JP4136106B2 - Flat micro copper powder and method for producing the same - Google Patents

Flat micro copper powder and method for producing the same Download PDF

Info

Publication number
JP4136106B2
JP4136106B2 JP24533598A JP24533598A JP4136106B2 JP 4136106 B2 JP4136106 B2 JP 4136106B2 JP 24533598 A JP24533598 A JP 24533598A JP 24533598 A JP24533598 A JP 24533598A JP 4136106 B2 JP4136106 B2 JP 4136106B2
Authority
JP
Japan
Prior art keywords
copper powder
fine
mill
average particle
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24533598A
Other languages
Japanese (ja)
Other versions
JP2000080409A (en
Inventor
健三 塙
和明 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP24533598A priority Critical patent/JP4136106B2/en
Priority to PCT/JP1999/004683 priority patent/WO2004101201A1/en
Priority to US09/530,320 priority patent/US6395332B1/en
Publication of JP2000080409A publication Critical patent/JP2000080409A/en
Priority to US10/029,912 priority patent/US6673134B2/en
Application granted granted Critical
Publication of JP4136106B2 publication Critical patent/JP4136106B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、扁平状微小銅粉及びその製造方法に関し、詳しくは導電性ペースト、導電性接着剤に用いられたときに好適な特性を示す扁平状微小銅粉及びその安価、かつ簡便な製造方法に関する。
【0002】
【従来の技術及び発明が解決しようとする課題】
近年、OA機器、携帯通信機器等の電子部品実装技術においてチップ部品、接点材料等の分野で使用される導電性ペーストとしては、銀あるいは銀−パラジウムを主成分とする導電性金属粉末あるいはフレークを樹脂バインダー、もしくはガラスフリット等に配合したものがある。さらに導電性ペーストは、プリント配線基板のスルーホール用、配線クロスオーバー用、電極用等にも使用されている。これら銀あるいは銀−パラジウムを主成分とする導電性金属粉末あるいはフレークを使用する導電性ペーストは導電性に優れ、かつ耐酸化性にも優れているが、銀、パラジウム等の金属粉末は高価であり、また安定した入手が困難であり、しかも耐マイグレーション性に問題がある。そこで、高価な銀、パラジウムに代えて、安価でかつ導電性に優れた銅粉の需要が高まってきている。
【0003】
この銅粉の製造方法には、アトマイズ法、電解法、湿式合成法等が採用されている。これらの製造方法の中でアトマイズ法、電解法によって得られる銅粉は、主に粉末冶金用に用いられ、その平均粒径は数十μm程度である。一方、湿式合成法においては、平均粒径が0.2〜4μm程度の粒径が揃った粒度分布の狭い銅粉が得られるが、高コストであり、経済性に問題がある。
【0004】
電子機器等の小型化、軽量化に伴って、導電性回路もファインピッチ化され、これに伴ってプリント基板のスルーホール用導電性ペーストに用いられる銅粉もより微小化されたもの、具体的には平均粒径10μm以下、好ましくは平均粒径3〜5μm程度の銅粉が要求されている。上記のように湿式合成法においては、このような平均粒径の銅粉は得られるが、経済的に不利であり、工業的製造方法とはいい難い。また、アトマイズ法により得られた銅粉の平均粒径は、上記のように一般に数十μmであり、これから10μm以下の銅粉を分級した場合には、収率が悪く、結果的にコスト高となる。
【0005】
上記要求に対応すべく、平均粒径20〜35μm程度の電解銅粉をアトマイザーにより粉砕することによって、平均粒径8μm程度の銅粉が得られているが、導電性ペースト用銅粉としてさらなる微小なものが要求されている。また、高圧水アトマイザーを用いることによって、平均粒径5μm程度の銅粉は得られるが、製造歩留りが悪く、経済的に不利である。
【0006】
特開昭62−199705号公報及び特開平2−182809号公報には、電解銅粉を銅粉粒子相互の衝突で解砕、微粉化し、平均粒径10μm以下の銅粉を得ることが記載されている。すなわち、粒子相互を衝突する方式のジェットミルを用いて電解銅粉を解砕、微粉化し、平均粒径10μm以下の銅粉を得る方法が記載されている。また、電解銅粉を衝突板方式ジェットミルによって粉砕、微粉化することによって、平均粒径3〜5μmの微小銅粉を得ることもできる。
【0007】
しかし、この方法においては、得られた微小銅粉は、粒状又は粒状と枝状が混在したものであった。導電性ペーストに用いられる微小銅粉には、粒状等のみならず、ダレ防止、導電性の向上の観点から扁平状のものも要望されている。
【0008】
従って、本発明の目的は、導電性ペースト、導電性接着剤に用いられたときに好適な特性、特に良好な導電性やダレ防止効果を有する扁平状微小銅粉及びその安価、かつ簡便な製造方法を提供することにある。
【0009】
【発明が解決しようとする課題】
本発明者等は、検討の結果、粒状微小銅粉を媒体型撹拌ミルによって扁平化させることによって、上記目的が達成し得ることを知見した。
【0010】
本発明は、上記知見に基づきなされたもので、電解法で得られた樹脂状電解銅粉を原料とし、平均長軸径4〜10μm、扁平率2〜20、嵩密度2〜4g/cm3 、BET比表面積0.4〜1.5m 2 /gであることを特徴とする扁平状微小銅粉を提供するものである。
【0011】
また、本発明は、上記扁平状微小銅粉の好ましい製造方法として、電解法で得られた樹脂状電解銅粉を衝突板式又は粒子相互を衝突する方式のジェットミルで粉砕、微細化させて、平均粒径3〜5μmの粒状微小銅粉を得、次いで該粒状微小銅粉を水に分散させた銅スラリーを媒体型撹拌ミルに導入し、該微小銅粉を扁平化する扁平状微小銅粉の製造方法であって、
上記媒体型撹拌ミルがビーズミルであり、該ビーズミルに用いられるビーズが直径0.3〜1.0mmのジルコニアビーズであり、運転時間が30分〜2時間である扁平状微小銅粉の製造方法を提供するものである。
【0012】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の扁平状微小銅粉は、平均長軸径4〜10μm、扁平率2〜20であることが必要である。この範囲の平均長軸径及び扁平率を有することによって、導電性ペーストに用いたときに、良好な導電性が得られ、またダレの防止に効果を有する。
