) Manufacturing method of nickel powder with hcp structure
JP4136106B2 (en) Flat micro copper powder and method for producing the same
JP4197110B2 (en) Mixed copper powder, method for producing the mixed copper powder, copper paste using the mixed copper powder, and printed wiring board using the copper paste
JP4451760B2 (en) Method for producing spherical NiP fine particles and method for producing conductive particles for anisotropic conductive film
JP2012115860A (en) Method for manufacturing solder powder and solder powder obtained by the same
JP2004169056A (en) Copper powder for conductive paste, conductive paste, and method for manufacturing copper powder for conductive paste
KR100786544B1 (en) Copper powder for electrically conductive paste
KR20070089669A (en) Copper powder for electrically conductive paste
JP2011137189A (en) Silver particulate having high sphericity, and method for producing the same
JP2002237214A (en) Conductive coating material composition

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100408

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100514

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100514

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130611

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term