【0013】
また、本発明の扁平状微小銅粉は、嵩密度が2〜4g/cm3 、BET比表面積が0.4〜1.5m2 /gであることが望ましい。この範囲の性状を有することによって、好適な扁平化が達成でき、また導電性ペーストとしたときに良好な導電性が得られ、またダレが防止される。
【0014】
次に、本発明の製造方法について説明する。
本発明では平均粒径3〜5μmの粒状微小銅粉を水に分散させ銅スラリーとする。ここで用いられる微小銅粉は、特に制限はなくアトマイズ法や湿式合成法で得られたものでもよいが、経済的な見地から電解法で得られた樹枝状電解銅粉を衝突板式又は粒子相互を衝突する方式のジェットミルで粉砕、微細化させて得られたものが好ましく、特に最終的に得られる導電性ペーストの特性から衝突板方式ジェットミルで粉砕、微粉化したものが好ましい。また、ここでいう粒状とは粒状を主体としたもののみならず、粒状と枝状とが混在したものを包含するものとする。また、平均粒径を上記範囲とするのは、上記範囲を外れた場合には、所望とする長軸径、扁平率を有する扁平状微小銅粉が得られないからである。上記粒状微小銅粉はステアリン酸、オレイン酸等の油脂が均一に被覆されていることが望ましい。
【0015】
粒状微小銅粉を水に分散させ銅スラリー中には、脂肪酸塩等の滑剤や分散剤等を添加することが望ましい。滑剤や分散剤を銅スラリー中に添加することによって、微小銅粉同士の付着により粒径が増大するのを防止することができる。ここで滑剤としての脂肪酸塩としてはオレイン酸ナトリウム等が例示される。また、分散剤としてはエマルゲン910(花王社製)等が例示される。
【0016】
次に、この粒状微小銅粉を分散させた銅スラリーを媒体型撹拌ミルに導入し、該微小銅粉を扁平化する。媒体型撹拌ミルとしてはビーズミルを代表的に挙げることができる。銅スラリー供給速度はこの体積が1.4リットルの場合で0.5〜1.0リットル/分が好ましい。また、ビーズは直径0.3〜1.0mmのものが使用され、ジルコニア、アルミナ等のセラミック、ガラス、ステンレス鋼等のものが使用される。銅粉同士の付着により粒径が増大するのを防止するためには、直径が小さく、比重の小さいものを用いることが望ましい。扁平化のための運転時間は、得ようとする扁平率にもよるが30分〜2時間が一般的である。
【0017】
このようにして上記扁平状微小銅粉が得られる。本発明の扁平状微小銅粉は単独で、或いは他の銅粉と組み合わせて、スルーホール基板用や電子部品電極用導電性ペーストや導電性接着剤に用いられる。特に導電性回路のファインピッチ化に伴うスルーホール基板用導電性ペーストに好適に用いられる。
【0018】
【実施例】
以下、実施例等に基づき本発明を具体的に説明する。
【0019】
〔実施例1〕
電解銅粉を衝突板方式ジェットミルで粉砕、微粉化することによって得られた平均粒径3.25μmの粒状微小銅粉30重量部、水70重量部、滑剤(オレイン酸ナトリウム)0.2重量部、分散剤(花王社製エマルゲン910)0.1重量部を混合、撹拌して分散させ、銅スラリーを調製した。この銅スラリーをビーズミルに投入し、粒状微小銅粉を扁平化した。ビーズミルは、スイスWTB社製ダイノーミル(KDL−PILOT型、空隙容量1.4リットル)を用い、ビーズとして直径0.5mmのジルコニアビーズ(ビーズ内充填密度80%)を使用した。銅スラリーの供給速度は0.7リットル/分、運転時間1kg/hrとし、銅スラリーは容器内で撹拌させながら容器とビーズミルを循環させた。この結果、平均粒径5.97μm、扁平率10、嵩密度が2.57g/cm3 、BET比表面積が0.89m2 /gの扁平状微小銅粉が得られた。得られた扁平状微小銅粉の走査電子顕微鏡写真を図1に示す。
【0020】
このようにして得られた扁平状微小銅粉74重量部、レゾール型フェノール樹脂26重量部、溶剤(ブチルセロソルブ)9重量部を加え、3本ロールミルでペースト化した後、ガラスエポキシ基板上にスクリーン印刷し、エアーオーブン中にて150℃、30分熱硬化した。この導電性ペーストの比抵抗は0.9×10-4Ω・cmであった。
【0021】
〔実施例2〕
平均粒径4.43μmの粒状微小銅粉を用いた以外は、実施例1と同様にして扁平状微小銅粉を得た。この扁平状微小銅粉は、平均粒径7.01μm、扁平率10、嵩密度が3.28g/cm3 、BET比表面積が0.76m2 /gであった。
【0022】
〔実施例3〕
平均粒径3.25μmの粒状微小銅粉を用い、ビーズとして直径1.0mmのノンアルカリガラスビーズ(ビーズ内充填密度83%)を使用し、運転時間を2.0kg/hrとした以外は、実施例1と同様にして扁平状微小銅粉を得た。この扁平状微小銅粉は、平均粒径5.36μm、扁平率10、嵩密度が2.38g/cm3 、BET比表面積が0.90m2 /gであった。
【0023】
〔実施例4〕
実施例1で得られた扁平状微小銅粉39重量部、平均粒径4.78μmの粒状微小銅粉39重量部、レゾール型フェノール樹脂22重量部、溶剤(ブチルセロソルブ)9重量部を加え、実施例1と同様にペースト化した後、ガラスエポキシ基板上にスクリーン印刷し、エアーオーブン中にて熱硬化した。この導電性ペーストの比抵抗は0.8×10-4Ω・cmであった。
【0024】
〔比較例1〕
平均粒径4.78μmの粒状微小銅粉78重量部、レゾール型フェノール樹脂22重量部、溶剤(ブチルセロソルブ)9重量部を加え、実施例1と同様にペースト化した後、ガラスエポキシ基板上にスクリーン印刷し、エアーオーブン中にて熱硬化した。この導電性ペーストの比抵抗は1.0×10-4Ω・cmであった。
【0025】
【発明の効果】
以上説明したように、本発明の扁平状微小銅粉は、導電性ペースト、導電性接着剤等に用いられたときに、良好な導電性を有し、かつダレを防止することができる。また、本発明の製造方法によって、上記扁平状微小銅粉が、安価、かつ簡便に得られる。
【図面の簡単な説明】
【図1】図1は、実施例1における扁平状微小銅粉の走査電子顕微鏡写真。
[0001]
BACKGROUND OF THE INVENTION
TECHNICAL FIELD The present invention relates to a flat fine copper powder and a method for producing the same, and more specifically, a flat fine copper powder exhibiting suitable characteristics when used in a conductive paste and a conductive adhesive, and an inexpensive and simple production method thereof. About.
[0002]
[Prior art and problems to be solved by the invention]
In recent years, conductive metal powders or flakes mainly composed of silver or silver-palladium are used as conductive pastes used in the field of chip components, contact materials, etc. in electronic component mounting technology such as OA equipment and portable communication equipment. Some are blended with resin binder or glass frit. Furthermore, the conductive paste is also used for through holes in printed wiring boards, wiring crossovers, electrodes, and the like. Conductive metal powder or conductive paste using flakes mainly composed of silver or silver-palladium is excellent in conductivity and oxidation resistance, but metal powder such as silver and palladium is expensive. In addition, stable acquisition is difficult, and there is a problem in migration resistance. Therefore, in place of expensive silver and palladium, there is an increasing demand for inexpensive and excellent conductive copper powder.
[0003]
An atomizing method, an electrolytic method, a wet synthesis method, or the like is employed as a method for producing the copper powder. Among these production methods, the copper powder obtained by the atomizing method and the electrolytic method is mainly used for powder metallurgy, and the average particle size is about several tens of μm. On the other hand, in the wet synthesis method, copper powder having a narrow particle size distribution with an average particle size of about 0.2 to 4 μm can be obtained, but it is expensive and has a problem in economic efficiency.
[0004]
Along with the downsizing and weight reduction of electronic devices, etc., the conductive circuit has become finer pitch, and the copper powder used in the conductive paste for through-holes on printed circuit boards has also become smaller. Requires copper powder having an average particle size of 10 μm or less, preferably about 3 to 5 μm. As described above, in the wet synthesis method, copper powder having such an average particle diameter can be obtained, but it is economically disadvantageous and is difficult to say as an industrial production method. Moreover, the average particle diameter of the copper powder obtained by the atomization method is generally several tens of μm as described above. When the copper powder of 10 μm or less is classified from this, the yield is poor, resulting in high cost. It becomes.
[0005]
In order to meet the above requirements, copper powder having an average particle size of about 8 μm is obtained by pulverizing electrolytic copper powder having an average particle size of about 20 to 35 μm with an atomizer. Something is required. Moreover, by using a high-pressure water atomizer, copper powder having an average particle size of about 5 μm can be obtained, but the production yield is poor, which is economically disadvantageous.
[0006]
JP-A-62-199705 and JP-A-2-182809 describe that electrolytic copper powder is pulverized and pulverized by collision between copper powder particles to obtain copper powder having an average particle size of 10 μm or less. ing. That is, a method is described in which electrolytic copper powder is pulverized and pulverized using a jet mill that collides with each other to obtain copper powder having an average particle size of 10 μm or less. Moreover, the fine copper powder with an average particle diameter of 3-5 micrometers can also be obtained by grind | pulverizing and pulverizing electrolytic copper powder with a collision board type jet mill.
[0007]
However, in this method, the obtained fine copper powder was granular or a mixture of granular and branched shapes. As the fine copper powder used for the conductive paste, not only granular particles but also flat ones are desired from the viewpoint of preventing sagging and improving conductivity.
[0008]
Accordingly, an object of the present invention is to provide a flat fine copper powder having suitable characteristics when used in a conductive paste and a conductive adhesive, particularly good conductivity and anti-sagging effect, and its inexpensive and simple production. It is to provide a method.
[0009]
[Problems to be solved by the invention]
As a result of the study, the present inventors have found that the above object can be achieved by flattening the granular fine copper powder with a medium stirring mill.
[0010]
The present invention has been made on the basis of the above-mentioned knowledge, and is based on a resinous electrolytic copper powder obtained by an electrolysis method. The average major axis diameter is 4 to 10 μm, the flatness is 2 to 20, and the bulk density is 2 to 4 g / cm 3. , there is provided a Bian Tairajo fine copper powder you being a BET specific surface area of 0.4~1.5m 2 / g.
[0011]
Further, in the present invention, as a preferable method for producing the above-described flat micro copper powder, the resinous electrolytic copper powder obtained by the electrolysis method is pulverized and refined by a collision plate type or a jet mill of a type in which particles collide with each other. , to obtain a granular fine copper powder having an average particle size of 3 to 5 [mu] m, then the particulate fine copper powder by introducing a copper slurry dispersed in water medium stirrer mill, Bian Tairajo minute flattening the fine small copper powder A method for producing copper powder ,
A method for producing a flat micro copper powder in which the medium stirring mill is a bead mill, beads used in the bead mill are zirconia beads having a diameter of 0.3 to 1.0 mm, and an operation time is 30 minutes to 2 hours. It is to provide.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The flat fine copper powder of the present invention needs to have an average major axis diameter of 4 to 10 μm and a flatness ratio of 2 to 20. By having an average major axis diameter and flatness in this range, when used in a conductive paste, good conductivity can be obtained, and the effect of preventing sagging can be obtained.
[0013]
Moreover, it is desirable that the flat fine copper powder of the present invention has a bulk density of 2 to 4 g / cm 3 and a BET specific surface area of 0.4 to 1.5 m 2 / g. By having the properties in this range, suitable flattening can be achieved, and when the conductive paste is obtained, good conductivity is obtained and sagging is prevented.
[0014]
Next, the manufacturing method of this invention is demonstrated.
In the present invention, granular fine copper powder having an average particle diameter of 3 to 5 μm is dispersed in water to form a copper slurry. The fine copper powder used here is not particularly limited and may be obtained by an atomizing method or a wet synthesis method. From an economical point of view, a dendritic electrolytic copper powder obtained by an electrolytic method is used as an impingement plate type or a particle mutual type. Are obtained by pulverizing and refining with a jet mill of a collision type, and those obtained by pulverization and pulverization with a collision plate type jet mill are particularly preferred from the characteristics of the finally obtained conductive paste. In addition, the term “granular” as used herein includes not only those mainly composed of grains but also those in which grains and branches are mixed. The reason why the average particle size is in the above range is that if the average particle size is out of the above range, flat micro copper powder having a desired major axis diameter and flatness cannot be obtained. The granular fine copper powder is desirably uniformly coated with fats and oils such as stearic acid and oleic acid.
[0015]
It is desirable to disperse the fine particulate copper powder in water and add a lubricant such as a fatty acid salt or a dispersant to the copper slurry. By adding a lubricant or a dispersant to the copper slurry, it is possible to prevent the particle size from increasing due to adhesion between the fine copper powders. Examples of the fatty acid salt as the lubricant include sodium oleate. Moreover, as a dispersing agent, Emulgen 910 (made by Kao Corporation) etc. are illustrated.
[0016]
Next, the copper slurry in which the particulate fine copper powder is dispersed is introduced into a medium type stirring mill, and the fine copper powder is flattened. A typical example of the medium type agitation mill is a bead mill. The copper slurry supply rate is preferably 0.5 to 1.0 liter / minute when this volume is 1.4 liter. Further, beads having a diameter of 0.3 to 1.0 mm are used, and ceramics such as zirconia and alumina, glass, stainless steel and the like are used. In order to prevent the particle size from increasing due to adhesion between copper powders, it is desirable to use a material having a small diameter and a small specific gravity. The operation time for flattening is generally 30 minutes to 2 hours, although it depends on the flattening ratio to be obtained.
[0017]
In this way, the flat micro copper powder is obtained. The flat micro copper powder of the present invention is used alone or in combination with other copper powders for conductive pastes and conductive adhesives for through-hole substrates and electronic component electrodes. In particular, it is suitably used as a conductive paste for through-hole substrates that accompanies fine pitches in conductive circuits.
[0018]
【Example】
Hereinafter, the present invention will be specifically described based on examples and the like.
[0019]
[Example 1]
30 parts by weight of granular copper powder having an average particle size of 3.25 μm obtained by pulverizing and pulverizing electrolytic copper powder with a collision plate type jet mill, 70 parts by weight of water, and 0.2 weight of lubricant (sodium oleate) Parts and a dispersing agent (Emulgen 910 manufactured by Kao Corporation) 0.1 parts by weight were mixed, stirred and dispersed to prepare a copper slurry. This copper slurry was put into a bead mill to flatten the granular fine copper powder. As the bead mill, a dyno mill (KDL-PILOT type, void volume: 1.4 liters) manufactured by WTB Switzerland was used, and zirconia beads having a diameter of 0.5 mm (filling density in beads was 80%) were used. The supply rate of the copper slurry was 0.7 liter / minute, the operation time was 1 kg / hr, and the copper slurry was circulated between the container and the bead mill while being stirred in the container. As a result, a flat micro copper powder having an average particle size of 5.97 μm, a flatness ratio of 10, a bulk density of 2.57 g / cm 3 and a BET specific surface area of 0.89 m 2 / g was obtained. A scanning electron micrograph of the obtained flat micro copper powder is shown in FIG.
[0020]
After adding 74 parts by weight of the obtained flat micro copper powder, 26 parts by weight of a resol type phenol resin, and 9 parts by weight of a solvent (butyl cellosolve), the mixture was made into a paste with a three roll mill and then screen-printed on a glass epoxy substrate. And heat-cured at 150 ° C. for 30 minutes in an air oven. The specific resistance of this conductive paste was 0.9 × 10 −4 Ω · cm.
[0021]
[Example 2]
A flat fine copper powder was obtained in the same manner as in Example 1 except that granular fine copper powder having an average particle size of 4.43 μm was used. This flat micro copper powder had an average particle size of 7.01 μm, a flatness ratio of 10, a bulk density of 3.28 g / cm 3 , and a BET specific surface area of 0.76 m 2 / g.
[0022]
Example 3
Except for using fine particulate copper powder with an average particle size of 3.25 μm, using non-alkali glass beads with a diameter of 1.0 mm (filling density within beads of 83%) as beads, and operating time of 2.0 kg / hr, In the same manner as in Example 1, a flat fine copper powder was obtained. This flat micro copper powder had an average particle size of 5.36 μm, a flatness ratio of 10, a bulk density of 2.38 g / cm 3 , and a BET specific surface area of 0.90 m 2 / g.
[0023]
Example 4
39 parts by weight of the flat fine copper powder obtained in Example 1, 39 parts by weight of granular fine copper powder having an average particle size of 4.78 μm, 22 parts by weight of a resol type phenol resin, and 9 parts by weight of a solvent (butyl cellosolve) were added. After pasting in the same manner as in Example 1, it was screen-printed on a glass epoxy substrate and thermally cured in an air oven. The specific resistance of this conductive paste was 0.8 × 10 −4 Ω · cm.
[0024]
[Comparative Example 1]
After adding 78 parts by weight of fine particulate copper powder having an average particle size of 4.78 μm, 22 parts by weight of a resol type phenol resin, and 9 parts by weight of a solvent (butyl cellosolve), a paste was formed in the same manner as in Example 1, and then a screen was placed on a glass epoxy substrate. It was printed and heat cured in an air oven. The specific resistance of this conductive paste was 1.0 × 10 −4 Ω · cm.
[0025]
【The invention's effect】
As described above, the flat fine copper powder of the present invention has good conductivity and can prevent sagging when used in a conductive paste, a conductive adhesive, or the like. Moreover, the said flat fine copper powder is cheap and can be obtained simply by the manufacturing method of this invention.
[Brief description of the drawings]
1 is a scanning electron micrograph of a flat micro copper powder in Example 1. FIG.

Claims (2)

電解法で得られた樹脂状電解銅粉を原料とし、平均長軸径4〜10μm、扁平率2〜20、嵩密度2〜4g/cm 3 、BET比表面積0.4〜1.5m 2 /gであることを特徴とする扁平状微小銅粉。 Resinous electrolytic copper powder obtained by the electrolysis method is used as a raw material, average major axis diameter of 4 to 10 μm, flatness of 2 to 20 , bulk density of 2 to 4 g / cm 3 , BET specific surface area of 0.4 to 1.5 m 2 / Bian Tairajo fine copper powder it is a g. 電解法で得られた樹脂状電解銅粉を衝突板式又は粒子相互を衝突する方式のジェットミルで粉砕、微細化させて、平均粒径3〜5μmの粒状微小銅粉を得、次いで該粒状微小銅粉を水に分散させた銅スラリーを媒体型撹拌ミルに導入し、該微小銅粉を扁平化する扁平状微小銅粉の製造方法であって、
上記媒体型撹拌ミルがビーズミルであり、該ビーズミルに用いられるビーズが直径0.3〜1.0mmのジルコニアビーズであり、運転時間が30分〜2時間である扁平状微小銅粉の製造方法
The resinous electrolytic copper powder obtained by the electrolysis method is pulverized and refined by a jet mill of a collision plate type or a collision type of particles to obtain a granular fine copper powder having an average particle size of 3 to 5 μm , and then the granular fine copper powder copper powder method for manufacturing a copper slurry dispersed in water is introduced into the medium stirrer mill, Bian Tairajo fine copper powder you flattening the fine small copper powder,
A method for producing a flat micro copper powder, wherein the medium stirring mill is a bead mill, beads used in the bead mill are zirconia beads having a diameter of 0.3 to 1.0 mm, and an operation time is 30 minutes to 2 hours .
JP24533598A 1998-08-31 1998-08-31 Flat micro copper powder and method for producing the same Expired - Lifetime JP4136106B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24533598A JP4136106B2 (en) 1998-08-31 1998-08-31 Flat micro copper powder and method for producing the same
PCT/JP1999/004683 WO2004101201A1 (en) 1998-08-31 1999-08-30 Fine copper powder and method for producing the same
US09/530,320 US6395332B1 (en) 1998-08-31 1999-08-30 Fine copper powder and process for producing the same
US10/029,912 US6673134B2 (en) 1998-08-31 2001-12-31 Fine copper powder and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24533598A JP4136106B2 (en) 1998-08-31 1998-08-31 Flat micro copper powder and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000080409A JP2000080409A (en) 2000-03-21
JP4136106B2 true JP4136106B2 (en) 2008-08-20

Family

ID=17132145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24533598A Expired - Lifetime JP4136106B2 (en) 1998-08-31 1998-08-31 Flat micro copper powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP4136106B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4779134B2 (en) * 2001-02-13 2011-09-28 Dowaエレクトロニクス株式会社 Conductive filler for conductive paste and method for producing the same
JP4145127B2 (en) * 2002-11-22 2008-09-03 三井金属鉱業株式会社 Flake copper powder, method for producing the flake copper powder, and conductive paste using the flake copper powder
CN101946405A (en) * 2008-02-18 2011-01-12 精工电子有限公司 Piezoelectric vibrator manufacturing method, piezoelectric vibrator, oscillator, electronic device, and radio-controlled watch
EP2128203A1 (en) * 2008-05-28 2009-12-02 Eckart GmbH Die-form metal effect pigments containing copper, method for their manufacture and use
WO2016006285A1 (en) * 2014-07-07 2016-01-14 住友金属鉱山株式会社 Copper powder and electrically conductive paste, electrically conductive coating, electrically conductive sheet, and antistatic coating using same
JP2016065285A (en) * 2014-09-25 2016-04-28 東洋アルミニウム株式会社 Method for manufacturing flaky metal pigment
CN107096927A (en) * 2017-06-13 2017-08-29 浙江纺织服装职业技术学院 It is a kind of to reduce the silver powder preparation method of silver powder burn out rate
CN114888294B (en) * 2022-05-14 2023-04-25 安徽纳洛米特新材料科技股份有限公司 Industrial production method of flaky nano nickel powder

Also Published As

Publication number Publication date
JP2000080409A (en) 2000-03-21

Similar Documents

Publication Publication Date Title
JP5181434B2 (en) Fine copper powder and method for producing the same
WO2004101201A1 (en) Fine copper powder and method for producing the same
KR100988298B1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
WO2007034833A1 (en) Pasty silver particle composition, process for producing solid silver, solid silver, joining method, and process for producing printed wiring board
CN104036842B (en) A kind of leadless environment-friendly circuit board conductive silver slurry and preparation method thereof
JP2016028176A (en) Method for manufacturing copper powder
CN102426872B (en) Low temperature solidified silver paste for keyboard lines and preparation method thereof
JP4136106B2 (en) Flat micro copper powder and method for producing the same
JP5092630B2 (en) Fine silver powder, method for producing the same, and dispersion liquid for conductive paste using the fine silver powder
CN111243781A (en) Silver paste and preparation method and application thereof
JP2006307264A (en) Tin powder, method for producing tin powder and electroconductive paste containing tin powder
KR20130116061A (en) Reduced and precipitated fine nip particles and manufacturing method for the same
CN111054929B (en) Low-temperature co-fired ceramic colloid and preparation method and application thereof
JP4922793B2 (en) Mixed conductive powder and method for producing the same, conductive paste and method for producing the same
JP4230017B2 (en) Method for producing fine copper powder
JP2007191752A (en) Tin-coated silver powder and method for producing the tin-coated silver powder
JP2020050947A (en) Easily crushable copper powder and method for producing the same
JP3932336B2 (en) Method for producing copper powder for conductive paste
JP2002015622A (en) Copper powder for electro-conductive paste and its manufacturing method
US20030089199A1 (en) Copper powder for electrically conductive paste
JP2010132967A (en) Metal particle dispersion, method of producing metal thin film, and metal thin film
CN111341485B (en) Conductive silver paste for LED aluminum oxide substrate and preparation method thereof
WO2020059291A1 (en) Easily-crushable copper powder and manufacturing method therefor
JPH11310806A (en) Production of copper-silver composite powder for electrically conductive paste
JP4074369B2 (en) Method for producing flake copper alloy powder for conductive paste

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071023

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130613

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140613

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term